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Abstract: We illustrate the applicability of the elementary effects method for sensitivity 

analysis and optimization of models in plasma physics. In the first part of this contribution, 

we will illustrate how the method is used for assessing in what way individual experimental 

inputs influence the solution. In the second part, we used the method to reduce an already 

optimized reaction scheme from 125 to 63 reactions. 
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1. Introduction 

Numerical simulations clearly play an important role in 

the field of plasma physics because they help to grasp the 

strongly non-linear behaviour of the fourth state of matter. 

Within typical laboratory plasmas, the models often have 

to account for the interplay of coupled physical 

phenomena. Firstly, electromagnetic fields, electron 

kinetics, neutral gas chemistry, transport and mixing 

influence each other on a wide range of spatial and 

temporal time scales, and secondly, the non-equilibrium 

nature of the plasma allows for a very large number of 

new kinetic pathways which are thermodynamically 

unfavourable. 

Taking this into account, it is inevitable that every 

plasma model will depend on a number of input 

parameters with large uncertainty intervals, be it reaction 

cross-sections, material properties or experimental inputs 

to the model. The number of these model inputs is usually 

very high – up to thousands of reactions can be included 

in a plasma model – and sometimes, the uncertainties of 

the input parameters can be relatively large – even when 

they are obtained from an experimental input. 

In case the model does not agree well with the 

experimental validation, we are often facing the challenge 

of identifying the cause of such discrepancy. 

Additionally, the behaviour of the model with regard to 

the input parameters is often counter-intuitive, for 

example a 30% error in one parameter (e.g. wall sticking 

coefficient) may have a much larger influence on the 

result than a 30% error in another parameter (e.g. 

ionization rate). Furthermore, there might be non-linear 

interactions coming to play (e.g. the model is only 

sensitive to the wall sticking coefficient if the ionization 

rate is high enough).  

It is not possible to test such complex interactions in a 

model without a mathematical framework and the 

mathematical tools to achieve that are commonly called 

sensitivity analysis techniques.  

2. Conventional Techniques 

The conventional sensitivity analysis techniques are 

reviewed for example in [1] and have been used in the 

field of plasma simulation e.g. [2]. This method is 

essentially a finite difference method as it relies on 

calculation of partial derivatives of each model output 

with regard to each model input. For a better example, let 

us try to consider the sensitivity of number density of 

species 𝑛𝑖 to reaction rates in a kinetic model (reaction 

rates considered inputs with given uncertainties). This 

number density is a complicated function of the values of 

all the rate coefficients  

 𝑛𝑖 = 𝑛𝑖(𝑘1, … , 𝑘𝑁) (1) 

 

The sensitivity of the density 𝑛𝑖 to a rate coefficient of 

reaction r would be calculated as 

 𝑆𝑖(𝑘𝑟) =
𝑘𝑟

𝑛𝑖

𝜕𝑛𝑖

𝜕𝑘𝑟
 (2) 

The advantage of the method is its robustness and the 

fact that it is relatively easy to assess its convergence (the 

step in the input coefficient 𝑘𝑟 is being decreased until the 

change in the sensitivity coefficient 𝑆𝑖𝑟  is small). The 

disadvantage is the incapability to predict second-order 

coupling between the model inputs. For example, the 

output 𝑛𝑖 may seem non-sensitive to input 𝑘30 but 

becomes sensitive to it if the magnitude of input 𝑘45 is 

decreased). This is because the derivatives in equation (1) 

are calculated at constant values of the other input 

parameters. 

As an alternative to the conventional methods described 

above, the so-called elementary effects (EE) method 

was developed [3] which is discussed in the following 

paragraphs. It should be pointed out that the EE method is 

not a replacement of the conventional sensitivity analysis 

method but rather an alternative. 

 

3. Elementary Effects Method 

The method of elementary-effects was introduced by 

Morris et al. [3]. Unlike the conventional method 

described above, it does not attempt to calculate the exact 

values of the derivative in equation (1). Instead, it relies 

on sampling of the k-dimensional space of the k model, 

thereby also reducing the number of model runs necessary 

(in the EE method, it is approximately proportional to k 



while in the conventional methods, it is proportional 

to k2). 

Instead of the finite partial differences, the EE methods 

operates with so-called elementary effects. Firstly, we 

introduce weight coefficients 𝑤𝑟, by which corresponding 

model inputs 𝑘𝑟 are multiplied. The algorithm then begins 

at a random position in the k-dimensional space of the 

weight coefficients, changes one of them coefficient by a 

value Δ and calculates the elementary effect of r-th input 

on an i-th output as 

 𝑑𝑖(𝑤𝑟) =
𝑓(𝑤1,…,𝑤𝑟+Δ,…𝑤𝑘)−𝑓(𝑤1,…,𝑤𝑟 ,…𝑤𝑘)

Δ
 (3) 

The algorithm then proceeds onto another input (one that 

has not yet been modified in the current trajectory). In this 

manner, m trajectories in the k-dim space of the input 

parameters are generated, which should cover as much of 

it as possible. The expression for the elementary effect is 

not equivalent to expression (2) as each elementary effect 

with regard to input r is calculated at different values of 

other inputs. 

In the EE method, it is necessary to uniformly populate 

the phase space of the input coefficients, as thoroughly 

discussed in [4]. Once it is done and several elementary 

effects have been obtained for each input (several 

trajectories were generated), the mean value 𝜇𝑖 and their 

standard deviation 𝜎𝑖 are calculated and then act as a 

measure of sensitivity.  

 𝜇𝑖 =
1

𝑚
∑ 𝑑𝑖(𝑤𝑟)
𝑚
𝑟=1  (4) 

 𝜎𝑖 = √
1

𝑟−1
∑ (𝑑𝑖(𝑤𝑟) − 𝜇𝑖)

2𝑚
𝑟=1  (5) 

 

Simply speaking, the value of 𝜇𝑖 is high when the input 

influences the model linearly and 𝜎𝑖 is high if the input 

influences the result depending on another input. 

Figure 1 provides an illustration how the population of 

the phase space with trajectories could look like in a 

simple case of a few input parameters. An elementary 

effect is calculated in each point of the trajectory which is 

not its starting point. 

 

Fig. 1: Population of 3-dim phase space of the model 

inputs by trajectories. 

In the paragraphs below, we give specific examples, 

how the Elementary Effects method can be used to 

understand and optimize a specific numerical model of 

processes in an atmospheric pressure plasma jet, which 

has been developed earlier. 

 

4. Use case: Sensitivity of a Gas Dynamics Model to 

Experimental Inputs 

We have previously developed a model of gas 

dynamics applicable to atmospheric-pressure plasma jets. 

This model solves the Navier-Stokes equations coupled to 

a diffusion equation describing the mixing of the gaseous 

components (usually a rare gas and air), heat equation 

and, optionally advection-diffusion-reaction equations for 

active species in the afterglow. This model has previously 

been employed to explain certain experimental 

observations related to the gas flow in the APPJ [5–7]. 

Figure 2 shows an example output from the model 

 
Fig. 2: Example output from the gas flow model – gas 

composition outside the APPJ, adapted from [6]. 

 

The model has several inputs, which are either 

estimated or provided from experiment but in any case, 

can potentially impact the result because their uncertainty 

is quite high. In this section, we chose to study only the 

sensitivity with regard to 4 input parameters, to make the 

procedure more transparent and possible to correlate with 

a physicist’s intuition. The four parameters and their 

uncertainties are the following: 

 Gas temperature at APPJ orifice 𝑇𝑔,can range 

from 20 to 70°C in a typical APPJ 

 Ambient temperature 𝑇𝑎,can range from 18 to 

28°C 

 Inner diameter of the jet 𝑟jet, manufacture 

tolerances introduce uncertainty of +/- 0.1 mm. 

 Air impurity in the rare gas 𝑥air, from 0 to 1%, 

depending on the tubing 

As the output parameter, we chose the axial distance 𝑧0, 

which is the distance where the air molar fraction reaches 

10%. The elementary effects algorithm was run for 5 

trajectories with 5 steps each, meaning that it required 25 



model runs. Figure 3 then shows the output of the 

algorithm, which is a 2D scatter plot of 𝜇𝑖 and 𝜎𝑖. 

 
Fig. 3: 2D scatter plot of elementary effects mean and 

standard deviation for the 4 model inputs considered. 

By looking at the plot, we can make the following 

conclusions: 

1. The ambient temperature has negligible effect on 

the mixing outside the APPJ 

2. Air impurity shows mostly linear interaction – it 

influences the output regardless of the values of 

other inputs 

3. 𝑟jet and 𝑇𝑔 show non-linear interaction – they 

influence the solution depending on the value of 

the other parameter. Their effects can cancel out 

(increasing both 𝑟jet and 𝑇𝑔 appropriately leads 

to the same gas velocity) but generally do not 

cancel out. 

These conclusions are clearly consistent with one’s 

intuition which suggests that the elementary effects 

method provides reliable results when performing the 

sensitivity analysis. In the following section, we apply the 

method to a model with a notably higher number of input 

parameters. 

 
Fig. 4: Outputs from 2D afterglow chemistry model, 

adapted from [7] 

5. Use case: Reduction of an Afterglow Reaction 

Scheme 

The gas flow numerical model which has been 

discussed above can also be complemented with a model 

of 2D afterglow chemistry, as illustrated in figure 4 and 

reference [7]. 

The reaction scheme which was used for the calculation 

contains 125 reactions which could be important in the 

afterglow and which have already been manually pre-

selected based on the works by Murakami et al. [8]. The 

question, however, remains if this reaction scheme can be 

further reduced and optimized. The motivation in this 

case is only partially reduction of the computation costs. 

More importantly, many of the reaction rates are have 

a large error or are only estimated based on an analogy. If 

we eliminate the reactions which are of little importance 

at relevant conditions, we can focus on refining the 

important reaction rates, thereby making the model more 

accurate. 

For the purpose of sensitivity analysis and optimization, 

we did not solve the model in the 2D geometry but 

simplified it to 0D time-dependent. Compared to the 

previous case, we still have many more model outputs – 

the densities of all the species that the model solves for as 

a function of time – and many more model inputs – rate 

coefficients – so the sensitivity plots look much more 

chaotic, see figure 5. 

 

 
Fig 5: Sensitivity plots for oxygen radical and OH radical 

densities. 

 

In figure 5 above, each labelled point corresponds to 

a specific reaction. Those reactions, which are close to 

point (0,0) do not influence the concentration of the 

corresponding species but may still influence the 

concentration of other species.  

We further analysed the sensitivity coefficients for all 

the species and eventually removed 62 reactions which 

had close to zero interaction for all of the species, thereby 

reducing the already optimized reaction scheme almost by 

a half. As figure 6 illustrates, the time-dependent 

concentrations of the species were nearly unaffected by 

this, meaning that the elementary effects method correctly 

identified the reactions, to which the model is not 

sensitive. 

 



 
Fig. 6: Verification that the reduction of the reaction 

scheme from 125 to 62 reactions did not change the 

results. 

 

6. Conclusion 

On two examples, we have illustrated that the 

elementary effects method can be used for sensitivity 

analysis and sensitivity analysis-based optimization 

of numerical models in plasma physics. In subsequent 

work, we will focus on applying this method to even 

much larger reaction schemes with the aim to optimize 

them, eventually making the numerical models more 

transparent. 

 

7. References 

[1] T. Turányi, J. Math. Chem. 5 (1990) 203–248. 

[2] V. Mazánková, D. Trunec, Z. Navrátil, J. Raud, F. 

Krčma, Plasma Sources Sci. Technol. 25 (2016) 

35008. 

[3] M.D. Morris, Technometrics 33 (1991) 161–174. 

[4] F. Campolongo, J. Cariboni, A. Saltelli, Environ. 

Model. Softw. 22 (2007) 1509–1518. 

[5] J. Vorac, A. Obrusník, V. Procházka, P. Dvorak, 

M. Talaba, Plasma Sources Sci. Technol. Plasma 

Sources Sci. Technol 23 (2014) 25011–12. 

[6] A. Sobota, O. Guaitella, G.B. Sretenović, I.B. 

Krstić, V. V Kovačević, A. Obrusnik, Y.N. 

Nguyen, L. Zajickova, B.M. Obradović, M.M. 

Kuraica, Plasma Sources Sci. Technol. (2016) 

submitted. 

[7] K.P. Arjunan, A. Obrusník, B.T. Jones, L. 

Zajíčková, S. Ptasinska, Plasma Process. Polym. 

13 (2016) 1089–1105. 

[8] T. Murakami, K. Niemi, T. Gans, D. O’Connell, 

W.G. Graham, Plasma Sources Sci. Technol. 23 

(2014) 25005. 

 

 

Acknowledgement 

AO is a Brno PhD Talent – funded by Brno 

municipality. ZB acknowledges the support of the 

Czech Science Foundation (GACR contract no. 15-

04023S). 


