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Part I

Principles of Calibration



Photon Counting Detectors

Photon counting detectors n

I detects individual photons as a particle (by technical design),

I like CCD, channels on spacecrafts, photographic emulsion,
photomultiplier, eye (?).

Calorimeters E

I energy-based detectors (measures energy)

I examples: bolometers, . . .

Detector absorb energy (by Planck’s law):

E = nhν (1)

Important:

I Photon detectors collects all photons (energy doesn’t matter).

I Calorimeters collects energy (amount of photons doesn’t
matter).



Principle Of The Calibration

Our device registers the counts — c (per seconds and area, single
frequency)
A number of photons expected from calibration sources — n
The crucial point of the calibration is determination of the
coefficient η:

η =
c

n
(2)

General properties:

I η is probability of detection a photon on ν

I η characterizes of efficiency: 0 < η < 1

I response of full apparatus (including optics, atmospheric
conditions, . . . )



Difficulties Of Photometric Calibration

Methods:

I laboratory: ideal for CCD, precise with calibrated lamp

I celestial: full apparatus, low precision, easy available

Theoretical difficulties:

I multi-frequency observing (finite frequency band)

Practical difficulties:

I atmospheric conditions

I calibration sources



Methods Of Photometric Calibration

Photons and photometric quantities

I How many photons is coming from Vega ?

I What are we exactly observing?

Multi-band calibration

I Color systems

I Conversions

Poisson’s Nature of Photons

I Statistical methods for calibration

I We are robust!



Energy, fluxes, . . .

I Energy conservation E

L =
dE

dt
=

∫
V

e dV =

∫
S
F · n dS

I Energy flux F:
I has direction
I per second
I per area
I SI units: W · m −2

I Intensity:

F =

∫
Ω

I dΩ

I per second
I per area
I per cone
I per frequency (wavelength)
I SI units: W · m −2 · sr−1



Photon flux

Photon flux φν · s−1 · m −2 · sr−1 · Hz [m]

φν ≡
∆n

∆t∆A∆Ω∆ν

Photon flux
Iν = φνhν

(equivalent o Planck’s law for continuous quantities)



The Spectrum

I Basically, an energy spectrum are proper values of
Hamiltonian operator H|ψn〉 = En|ψn〉 (discrete).

I Basically, the spectrum are proper values of density matrix ???
(continuous).

I Observed as the spectral density flux fν , fλ
I has direction? No! it’s rate1, has no direction!
I per second
I per area
I per frequency (wavelength)
I SI units: W · m −2 · sr−1 · Hz [m]

1A rate is a general normalized quantity. The flux is used historically as
F = f · n.



Spectrum of Vega
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Spectrum of Sun
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Energy And Photon Fluxes In A Filter

I observation via filter (band in radio, channel in HEA)

I has finite spectral width (mixes near frequencies)

I function: f (ν) is probability of “transmission” of a photon
throughout the filter

I mathematically means conditional probability

Energy flux in filter (
∞∫
0

fF (ν) dν <∞):

FF =

∞∫
0

Fν(ν)fF (ν) dν

Photon Flux

φF =

∞∫
0

Fν(ν)fF (ν)

hν
dν



Approximations Of Photon Flux In The Filter
I Usually, exact spectral transmisivity of filters is not known

(need due precision).

Gauss–Hermite quadrature2

∞∫
−∞

e−x
2
f (x) dx ≈

N∑
n=1

wnf (xn)

where wn are weights and xn are roots of Hermite polynomial
Hn(x), w1 = 2(?).

I The interval of integration extended to −∞.
I The weighting function approximates the real filter

transmitivity

The filter approximation is

f (ν) ≈ fν0e−(ν−ν0)2/2(∆ν)2

with parameters ν0 as center of filter, ∆ν as “broadness”
parameter and fν0 as the transmitivity at maximum.
The area under the graph is approximately

fν0∆ν

For fluxes:
FF ≈ Fν0fν0∆ν (3)

and for photons

φF ≈
Fν0fν0∆ν

hν
(4)

(figure?)
2http:

//en.wikipedia.org/wiki/Gauss\OT1\textendashHermite_quadrature

http://en.wikipedia.org/wiki/Gauss\OT1\textendash Hermite_quadrature
http://en.wikipedia.org/wiki/Gauss\OT1\textendash Hermite_quadrature


Vega
Our Hero

I many photometry systems foundation

I defined for V , m = 0, B − V = 0

I Luminosity L = 40L�
I Distance d = 7.68 pc

I flux

F =
L

4πd2

[W/m2] F = 2.27 · 10−8 [W/m2] (energy conservation,
energy is spread over larger cone (surface)) F = (F , 0, 0) in
spherical coordinates (r , θ, φ).



V filter

I V filter defines flux density at 1 Hz as
f0 = 3600 · 10−26 [W/m2/Hz]

I V filter has effective wavelength νeff = 550 · 1012 Hz and
width ∆ν = 89 · 1012 Hz.

I Flux in filter with trnasmitivity TV (ν) is

FV =

∞∫
0

f (ν) · TV (ν)dν ≈ f (νeff)T (νeff)∆ν

I For the ideal filter for Vega
f (νeff) = f0 = 3600 · 10−26 [W/m2/Hz], T = 1 and so
FV = 3.2 · 10−9 [W/m2]



Photon flux

I Energie jednoho fotonu ve V filtru je
e = hνeff = 3.6 · 10−19 [J]

I Energie nesená v́ıce fotony E = ne = nhνeff

I Pro fotonový tok ve filtru

E

1 s 1 Hz
≈ F

∆ν
≈ nhνeff

n =
F

hνeff
=

f0∆ν

hνeff

pro Vegu vycháźı ve V filtru asi 8.8 · 109 [fotonů/s/m2]

Pro zaj́ımavost, plocha lidského oka je π · 0.0032 m2 a tedy
noko = 2.5 · 105 [fotonů/s], pro magnitudy m = 7 je
noko = 400 [fotonů/s] (ale vad́ı i pozad́ı)



Energy And Photon Fluxes For V Filter

Fluxes:
φ = f0∆ν100.4m

Photon fluxes:

φ =
f0∆ν

hνeff
100.4m

m enery flux photon flux
[W/m2] [ph/s/m2]

0 10−9 1010 Vega
5 10−11 108 eye faint

10 10−13 106 Perek’s 2m
15 10−15 104 CCD on telescope
20 10−17 100 single-exposure limit
25 10−19 0.9 full-night observation



Vega Photon Fluxes For V Filter
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DK154
Johnson

Photon fluxes for V filter: DK154 1.026E+10 Johnson 5.5E+09
(no CCD quantum sensitivity).
Interpretation: Photon fluxes for DK154 filters are approximately
twice more than standard filters.
With quantum sensitivity: 4.814E+09 (std) 8.999E+09 (deka)
In real, the fluxes will reduced by non-ideal reflective optics and
atmospheric extinction.
Integration:

I spectra has non-equal spacing (different spectrographs?)
I the spectra are used directly
I quantum efficiency (for 50 nm) and filter (1nm) are

interpolated
I by Rectangle method

(http://en.wikipedia.org/wiki/Rectangle_method)

http://en.wikipedia.org/wiki/Rectangle_method


Photon fluxes for R filter
Vega with and without Hα

Photons (removed Hα): 8.621E+09 photons/s/m2
Photons (including Hα): 8.608E+09 photons/s/m2
To resolve between stars with and without, we need relative
precision better than 1% (!).



Photon fluxes for DK154 filters

Vega

filter DK154† ×109 Landolt† DK154 / Landolt

B 7.401 3.023 2.448
V 8.999 4.814 1.870
R 7.858 6.894 1.140
I 3.578 3.985 0.899

Sun

filter DK154† ×1020 Landolt† DK154 / Landolt

B 1.950 0.821 2.375
V 4.594 2.409 1.907
R 5.647 4.867 1.160
I 3.472 4.032 0.861

Mean difference 0.042. The absolute calibration is limited to a few
percent!
† units in [photons/s/m2]



Part II

Color transformations



Johnson-Morgan and DK154 filter systems
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The basics of approximations

I Right approximation function selection

I Criterion of a good approximation



Distance Of Functions

The distance of functions is defined as the functional (C(.)→ R):

S [f |g ] =

∫
w(x)‖f (x)− g(x |a)‖ dx

where ‖.‖ is a measure.
For filters, w(x) = φν(ν)q(ν) :

S =

∞∫
−∞

φν(ν)q(ν)‖f (ν)− f ′(ν)‖ dν

General approximation of functions:

I we choose “suitable” functions from a space (set) of functions
C

I we try choose of parameters ()

I we choose a measure



Design of approximation of filters
Scaling

Norm factor (f ′ is instrumental, f standard)

f ′(ν) = r · f (ν)

S(r) =

∞∫
−∞

φν(ν)q(ν)[f ′(ν)− rf (ν)]2 dν

Solution for δS/δr = 0:

dS

dr
= −2

∞∫
−∞

φν(ν)q(ν)[f ′(ν)− rf (ν)]f (ν) dν

so
∞∫
−∞

φν(ν)q(ν)f ′(ν)f (ν) dν = r

∞∫
−∞

φν(ν)q(ν)f 2(ν) dν (5)



Design of approximation of filters
Two filter Multi-Linear Approximation

Norm factor (f ′ is instrumental, f standard)

f ′B(ν) = cBB · fB(ν) + cBV · fV (ν)f ′V (ν) = cVB · fB(ν) + cVV · fV (ν)

S(A,B,C ,D) =

∞∫
−∞

φν(ν)q(ν)[f ′B(ν)−AfB(ν)−BfV (ν)]2 dν+

∞∫
−∞

φν(ν)q(ν)[f ′V (ν)−CfB(ν)−DfV (ν)]2 dν

The solution is a set of equations

∂S

∂A
= 0

∞∫
−∞

φν(ν)q(ν)f ′B fB dν = cBB

∞∫
−∞

φν(ν)q(ν)f 2
B dν+cBV

∞∫
−∞

φν(ν)q(ν)fB fB dν

∞∫
−∞

φν(ν)q(ν)f ′B fV dν = cBB

∞∫
−∞

φν(ν)q(ν)fB fV dν+cBV

∞∫
−∞

φν(ν)q(ν)f 2
V dν

. . .



Design of approximation of filters
Multi-Linear approximation

Norm factor (f ′ is instrumental, f standard)

f ′B(ν) = A · fB(ν) + B · fV (ν)f ′V (ν) = C · fB(ν) + D · fV (ν)

f ′i =
∑
ij

cij fj , i , j = B,V

S(cij) =
∑
j

∞∫
−∞

φν(ν)q(ν)
∑
i

[f ′j (ν)− cij fi (ν)]2 dν

The solution
∂S

∂cij
= 0

is a set of equations
∞∫
−∞

φν(ν)q(ν)f ′j fi dν =
∑
l

cij

∞∫
−∞

φν(ν)q(ν)fi fl dνi , j = B,V ,R, I

Interpretation:
I diagonal elements are proportional common filter

transmissions ( 1)
I off-diagonal elements are generated by filter overlaps � 1



Filter Approximation of DK 154
From DK154 to Johnson(-Morgan)

Vega
nB

nV

nR

nI

 =


1.5271 −0.2223 0.0825 −0.0673
0.1125 0.8968 −0.1655 0.0126
0.0030 −0.1854 1.4262 −0.6064
0.0004 −0.0533 0.1591 1.0928




cB
cV
cR
cI


Sun

nB

nV

nR

nI

 =


1.6163 −0.2064 0.0653 −0.0497
0.1877 0.8932 −0.0149 0.0106
0.0065 −0.2764 1.5378 −0.6388
0.0011 −0.0859 0.2086 1.0971




cB
cV
cR
cI





Approximation of B filter
Vega and DK154 instrumental filter
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Approximation of V filter
Vega and DK154 instrumental filter
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Approximation of R filter
Vega and DK154 instrumental filter
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Approximation of I filter
Vega and DK154 instrumental filter
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Single Filter Approximation of DK 154

Determination of r from (5):

∞∫
−∞

φν(ν)q(ν)f ′(ν)f (ν) dν = r

∞∫
−∞

φν(ν)q(ν)f 2(ν) dν

filter Vega Sun

B 2.3546 2.2873
V 1.6307 1.6421
R 1.1455 1.1581
I 0.76748 0.74333



Natural colors

“reconstruction of natural colors (by human being
perception) from astronomical filters”

I SBIG ST-8 with BVRI filter set

I MonteBoo dome, solar light

I best check of the approximations !



Poorly Reconstructed colors
Instrumental MonteBoo BVR to RGB



Natural colors
Instrumental MonteBoo BVR to Johnson-Morgan



Canon EOS30D
Check colors



SMC
DK154



Part III

Poisson’s Nature of Photons



Poisson distribution
Let’s, expected amount of photons is n, probability observing of
events λT is

Pn(λT ) =
(λT )ne−λT

n!
, (n = 0, 1 . . . ) (6)

I λ is event rate, λT is number of occurred events per time
period

I comparisons counts of particles, not normalized fluxes
I for independently occurred events

Mean:
λ̄ = λ (7)

Variance:
σ2 = λ (8)

Median ν is (ν 6= c̄!)

λ− ln 2 < ν < λ+
1

3
(9)



Principle of maximum likelihood

I probability distribution of every single data point xi is a priory
p(xi |θ)

I like composing of probabilities p = p1 · p2 . . . pN , join
distribution is
p(x1, x2 . . . xN |θ) = p(x1|θ) · p(x2|θ) . . . p(xN |θ) ≡ L

I parameter θ is determined for maximum of p(x1, x2 . . . xN |θ)

L =
N∏
i=1

p(xi |θ) (10)

Common method to get maximum is use of derivation ln L

∂ ln L

∂θ
=

∂

∂θ

N∑
i=1

ln p(xi |θ) = 0



Determination of response — beginning

Use of maximum likelihood for calibration sources i = 1, 2 . . .N
with expected number of photons ni and observed per 1 s period ci :

λi (ci |r) = rci , (r > 1)

L =
N∏
i=1

pni (λi |r) =
N∏
i=1

λnii e−λi

ni !
.

Localization of maximum (max L = max ln L):

ln L =
N∑
i=1

(ni lnλi − λi )−
N∑
i=1

ni !

d ln L

dr
=

N∑
i=1

(
ni

λi
− 1

)
dλi
dr

= 0 (11)



Determination of response — result

dλi
dr

= ci

and its derivation
N∑
i=1

(
ni

rci
− 1

)
ci = 0

with some algebra
N∑
i=1

(ni

r
− ci

)
= 0

and finally

r =

N∑
i=1

ni

N∑
i=1

ci

(12)

as expected and equivalent to r = n̄/c̄ .



Determination of multi-response — beginning
Use maximum likelihood for calibration sources i = 1, 2 . . .N with
expected number of photons nik in a filter set F1,F2, . . .FK and
observed counts cik per 1 s period:

λik(cik |rkj) =
K∑
j=1

rkjcij , (k = 1, 2, . . .K , i = 1, 2, . . .N)

and also ∀rkj > 1.

L =

N,K∏
i=1
k=1

Pnik (λik) =

N,K∏
i=1
k=1

λnikik e−λik

nik !
.

ln L =

N,K∑
i=1
k=1

(nik lnλik − λik)−
N∑
i=1
k=1

nik !

∂ ln L

∂rik
=

N,K∑
i=1
k=1

(
nik

λik
− 1

)
∂λik
∂rik

= 0



Determination of parameters for multi-filter — result

∂λik
∂rik

= cik

and its derivation

N∑
i=1

(
ni∑
j rjkci

− 1

)
cik = 0

and finally
N∑
i=1

nikcik − cik
∑

j rjkcij∑
j rjkcij

= 0 (13)

we have got a non-linear system of equations for rjk .



Normal and Poisson distributions connection
For Poisson distribution, formula like (11) is minimized

ln L =
∑(

ni − λi
λi

)
∂λi
∂r

= 0 (14)

For Normal distribution, χ2 (least-squares with weights) is used

χ2 =
∑(

ni − λi
σ

)2

Applying property (7) and (8) of Poisson systems σ2 = λ gives

χ2 =
∑ (ni − λi )2

λi

and asymptotically3 for

∂χ2

∂r
=
∑ λ2

i − n2
i

λ2
i

∂λi
∂r

ni→λi=
∑(

λi − ni

λi

)
∂λi
∂r

= 0 (15)

Poisson distribution suggests the same minimization way !
3simple, but not correct way is to minimize (λi − ni )

2/ni



Part IV

Robust Statistics



Robust Methods
Outliers didn’t matter4

Huber[4]:

”robustness signifies insensitivity to small deviations from
assumptions”

I insensitive to outliers (by unexpected errors, apparatus
defects, cosmics, . . . )

I equivalent to least square for well noised data (the same
dispersion)

I ideal for machine processing

4Huber[4]



Merged Distributions
Tail of Outliers5 for 100 thousands data points

F (x) = (1− ε)Φ

(
x − µ
σ

)
+ εΦ

(
x − µ

3σ

)
,

Φ(x) =
1√
2π

x∫
−∞

e−t
2/2dt

ε s d σ

0.0 0.998 0.796 1.008
0.01 1.040 0.819 1.026
0.05 1.179 0.875 1.067
0.1 1.361 0.967 1.146
0.2 1.604 1.112 1.296
1.0 2.994 2.389 3.023

Measure of scatter:

d =
1

N

∑
|xi − x̄ |,

s =

√
1

N

∑
(xi − x̄)2

5Example by Tukey(1960), Hubber(1980)



Two Normal distributions
ε = 0.1
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General Principles of Robust Statistics

Determine a parameter 6 by maximum likelihood:

L =
N∏
i=1

p(xi |x̃) =
N∏
i=1

f (xi − x̃),

assumption p(x |x̃) = f (x − x̃) and substitution ρ(x) = − ln p(x)

ln L = −
N∑
i=1

ρ(xi − x̃)

A standard way to look for minimum, ψ(x) ≡ ρ′(x)

d ln L

dx̃
= 0,

N∑
i=1

ψ(xi − x̃) = 0

6tilde x̃ is a robust estimator with contrast to the least square’s x̄



Least Square Method — I.
Derivation

The distribution p(xi |x̄) is Normal (Gaussian):

p(xi |x̄) =
1√
2πσ

e−(xi−x̄)2/2σ2

Likelihood:

L =
N∏
i=1

1√
2πσ

e−(xi−x̄)2/2σ2

To get an analytic solution, we introduces

− ln L =
N∑
i=1

(xi − x̄)2

2σ2
+ N ln

√
2πσ

which we identified as the sum of squares S (second term is an
additive constant):

S ≡
N∑
i=1

(xi − x̄)2

2σ2



Least Square Method — II.
Arithmetical Mean

The minimum is located as:

−∂ ln L

∂x̄
= −

N∑
i=1

xi − x̄

2σ2
=

so
N∑
i=1

xi =
N∑
i=1

x̄

and by this way

x̄ =
1

N

N∑
i=1

xi

where we used identity

N∑
i=1

x̄ = x̄
N∑
i=1

1 = x̄N



Mean Absolute Deviation
Laplace

The distribution p(xi |ν) is Laplace’s:

p(xi |ν) = e−|xi−ν|

Likelihood:

L =
N∏
i=1

e−|xi−ν|

and its logarithm:

− ln L =
N∑
i=1

|xi − ν|

−∂ ln L

∂ν
=

N∑
i=1

sgnxi − ν = 0

Numerical solution only.



General Distribution

A general (robust) distribution will

p(xi |x̃) = e(%(xi − x̃))

Maximum likelihood

L =
N∏
i=1

e−%(xi−x̃)

−∂ ln L

∂x̃
=

N∑
i=1

%′(xi − x̃)

with common designation ψ = %′ is

N∑
i=1

ψ(xi − x̃) = 0

The equation can be solved numerically.



Remarkable Distributions

ρ = − ln p ψ = ρ′

Gauss x2/2 x

Laplace |x | sgn(x)

Huber


−ax − a2/2, x < −a

x2/2, −a < x < a

ax − a2/2, x > a


−a

x

a

Tukey

 x6/6c4 − (x2/2)(1− x2/c2),

0

 x(1− x2/c2)2

0



Graphs of Remarkable Distributions
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The Algorithm for Robust Mean

1. Initial estimation by median: x̃0 = ν = med(xi )

2. Scatter estimation (median of absolute deviations — MAD)
by median or by simplex method

s = med(|xi − x̃0|)

3. Robust estimator ∑
i

ψ

(
xi − x̃

s

)
= 0.

by Newton’s method, Levendberg-Marquart (Minpack)

4. Approximation of deviations on minimum (robust analogy of
RMS):

σ2 =
N

N − 1
s2

(1/N)
∑
i
ψ2[(xi − x̃)/s]{

(1/N)
∑
i
ψ′[(xi − x̃)/s]

}2



Robust Photometry

Maximum likelihood for Poisson’s:

χ2 =
N∑
i=1

(
ni − λi (ci |r)

λi (ci |r)

)2

may be7 asymptotically (for > 20) replaced by

χ2 → R =
N∑
i=1

%

(
ni − λi (ci |r)

λi (ci |r)

)

7Important! There is no proof for Poisson distribution.



Single Band Calibration

R =
N∑
i=1

%

(
ni − λi
λi

)
where

λi (ci |r) = rci ,
∂λi
∂r

= ci , %′ = ψ

∂R

∂r
= −

N∑
i=1

ψ

(
ni − λi
λi

)(
ni

λ2
i

)
∂λi
∂r

where the last term after ψ can be reduced onto ni/rci → 1 and
asymptotically in minimum to one.
To improve precision, ci → c ′i can be computed from known color
transformation matrix:

c ′ik =
∑
j

tjkcij



Color Transformation Determination

R =
N∑
i=1

%

(
ni − λi
λi

)
where

λik(cik |rjk) =
∑
j

rjkcij ,
∂λik
∂rjk

= cik

∂R

∂rjk
= −

N∑
i=1

ψ

(
ni − λi
λi

)(
ni

λ2
i

)
cjk ,

k = 1, . . .K , j = 1, . . . J



Color transformation

Determination by using (??) should get a matrix:


nB

nV

nR

nI

 ?
=


3.1344 0.0930 0.0108 −0.0220
−0.3033 1.4834 −0.0882 0.0054
−0.7558 0.4635 1.3393 0.1252
−2.0691 1.6536 −1.0988 3.0274




cB
cV
cR
cI


What’s going on?

I Off-diagonal elements are too large (means overlays!)

I Test data gives correct values for small noise, fails for large.

I Residuals looks sufficiently: small and correct.

I Failed due to various disturbances (noise, rounding errors,
. . . ).



Regularization

To get disturbances-free solution, we introduces additional
condition: ∑

i ,j
|i−j |>1

rik → 0

(minimizing of sum of off-tridiagonal elements)

R =
N∑
i=1

%

(
ni − λi
λi

)
+ λ

 ∑
jk

|j−k|>1

rjk − 1


where λ is Lagrange’s multiplicator.



Regularized Color Transformation
Field of T Phe

Calibration on Stars:
nB

nV

nR

nI

 ?
=


2.0043 0.0499 −0.0000 0.0000
0.0592 0.9392 −0.0159 0.0000
0.0000 0.0439 1.1834 −0.0213
0.0000 0.0000 −0.0376 1.8829




cB
cV
cR
cI


Filters (Vega):

nB

nV

nR

nI

 =


1.5271 −0.2223 0.0825 −0.0673
0.1125 0.8968 −0.1655 0.0126
0.0030 −0.1854 1.4262 −0.6064
0.0004 −0.0533 0.1591 1.0928




cB
cV
cR
cI





Advises for Color Transformation

I Regularization is absolutely necessary.

I Blurred regularization term can be proposed.

I Classical photometrics (Hardie) recommends only diagonal
and upper diagonal (unstable).



Part V

Modeling Extinction



The Extinction

Light passing a medium lost its energy (or photons are scattered
and absorbed) as

dFν
dx

= κ(ν)Fν

Its solution:
Fν = F0e−κ(ν)x

F = I for plane wave.
Typical dependencies of κ ∼ 1/λ, 1/λ4

κ(ν) ∼ ν,∼ ν4



Monochromatic Extinction

Flux for an object in the filter:

FV =

∫
F (ν)fV (ν)e−κ(ν)x dν ≈ FV0fV ∆νV e−κ(νV )x

Photon flux for a plane wave in a filter

nV = nV0

fV ∆νV
hνV

e−κV x

with substitution cV0 = nV0(fV ∆νV /hνV ) that leads to a simple
dependence of observed counts c on its path

cV = cV0e−κV x



DK154 extinction
Without color correction

I observer Selected Areas (SA) by P.Škoda.

I available 3-5 stars per SA

I Johnson-Morgan photometry system, Landolt (1992)

I aperture photometry, radius 3-FWHM (= 7 arcsec)

Attenuation is modeled as

r(X ) = AeKX (∼ nV

cV
)

filter A [ct/ph] K [ph/airmas]

B 1.600± 0.042 0.214± 0.016
V 0.722± 0.008 0.098± 0.007
R 0.958± 0.016 0.063± 0.010
I 1.582± 0.031 0.040± 0.011

A is extraterrestrial value, K is the extinction



Graph of DK154 extinction
Without color correction
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DK154 extinction
Color correction

Attenuation is modeled as

r(X ) = AeKX (∼ nV

cV
)

filter A [ct/ph] K [ph/airmas]

B 0.753± 0.016 0.192± 0.011
V 0.764± 0.010 0.110± 0.007
R 0.799± 0.011 0.068± 0.008
I 0.888± 0.014 0.032± 0.008

A is extraterrestrial value, K is the extinction



Graph of DK154 extinction
Color correction
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Graph of DK154 extinction
Comparison with and without color correction
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Graph of DK154 extinction
Comparison Stetson vs. UCAC4
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Color Extinction and Photon Calibration

κ(ν − νV ) = κ(νV ) +
dκ

dν

∣∣∣∣
V

(ν − νV ) + · · · ≈ κ(νV ) + κ′V ∆ν

so
cV = c0e−(κV−κ′V ∆ν)X

therefore differently coloured object will different-falling
exponential.
Fluency on color transformation8

rik = rik(n, c) · rik(κ)

nk ≈
∑

eκX rikck (16)

8No data — no love.



Part VI

Hell Of Magnitudes



Magnitudes

Magnitudes (Nobody expects the Spanish Inquisition!9)

m −m0 = 2.5 log10
F

F0

I Defined by Pogson in mid 19 century to formalize ancient
magnitudes of Hipparcos.

I Logarithm of flux ratio.

I Designed as an analogy of psycho-physiological law for sound
(obsoleted at late 1920s by Wright, Guild: perception ∼ F 1/3)

I Used exclusively by optical astronomers

I Chief confusing framework in astronomy (!).

9The Spanish Inquisition seeds “violence, terror an torture” like magnitudes.
See the sketch of Monty Python [1] for details.



Magnitude — Flux and Photons Connection

Magnitudes in filter

m −m0 = −2.5 log10
Fi

F0i
= −2.5 log10

ni

n0i

I ??



Magnitude — Calibration in Magnitudes

From (??), we know
n ≈ rc

and

F =

∫
Ω

nhνeff dΩ

and therefore
Freference = nhνeff∆Ω

Finstrumental = chνeff∆Ω

minstrumental −mreference = 2.5 log10 r

Basic rule: difference of magnitudes is logarithm of ratio of fluxes.
Work for both energy and photon fluxes.



Magnitude — Color index

Defined as

mk −ml = −2.5 log10
Fk

Fl
= −2.5 log10

nk

nl

∆νk
∆νl

νl
νk

or alternatively

mk −ml = −2.5 log10
nk

nl



Magnitude — Color Transformation

From (??), we know

nk =
∑
j

rjkck , (k = U,B, ..)

and
mk −mk−1 = −2.5 log10

nk

nk−1
= −2.5 log10

rkck
nk−1



Magnitude — Atmospheric Extinction

From (16), we know

nk ≈
∑

eκX rikck

when we define extinction coefficient 2.5
ln 10κ ≡ k

m −m0 = −2.5 log10
rc

n
+ kκX



Magnitude’s Hell

I We cannot use robust methods (because distribution is
non-normal).

I The use of σ2 = n̄ is obscured.

I The question of superior: Can we use magnitudes in our case?



Part VII

Munipack



Key Features

* power of combinations



Routines Overview



Aperture Photometry

Input: Output:



Color Transformation



Photometry System Identification

The photometry system is identified by its name and a set of filters.
Representation by a structure:
Source: The Asiago Database on Photometric Systems [3]



Photometry Calibration

Splited on two phase process:

I color calibration

I ratios calibration



Color calibration

Properties (for 4 filters):

I fitting many parameters: 17 (!)

I needs many stars (at least 5 in every filter)

I sensitive on statistical errors

$ munipack phfotran -c [cat] --label [filters] b.fits v.fits ...

Uses formula..



Ratio calibration

Properties:

I fitting one parameter per filter

I single star is sufficient

I for precise calibration uses rik matrix

$ munipack phcal -c [cat] --label [filters] b.fits,b_cal.fits ...

Uses formula..



Part VIII

Conclusions



Conclusions

Key points:

I photon nature of modern detectors

I robust statistical methods

I Poisson statistic

I Regularization
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