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Fascinated By Robust AlgorithmsReconstructing The Past
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Gross Error Model
xn ∈ {(1− ε)N(0, 1) + εN(1, 10)}

ε x̄ σ σx̄0 −0.001 1.0 0.0041/100 0.008 1.4 0.0051/10∗ 0.1 3.3 0.013
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Analytic ToolsA SummaryData set (a sample)
{x1, x2, . . . , xN}.A probability density of N(0, 1)

f (x) = 1√2π e−x2/2 .
A distribution function (probability)

F (x) = ∫ x

−∞
f (u) du N(0,1)= 12

[1 + erf( x√2
)] = Φ(x).

An empirical distribution function
Fn = 1

N

n∑
i=1 1{xi < n/N}, n = 1, . . . , N.



Distribution Functions
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Fn, ε = 0
Fn, ε = 1/10Φ(x; 0, 1)Φ(x; x̄, σ )†

†x̄ = −0.08, σ = 3.3, N = 1000



Hampel’s Theorem‡As A Tool For Robust Method Recognition
Let the observation xi be independent, with commondistribution F , and let TN = TN (x1, . . . xN ) be a sequence ofestimates or test statistics with values in Rk. This sequence iscalled robust at F = F0 if the sequence of maps ofdistributions

F →LF (TN )is equicontinous at F0, that is, if for every ε > 0, there is a
δ > 0 and an N0 such that, for all F and all N ≥ N0,

d∗(F0, F ) ≤ δ ÍÑ d∗(LF0(TN ),LF (TN )) ≤ ε.

‡Huber & Ronchetti: Robust Statistics (2009)



Hampel’s Theorem In Action, ε = 1/10Analysis of d∗(F0, F ) ≤ δ ÍÑ d∗(LF0 (TN ),LF (TN )) ≤ ε
dα = max |Φ(xn; 0, 1)−Φ(xn; x̄, σ )|,
dβ = max |Φ(xn; 0, 1)− Fn|,
dγ = max |Φ(xn; 0, 1)−Φ(xn; x̃, σ̃ )|.
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Design Of Robust StatisticsAccording To Hampel’s Theorem, Or An EquivalentCondition

R-estimates or Rank estimates replaces data itself by itsrank: median, quartile or Wilcoxon test.L-estimates or Linear combinations of selected statistics.M-estimates or Maximum likelihood estimates which keepsa spirit of classical estimates: physical andtechnical applications, multidimensionalproblems.



M-estimatesBasic Properties
• The central point is a robust function ψ(x).• Replaces least squares by some robust function.• Reproduces least-squares near minimum.• A design of robust functions is arbitrary with certainproperties.

f (x) = 1Γ e−ρ(x), [
⇔ 1√2π e−x2/2] ,

ρ(x) =∫ ψ(x) dx, [
⇔ x22

]
,

ψ(x) =− (ln f )′ = −f ′f , [⇔ x] .



Huber’s Minimax
ψ(x) =


−a, x < −a,
x, |x| ≤ a,
a, x > a

• An equivalent definition is
ψ(x) = max[−a,min(a, x)],• an optimal choice a = 1.345,• least-squares near minimum,the absolute value otherwise.• It is suitable for a theory,• and sensitive to outliers.
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Tukey’s Biweight
ψ(x) = {x[1− (x/a)2]2, |x| ≤ a,0, |x| > a

• The 5-order polynomial,• least-squares near minimum,• one vanish at infinity,• an optimal choice a = 6.• It is suitable for real data,• but a descending function.
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Robust MeanBy Maximum LikelihoodThe likelihood
L(xn; x̄) = N∏

n=1 f (xn; x̄),
L(xn; x̃) = N∏

n=1
1Γ exp [−ρ(xn − x̃s

)]
,

d lnLdx̃ = 1
s

N∑
n=1ψ

(
xn − x̃
s

) = 0.
• ψ is some robust function,• A solution is given by thenon-linear equation against to x̃.• s = 1 (important!). -2 -1 0 1 2
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Tukey In Action
f (x̃) = 1

s

N∑
n=1ψ

(
xn − x̃
s

)
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Descent FunctionConvergence Region Of TukeyAn approximation error§ of Newton’s method:
ε(i+1) = |ψ′′(x(i))|2|ψ′(x(i))| (ε(i))2
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§Ralston & Rabinowitz: A First Course in Numerical Analysis (2012)



Bias Of Huber’s MinimaxStrange Protagonist
f (x̃) = 1

s

N∑
n=1ψ

(
xn − x̃
s

) = ∑
|(xn−x̃)/s|≤a

xn − x̃
s + a(N+ −N−)

N+ ?≈ N−, (a-)symetry
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Join Estimation Of Location And ScaleA Dead Way. Seriously.
More complex likelihood:

L(xn; x̃, s) = N∏
n=1

1Γs exp [−ρ(xn − x̃s

)]
.

A solution is given by the set of non-linear equations:
∂ lnL
∂x̃ = 1

s

N∑
n=1ψ

(
xn − x̃
s

) = 0,
∂ lnL
∂s = 1

s

N∑
n=1ψ

(
xn − x̃
s

)
· (xn − x̃)− βN

s = 0 (non-robust).



Entropy And NoiseA Short IntermezzoAn information by R. Fisher:
I = 1

N

N∑
n=1

[ d ln f (xn; x̄)dx̄
]2
· f (xn; x̄).

The usuall entropy (dU = TdS, U = F + TS, Q = 1) and theinformation are related:
S =∑

n

En
T e−En/T = −UT ≡ I.Full extracted information contents (equality for Normallydistributed data):
σ2 ≥ 1

I .The statistical entropy:
S =∑

n
pn lnpn.



Robust EntropyOur Protagonist On The Stage Again
S(s) = N∑

n=1 ρ
(
xn − x̃
s

) exp [−2 ρ(xn − x̃s

)]
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Join Estimation Of Location And ScaleThe Right Way (I sincerely hope)
The join estimation by maximizing of the likelihood and theentropy together:

1
s

N∑
n=1ψ

(
xn − x̃
s

) = 0 and max
s

N∑
n=1 ρn e−2ρn ,

where
rn = xn − x̃,

ρn = ρ
(rn
s

)
.



The AlgorithmPart I. – Initial Estimate
i) Estimate of the location by median x̃(0)

x̃(0) = median{x1, x2, . . . , xN}.
ii) Estimate of s by median of absolute deviations (MAD)

s(0) = median{|xn − x̃(0)|, n = 1, . . . , N}Φ−1(3/4) .

iii) Solve the equation (initial estimate x̃(0) → x̃(1))
N∑
n=1ψ

(
xn − x̃(1)
s(0)

) = 0,
for x̃(1), by a method without derivation.



The AlgorithmPart II. – Increasing Precision
iv) Solve for scale s(1) by finding of maximum of theentropy (with initial s(0) → s(1))

max N∑
n=1 ρ

(
xn − x̃(1)
s(1)

) exp[−2ρ(xn − x̃(1)
s(1)

)]
.

v) Increase precision of the mean by Newton iterations
x̃(i+1) = x̃(i) + s(1) ∑N

n=1 ψ[(xn − x̃(i))/s(1)]∑N
n=1 ψ′[(xn − x̃(i))/s(1)] , i = 1, . . .

vi) Declare results s = s(1), x̃ = x̃(i�1).



The AlgorithmPart III. – Results
vii) Compute the standard deviation, rn = xn − x̃:

σ̃2 = s2 N
N − 1

∑N
n=1 ψ2(rn/s)∑N
n=1 ψ′(rn/s) .viii) Compute the standard error

σ̃ 2̃
x = σ̃2∑N

n=1 ψ′(rn/s) .dclxvi) A final estimate gives: the standard deviation σ̃ ,parameters of N(x̃, σ̃ ), the robust mean and thestandard error (without Studentising)
x̃ ± σ̃x̃.



Dark Side Of Robust Mean
• There is very slow algorithm with rate 1 : 300, O(n)• The algorithm is complicated (advanced numericalmethods required, complex logic).• There is no an explicit form.
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Generalizations
Easy:• Weighted Mean• Multidimensional functions: lines, planes, . . .• Statistical tests (Student).Hard:• Non-Gaussian (uniform, Poisson), . . . distributions.• Very limited data sets.The Poisson distribution for both expected kn and observed
cn counts, flux λn = rcn, with calibration r per a time period

pkn = λkn
kn! e−λn , F ∼ ln N∑

n=1 e−pkn .



Revelation Of MemoriesThe Last Performance Of Our Hero
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Conclusions
Robustness signifies insensitivity to small
deviations from assumptions. – Peter J. Huber

• Robust estimators gives negligible difference betweenthe expected and derived distributions functions.• The central moment (mean) can be estimated by thelikelihood method.• Looking for maximum of the entropy is the rightmethod for estimation of the dispersion.• The implementation can be a little bit tricky, whilstusage is common and results are quite reproducible.
F The Endf


