Contribution To estimation of a central moment

F. Hroch

On board

The problem:

- Real world data contamined data,
- contamined data due outliers or another dataset,
- outliers estimations fails,
- a fail sinking boat,
- no boat no live.

The solution:

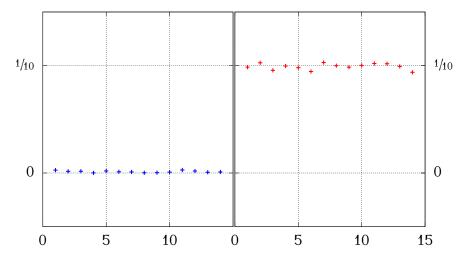
- Cruel world data contamined data,
- contamined data robust estimations,
- robust estimations unsinkable boat,
- sunny live true love.

Fascinated by robust algorithms

Reconstructing the past

Robust

Arithmetic



Gross error model $x_n \in \{(1-\epsilon)\mathcal{N}(0,1) + \epsilon\mathcal{N}(1,10)\}$ \bar{x} σ $\sigma_{\bar{x}}$ ϵ 0 -0.0010.004 1.0 1/100 0.008 1.4 0.005 1/10* 0.1 3.3 0.013 4/10 $\epsilon \stackrel{'}{=} \frac{1}{10}$ 3/10 Frequency 2/10 $1/_{10}$ 0 -3 -20 1 2 3 -1

*protagonist

Analytic tools A summary

Data set (a sample)

$$\{x_1, x_2, \ldots, x_N\}.$$

A probability density of $\mathcal{N}(0, 1)$

$$f(x) = \frac{1}{\sqrt{2\pi}} e^{-x^2/2}.$$

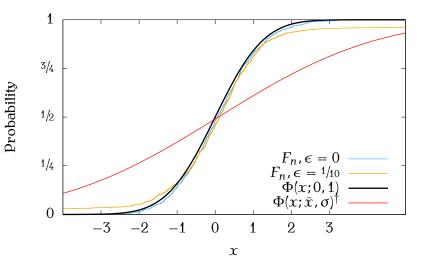
A distribution function (probability)

$$F(x) = \int_{-\infty}^{x} f(u) \, \mathrm{d}u \stackrel{\mathcal{N}(0,1)}{=} \frac{1}{2} \left[1 + \mathrm{erf}\left(\frac{x}{\sqrt{2}}\right) \right] = \Phi(x).$$

An empirical distribution function

$$F_n = \frac{1}{N} \sum_{i=1}^n 1\{x_i < n/N\}, \quad n = 1, \dots, N.$$

Distribution functions



 $^{\dagger}\bar{x}=-0.08, \sigma=3.3, N=1000$

Hampel's theorem[‡]

As a tool for robust method recognition

Let the observation x_i be independent, with common distribution F, and let $T_N = T_N(x_1, \ldots x_N)$ be a sequence of estimates or test statistics with values in \mathbb{R}^k . This sequence is called robust at $F = F_0$ if the sequence of maps of distributions

$$F \to \mathcal{L}_F(T_N)$$

is equicontinous at F_0 , that is, if for every $\varepsilon > 0$, there is a $\delta > 0$ and an N_0 such that, for all F and all $N \ge N_0$,

$$d_*(F_0,F) \leq \delta \implies d_*(\mathcal{L}_{F_0}(T_N),\mathcal{L}_F(T_N)) \leq \varepsilon.$$

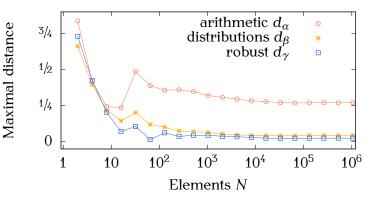
[‡]Huber & Ronchetti: Robust Statistics (2009)

Hampel's theorem in action, $\epsilon = 1/10$ Analysis of $d_*(F_0, F) \le \delta \implies d_*(\mathcal{L}_{F_0}(T_N), \mathcal{L}_F(T_N)) \le \epsilon$

$$d_{\alpha} = \max |\Phi(x_n; 0, 1) - \Phi(x_n; \bar{x}, \sigma)|,$$

$$d_{\beta} = \max |\Phi(x_n; 0, 1) - F_n|,$$

$$d_{\gamma} = \max |\Phi(x_n; 0, 1) - \Phi(x_n; \tilde{x}, \tilde{\sigma})|.$$



Design of robust statistics

According to Hampel's theorem, or an equivalent condition

R-estimates or Rank estimates replaces data itself by its rank: median, quartile or Wilcoxon test.

L-estimates or Linear combinations of selected statistics.

M-estimates or Maximum likelihood estimates which keeps a spirit of classical estimates: physical and technical applications, multidimensional problems.

M-estimates

Basic properties

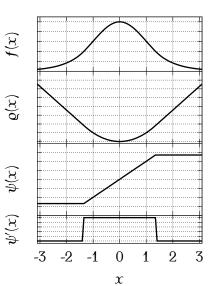
- The central point is a robust function $\psi(x)$.
- Replaces least squares by some robust function.
- Reproduces least-squares near minimum.
- A design of robust functions is arbitrary with certain properties.

$$f(x) = \frac{1}{\Gamma} e^{-\varrho(x)}, \qquad \qquad \left[\Leftrightarrow \frac{1}{\sqrt{2\pi}} e^{-x^2/2} \right],$$
$$\varrho(x) = \int \psi(x) \, dx, \qquad \qquad \left[\Leftrightarrow \frac{x^2}{2} \right],$$
$$\psi(x) = -\left(\ln f\right)' = -\frac{f'}{f}, \qquad \qquad \qquad \left[\Leftrightarrow x \right].$$

Huber's minimax

$$\psi(x)=egin{cases} -a, & x<-a,\ x, & |x|\leq a,\ a, & x>a \end{cases}$$

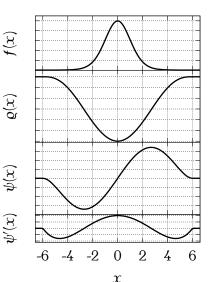
- An equivalent definition is ψ(x) = max[-a, min(a, x)],
- an optimal choice a = 1.345,
- least-squares near minimum, the absolute value otherwise.
- It is suitable for a theory,
- and sensitive to outliers.



Tukey's biweight

$$\psi(x) = egin{cases} x[1-(x/a)^2]^2, & |x| \leq a, \ 0, & |x| > a \end{bmatrix}$$

- The 5-order polynomial,
- least-squares near minimum,
- one vanish at infinity,
- an optimal choice a = 6.
- It is suitable for real data,
- but a descending function.



Maximum likelihood

The principle

A product of independent probabilities

$$P(A \land B \land \ldots) = P(A) P(B) \ldots$$

Lets suppose the density probability $f(x_n; \bar{x})$ of an every point of data set: there is a such point for

$$\Delta P = \prod_{n=1}^{N} f(x_n; \bar{x}) \,\Delta x$$

gets the maximum. If the interval Δx is arbitrary, its is equivalent to find of maximum of the likelihood function[§]

$$L(x_n; \bar{x}) = \prod_{n=1}^N f(x_n; \bar{x}).$$

[§]Brandt: Data Analysis: Statistical and Computational Methods for Scientists and Engineers (2014)

Robust mean

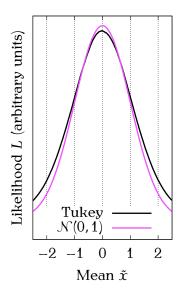
By maximum likelihood

The likelihood

$$L(x_n;\bar{x}) = \prod_{n=1}^N f(x_n;\bar{x}),$$

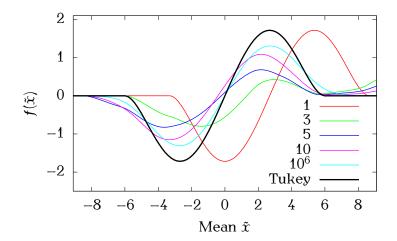
$$L(x_n; \tilde{x}) = \prod_{n=1}^{N} \frac{1}{\Gamma} \exp\left[-\varrho\left(\frac{x_n - \tilde{x}}{s}\right)\right],$$
$$\frac{d\ln L}{d\tilde{x}} = \frac{1}{s} \sum_{n=1}^{N} \psi\left(\frac{x_n - \tilde{x}}{s}\right) = 0.$$

- ψ is some robust function,
- A solution is given by the non-linear equation against to x.
- s = 1 (important!).



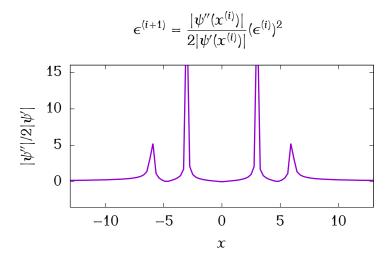
Tukey in action

$$f(\tilde{x}) = \frac{1}{s} \sum_{n=1}^{N} \psi\left(\frac{x_n - \tilde{x}}{s}\right)$$



Descent function

Convergence region of Tukey An approximation error[¶] of Newton's method:

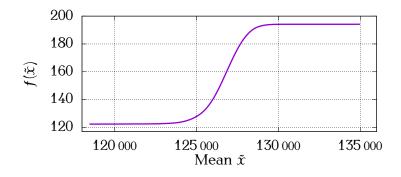


[¶]Ralston & Rabinowitz: A First Course in Numerical Analysis (2012)

Bias of Huber's minimax

Another strange protagonist

$$f(\tilde{x}) = \frac{1}{s} \sum_{n=1}^{N} \psi\left(\frac{x_n - \tilde{x}}{s}\right) = \sum_{|(x_n - \tilde{x})/s| \le a} \frac{x_n - \tilde{x}}{s} + a(N_+ - N_-)$$
$$N_+ \stackrel{?}{\approx} N_-, \quad \text{(a-)symetry}$$



Join estimation of location and scale

Scale does matter; seriously.

$$L(x_n; \tilde{x}, s) = \prod_{n=1}^N \frac{1}{\Gamma s} \exp\left[-\varrho\left(\frac{x_n - \tilde{x}}{s}\right)\right].$$

$$\frac{1}{s}\sum_{n=1}^{N}\psi\left(\frac{x_n-\tilde{x}}{s}\right)=0, \quad \text{together} \quad \max_{s}\left[-\sum_{n=1}^{N}\varrho_n-N\ln\Gamma s\right],$$

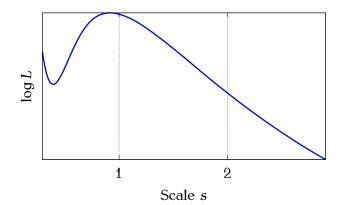
where

$$r_n = x_n - \tilde{x},$$
$$\varrho_n = \varrho\left(\frac{r_n}{s}\right).$$

Maximum of scale

Our protagonist on the stage again

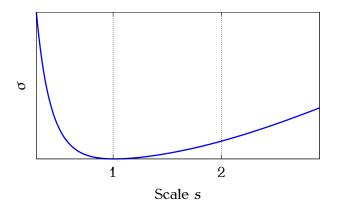
$$\ln L(s) = -\sum_{n=1}^{N} \varrho\left(\frac{x_n - \tilde{x}}{s}\right) - N \ln \Gamma s$$



The dispersion

The actor never disappear

$$\tilde{\sigma}^2 = s^2 \frac{N^2}{N-1} \frac{\sum_{n=1}^N \psi^2(r_n/s)}{[\sum_{n=1}^N \psi'(r_n/s)]^2}$$



The algorithm

Part I. - An initial estimate

i) Estimate of the location by median $\tilde{x}^{(0)}$

$$\tilde{\boldsymbol{x}}^{(0)} = \operatorname{median} \{ \boldsymbol{x}_1, \boldsymbol{x}_2, \dots, \boldsymbol{x}_N \}.$$

ii) Estimate of *s* by median of absolute deviations (MAD)

$$s^{(0)} = rac{ ext{median}\{|x_n - ilde{x}^{(0)}|, n = 1, \dots, N\}}{\Phi^{-1}(3/4)}.$$

iii) Solve the equation (the initial estimate $\tilde{x}^{(0)} \rightarrow \tilde{x}^{(1)}$)

$$\sum_{n=1}^N \psi\left(\frac{x_n-\tilde{x}^{(1)}}{s^{(0)}}\right)=0,$$

for $\tilde{x}^{(1)}$, by a method without derivation.

The algorithm

Part II. - Increasing accuracy

iv) Solve for scale $s^{(1)}$ by finding of maximum of likelihood (with initial $s^{(0)} \rightarrow s^{(1)}$)

$$-\sum_{n=1}^{N} \varrho\left(\frac{x_n - \tilde{x}^{(1)}}{s^{(1)}}\right) - \ln s.$$

v) Increase precision of the mean by Newton iterations

$$\tilde{x}^{(i+1)} = \tilde{x}^{(i)} + s^{(1)} \frac{\sum_{n=1}^{N} \psi[(x_n - \tilde{x}^{(i)})/s^{(1)}]}{\sum_{n=1}^{N} \psi'[(x_n - \tilde{x}^{(i)})/s^{(1)}]}, \ i = 1, \dots$$

vi) Declare results $s = s^{(1)}$, $\tilde{x} = \tilde{x}^{(i \gg 1)}$.

The algorithm

Part III. – Results

vii) Compute the standard error, $r_n = x_n - \tilde{x}$:

$$ilde{\sigma}_{ ilde{x}}^2 = s^2 rac{N^2}{N-1} rac{\sum_{n=1}^N \psi^2(r_n/s)}{[\sum_{n=1}^N \psi'(r_n/s)]^2}.$$

viii) Compute the standard deviation

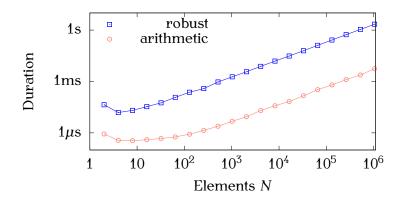
$$\tilde{\sigma} = \sqrt{N} \, \tilde{\sigma}_{\tilde{x}}.$$

dclxvi) A final estimate gives: the standard deviation $\tilde{\sigma}$, parameters of $\mathcal{N}(\tilde{x}, \tilde{\sigma})$, the robust mean and the standard error (no Studentising applied)

$$\tilde{\mathfrak{X}} \pm \tilde{\mathfrak{O}}_{\tilde{\mathfrak{X}}}.$$

Dark side of robust mean

- There is very slow algorithm with rate 1:300, O(n)
- The algorithm is complicated (advanced numerical methods required, complex logic).
- There is no an explicit form.



Generalizations

Easy:

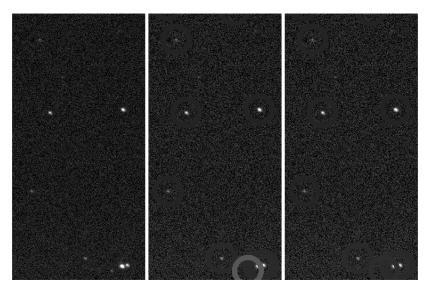
- Weighted Mean
- Multidimensional functions: lines, planes, ...
- Statistical tests (Student).

Hard:

- Non-Gaussian (uniform, Poisson), ... distributions.
- Very limited data sets.
- Data holding some condition(s).

A sky around stars

Revelation of memories



Conclusions

Robustness signifies insensitivity to small deviations from assumptions. – Peter J. Huber

- Robust estimators gives negligible difference between the expected and derived distributions functions.
- Results by maximum likelihood (probability).
- Scale does matter.
- The implementation can be a little bit tricky, whilst usage is common and results are quite reproducible.

∽ The End ∞