The Quaternions

David Arnold

May 9, 2002

1 Introduction

On November 13, 1843, Sir William Rowan Hamilton presented his first paper on the quaternions to
the Royal Irish Academy. It was entitled On a new Species of Imaginary Quantities connected with a
theory of Quaternions and was published in Volume 2 of the Proceedings of the Royal Irish Academy.
It is interesting to read about the discovery in Sir William’s own words in a letter to his son.

Every morning in the early part of the above-cited month, on my coming down to breakfast,
your (then) little brother William Edwin, and yourself, used to ask me, “Well, Papa, can
you multiply triplets”? Whereto I was always obliged to reply, with a sad shake of the head:
“No, I can only add and subtract them.”

But on the 16th day of the same month - which happened to be a Monday, and a Council day
of the Royal Irish Academy - I was walking in to attend and preside, and your mother was
walking with me, along the Royal Canal, to which she had perhaps driven; and although
she talked with me now and then, yet an under-current of thought was going on in my
mind, which gave at last a result, whereof it is not too much to say that I felt at once the
importance. An electric circuit seemed to close; and a spark flashed forth, the herald (as I
foresaw, immediately) of many long years to come of definitely directed thought and work,
by myself if spared, and at all events on the part of others, if I should even be allowed to
live long enough distinctly to communicate the discovery. Nor could I resist the impulse -
unphilosophical as it may have been - to cut with a knife on a stone of Brougham Bridge,
as we passed it, the fundamental formula with the symbols, 7, j, k; namely,

i? =52 =k =ijk=—1, (1)

which contains the Solution of the Problem, but of course, as an inscription, has long since
mouldered away. A more durable notice remains, however, on the Council Books of the
Academy for that day (October 16th, 1843), which records the fact, that I then asked
for and obtained leave to read a Paper on Quaternions, at the First General Meeting of
the session: which reading took place accordingly, on Monday the 13th of the November
following.

This letter and other correspondence by Sir William, along with a collection of his work and papers,
can be found at the following URL.

http://www.maths.tcd.ie/pub/HistMath/People/Hamilton/

The quaternions grew out of Hamilton’s desire to extend the geometry associated with complex
numbers. A complex number has the form a + bi, where a and b are arbitrary real numbers. Hamilton
first attempted to extend this to another dimension, working with numbers having the triplet form
a+bi+cj, but soon discoved that another dimension was needed. Thus, the general form of a quaternion
is a + bi + ¢j + dk. The discovery of the relationship (1) initiated Hamilton’s journey into the world of
quaternions.

To this day, the quaternions remain influential. Students in abstract algebra meet the definition
when they begin their work on the theory of groups. The geometry of quaternions enables rotations and
reflections in four dimensional space. The role of the quaternions in quantum mechanics and physics is
nicely documented at the following URL.

http://world.std.com/ sweetser/quaternions/qindex/qindex.html

In this activity, we will learn how to declare a new type, called a structure, and we will use this to define
a quaternion type. Let’s begin.

2 Declaring and Using Structures

F provides a facility that allows the suer to define new data types. These new datatypes are called
derived types, which are used to define a structure. Suppose for example, that you wish to collect
information about customers. You might wish to record the following data about each customer in your
business’s database.

1. Name
2. Phone Number

Thus, you need to craft a structure for each customer with two components,’ name and phone number.
In addition, phone numbers usually have two components: the area code and the phone number, as in
(707) 476-4222. So, a phone type might be defined as follows.

type, public :: phone_type
integer :: area_code, number
end type phone_type

In F, this declaration must be made in a module. We can now define a derived type for our customer
as follows.

type, public :: customer
character(len=40) :: name
type (phone_type) :: phone
end type customer

Note that we are nesting structures inside of structures, a technique that is both allowed and encouraged
in F. We can now declare a customer with the following command.

type(customer) :: david

The variable david has type customer, with two components, name and phone. Two questions require
immediate attention.

"We are keeping the example simple. Other components besides name and phone number might include address, last
item purchased, etc.

1. How do we assign values to our customer variable david, and once assigned,
2. how do we access the data in david?

In each case, the % symbol allows us to access any component of a derived type. For example, suppose
that we want to assign “David Arnold” to the name component of the customer variable david. This is
easily done with this command.

david % name = ‘‘David Arnold’’

The spaces before and after the % symbol are not required, but they do ease readability and we encourage
their use.

Now, David’s phone number is (707) 476-4222, so these commands will populate the phone compo-
nent of the customer variable david.

david % phone % area_code = 707
david % phone % number = 4764222

Here is a small program verifying these observations.

module database_needs

type, public :: phone_type
integer :: area_code, number
end type phone_type

type, public :: customer
character(len=40) :: name
type (phone_type) :: phone
end type customer

end module database_needs

program database
use database_needs
type(customer) :: david
david % name = "David Arnold"
david % phone % area_code = 707
david Y phone % number = 4764222

print *, "The customer’s name is: ", david % name
print *, "The customer’s area code is : ", david % phone J area_code
print *, "The customer’s phone number is: ", david J phone % number

end program database
Here is the resulting output.

The customer’s name is: David Arnold
The customer’s area code is : 707
The customer’s phone number is: 4764222

2.1 Populating Structures With Data

As with arrays, F also provides constructors for structures. Thus, we can populate the customer variable
david as follows.

david=customer(‘ ‘David Arnold’’, phone_type(707,4764222))
Clearly, this is more concise, making the code more compact.

program database

use database_needs

type(customer) :: david

david=customer("David Arnold", phone_type(707,4764222))

print *, "The customer’s name is: ", david J name

print *, "The customer’s area code is : ", david % phone % area_code

print *, "The customer’s phone number is: ", david J phone J number
end program database

Note that no changes to the module are necessary. The output of this program is identical to the first.

3 Defining a Quaternion Structure

To begin our activity on the quaternions, let’s begin by defining a quaternion type, after which we will
want to write a subroutine that will print the quaternion to the screen in a nicely formatted manner.
Recall that a quaternion has the form

a+bi+cj+dk, (2)

where a, b, ¢, and d are arbitrary real numbers. Certainly, the following type definition seems natural.

type, public :: quaternion
real :: a
real :: b
real :: c
real :: d

end type quaternion
Of course, this can be written more concisely.

type, public :: quaternion
real :: a, b, c, d
end type quaternion

Obviously, it is advantageous to code the quaternion type in the second form, as this definition takes
up much less room in our source code. However, there is something to be said about the first definition.
It also has its merits, as it is makes clear the fact that the quaternion has four separate components.
We will leave it to our readers to decide which definition is best.

We now write a routine to print the quaternion, adopting a strategy of printing the quaternion as
an ordered 4-tuple. We place this routine in the module and declare it public, which allows its use in
any program unit that “uses” the module.

module Quaternions_needs

public :: quaternion_print
type, public :: quaternion
real :: a
real :: b
real :: c
real :: d

end type quaternion
contains

subroutine quaternion_print(q)

type(quaternion), intent(in) :: q
real :: ap, bp, cp, dp

ap =q% a

bp=q%Db

cp=q%hc

dp =q % d

print "(al,4f12.6,a1)", "(",ap,bp,cp,dp,")"
end subroutine quaternion_print

end module Quaternions_needs

program Quaternions
use Quaternions_needs
type(quaternion) :: v
v=quaternion(1,2,3,4)
call quaternion_print(v)
end program Quaternions

We use a structure constructor in the main program to initialize the quaternion. The output of the
program follows.

(1.000000 2.000000 3.000000 4.000000)

Now that we have the quaternion type defined, it’s time to do a little quaternion arithmetic.

4 Overloading Operators
Sir William had no difficulty determining how to add two quaternions. In short,
(a+bi+cj+dk)+(e+ fi+gj+hk)=(a+e)+ b+ fli+ (c+g)j+ (d+ h)k. (3)
It is a simple matter to write a function that adds two quaternions.

function quat_add(x,y) result (res)
type(quaternion), intent(in) :: x, y

type(quaternion) :: res

res ha=x%ha+yha

res hb=x%b+y%b

reshc=xhc+yhc

res hd=x%d+y%d
end function quat_add

With this routine, we can define quaternions u, v, and w, assign data to u and v, then store the sum of
u and v is w with this command.

w=quat_add (u,v)
However, readers will agree that it would be much nicer if we could do this with a simpler command.
w=u+t+yv

This would be much more natural, but the difficulty lies in the fact that this operator (+) does not
handle operands that are quaternions. Fortunately, F allows us to overload the operator (+), giving it
multiple meanings, depending upon the type of operands used with the operator.

We first declare the operator (+) to be public. If we don’t plan to call the quat_add routine directly
from the main program, then there is no need to declare that it is public.

public :: operator(+)
private :: quat_add

Here’s where we use the interface concept once again.

interface operator (+)
module procedure quat_add
end interface

With this interface, when we use the operator (4) with two quaternions, the private module function
quat_add is used to do the arithmetic.

Finally, we initialize two quaternions, then add and print them in our main procedure. To make
sure that we haven’t completely destroyed the ability of the operator (+) to do what it normally does,
we also print the sum of two integers as a test. Here is the code “in toto.”

module Quaternions_needs

public :: quaternion_print
public :: operator(+)
private :: quat_add

type, public :: quaternion
real :: a
real :: b
real :: c
real :: d

end type quaternion

interface operator(+)

module procedure quat_add
end interface

contains

subroutine quaternion_print(q)
type(quaternion), intent(in) :: q
real :: ap, bp, cp, dp
ap=q%a
bp=q%bDb
cp=q%c
dp =q % d
print "(al,4f12.6,a1)", "(",ap,bp,cp,dp,")"
print *
end subroutine quaternion_print

function quat_add(x,y) result (res)

type(quaternion), intent(in) :: x, y
type(quaternion) :: res
res ha=x%ha+ty'ha
res hb=x%b+y%hbd
res hc=x%hc+yhec
res hd=x%d+y%d

end function quat_add
end module Quaternions_needs

program Quaternions
use Quaternions_needs
type(quaternion) :: u, v, w
u=quaternion(1,2,3,4)
v=quaternion(5,6,7,8)
w=u+v
call quaternion_print (w)
print *, 2+3

end program Quaternions

The output shows that our code is performing as expected.

(6.000000 8.000000 10.000000 12.000000)

5 The Program
The definition of subtraction established by Sir William is not unexpected.

(a+bi+cj+dk)—(e+ fi+gj+hk)=(a—e)+(b—fi+(c—g)j+(d—h)k

(4)

Add a function quat_subt to the module and use it to overload the operator (—).
Scalar multiplication was easily established by Sir William.

ala+bi+cj+dk) = (aa) + (ab)i+ (ac)j + (ad)k (5)

Add a function quat_scalar mult to the module and use it to overload the operator (x).

We now reach the point where Sir William was confounded, multiplication of two quaternions. His
startling breakthrough, captured during the walk with his wife along the Royal Canal, allowed him to
make the further developments.

ij=k=—ji, jk=i=—kj ki=j=—ik (6)

Students of vector calculus will recognize the familiar relationships amongst 4, j, and k, if they think
of 7, 7, and k as unit vectors along the x, y, and z axes in the usual 3-space orientation used in vector
calculus.

Of course, the relationships in (6) demonstrate that multiplication of the quaternions is not commu-
tative. Changing the order of the factors changes the product. In general, if v and v are quaternions,
it is not the case that uv equals vu.

Sir William was able to demonstrate that multiplication was an associative operation ((uv)w =
u(vw)) and that multiplication is distributive with respect to addition (u(v + w) = wv + uw). With
associativity and the distributive law in hand, a straightforward (albeit messy) calculation shows that
the product of the quaternions u = uy + u9i + usj + usk and v = vy + voi + v3j + v4k is

uv = (U1 — UV — UV3 — UgV4) + (UIV2 + U2V + UIV4 — U4V3)]

+ (U1U3 + usv1 + ugvo — u2114)j + (U1U4 —+ U4V1 + UV — U3U2)k.

Add a function quat_mult to the module and append it to the previously overloaded operator (x).

When you studied the complex numbers, before making the definition of division, you paused to
develop the complex conjugate. In a similar manner, if u = u; + u2t + usj + ugk, then the conjugate of
this quaternion is the quaternion

= uj + ugt + usj + usk = up — uot — ugj — ugk. (7)

There’s a little twist that we must add if we overload an existing intrinsic function. Our intent here
is to overload the intrinsic function conjg, which is used to take the complex conjugate of a complex
number. The first rule is that we must use an intrinsic statement in the module containing the definition
of the extension of an existing intrinsic function.

intrinsic :: conjg

Next, we intend to use the conjg function call in our main programming unit, so we must declare it
public in the module.

public :: conjg

The interface strategy is the same, but this time we are not dealing with an operator, so the look and
feel is a bit different.

interface conjg
module procedure quat_conjg
end interface

The code for the function quat_conjg is quite easy to write.

function quat_conjg(x) result (res)
type(quaternion), intent(in) :: x
type(quaternion) :: res
res ha=x%a
res % b =-(x % b)
res % c = -(x % c)
res % d = -(x % d)

end function quat_conjg

Add these code fragments to your module.
Next, it’s again a straightforward calculation to show that if u = wy + uoi + usj + ugk, then the
norm or magnitude of the quaternion is

norm(u) = ul = u? + u3 + u3 + ul. (8)
Note the similarity between this and the magnitude of the complex number z = a + bi.
norm(z) = 2z = a? + b2 9)

If you are thinking geometrically, then the norm of a complex number is the length of the vector
representing the complex number. In Figure 1, the complex number z = a -+ bi is represented as a vector
in the Argand plane (complex plane). By the Pythagorean Theorem, the square of the length of the
complex number is zZ = a®? 4+ b%. Thus, the length of the complex number, usually denoted by |z|, is

|z] = Va? + b2.

v
Figure 1: The complex number z = a + bi represented as a vector in the complex plane.

In Fortran, the intrinsic function abs is used to find the magnitude of a number. If the number
z is complex, then abs(z) returns the magnitude of the complex number, or the length of the vector
representing the complex number in the complex plane. Your assignment is to overload the intrinsic
function abs so that it returns the magnitude of the quaternion passed to it. Add the appropriate code
to your module.

We are now in a position where we can divide one quaternion by another. If the quaternion is
nonzero, then it has nonzero length and an easy calculation reveals that

v
-—=1. 10
v (10)
Thus, ~
-1 v
= . 11
v VU (11)
Division is now easily defined.
Yot (12)
v

Add a function quat_div to your module that will take the quotient of two quaternions. Overload the
operator (/).
To test the routines you've written for quaternion arithmetic, let

u=1+42i+ 35+ 4k and v=>5+6i+ 75+ 8k.

In your main program unit, print each of the following to the screen.

1. u+wv

2. u—vw

3. 2u

4. uv

5. conjg(u)

6. abs(u)

7. ufv

Your grade on the program will depend upon the correctness of these answers, so please check your
solutions with others before submitting your program.

6 The Grading Rubric

The following rules will apply for this program, after which we will discuss and adjust the rubric during
class.

1. (30 points) Will be awarded for adequate comments. Comments should include:

(
(

a) A description of the program’s purpose.
b

)

) Name, date, version or revision number.

(c) A complete dictionary of all variables and parameters used in the program.
)

(d) Interprogram comments should proceed any code snippets explained by the comments. These

should be adequately sprinkled throughout your code.

2. (50 points) Will be awarded if the program works and does what it was asked to do.

10

3. (10 points) Will be awarded for good program style. This includes good indentation practices,
etc.

4. (10 points) Will be awarded for creativity and extra effort. Did you just do the bare minimum?
Or did you stretch and reach a little higher? Did you put something cute or clever into your
program that nobody else seemed to think of?

7 Penalties

Fach program that is assigned during the term will have a due date. On that date, the program must
be on the instructor’s desk before the start of class. Penalties will be assessed as follows.

1. (10 points) There will be a 10 point deduction for any program that is handed in after the class
has begun.

2. (20 points) There will be a 20 point deduction per class period. That is, if you hand the program
in one class period late, there is an automatic 20 point deduction. Two class periods warrants a 40
point deduction, etc. To be clear, if the program is in the instructor’s hands before the beginning
of the next class, that is a 20 point deduction. If the program is in the instructor’s hands before
the start of the second class period past the due date, that is a 40 point deduction, etc.

8 Managing Files and Folders

Fach of you has been given personal space on the sci-math server to store your work. Typically, this
space is mapped to the drive letter H. If you open the Windows Explorer (the file manager, not the
internet browser), you can see that the drive letter has been mapped to your login name.

In this folder, create a new folder call FortranPrograms. Note that you must never use spaces in
filenames. In the Windows operating system, filenames are not case-sensitive, which is exactly opposite
what happens in Unix and Linux, where filenames are case-sensitive.

In your FortranPrograms folder, create another folder called Program13. It is in this folder that
you are to place the source code and executables for this current project. Please name your program
program13.£90. When you receive your next project, create a new folder called Program14 to hold
that project, etc

If you work at home, I still want you to place copies of your work in the space reserved for you on our
system. Simply copy your home files onto a floppy disk and bring them with you to school. Use the Win-
dows Explorer to copy the files on your disk into the proper folder (H:/FortranPrograms/Program13).
Do not copy executables to the school drive. Rather, copy your source, then compile on the school
computer to produce the executable.

If everyone follows these simple rules, I can easily access your work from my office machine for
purposes of assigning a grade.

9 Caveat

On this project, if you stop by my office with hardcopy of your program before the due date of this
assignment, I will give a quick glance and critique of your source code. Somewhat like receiving a grade
on a draft before submitting your final draft for assessment.

11

