
XMM Survey Science Centre SSC�LUX�TN�����

University of Leicester version ���

Leicester� LE� �RH� UK ���� September ��

Clive G� Page �cgp�star�le�ac�uk�

Fortran �� for Fun and Pro�t

GOD is real �unless declared integer�

� old Fortran joke �origin unknown�

The last good thing written in C was Franz Schubert�s Symphony No� �

� Michael Hodous �Centro Svizzero di Calcolo Scienti�co�

Fortran �� is now the only international standard for Fortran� the release of ISO	IEC

����
��
 made Fortran  obsolete� A radical revision of the language was long overdue� but
was probably worth the wait� Fortran �� is a state�of�the�art procedural language� Programmers
will �nd it not only much more powerful but also easier to use� because so many restrictions are
relaxed and so many awkward and antique features can be put into retirement� Fortran �� also
supports more comprehensive compile�time checking� so that a greater variety of programming
errors can be caught at an early stage� Despite these substantial changes� Fortran  remains a
true subset of Fortran ��� so compatibility with existing code is maintained�
Scienti�c programmers have� on the whole� been rather slow to adopt Fortran ��� although

there are some notable exceptions� An early scarcity of compilers may have been partly re�
sponsible� I suspect also that those keenest to jump on the latest programming bandwagon
have already switched to object�oriented languages like C��� while many of the others remain
reluctant to use anything that looks signi�cantly di�erent from Fortran � Now that reliable
and e�cient Fortran �� compilers are available for all modern computing platforms I think the
bene�ts of adopting Fortran �� far outweigh the risks�
Existing Fortran programmers should not �nd it too di�cult to adjust to Fortran ��� several

of its features are well�known as extensions to many Fortran  systems� while the more novel
features can if necessary be adopted one�at�a�time as the need arises� Taken together� however�
they amount to a substantial rejuvenation of Fortran� indeed they almost turn it into a new
language� It will therefore take a little time for everyone to become adept in the rather di�erent
style of programming which Fortran �� makes possible and indeed desirable�
This document highlights some of the most important new features as far as the scienti�c

programmer is concerned� It does not attempt to describe them all in detail� which would take
a whole book� Indeed I already know of 
� books on the subject in English and a dozen in other
languages� The best book that I have found so far �for anyone with a reasonable background
knowledge of Fortran � is Upgrading to Fortran �� by Cooper Redwine� �

�published ���� by Springer Verlag� ISBN ������������	 
��� in the UK�



SSC�LUX�TN����� version ��� �

� Why Use Fortran ���

The principal aims of those designing the new standard were to increase the expressive power
of the language� to make programming simpler� and to increase the reliability� portability� and
e�ciency of Fortran programs�

��� Expressive Power

Fortran now has all the features that one expects in a modern programming language�

� Arrays are �rst�class objects and can be used in expressions� as arguments to intrinsic
functions� and in assignment statements� there is also a concise array�section notation�

� Dynamic storage is fully supported� with both automatic and allocatable arrays� pointers
can be used to handle more complex objects such as linked�lists and trees�

� Derived data types �data structures� are fully supported�

� The MODULE is a new program unit which fully supports encapsulation of data and proce�
dures� and greatly facilitates code re�use�

� Procedures can be recursive� or generic� they can have optional or keyword arguments�
arrays can be passed complete with size	shape information� and functions can return
arrays or data structures�

� New operators can be de�ned� or existing operators can be overloaded for use on objects
of derived type�

� Modules and data structures may declare their contents PRIVATE to enhance encapsulation
and avoid name�space pollution�

��� Simplicity

Many changes make it easier to write and to read programs� Many annoying restrictions of the
old standard are also removed or relaxed� such as the ��character limit on symbolic names�

� New control structures make it feasible to program almost without statement labels�

� A free�format source code layout is introduced� as well as end�of�line comments� multi�
statement lines� free use of lower�case� and more obvious relational operators such as ����
instead of ��GE��� etc�

� A new form of type statement allows all attributes of a set of variables to be given in
one place �with initial values if needed�� This avoids the previous jumble of speci�cation
statements such as DIMENSION� PARAMETER� SAVE� and DATA�

��� Reliability

The increased legibility of Fortran should makes it easier to �nd mistakes� in addition several
new features allow the compiler to provide much more assistance in the production of error�free
code�



SSC�LUX�TN����� version ��� �

� The IMPLICIT NONE speci�cation requires explicit type statements for all typed objects�
so typographical errors in names usually produce error messages�

� Procedures can be given explicit interfaces� so that all arguments are checked by the
compiler for agreement of data type� array rank� etc� This is a very valuable addition since
errors in procedure calls are easy to make and hard to diagnose�

� The INTENT of procedure dummy arguments can be speci�ed �in� out� or inout�� so
compilers can detect errors in argument usage when the interface is explicit�

��� Portability

Fortran programs have always been highly portable� but Fortran �� eliminates almost all the
remaining machine�dependent features of the language� It is also worth noting that� since the
Standard now provides comprehensive facilities� most compilers provide few extensions and they
present little temptation�

� The system of kind parameter provides a portable method of selecting data types �e�g�
real or double precision� according to the actual precision or exponent range needed�

� File�handling and I	O statements have several new options to ensure machine�independence�

��� E�ciency

Compilers for Fortran compare well with those of other languages in the production of highly�
optimised code� Some features of Fortran �� should allow them to do even better� especially on
machines with signi�cant parallelism� or multiple processors�

� By using whole�array operations the loops are handled by the compiler and are likely to be
faster than those which merely translate DO�loops� Array�valued intrinsics functions will
also be evaluated using the best machine�code loops�

� Dynamic arrays rely on the memory�management of the operating system but are likely
to use physical memory more e�ciently than static arrays declared large enough for the
worst�case�

� Loops involving pointers cannot be optimised safely �a well�known limitation on the per�
formance of C programs�� In Fortran� however� pointers can only point to objects explicitly
declared to be targets� so accesses to all non�target variables can be fully optimised�

� Simple Improvements

A number of quite simple changes improve the clarity of Fortran programs� with obvious ben�
e�ts for ease of use� and for code re�use and maintainability� The example below� though
trivial� illustrates many of the new features� Note� this� like the other examples which follow�
uses UPPER�CASE for Fortran keywords and intrinsic functions� but programmer�chosen symbolic
names are shown in lower�case� This distinction is made purely to illustrate the syntax� and
is not a recommended style� Fortran is� of course� case�blind �except within quoted character
constants��



SSC�LUX�TN����� version ��� �

PROGRAM compute�modified�julian�date � notes ���

IMPLICIT NONE � note 	

INTEGER� PARAMETER 

 offset � ��	�	 � note �

INTEGER 

 year� month� day� status� mjd

DO � note 

WRITE��� ��A��� ADVANCE��NO�� � Enter day� month� year
 � � notes ���

READ��� �� IOSTAT�status� day� month� year

IF�status �� �� EXIT � notes ���

IF� day � � �OR� day � 	� �OR� �

month � � �OR� month � �� �OR� �

year � ���� �OR� year � ����� THEN � note ��

WRITE������Invalid date� try again� � CYCLE � notes �����

END IF

mjd � 	����year������ � ���month�� � day � offset �

� ���year���month����������

WRITE��� ��I	� A� I���� A� I�� A� I���� � � note �	

day� ���� month� ���� year� � is MJD�� mjd

END DO � note ��

END PROGRAM compute�modified�julian�date � note �

Notes�


� Note the use of free�format layout� so statements can start in column 
� but all comments
must start with ����

�� Symbolic names can be up to �
 characters long� and may include underscores�

�� IMPLICIT NONE is fully standardised� and strongly recommended�

�� The new declaration syntax �with two colons� allows all the attributes of a set of variables
to be given in one place� including initial values or �as here� values of constants�

�� An inde�nite DO�loop is permitted �but it needs an EXIT statement somewhere��

�� Non�advancing I	O allows partial records to be read or written� here it provides a terminal
prompt without a new�line� so any reply appears on the same line�

� Character constants can be enclosed in a pair of double or single quotes�

�� Relational operators may appear as e�g� ��� instead of ��GT�� and ���� for ��NE���

�� Here� the EXIT statement is executed if any I	O exception occurs �including end�of��le�
and transfers control to the �rst statement outside the loop�


�� In free�format code� an incomplete line ends with an ��� to show the statement continues
on the next line�



� Multiple�statement lines are permitted� with semi�colon as separators�


�� The CYCLE statement continues execution from the top of the loop�


�� The format speci�cation is here embedded in the WRITE statement� this avoids the need
for a statement label� but allows easy matching of I	O items and format descriptors�



SSC�LUX�TN����� version ��� �


�� The END DO statement is �at last� part of the o�cial standard�


�� END statements can generally state what it is that they are ending� this is optional but
may help the reader� and may also be checked by the compiler�

� Label�free Programming

Statement labels look untidy whether or not a margin is left for them� More seriously� each
labelled statement marks the potential destination for a jump� in order to understand the
program properly the origin of each jump must be located� This involves searching not only
for GOTO and arithmetic�IF statements� but also checking all I	O statements �in case they use
END�label etc�� and even CALL statements in case they make use of alternate return� The
presence of labels� therefore� makes it is harder to check programs for mistakes and they represent
a continuing obstacle to maintenance�
Fortunately� new data structures make it feasible to avoid labels nearly all the time� DO�loops

terminated with an END DO can be label�free� especially if good use is made of EXIT and CYCLE

statements� The old computed GOTO is superseded by the SELECT CASE structure� which needs
no labels at all�
This is shown in the program fragment below which selects a suitable ordinal su�x for a day

number in the range 
 to �
� e�g� to turn �	� into �	rd�� and so on�

SELECT CASE�day�number�

CASE��� ��� 	��

suffix � �st�

CASE��� ���

suffix � �nd�

CASE�	� �	�

suffix � �rd�

CASE��
��� ��
	��

suffix � �th�

CASE DEFAULT

suffix � ����

END CASE

WRITE��� ��I��A��� day�number� suffix

The selection expression in SELECT CASE may be of integer or character�string type� the ranges
in the case statements must not overlap� a default clause is optional�

� Arrays and Dynamic Storage

Arrays are likely to remain the principal data structure in scienti�c computing� In Fortran ��
arrays are �rst�class objects� which means they can be used almost everywhere just like scalars�
One can have an array of constants� and there is an array constructor notation� e�g�

INTEGER� PARAMETER 

 limits�� � �� ��� 	�� ��� ��� �� ��

Dynamic storage is fully supported through the use of automatic arrays� allocatable arrays�
and pointers� These facilities free the programmer from the need to guess the maximum array
size ever likely to be needed� and take advantage of the e�cient memory management facilities
provided in modern operating systems�



SSC�LUX�TN����� version ��� �

��� Whole�array Operations

An important new feature is that whole�array expressions and assignments are permitted� the
compiler arranges the necessary looping over all elements� In addition practically all intrinsic
functions work element�wise when given an array as an argument� This eliminates the need for
many simple DO�loops� for example�

PROGRAM background�subtraction

REAL� DIMENSION������� 

 raw� background� exposure� result� weight

� �code here defines raw� background� exposure����

result � �raw � background� � exposure

weight � SQRT������ � exposure�

In array expressions and assignments the arrays must be conformable� i�e� have the same rank
�number of axes� and the same extent along each axis� A scalar is deemed conformable with
any array� conceptually its value is duplicated the required number of times� Thus if you add a
constant to an array� every element has that constant added�
In cases where some elements need to be excluded from an array assignment� the WHERE block

can be convenient� Here it removes the risk of division by zero�

WHERE�exposure � �����

result � �raw � background� � exposure

ELSEWHERE

result � ���

END WHERE

��� Array Sections

Array sections can be speci�ed by giving the �first
last� element of each dimension� or
�first
last
step� if the step�size is not unity� If the step�size is negative� the elements are
accessed in decreasing order� For example� a ��d array image������� can be �ipped along
the second axis using an assignment statement like this�

image � image�
� ��
�
���

Note that a colon as a subscript represents the use of all elements along that dimension� Source
and destination arrays may have overlapping ranges� the compiler will allocate temporary storage
space if necessary�
Another new feature is that subscripts can be vectors� e�g� image� ���� �� 	���� ��	� is

a section with three elements� If such a section is used on the left�hand side of an assignment
the elements of the vector must all be di�erent�

��� Automatic Arrays

The automatic array is a local array in a procedure which has a size which depends on the
arguments of the procedure when it is called� The array vanishes each time control returns to
the calling routine�

SUBROUTINE my�process�npoints� array�

INTEGER� INTENT�IN� 

 npoints

REAL� INTENT�INOUT� 

 array�npoints� � argument array

DOUBLE PRECISION 

 workspace���npoints� � automatic array twice as big



SSC�LUX�TN����� version ��� 

��� Allocatable arrays

These provide a more general mechanism� only the rank �number of dimensions� has to be
declared in advance� the actual dimension bounds are speci�ed later in an ALLOCATE statement�

INTEGER 

 nx� ny

DOUBLE PRECISION� ALLOCATABLE� DIMENSION�
�
� 

 image

���� compute suitable values for nx�ny

ALLOCATE�image�nx�ny�� �allocate space for rank � array

The allocatable array can be used just like any other array� but when no longer needed the space
should be released using�

DEALLOCATE�image�

Once an array has been allocated� its bounds can only be changed by deallocating and re�
allocating it� which loses any previous contents� An allocatable array in a procedure may also
be given the SAVE attribute so that its contents are preserved from one invocation to another�
It is important to have properly matched ALLOCATE and DEALLOCATE statements� of course� and
simplest if they appear in the same procedure� ALLOCATE statements have an optional STATUS
argument which returns an error�code if there is not enough dynamic memory left for successful
allocation�

��� Pointers

The pointer provides a more general way of using dynamic storage with even greater �exibility�
e�g� to handle a collection of objects all of di�erent sizes� In C and C�� pointers are used
extensively� but they account for a large proportion of programming errors� since it is very easy
to access invalid memory areas inadvertently� Fortran has not entirely eliminated this risk�
but has controlled it by requiring that each pointer can only point to items of a speci�ed data
type which have also been explicitly declared to be a target� Despite these restrictions� Fortran
pointers can be used to implement all forms of dynamic data structure such as linked�lists�
B�trees� queues� etc�

� Derived data types

Fortran�s support for derived data types �sometimes known as user�de�ned data types or data
structures� is now superior to that found in most other high�level languages� First one de�nes the
structure of a derived type in a block enclosed in TYPE and END TYPE statements� for example�

TYPE celestial�position

REAL 

 ra

REAL 

 dec

CHARACTER�LEN�� 

 equinox

END TYPE celestial�position

Then one can declare variables �including arrays� using further TYPE statements of this form�

TYPE�celestial�position� 

 target� obs�list����

Fortran uses a percent sign ��� between components of compound names where most other
languages use a dot to avoid a syntax ambiguity �operators like �AND� are to blame�� This nota�
tion looks ugly� but one gets used to it� Thus target�ra is a real variable� and obs list���dec

is an element of a real array� both can be used just like simple variables�

call convert�vector� target�ra� target�dec�



SSC�LUX�TN����� version ��� �

obs�list����equinox � �J�����

Fortran extends the syntax further than most other languages� so that� for example� obs list�ra

is an array of 
� real elements� These elements are �probably� not located in contiguous memory
locations� but this is the compiler�s problem not yours� Note that simple symbolic names such
as ra and dec can be used concurrently without ambiguity� since names of structure components
always contain at least one percent sign�
The �rst line below shows how to use a structure constructor to set values for all components

in one operation� It is followed by another assignment statement� which simply copies all the
components to the new location� Variables of derived type can also be used in I	O statements�
but in formatted transfers one has to provide a list of format descriptors corresponding to the
list of components�

obs�list��� � celestial�position����	�� ������ �B�����

obs�list���� � obs�list���

write��� ���F����A�� � obs�list���

It is easy to de�ne one derived type in terms of another� references to these components use
an obvious extension to the notation�

TYPE star�type

CHARACTER�LEN���� 

 name

TYPE�celestial�position� 

 position

REAL 

 magnitude

END TYPE observed

TYPE �star�type� 

 mystar� catalogue�������

mystar�name � �HD��	��

mystar�position�ra � ���	��

mystar�position�dec � ���	�

mystar�magnitude � ��

Variables of derived type can be used in expressions only if all the operators involved have
their actions de�ned in advance for the data types involved� this is described in section � below�
If existing operators are re�de�ned this is called operator overloading�
The main point of using derived types is to group related data together in a single named

object� this can simpli�es procedure calls which would otherwise involve passing a list of separate
arguments� one for each component� In order to pass a derived type object to a procedure the
same structure de�nition must be available in both the calling and called program� The best
way to do this is to put the derived type de�nition in a MODULE� and USE it in both places�

	 Modules

The module is an entirely new type of program unit which� though not executed directly� allows
other program units to share items such as constants� arrays� data structure de�nitions� and
procedures� It is likely to have a more revolutionary e�ect on the way that Fortran programs
are constructed than anything since the invention of the subroutine around 
���� The module
makes the COMMON block� the INCLUDE statement� and the BLOCK DATA program unit almost
redundant�
The very simplest use for a module is to de�ne some constants so that exactly the same values

are available in a number of other program units� Such a module can be constructed just like
this�



SSC�LUX�TN����� version ��� �

MODULE basic�constants

DOUBLE PRECISION� PARAMETER 

 pi � 	�������	��d�� �

dtor � pi������d�� rtod � �����d��pi

END MODULE basic�constants

Then in each program unit which makes use of these constants� all one needs is a USE statement
at the top� like this�

USE basic�constants

This could� of course� have been handled with an INCLUDE statement� but the advantage of using
a module is that its text is parsed and pre�compiled when �rst encountered� so there is some
gain in compilation speed for larger modules�
The USE statement can also contain an ONLY clause which controls which names are to be

accessed� and there is also a rename facility if name�clashes are otherwise unavoidable�
More important uses for modules are for them to contain�

� Derived�type de�nitions� needed to pass a derived type object to a procedure�

� Global data� a module can contain a list of variables and arrays which then become
accessible in all the program units which use the module� This provides a replacement
for the COMMON block� and reduces the risk of having of inconsistent de�nition in di�erent
places�

� Both a data area and a set of procedures� these have full access to the data� This allows
the construction of a modular package or library� For example� a set of graphics routines
would probably require a global data area to hold the attributes of the current graphics
device� scaling factors� etc�

Fortran supports encapsulation and data hiding by allowing the programmer to choose whether
each item in a module is to be PUBLIC� i�e� accessible in the program unit which uses it� or to be
PRIVATE� i�e� accessible within the module code alone� A more general structure for a module
de�ning a package is then something like this�

MODULE module�name

IMPLICIT NONE

PRIVATE � set default status for all names

PUBLIC sub�� sub� ��� � allow public use of these items

�data structure definitions�

�global data storage area�

CONTAINS

SUBROUTINE sub�

�code which may access the global data area�

END SUBROUTINE sub�

�any number of further module procedures�

END MODULE module�name


 Procedures

Perhaps the greatest defect of Fortran  was the lack of checking of procedure calls� Even in
professional code it has been estimated that around ��� of procedure calls are defective in some
way� This is now remedied by what Fortran calls the explicit interface�



SSC�LUX�TN����� version ��� 
�

��� Explicit Interfaces

The term is not very informative� an interface is said to be explicit if the compiler has access
at the same time to both the dummy arguments of a procedure and the actual arguments of
the call� In such cases it can perform many valuable consistency checks� for example that the
number of arguments is the same� that each has the same data type� and that arrays have the
same shape and size� If the dummy arguments also have their INTENT speci�ed� this can also be
checked �so that output arguments which correspond to a constant or expression will raise an
error�� In this way a great many programming mistakes can be identi�ed at compile�time� These
advantages are so great that many Fortran experts now think that all programmers should use
explicit interfaces as a matter of course�
There are three di�erent ways of making procedure interfaces explicit�


� The simplest is to put the procedures in a module� as described above this automatically
makes their interfaces explicit to each other and to any unit which uses the module�

�� Interfaces are also automatically explicit for all internal procedures� The internal procedure
is a useful generalisation of the statement function� any number of them of any length
may follow a CONTAINS statement at the end of any other type of procedure�

�� For external procedures� it is possible provide the an interface in a separate interface block�
These are rather like function prototypes in the C language� and require similar care to
ensure that what is declared in the interface block matches the actual procedure interfaces�

When a procedure has an explicit interface several other useful facilities become available�

� Assumed�shape arrays� these have their shape and size transmitted to the procedure
automatically� thus simplifying its interface�

� Optional arguments� likely to be useful in a wide range of applications� Each optional
argument needs to be tested using the PRESENT intrinsic function� typically some default
action would be taken when no argument is provided�

� Keyword arguments� calling arguments by keyword may save e�ort when there is a long
list of them� In addition� if optional arguments are omitted from other than the end of an
argument list� the remainder of the arguments must be called by keyword�

� Arguments may be pointers�

� Functions may be array�valued� or return derived�type objects�

��� Recursive Procedures

Recursive functions �and subroutines� will be useful not only in de�ning certain mathematical
functions �the factorial is the obvious example� but also whenever it is necessary to handle
self�similar data structures� for example recursive descent of a �le directory� or of a B�tree data
structure� If two recursive procedures are to call each other they must both be placed in the same
module� Recursive functions will sometimes need a separate results variable to avoid ambiguity�
this automatically has the same data type as the function name� for example�

RECURSIVE INTEGER FUNCTION factorial�n� RESULT�n�fact�

IMPLICIT NONE

INTEGER� INTENT�IN� 

 n



SSC�LUX�TN����� version ��� 



IF�N � �� THEN

n�fact � n � factorial�n���

ELSE

n�fact � �

END IF

END FUNCTION factorial

��� Generic Procedures

With the aid of an interface block �which may be put in the same module as the procedures�
it is now possible to de�ne generic names for a group of procedures which carry out similar
operations but on a range of di�erent data types� This is likely to be useful in many low�level
packages� e�g� when implementing a set of data access routines� Although generic interfaces do
not in themselves result in any simpli�cation of the code� they do simplify interface for the user
of the package� and the corresponding documentation�

��� Intrinsic Procedures

Fortran  already had a better collection of built�in functions than any other common language�
but Fortran �� provides another � intrinsic functions and subroutines� There is only space here
to mention a few of them�

Mathematical functions now include MODULO �which is like MOD except for negative argu�
ments�� while CEILING and FLOOR round to integer upwards and downwards respectively�

Array�handling functions include those for taking DOT PRODUCT of vectors� and MATMUL and
TRANSPOSE for matrices� For arrays of any rank one can now �nd minimum	maximum
values and their locations using MINVAL� MAXVAL� MINLOC and MAXLOC� or simply COUNT the
elements or �nd their SUM or PRODUCT or logical arrays whether ALL or ANY of them are
true� There are several more complex routines such as those to PACK and UNPACK rank�one
arrays� and CSHIFT to do a circular shift of elements�

Character�handling is much easier with function such as LEN TRIM to �nd string�length ig�
noring trailing spaces� TRIM to trim them o�� and ADJUSTL and ADJUSTR to justify strings
while preserving length� There is also SCAN and VERIFY to check for presence or absence of
sets of characters� while ACHAR and IACHAR convert single characters to	from integer with
conversion guaranteed to use the ASCII collating sequence�

Bit�wise operations often have to be performed on integers when dealing with raw data from
instruments� The full set of procedures originally de�ned in MIL�STD�
�� is supported
in Fortran ��� including IAND� IOR� ISHFT and MVBITS�

Numerical enquiry functions appear for the �rst time� such as TINY and HUGE to �nd the
smallest and largest numbers of any given type� one can also �nd the BIT SIZE� PRECISION�
MAXEXPONENT etc� for the �oating�point types�

Miscellaneous intrinsics include functions to �nd the SIZE and SHAPE of an argument array�
whether an optional argument is PRESENT� or an allocatable array actually ALLOCATED�
The RESHAPE function can do clever things with multi�dimensional arrays� while TRANSFER
allows data to be moved to another data type just by copying its bit�pattern� New sub�
routines include those to get the current DATE AND TIME in several formats� and to read



SSC�LUX�TN����� version ��� 
�

the SYSTEM CLOCK� And a single call to RANDOM NUMBER can generate an array of pseudo�
random numbers�

Note that all intrinsic procedures may also be called by keyword� and some of were designed
with this in mind� For example one can now get the current date�and�time in several di�erent
formats�

CHARACTER��� 

 mydate

INTEGER 

 iarray���

CALL DATE�AND�TIME�DATE�mydate� � returns date as �yyyymmdd�

CALL DATE�AND�TIME�VALUES�iarray� � returns date�time in integer array

� De�ned and Overloaded Operators

When a new data type is de�ned� it will often be desirable for objects of the derived type
to be used in expressions� Note how much easier it is to write� a � b � c � d than e�g��
add�mult�a�b��mult�c�d��� Before using operators on operands of non�intrinsic data type it
is necessary to de�ne what operations they perform in each case� The example below de�nes a
new data type� fuzzy� which contains a real value and its standard�error� When two imprecise
values are added together the errors add quadratically �assuming they are uncorrelated�� So it
is with fuzzy values� given this overloading of the ��� operator�

MODULE fuzzy�maths

IMPLICIT NONE

TYPE fuzzy

REAL 

 value� error

END TYPE fuzzy

INTERFACE OPERATOR ���

MODULE PROCEDURE fuzzy�plus�fuzzy

END INTERFACE

CONTAINS

FUNCTION fuzzy�plus�fuzzy�first� second� RESULT �sum�

TYPE�fuzzy�� INTENT�IN� 

 first� second

TYPE�fuzzy� 

 sum

sum�value � first�value � second�value

sum�error � SQRT�first�error��� � second�error����

END FUNCTION fuzzy�plus�fuzzy

END MODULE fuzzy�maths

USE fuzzy�maths

TYPE�fuzzy� a� b� c

a � fuzzy����� ���� � b � fuzzy����� 	���

c � a � b

PRINT �� c

The result is� as you would expect� ��� ��

This module de�nes only what happens when two fuzzy values are added� Clearly� to be of
practical value it would be necessary to provide further de�nitions for subtraction� multiplication�
etc� One might also want to overload intrinsic functions such as SQRT� or to provide a function
to multiply a fuzzy value by a real� All of these are easy to do� but to show them all here would



SSC�LUX�TN����� version ��� 
�

take up too much space�
Once a suitable set of overloadings has been de�ned for the mathematical operators and

perhaps some intrinsic functions� then one can make use of them in a variety of ways� For
example� a Fourier transform routine could be converted to use fuzzy arrays instead of real
arrays by simply replacing all REAL declarations for those of TYPE �fuzzy�� The errors would
then be propagated through the processing and the transform would contain a standard error
at each frequency�
Such encapsulation greatly simpli�es software maintenance� Suppose you decide later on that

this representation of a fuzzy requires one to take too many square�roots� and that it would be
better to store instead the square of the error� then it is only necessary to alter one or two lines
or two in each procedure� Of course� the module and all the code which uses it needs to be
recompiled� but in the higher level software no code are needed at all�
It is sensible to overload an existing operator only if the meaning stays essentially unchanged�

in other cases it is better to invent a new operator name� For example� if you decide to implement
an operator to compare two character string while ignoring case di�erences� none of the existing
operator symbols seems an especially good choice� but it would be sensible to invent name such
as �like� or �similar� for the purpose�

� InputOutput enhancements

Non�advancing I	O is a new facility which allows a formatted READ or WRITE statement to
transfer less than a complete record� and is particularly valuable in providing a standard way of
writing a terminal prompt without a terminating new�line� as shown in section ��
The OPEN statement has several new keywords e�g� POSITION��APPEND� to append output to

an existing �le� ACTION��READ� to specify that read�only access is required� and STATUS��REPLACE�
which creates a new �le in general� but replaces an old �le of the same name if one already exists�
When opening an unformatted direct�access �le the record�length has to be speci�ed� but the

units are system�dependent �often bytes� sometimes longwords�� This minor portability problem
has been solved in Fortran �� by adding to the INQUIRE statement an option to determine the
length of a specimen record in local units�
There are also several new format descriptors� Integers can now be read or written in other

number bases� using Bw�m for binary� Ow�m for octal� and Zw�m for hexadecimal� If �oating�point
numbers are written using ESw�d they appear in scienti�c format� which is like Ew�d but there
is always one non�zero digit before the decimal point� There is also engineering format using
ENw�d� in which the exponent is always a multiple of three� In addition G format is extended in
scope to cope with input and output of all data types� not just the numerical ones� which may
be useful in generic code�
There are several of minor improvements� for example internal �les can be handled with

list�directed formatting�

�� Fortran �� in Practice

Fortran �� compilers are now available for almost all computing platforms from super�computers
downwards� with more than half�a�dozen compilers on the market for Unix systems and a similar
number for PCs� some of these products come from reputable suppliers of Fortran  compilers
and are now quite mature and stable� The Macintosh has been somewhat neglected� but two
compilers are due for release in 
����



SSC�LUX�TN����� version ��� 
�

There are� however� a few potential snags in using Fortran �� rather than Fortran � especially
when using code which already exists and was designed for the older standard�

� Fortran �� introduces some � new intrinsic functions �and a handful of intrinsic subrou�
tines�� If existing programs happen to use one of these names for an external function �or
subroutine� the compiler may get confused� The solution is simple� to specify the name in
an EXTERNAL statement in each calling program unit� of course the intrinsic of the same
name cannot be used in that unit� This is just about the only area in which there is less
than 
��� compatibility with Fortran  code�

� Few Fortran  programs conformed strictly to the ISO Standard� many extensions in
regular use were incorporated into the Fortran �� Standard but others were not �although
the functionality is nearly always there�� Examples include the �val construct� VAX
data structures� and type statements of the form INTEGER��� Many vendors do� in fact�
still support such features in their Fortran �� compilers� but continued use of them is
inadvisable�

� Fortran �� compilers are relatively new products and more complex� so some problems are
to be expected� Although there were many reports of bugs in new compilers soon after
their release� several of them have now been on the market for a few years and they seem
to be stable and reliable�

� In principle Fortran �� code� able to take advantage of whole�array operations etc�� should
run faster� but in practice most compilers produce code which executes barely faster than
before� at least on single�processor systems� Vendors are likely to produce better optimi�
sation in due course�

� Fortran �� compilers are mostly more expensive than those for Fortran � and there are
as yet no free ones �but see section 

�
 below�� Academic users of Digital Equipment
systems with a DEC�campus licence can� of course� use their Fortran �� compiler without
extra charge� GNU�s g compiler includes many Fortran �� features� but by no means
all�

� It will be natural to write new software using the free�format coding style� but the choice
is less clear�cut for those making minor changes to existing programs� since the whole
program unit has to be in either �xed or free format� Programs to convert from �xed
to free�format style are freely available on the Internet� but they make only the essential
changes�

� Some systems will allow existing object libraries� compiled using Fortran � to be linked
with Fortran �� code� but others require a complete re�compilation of the code�

� In Fortran �� each module needs to be compiled before any other program units which use
it� This imposes additional constraints on code management� and slows down compilation
at least initially� If a modi�cation is made to a module it usually require the recompilation
of that module and all other modules and program units which use it�

None of these problems� however� seems su�ciently serious as to constitute a serious obstacle
to the widespread use of Fortran ���



SSC�LUX�TN����� version ��� 
�

�� Fortran Evolution

���� Free Fortran 	
 subsets

F and ELF�� are two di�erent products from well�known stables� each designed as a subset of
Fortran �� with all the obsolete features removed� These are designed for teaching Fortran� or
for compiling new code� but will not cope with most old�style Fortran  code� ELF�� comes
from Lahey Computer Systems Inc� A slightly di�erent subset called F is marketed by Imagine

of Albuquerque and is based on technology from Salford Software and NAG Ltd� A free version
Lahey�s ELF�� compiler is available for MS�DOS	Windows� while F is free for use on PCs
running Linux� Textbooks based on these are already on the market�

���� Fortran 	�

Fortran continues to evolve� and Fortran �� is now de�ned and likely to become an approved
standard within a few months� It clears up a few minor errors and ambiguities in the de�nition of
Fortran ��� but adds only few new features� mainly those to support High Performance Fortran
�HPF�� a set of extensions to Fortran �� designed for highly parallel architectures� The most
important of these are�

� Data structure de�nitions can now include default initial values�

� The FORALL statement �and block construct� supports parallel execution of loops�

� PURE procedures �with no side�e�ects� can be de�ned to help optimisation�

� ELEMENTAL procedures work element�wise on arrays�

� Non�global allocatable arrays are automatically deallocated on procedure exit�

Fortran �� also removes from the o�cial Standard a few obsolete features including computed
GOTO� DO statements with control variables of type real or double precision� PAUSE� ASSIGN� and
assigned GO TO statements� the nH format descriptor� and branching to an END IF statement
from outside the block �allowed by mistake in earlier standards�� In practice Fortran �� compilers
are likely to keep these� perhaps just issuing a warning messages� Because of the modest nature
of these improvements Fortran �� compilers are likely to appear very soon� Meanwhile work on
Fortran���� is already well under way�


