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Preface

The F programming language is easy to learn and easy to use. Other
programmers can understand programs written in F. F provides natu-
ral facilities for modularizing programs, creating libraries of commonly
used routines, and sharing code.

F is a carefully crafted subset of the Fortran 95 programming lan-
guage used extensively by professional programmers, particularly in
science and engineering. It is very well suited for professional pro-
gramming, especially for applications that involve numerical comput-
ing. Learning F provides a basis for “real world” applications
programming; nothing needs to be unlearned.

Because F is a subset of Fortran 95, everything learned about F and
all programs written in F are applicable to Fortran 95.

Fortran 95 Using F provides a general tutorial description of F, and
hence also the important features of modern Fortran, with many exam-
ples and exercises. It is organized so that it may be read from begin-
ning to end, but it also is organized so that particular topics may be
studied by reading some chapters before previous ones are mastered.
To a reasonable extent, all of the material about one topic is presented
together, making the book suitable as a reference work, as well as a tu-
torial.

All of the important features of the F programming language are
covered with examples, beginning with the simplest constructs. Both
the style of the many example programs and the selection of topics dis-
cussed in detail guide the reader toward acquiring programming skills
to produce F programs that are readable, maintainable, and efficient.

Case studies are used to illustrate the practical use of features of F
and to show how complete programs are put together. There are also
simple problems to enable the reader to exercise knowledge of the top-
ics learned.

An unusual feature of the book is that the first chapter contains a
complete discussion of all the basic features needed to write complete



iv Preface

F programs: the form of F programs, data types, simple expressions
and assignment, and simple input and output. Subsequent chapters
contain detailed discussions of control constructs, modules and proce-
dures, arrays, character strings, data structures and derived types, fa-
cilities to extend the language, pointer variables, and input/output.

Another interesting feature of the book is that modules and proce-
dures (functions and subroutines) are discussed early in the book
(Chapter 3). This is because features that encourage modularized pro-
gramming are central in F programming.

Unlike many simple languages suitable for learning programming,
F has extensive facilities for input and output. The use of these facilities
is very important in production programs, so this book contains, in
Chapter 9, an extensive discussion of the excellent input/output facili-
ties in F.

Appendix A gives a brief description of the many intrinsic proce-
dures. Appendix B contains a complete description of the syntax of F.

All the programs have been run on an F compiler.
In the electronic version, there are links from each reference to an-

other section of the book and links from each table of contents item
and each index item to the appropriate text.

F compilers and tools for several computing platforms are available
from The Fortran Company. More information about F is available on
the World Wide Web http://www.fortran.com.

Walter S. Brainerd
Charles H. Goldberg
Jeanne C. Adams

2005 December
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Introduction to Programming in F 1
The best way to learn a programming language is to start reading and
writing programs immediately. If a computer is available, we encour-
age you to write and run programs modeled on the simple sample pro-
grams in this chapter. In addition to this book, you will need a short set
of directions to show you how to enter and run a program at your local
installation. Much of this information may be found in the Fortran Tools
manual.

1.1 Programs that Calculate and Print

Since computers are very good at arithmetic and F is designed to be
very good at expressing numerical computations, one reasonable thing
to learn first about F is how to tell a computer to do the sort of arith-
metic that otherwise might be done by hand or with the aid of a hand
calculator. This section describes how to write programs to calculate
and to print the answer.

1.1.1 Simple Calculations

The first example is a program that prints the result of an addition.

program calculation_1
   print *, 84 + 13
end program calculation_1

The program calculation_1 tells the computer to add the numbers 84
and 13 and then to print the sum, 97. When the computer is told to run
calculation_1, it does precisely that: it adds the two numbers and
prints their sum. The execution output will look something like this.

 97
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1.1.2 Editing, Compiling, and Running a Program

Use your favorite editor on your computer system to edit a file with
suffix .f95. How this is done varies from one system to another and it
is assumed that you can do this. For our example, the file might be
named calculation_1.f95. It is a good scheme to name the file the
same as the program, but with the .f95 suffix.

To see the contents of the file at any time, you can use the editor
again or type a command at the prompt, which might be more, less,
type, cat, or something else, depending on your system. For example,
on a Linux system that uses $ as the prompt:

$ less calculation_1.f95

program calculation_1
   print *, 84 + 13
end program calculation_1

Compiling the program means invoking a piece of software (compiler)
that translates the F statements to computer instructions. This is done
with the following command:

$ F calculation_1.f95

If the compilation is successful, an executable program called a.out or
a.exe will be found in your directory or folder; you may confirm this
by listing its contents (ls or dir, for example).

The program may now be run by typing the command a.exe,
a.out, or ./a.out.

$ ./a.out

 97

There are more sophisticated ways to edit and run a program, such as
using a graphical interface like Photran; see Fortran Tools.

1.1.3 Default Print Format

The asterisk following the keyword print tells the computer that the
programmer will not be specifying the exact format or layout for the
printed answer. Therefore, the F system will use a default format, also
called a list-directed format (9.8.17), designed to be satisfactory in most
cases. The F programming language allows some freedom in the de-
sign of default formats, so your output may differ slightly from the
sample execution shown above.
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1.1.4 Printing Messages

If you want the computer to print the exact typographic characters that
you specify, you enclose them in quotation marks (double quotes), as
illustrated by the program quotes. The quotes are not printed in the
output.

program quotes
   print *, “84 + 13”
end program quotes

 84 + 13

In an F program, a sequence of typographic characters enclosed in
quotes is a character string. A character string may contain alphabetic
characters as well as numeric characters and may contain other special
characters such as punctuation marks and arithmetic symbols.

Printing both exact literal characters and a computed numeric
value produces the following easy-to-read output.

program calculation_1_v2
   print *, “84 + 13 =”, 84 + 13
end program calculation_1_v2

 84 + 13 = 97

In the program calculation_1_v2 (calculation 1 version 2), there are
two items in the list in the print statement, a character constant
"84 + 13 =" to be printed exactly as written (but without the delimit-
ing quotation marks) and an arithmetic expression whose value is first
calculated and then printed. Although the two items may look similar,
they are treated quite differently. Enclosing the character string in
quotes means that it is to be transcribed character for character, including
the three blank characters (spaces, in ordinary typing), while the same
expression written without quotes is to be evaluated so that the sum
can be printed. Commas are used to separate the items in the list of a
print statement.

1.1.5 The program Statement

Each F program must begin with a program statement and must end
with an end program statement. The program statement consists of the
keyword program followed by a program name of the programmerʹs
choosing. A name must start with a letter and consist of at most 31 let-
ters, digits, and underscores; the letters may be uppercase or lower-
case. Other names in F also follow this rule.
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1.1.6 The end program Statement

The end program statement begins with the keywords end program.
It must be followed by the name of the program. Every F program
must have an end program statement as its last statement.

1.1.7 Exercises

1. Write and run a program that prints your name.

2. Write and run a program that computes the sum of the integers 1
through 9, preceded by a short message explaining what the out-
put is.

3. What computer output might be expected when the following pro-
gram is run?

program simple
   print *, 1, “and”, 1, “equals”, 1 + 1
end program simple

1.2 Intrinsic Data Types

The intrinsic (i.e., built-in) data types in F are integer, real, complex,
logical, and character. Each data type has a set of values that may be
represented in that type and operations that can be performed on those
values. We already have seen examples of the use of two of these data
types. "84 + 13" (including the quotation marks) is a character string
constant, and 84 + 13 is an expression whose value is of type integer,
involving two integer operands, 84 and 13, and the arithmetic operator
+. The following subsections discuss each of the five intrinsic types and
the way that constants of those types are written in F.

1.2.1 Integer Type

The integer type is used to represent values that are whole numbers. In
F, integer constants are written much like they are written in ordinary
usage. An integer constant is a string containing only the digits 0 to 9,
possibly followed by an underscore (_) and a named integer constant,
which designates the kind parameter as described in 1.2.11. The follow-
ing are examples of integer constants.

23  0  1234567  42_short  42_long
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1.2.2 Real Type

There are two forms of a real constant in F. The first is called position-
al form because the place value of each digit is determined by its posi-
tion relative to the decimal point. The positional form of a real constant
consists of an integer followed by a decimal point followed by a string
of digits representing the fractional part of the value, possibly followed
by an underscore and a kind parameter. Assuming that double and
quad are names of integer constants that are permissible real kinds on
the F system being used (1.2.11), all the following are real constants
written in positional form.

13.5            0.1234567    123.45678
00.30_double    3.0          0.1234567_quad

A real constant written in the positional form must have at least
one digit to the left of the decimal point and at least one digit to the
right of the decimal point.

The exponential form of a real number consists of a real number
written in positional form followed by the letter e and an optionally
signed integer (without a kind parameter) and optionally followed by
an underscore and kind parameter. The letter e is read as “times 10 to
the power” and the integer following the e is a power of 10 to be mul-
tiplied by the number preceding the e. Exponential notation is useful
for writing very large or very small numbers. For example, 23.4e5 rep-
resents 23.4 times 10 to the power 5, 23.4 × 105, or 23.4 × 100,000 =
2,340,000. The integer power may contain a minus or plus sign preced-
ing it, as in the real constant 2.3e-5, which is 2.3 × 10−5 or 2.3 × 0.00001
= 0.000023. Two more examples are 1.0e9_double, which is one billion
with kind parameter double, and 1.0e-3, which is 1/1000.

1.2.3 Complex Type

The F complex type is used to represent the mathematical complex
numbers, which consist of two real numbers and often are written as
a + bi. The first real number is called the real part and the second is
called the imaginary part of the complex number. In F, a complex con-
stant is written as two (possibly signed) real numbers, separated by a
comma and enclosed in parentheses. If one of the parts has a kind pa-
rameter (1.2.11), the other part must have the same kind parameter; the
complex constant then is that kind. Examples of complex constants are

(1.0, -1.0)
(-1.0, 3.1e-27)
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(3.14_double, -7.0_double)

In the last example, double must be an integer parameter whose value
is a kind available on the system being used.

1.2.4 Arithmetic Operators

The operators that may be used to combine two numeric values (inte-
ger, real, or complex) include +, -, *, /, and **. Except for **, these
symbols have their usual mathematical meaning indicating addition,
subtraction, multiplication, and division. The two asterisks indicate ex-
ponentiation; that is, the value of 2**4 is 16, computed as 2 raised to
the power 4 or 24 in mathematical notation. The symbols + and - may
be used as unary operators to indicate the identity and negation opera-
tions, respectively.

Integer division always produces an integer result obtained by
chopping off any fractional part of the mathematical result. For exam-
ple, since the mathematical result of 23/2 is 11.5, the value of the F
arithmetic expression

23.0 / 2.0

is 11.5, but the value of the expression

23 / 2

which is the quotient of two integer constants, is 11. Similarly, the val-
ue of both the expressions

-23 / 2     23 / (-2)

is −11.

1.2.5 Relational Operators

Numeric (and character) values may be compared with relational op-
erators. The form of each relational operator is given in Table 1-1. Com-
plex values may be compared only with the relational operators ==
(equal) and /= (not equal). However, due to roundoff error, in most cas-
es it is not appropriate to compare either real or complex values using
either the == or the /= operator. In such cases, it is better to test for ap-
proximate equality instead. For example, it is possible to check that x is
approximately equal to y with the expression

abs(x - y) < 1.0e-5



1.2 Intrinsic Data Types 7

where abs(x - y) is the absolute value of the difference between x and
y. The result of a relational operator is type logical (1.2.7).

1.2.6 Mixed Mode Expressions

Mathematically, the integers are a subset of the real numbers and the
real numbers are a subset of the complex numbers. Thus, it makes
sense to combine two numeric values, creating a mixed-mode expres-
sion, even if they are not the same F type. The two operands of a nu-
meric operator do not have to be the same data type; when they are
different, one is converted to the type of the other prior to executing
the operation. If one is type integer and the other is type real, the inte-
ger is converted to a real value; if one is type integer and the other is
type complex, the integer is converted to a complex value; if one is
type real and the other is type complex, the real is converted to a com-
plex value. As an example, the value of the expression

23.0 / 2

is 11.5, because the integer 2 is converted to a real value and then a di-
vision of two real values is performed. If the two operands have differ-
ent kind parameters, the number whose kind parameter specifies lesser
precision is converted to the kind with greater precision before the op-
eration is performed.

1.2.7 Logical Type

The F logical type is used to represent the two truth values true and
false. A logical constant is either .true. or .false., possibly followed
by an underscore and a kind parameter.

The operators that may be used to combine logical values are
.not., .and., .or., .eqv., and .neqv. They are all binary operators

Table 1-1  The relational operators

F form Meaning

< less than

<= less than or equal to

== equal to

/= not equal to

>= greater than or equal to

> greater than
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except the unary operator .not. The value resulting from the applica-
tion of each logical operator is given in Table 1-2. To give one simple
example, the value of

.false. .eqv. .false.

is true.

1.2.8 Character Type

The character type is used to represent strings of characters. The form
of a character constant is a sequence of any characters representable in
the computer delimited by quotation marks. If a quotation mark is to
occur in the character string, it is represented by two quotation marks
with no intervening characters. If the character constant is not defualt
kind, the kind precedes the constant (see the third example below).

"Joan"
"John Q. Public"
iso_10646_"Don't tread on me."
"He said, ""Don't tread on me."""

There is only one character operator that produces a character re-
sult: concatenation. The symbol used is // and the result of the binary
operator is a string of characters consisting of those in the first string
followed by those in the second string. For example, the value of
"John Q." // "Public" is the string “John Q.Public”. Note that there
is no blank after the period, although there could have been; the value
of "John Q. " // "Public" is the string “John Q. Public”.

Relational operators (1.2.5) may be used to compare character val-
ues, which is done using the ASCII character collating sequence (5.1.7
and 5.1.10) for default character kinds.

Table 1-2 Values of the logical operators

x1 x2 .not. x1 x1 .or. x2 x1 .and. x2 x1 .eqv. x2 x1 .neqv. x2
true true false true true true false

true false false true false false true

false true true true false false true

false false true false false true false
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1.2.9 Parameters/Named Constants

A parameter is a named constant. Each parameter must be declared in
a type statement. Type statements appear between the program state-
ment and the beginning of the executable part of the program. Type
statements also are used to give names to variables (1.3.1) and indicate
their data type. Each parameter declaration consists of a keyword spec-
ifying a type, followed by a comma and the keyword parameter, fol-
lowed by two colons. To the right of the double colon is a list of names,
each followed by an assignment and the expression giving the parame-
ter value. The initialization assignments are separated by commas. For
example,

real, parameter :: pi = 3.14159, e = 2.71828
integer, parameter :: number_of_states = 50

declare pi and e to be a real parameters and number_of_states to be
an integer parameter with the value 50.

The value of a parameter is fixed by its declaration and cannot
change during execution of a program.

A parameter name may be used every place in an F program the
corresponding constant may be used; this is why it is also called a
named constant. In addition, a parameter may be used in some places
where a variable may not be used. Examples are indicating the size of
a static array and the values selected by a case statement.

program parameter_example
   integer, parameter :: &
      number_of_states = 50, &
      number_of_senators_per_state = 2, &
      number_of_senators = &
      number_of_states * number_of_senators_per_state

   print *, &
      "There are ", number_of_states, &
      " states in the United States of America."
   print *, &
      "From this, we can calculate that there are"
   print *, number_of_senators, &
      " senators in the United States senate."

end program parameter_example

The ampersand (&) indicates that a statement is continued on the next
line (1.4.1).
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Style note: It is good programming practice to declare quantities
to be parameters whenever possible. Assigning a constant
value to a parameter tells the reader of the program that the
value corresponding to that name will never change when the
program is running. It also allows the computer to provide a
diagnostic message if the programmer inadvertently tries to
change its value.

Since parameters are named constants, use of a parameter
name instead of the corresponding constant makes a program
more readable. It is easy to forget what role an unnamed con-
stant plays in a program.

Another important reason for using a parameter declaration is that
the program can be modified very easily if the particular value repre-
sented by the parameter name needs to be changed. The programmer
can then be sure that the constant will be correct whenever it is used
throughout the program. For example, if Puerto Rico becomes the 51st
state, the program parameter_example can be updated easily.

A rather different reason for using a parameter is that its value is
known by the compiler and, therefore, can be used to indicate such
things as the size of an array (4.1.3) or the kind of a real variable
(1.2.11).

1.2.10 Rules for Names

number_of_states and number_of_senators are names of parameters
used in the program parameter_example. The following are the rules
for names of parameters as well as all other names in an F program:

1. The first character of the name must be a letter.

2. The remaining characters may be any mixture of letters, digits, or
underscore characters (_).

3. There may be at most 31 characters in a name.

4. Names may contain both uppercase and lowercase letters, but a
program may not contain two names that differ only in the case of
some of their letters. For example, a variable could be
Number_of_States, but wherever it is used in a program, it must
have the “N” and “S” capitalized. The name number_of_states
must not be used in the same program.

5. The last character in a name must not be an underscore.
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These rules allow ordinary names like Lisa, Pamela, and Julie to
be used as names. They also allow ordinary English words like total
and area and more technical-looking names like X3J3 and WG5 to be
used as names. The underscore allows longer names to be more read-
able, as in distance_to_the_moon, vowel_count, and number_of_
vowels_in_the_text.

All names in F, including names of programs, follow these rules.
Most names in this book are all lowercase, simply because they are

a little easier to type.

1.2.11 Kind Parameters

Kind parameters provide a way to parameterize the selection of differ-
ent possible machine representations for each of the intrinsic data
types. If the programmer is careful, this provides a mechanism for
making selection of numeric precision and range portable.

Each intrinsic data type has a parameter, called its kind parameter,
associated with it. A kind parameter is intended to designate a ma-
chine representation for a particular data type. As an example, an im-
plementation might have three real kinds, informally known as single,
double, and quadruple precision.

The kind parameter is an integer. These numbers are processor de-
pendent, so that kind parameters 1, 2, and 3 might be single, double,
and quadruple precision; or on a different system, kind parameters 4,
8, and 16 could be used for the same things. There are at least two real
and complex kinds and at least one kind for the integer, logical, and
character data types. Note that the value of the kind parameter is not
usually the number of decimal digits of precision or range.

You need to check your manual (for example Fortran Tools) for the
computer system being used to determine which kind parameters are
available for each type and which kind parameters are the default for
each type. Kind parameters are optional in all cases, so it is possible to
always use the default kind if that is sufficient for your application.

The intrinsic functions selected_int_kind and selected_real_
kind may be used to select an appropriate kind for a variable or a
named constant. These functions provide the means for making a pro-
gram portable in cases where values need to be computed with a cer-
tain specified precision that may use single precision on one machine,
but require double precision on another machine. They are described
in 1.5.4.

When a kind parameter is used in a program, it must be a named
integer constant (parameter). In integer, real, and logical constants, it
follows an underscore character (_) at the end.
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12345_short
1.345_very_precise
.true._enough

The kind parameter of the two parts of a complex constant must be
the same.

The two operands of a numeric operation may have different kind
parameter values. In this case, if the two operands have the same type
or one is real and one complex, the result has the kind parameter of the
operand with the greater precision. For example, if kind long has
greater precision than kind short, the value of

1.0_short + 3.0_long

is 4.0 with kind parameter long. If one operand is type integer and the
other is real or complex, the kind parameter of the result is that of the
real or complex operand.

1.2.12 Exercises

1. Convert the following type real numbers from positional notation
to exponential notation.

48.2613      0.00241_ok    38499.0
0.2717       55.0          7.000001_quad

2. Convert the following type real numbers from exponential notation
to positional notation.

9.503e2     4.1679e+10_double     2.881e-5
-4.421e2    -5.81e-2_nice         7.000001e0

3. Write a program that prints the sum 0.1 + 0.2 + 0.3 + ... + 0.9.

4. Determine the kind number of one real kind that has precision
greater than that of the default real kind on your computer system.

5. Print the value of selected_int_kind and selected_real_kind
(1.5.4) for about a dozen different argument values to see which
kind values are available on the computer you are using. Check
your results with your compiler manual.

6. Write a program that prints the sum of the complex numbers
(0.1+0.1i) + (0.2+0.2i) + (0.3+0.3i) + (0.4+0.4i).

7. Write a program that prints the logical value of each of the follow-
ing expressions:
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2 > 3
2 < 3
0.1 + 0.1 == 0.2
0.5 + 0.5 /= 1.0

8. Write a program that computes and prints the concatenation of all
of your names (e.g., first, middle, and last).

1.3 Variables and Input

One benefit of writing a computer program for doing a calculation
rather than obtaining the answer using pencil and paper or a hand cal-
culator is that when the same sort of problem arises again, the program
already written can be reused. The use of variables gives the programs
in this section the flexibility needed for such reuse. The programs in
Section 1.1 direct the computer to perform the indicated arithmetic op-
erations on numeric constants appearing in the print statements. The
sample program add_2 finds the sum of any two integers supplied as
input. The numbers to be added do not appear in the program itself.
Instead, two integer variables x and y are reserved to hold the two val-
ues supplied as input. Because F statements can operate on variables as
well as constants, their sum can be calculated and printed. The first
sample run shows how this new program could be used to find the
sum of the numbers 84 and 13, calculated by the program
calculation_1 in Section 1.1.

program add_2
   integer :: x, y
   read *, x
   print *, “Input data  x:”, x
   read *, y
   print *, “Input data  y:”, y
   print *, “x + y =”, x + y
end program add_2

 Input data  x: 84
 Input data  y: 13
 x + y = 97

After declaring that the variables x and y will hold integer values,
the program add_2 tells the computer to read a number from an input
device and call it x, then to read another number and call it y, and fi-
nally to print the value of x + y, identified as such. Two additional
print statements that echo the values of the input data complete the
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program add_2. During the execution of this program, the two num-
bers which are the values for x and y must be supplied to the comput-
er, or the computer cannot complete the run (1.3.2).

1.3.1 Declaration of Variables

The value of a parameter is fixed by its declaration and cannot change
during execution of a program. On the other hand, if the keyword pa-
rameter is omitted, the objects being declared become variables and
their values can be changed at any time. Thus,

integer :: count

declares count to be an integer variable. The value of a variable de-
clared in this way may be changed during execution of the program.

The program add_2 uses the type declaration

integer :: x, y

that declares the type of the variables x and y.
Variable names are subject to the same rules as parameter names.
Every variable that is used in an F program must be listed in a type

declaration.
Corresponding to the integer, real, complex, logical, and character

constants introduced in 1.2, there are integer, real, complex, logical,
and character variables. For example, if the variables q, t, and k are to
be real variables in a program and the variables n and b are to be inte-
ger variables, then the following lines contain the necessary declara-
tions.

real :: q, t, k
integer :: n, b

Variables may have a particular hardware representation by put-
ting kind= followed by a named constant in parentheses after the key-
word representing the data type. For example, if more significant digits
are needed than your system keeps in the default real type and the
kind parameter for extra precision is 2, the variables dpq, x, and long
may have extra precision by the following declarations.

integer, parameter :: more_precision = 2
real (kind=more_precision) :: dpq, x, long

A character variable may have a kind parameter, but it must have a
length. The keyword character must be followed by parentheses en-
closing len= and an integer value indicating the number of characters
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in the character string. If the variable name is to be a string of 20 char-
acters, it may be declared as follows.

character (len=20) :: name

Instead of an integer value, the length must be * (meaning “assumed”
or specified elsewhere) for a character parameter or a dummy argu-
ment (3.3) that is type character.

1.3.2 Supplying Input Data

The two input values 84 and 13 for the variables x and y, shown in the
sample execution of the program add_2, did not appear in the comput-
er by magic. They were typed in by the user, but not as part of the pro-
gram file. Instead, an input file can be prepared, usually with the same
editor used for preparing the program file. In this case the file contains
the two lines

84
13

If, for example, the file is named add_2.in, the program can be execut-
ed on most computer systems using a command similar to the follow-
ing:

$ ./a.out < add_2.in

If you want to put the output in a file called add_2.out instead of dis-
playing it on your screen, the following command should work:

$ ./a.out < add_2.in > add_2.out

1.3.3 Echo of Input Data

When reading input data from a file in F, as well as other programming
languages, it is good programming practice for the user to provide an
echo of the input data using print statements, so that the output con-
tains a record of the values used in the computation. Each read state-
ment in the program add_2 is followed by an echo of the input data
just read.

Style note: It is good programming practice to echo all input
data read from an input file. However, it will be impractical to
follow this rule in some cases, such as when there is a large
amount of input data.
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1.3.4 Rerunning a Program with Different Data

The program add_2 contains echoes, whose importance is demonstrat-
ed when the program is rerun using different input data. The echoes of
input data help identify which answer goes with which problem. Other
important uses of input echoes will appear later. In showing another
sample run of the program add_2, this time adding two different num-
bers, we donʹt repeat the program listing. The program does not
change; only the input data change. This time, the data file add_2.in
has the following two lines.

4
7

The execution output might look like

 Input data  x: 4
 Input data  y: 7
 x + y = 11

The final print statement of add_2 refers to the variables x and y.
As the execution output for the two sample runs shows, what actually
is printed is the value of the character string constant "x + y = " fol-
lowed by the value of the expression x + y at the moment the print
statement is executed.

The program add_2_reals is obtained from the program add_2
simply by changing the keyword integer in the variable declaration to
the keyword real, which causes the type of the variables x and y to be
real. The next program add_2_reals can be used to add two quantities
that are not necessarily whole numbers. This execution of the program
also illustrates that the input data values may be negative. The input
file add_2_reals.in for this sample execution contains two lines

97.6
-12.9

The program file contains the following lines:

program add_2_reals
   real :: x, y
   read *, x
   print *, “Input data  x:”, x
   read *, y
   print *, “Input data  y:”, y
   print *, “x + y =”, x + y
end program add_2_reals
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and the output is as follows:

 Input data  x:  97.5999985
 Input data  y: -12.8999996
 x + y =  84.6999969

Some F systems habitually print real quantities in exponential for-
mat. On such a system, the sample execution will more closely resem-
ble the following:

 Input data  x:  0.975999985E+02
 Input data  y: -0.128999996E+02
 x + y =  0.846999969E+02

If you are worried about why the printed result is not exactly 84.7,
see Section 1.7.1 about roundoff error.

We assume that the reader will become familiar with how to pre-
pare and edit program and input files and how to view output files on
their local computer system.

1.3.5 Reading Several Values

The read statement may be used to obtain values for several variables
at a time, as shown in the program average, that calculates the average
of any four numbers. The four numbers to be averaged are supplied as
data, rather than appearing as constants in the program. This permits
the same program to be used to average different sets of four numbers.

program average
   real :: a, b, c, d
   read *, a, b, c, d
   print *, “Input data  a:”, a
   print *, “            b:”, b
   print *, “            c:”, c
   print *, “            d:”, d
   print *, “Average =”, (a + b + c + d) / 4
end program average

The input data file in the sample execution has one line:

58.5 60.0 61.3 57.0

When we run the program average using this data file, the following
output is produced.

 Input data  a:  58.5000000
             b:  60.0000000
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             c:  61.2999992
             d:  57.0000000
 Average =  59.2000008

This program does a computation more complicated than any dis-
cussed so far, but the meaning of the program should be obvious.

As shown in the sample execution, the data are supplied to the
variables in the order they are listed in the read statement. Note that
the four variables in the read statement are separated by commas and
that there is a comma between the asterisk and the first variable in the
input list. Although it is not required in F, it is often desirable to put all
input data for a read statement on one line in the input file, creating a
correspondence between read statements and data lines. However, the
input data file

58.5
60.0
61.3
57.0

would have produced the same execution output.
Execution of each read statement normally reads data from a new line in

the input file. Thus, if four separate read statements were to be used to
read the variables a, b, c, and d, the four input values must be on four
separate data lines in the input file.

1.3.6 Default Input Format

The asterisk in the read statement indicates that the format of the input
data is left to the one who prepares the input file, except that the indi-
vidual values must be separated by at least one blank character or a
comma.

Style note: Whenever possible, use the default input format. It
makes preparation of data much easier and less prone to error.

1.3.7 Reading and Writing Character Strings

Since computers can process character data as well as numeric infor-
mation, computer languages provide for the reading and printing of
character strings. The somewhat facetious program who shows how
this is done in F.

program who
   character(len=20) :: whats_his_name
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   print *, “Do I remember whatshisname?”
   read *, whats_his_name
   print *, “Of course, I remember “, whats_his_name
end program who

 Do I remember whatshisname?
 Of course, I remember Roger Kaputnik

When the default input format, indicated by the asterisk, is used to
read a character string, you should enclose the string in quotes, the
same as a character constant used within a program. Delimiting quotes
do not appear in the output when using the default output format. The
input file for the execution of the program who shown above consists of
one line.

"Roger Kaputnik"

1.3.8 Input Data from a Terminal

We close this section with a program meters_to_inches designed to
be run on an F system in which input data is supplied for the read
statements by typing the data at a computer terminal during the execu-
tion of the program. This is called interactive input. The only change
we make to the F program is to add a print statement prompting the
user about what data to type and remove the statement that echoes the
input data. This input prompt immediately precedes the read state-
ment. Without this input prompt, when the computer pauses waiting
for the user to type the value for meters requested in the read state-
ment, it would appear as though the execution of the program
meters_to_inches failed for some unexplained reason, or that it never
started. The user would not know that the computer is waiting for in-
put.

Style note: Always precede an interactive input statement with
an input prompt.

program meters_to_inches
! Converts length in meters to length in inches.
! The length in meters is typed
! when prompted during execution.

   real :: meters
   real, parameter :: inches_per_meter = 39.37

   print *, “Enter a length in meters.”
   read *, meters
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   print *, meters, “meters =”, &
      meters * inches_per_meter, “inches.”
end program meters_to_inches

 Enter a length in meters.
 2
   2.0000000 meters =  78.7399979 inches.

On most systems, the characters typed at the keyboard also appear on
the screen.

Nonadvancing input/output allows the input to be typed on the
same line as the prompt. There is an example of this in 9.3.5.

1.3.9 Exercises

1. Which of the following are valid names for F variables?

name    address   phone_#     phoney     real
iou_    iou_2     4gotten     4_ever     _laurie

2. The program inches_to_feet is similar to the program
meters_to_inches described in this section. What output is pro-
duced when inches_to_feet is run using 110 inches as the input
value?

program inches_to_feet
   real :: inches
!  There are 12 inches per foot
   real, parameter :: inches_per_foot = 12.0

   read *, inches
   print *, inches, “inches =”,  &
         inches / inches_per_foot, “feet.”
end program inches_to_feet

3. In the program rhyme, both jack and jill are parameters. What
does a computer print when this program is run?

program rhyme
   integer, parameter :: jack = 1, jill = 2
   print *, jack + jill, “went up the hill.”
end program rhyme

4. Write a program that reads in a first name, a middle initial, and a
last name as the values of three different character variables and
prints out the full name.
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1.4 The Form of an F Program

An F program consists of a sequence of statements; these statements
are written on lines that may contain from 0 to 132 characters.

1.4.1 Continued Statements

Often an F statement fits on one line, but a statement can be continued
onto more lines if the last character of the line to be continued is an
ampersand (&).

print *,  &
      "I hope this is the right answer."

A statement may not have more than 40 lines.
A statement may not be broken in the middle of a keyword, a

name, or a constant. Also, it is not permitted to break a line between
two related keywords, such as end program. If it is necessary to break
a long character string, use the concatenation operator as shown in the
following example.

print *,  &
      "This is a line that contains a really, " // &
      "really, really, long character string."

The important fact is that, in the absence of a continuation symbol, the
end of a line marks the end of a statement.

Each F statement except the assignment statement begins with a
keyword, such as print, that identifies the kind of statement it is.

1.4.2 Significant Blank Characters

Blank characters are significant in an F program. In general, they must
not occur within things that normally would not be typed with blanks
in English text, such as names and numbers. On the other hand, they
must be used between two things that look like “words”. An example
is that, in the first line of a program, the keyword program and the
name of the program must be separated by one or more blanks, as in
the example

program add_2

Keywords and names such as print and number must contain no blank
characters, except that keywords consisting of more than one English
word may contain blanks between the words, as in the F statement
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end do

Two or more consecutive blanks are always equivalent to one blank un-
less they are in a character string.

On the other hand, there are places where blank characters are not
significant, but can and should be used to improve the readability of
the program. For example, most of the programs in this book have
blanks surrounding operator symbols, such as + and -, and have a
blank after each comma in an input/output list or procedure argument
list. Even more importantly, they all use preceding blanks to produce
indentation that shows the structure of the program and of its compo-
nent parts.

Style note: Blank characters and blank lines should be used free-
ly in an F program to make it easier to read.

1.4.3 Comments

Any occurrence of the exclamation symbol (!) other than within a char-
acter string or a comment marks the beginning of a comment. The
comment is terminated by the end of the line. All comments are ig-
nored by the F system and are used to provide the human reader infor-
mation about the program.

Since comments are ignored, it is permissible to place a comment
after the ampersand (&) continuation symbol without impairing the
continuation.

real :: x,  &   ! measured value
        xbar    ! smoothed value

1.4.4 The F Character Set

An F statement is a sequence of characters. The characters of the F
character set are the uppercase letters A to Z, the lowercase letters a to
z, the digits 0 to 9, the underscore _, and the special characters in Table
1-3.

The character set contains all required characters but may contain
additional characters, such as the nonprintable characters tab or bell or
additional printable characters, such as {. These additional characters
can appear in an F program only within a comment or character con-
stant.

Two of the F characters, $ and ?, have no special use, and the cur-
rency symbol need not display or print as $ in all implementations; it
might look like ¥ or £.
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1.4.5 Exercise

1. What does the following program print? Its style is not recom-
mended.

                   program &
ugh
                   print &
     *     ,                &
               12.0         +&
    34.6
        end            program ugh

1.5 Some Intrinsic Functions

There are many built-in or intrinsic functions in F and a few built-in
or intrinsic subroutines. To use the functions, simply type the name of
the function followed by the arguments to the function enclosed in pa-
rentheses. For example, abs(x) produces the absolute value of x and
max(a,b,c) yields the maximum of the values of a, b, and c.

Two of the more commonly used subroutines are date_and_time
and random_number. Appendix A contains a list of all the intrinsic pro-
cedures.

Table 1-3  The F special characters

Character Name of character Character Name of character

Blank : Colon

= Equals ! Exclamation point

+ Plus " Quotation mark or quote

- Minus % Percent

* Asterisk & Ampersand

/ Slash ; Semicolon

( Left parenthesis < Less than

) Right parenthesis > Greater than

, Comma ? Question mark

. Decimal point or period $ Currency symbol

’ Apostrophe
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1.5.1 Numeric Type Conversion Functions

There are built-in functions that convert any numeric value to each of
the numeric types. These functions are named int, real, and cmplx.
For example, the value of int(4.7) is the integer 4, the value of
real((2.7,-4.9)) is 2.7, the real part of the complex number 2.7−4.9i,
and the value of cmplx(2) is 2.0+0.0i. These functions are essential in
some situations, such as when it is necessary to convert an integer to a
real to avoid an integer division or when the type of a procedure actual
argument must match the type of a dummy argument. For example, if
a variable total holds the sum of a bunch of integer test scores and it
is necessary to divide by the integer variable number_of_scores to find
the average, one or both must be converted to type real. Otherwise, the
result will be an integer, which is probably not what is desired. The
expression

real (total) / number_of_scores

will produce a real result with the fractional part of the average re-
tained.

In other cases, explicit conversion is not required, but can improve
the clarity of the program. For example, if i is an integer variable and
r is a real variable, the assignment of the value of r to the variable i
can be done with the statement

i = r

When this is done, any fractional part of the value of r is dropped, so
that if r were 2.7, the value of i would be 2 after execution of the as-
signment. This can be made clearer to the reader of the program if the
statement

i = int(r)

is used instead.

Style note: In a context that requires conversion from complex
to integer or real or requires conversion from real to integer,
use the intrinsic type conversion functions even if they are not
required.

The numeric type conversion functions also may be used to convert
from one kind to another within the same data type or to specify the
kind parameter of the result of conversion between data types. For ex-
ample, int(x, kind=short) converts the real value x to an integer
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with kind parameter short. The kind must be given as an integer pa-
rameter.

1.5.2 The logical Function

The function named logical converts from one logical kind to anoth-
er. For example, if truth is type logical and packed is an integer
named constant, logical(truth, packed) is the value of truth repre-
sented as a logical with kind parameter packed and logical (truth)
is the value of truth represented as a logical with the default kind pa-
rameter.

1.5.3 Mathematical Functions

There are several built-in functions that perform common mathemati-
cal computations. The following is a list of some of the most useful
ones. Appendix A should be consulted for a complete list with descrip-
tions of each of the functions. Most of them do what would be expect-
ed, but the functions max and min are a little unusual in that they may
be used with an arbitrary number of arguments. The mathematical
functions are shown in Table 1-4.

Some of these functions will be used in the case studies at the end of
this chapter. Other intrinsic functions, such as those for array process-
ing and character processing, will be discussed in relevant chapters.

1.5.4 Kind Intrinsic Functions

The kind function returns the kind parameter value of its argument;
the value depends on the integers used as kind parameters on the com-
puter being used. For example, kind(x) is the kind parameter of the
variable x; it might be 1 or 4, for example. kind(0) is the default inte-

Table 1-4 Mathematical intrinsic functions

abs cos min

acos cosh modulo

aimag exp sin

asin floor sinh

atan log sqrt

ceiling log10 tan

conjg max tanh
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ger kind; kind(0.0) is the default real kind; and kind(.false.) is the
default logical kind.

There is an intrinsic function selected_real_kind that produces a
kind value whose representation has at least a certain precision and
range. For example, selected_real_kind(8, 70) will produce a kind
(if there is one) that has at least 8 decimal digits of precision and allows
a range of values between −1070 and +1070. This permits the program-
mer to select representations having required precision or range and
give these processor-dependent kind values to named constants. The
named constants can then be used to indicate the kind of a variable.

For the integer data type, there is an intrinsic function
selected_int_kind with only one argument. For example,
selected_int_kind(5) produces an integer representation allowing
all integers between (but not necessarily including) −105 and +105.

1.5.5 Exercises

1. Write a program that prints the kind of each of the constants

0
0.0
(0.0, 0.0)
.false.
"a"

These are the default kinds (and the only kind for character).

2. Using the fact that selected_real_kind and selected_int_kind
return a negative value when asked to produce a kind number for
a precision or range not available on the system, determine all the
possible kind numbers for reals and integers on your system.

1.6 Expressions and Assignment

An F expression can be used to indicate many sorts of computations
and manipulations of data values. So far we have seen simple examples
of expressions as values to be printed using the print statement. We
now discuss in more detail just what can appear in this list of things to
be printed.

1.6.1 Primaries

The basic component of an expression is a primary. Primaries are com-
bined with operations and grouped with parentheses to indicate how
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values are to be computed. A primary is a constant, variable, function
reference (3.6.2), array element (4.1.2), array section (4.1.6), structure
component (6.3.1), substring (5.1.11), array constructor (4.1.4), structure
constructor (6.3.2), or an expression enclosed in parentheses. Note that
this is a recursive definition because the definition of an expression in-
volves expressions in parentheses. Examples of primaries are

5.7e43_double     ! constant
number_of_bananas ! variable
abs(x)            ! function value
(a + 3)           ! expression enclosed in parentheses

Primaries can be combined using the operators discussed in 1.2 as well
as with user-defined operators discussed in 7.5 to form more compli-
cated expressions. Any expression can be enclosed in parentheses to
form another primary. Examples of more complicated expressions are

-a + d * e + b ** c
x // y // “abcde”
(a + b) /= c
log_1 .and. log_2 .eqv. .not. log_3
a + b == c * d

1.6.2 The Interpretation of Expressions

When more than one operation occurs in an expression, parentheses
and the precedence of the operations determines the operands to
which the operations are applied. Operations with the highest prece-
dence are applied first to the operand or operands immediately adja-
cent to the operator. For example, since * has higher precedence than +,
in the expression a + b * c, the multiplication is first applied to its
operands b and c; then the result of this computation is used as an op-
erand by adding it to the value of a. If the programmer intends to add
a and b and multiply the result by c, parentheses must be used as in
the expression (a + b) * c.

When two operators have the same precedence, they are applied
left-to-right, except for exponentiation, which is applied right-to-left.
Thus, the value of 9 - 4 - 3 is 5 − 3 = 2, but the value of 2 ** 3 ** 2

is 29 = 512.
Table 1-5 shows the operations with the highest precedence at the

top of the list and the ones with the lowest precedence at the bottom.
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1.6.3 The Evaluation of Expressions

Once it is determined by use of parentheses and precedence of opera-
tions which operations are to be performed on which operands, the
computer may actually evaluate the expression by doing the computa-
tions in any order that is mathematically equivalent to the one indicat-
ed by the correct interpretation, except that it must evaluate each
subexpression within parentheses before combining it with any other value.
For example, the interpretation of the expression a + b + c indicates
that a and b are to be added and the result added to c. Once this inter-
pretation is made, it can be determined that a mathematically equiva-
lent result will be obtained by first adding b and c and then adding
this sum to a. Thus, the computer may do the computation either way. 

The purpose of allowing the computer to rearrange expressions is
to optimize execution speed. Thus a compiler will usually replace
x/2.0 with 0.5*x because multiplication is faster than division on
most computers. If execution speed is not important and you don’t
want to worry about these matters, just set the optimization level to 0
when compiling a program.

If the programmer writes the expression (a + b) + c, the com-
puter must first do the computation as required by the parentheses.
Note that the expression (a + b) + (c + d) can be done by first add-

Table 1-5 Operator precedence

Operator Precedence

User-defined unary operation Highest

** .

* or / .

Unary + or - .

Binary + or - .

// .

==, /=, <, <=, >, >= .

.not. .

.and. .

.or. .

.eqv. or .neqv. .

User-defined binary operation Lowest
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ing c and d but then the computer must add a and b and add that re-
sult to the first sum obtained. To evaluate this expression, the
computer must not first add b and c or any other pair in which one op-
erand is taken from (a + b) and the other is taken from (c + d), be-
cause doing this would violate the integrity of parentheses.

Note that integer division is an oddity in that it does not satisfy the
rules of arithmetic for ordinary division. For example, (i / 2) * 2 is
not equal to i if i is an odd integer. Thus, a computer may not make
this substitution to optimize the evaluation of the expression.

Table 1-6 contains examples of expressions with allowable alterna-
tive forms that may be used by the computer in the evaluation of those
expressions. a, b, and c represent arbitrary real or complex operands; i
and j represent arbitrary integer operands; x, y, and z represent arbi-
trary operands of any numeric type; and l1, l2, and l3 represent arbi-
trary logical operands.

Table 1-7 contains examples of expressions with forbidden alternative
forms that must not be used by a computer in the evaluation of those
expressions.

Table 1-6 Allowable alternative expressions

Expression Allowable alternative form

x + y y + x

x * y y * x

-x + y y - x

x + y + z x + (y + z)

x - y + z x - (y - z)

x * a / z x * (a / z)

x * y - x * z x * (y - z)

a / b / c a / (b * c)

a / 5.0 0.2 * a

i > j j - i < 0

l1 .and. l2 .and. l3 l1 .and. (l2 .and. l3)

abs(i) > -1 .or. 

logical(l1)

.true.
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1.6.4 Assignment

The assignment statement is the most common way of giving a vari-
able a value. An assignment statement consists of a variable, an equals
sign (=), and an expression. The expression is evaluated and assigned
to the variable. An example of an assignment statement is

x = a + 2 * sin(b)

Note for later that the variable on the left-hand side may be an array,
an array element, an array section, a substring, or a structure compo-
nent.

Complete agreement of the variable and expression type and kind
is not always required. In some cases the data type or kind parameter
of the expression may be converted in order to assign it to the variable.
If the variable on the left-hand side is any numeric type, the expression
may be any numeric type and any kind. If the variable is type charac-
ter, the expression must be type character. If the variable is type logical,
the expression must be type logical but may be any kind. If the variable
is a derived type (6.2), that is, a user-defined type, the expression must
be the same derived type.

All of these rules apply to assignment as provided by the system
(intrinsic assignment); it is possible to extend the meaning of assign-
ment to other cases as described in 7.3.

1.6.5 Exercises

1. What computer output might be expected when the following pro-
gram is run?

Table 1-7 Nonallowable alternative expressions

Expression Nonallowable alternative form

i / 2 0.5 * i

x * i / j x * (i / j)

(x + y) + z x + (y + z)

i / j / a i / (j * a)

(x + y) + z x + (y + z)

(x * y) - (x * z) x * (y - z)

x * (y - z) x * y - x * z
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program calculation_2
   print *, (201 + 55) * 4 - 2 * 10
end program calculation_2

2. The program calculation_3 uses a confusing sequence of arith-
metic operations whose meaning would be clearer if written with
parentheses. What computer output might be expected when it is
run? Insert parentheses in the print statement in a way that does
not change the value printed, but makes it easier to understand.

program calculation_3
   print *, 343 / 7 / 7 * 2
end program calculation_3

3. What computer output might be expected when calculation_4 is
run?

program calculation_4
   print *, 2 * (3 * (5 - 3))
end program calculation_4

4. What computer output might be expected when the program
power_of_2 is run?

program power_of_2
   print *, 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
end program power_of_2

5. Write an expression that rounds the value of the variable x to the
nearest tenth.

6. When is int(x/y) equal to x/y for real values x and y?

7. If x and y are type integer and both are positive, the value of the
intrinsic function modulo(x, y) is the remainder when x is divid-
ed by y. For example, modulo(17, 5) = 2. Rewrite the following ex-
pression using the built-in function modulo. Assume n is type
integer with a positive value.

n - (n / 100) * 100

8. Write an expression using the built-in function modulo that has the
value 1 when n is odd and 0 when n is even.

9. Write an expression using the built-in function modulo that is true
if the value of the variable n is even and is false if n is odd.
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10. Write a program to compute the quantity eiπ. The constant π can be
computed by the formula 4 * atan(1.0) because tan(π/4) = 1. The
complex constant i can be written (0.0, 1.0). The built-in function
exp(z) is used for raising the mathematical constant e to a power.
The sample output should look like

  The value of e to the power i*pi is ___

1.7 Introduction to Formatting

F has extremely powerful, flexible, and easy-to-use capabilities for out-
put formatting. This section describes the basic formatting features that
enable you to produce really good looking output, if you like. If the de-
fault formatting on your F system is good enough, there is no necessity
to learn formatting right away. This section appears early because some
F systems do not have satisfactory default formats, especially for reals.
On such systems, the techniques of this section are essential.

1.7.1 Roundoff

Just as 1/3 cannot be represented exactly as a decimal, though 0.333333
comes very close, 1/10 and 1/100 cannot be represented exactly when
the representation uses a number base two instead of ten. The base two
or binary system of notation is used internally in most computers for
storage and calculation of numeric values. As a result, when reals are
converted from input represented in decimal notation to the comput-
erʹs internal representation and back again during execution of a pro-
gram, the original numbers may not be recovered precisely.

Perhaps you have already seen this in your own output, in the
form of a tell-tale sequence of 9s in the last decimal digits printed. For
example, when adding 97.6 and −12.9 using the program add_2_reals
in 1.3.4, the following output resulted.

 Input data  x:  97.5999985
 Input data  y: -12.8999996
 x + y =  84.6999969

The value of the variable x prints as 97.5999985 although the value
supplied in the input file is 97.6. The difference between the intended
and calculated values is roundoff or roundoff error. It is normally of
no consequence in calculations of measured physical quantities be-
cause it is virtually impossible to distinguish between such nearly
equal values as 97.5999985 and 97.6.
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Similarly, the printed value of the variable y is −12.8999996 instead
of −12.9. The printed value of x + y is 84.6999969 differing by 0.000031
from the sum of the intended values, a hint to the expert that the com-
puter being used probably does not use decimal arithmetic for its inter-
nal calculations.

1.7.2 Using Formatted Output to Hide Roundoff

Minor cases of roundoff are hidden easily by rounding values before
printing. For example, if the unexpected echoes of input data above are
rounded to four decimal places before printing, the results will appear
precisely as expected: 97.6000 + (−12.9000) = 84.7000.

If the default format for reals rounds answers to fewer decimal
places than are actually calculated, you will not see any trace of round-
off. These extra guard digits may actually contain roundoff, but round-
ing answers before printing guarantees that the user will not see small
roundoff errors. We mention roundoff at this point to forewarn the be-
ginner whose F system shows such behavior in output. Roundoff is not
a malfunction of the computerʹs hardware, but a fact of life of finite
precision arithmetic on computers. An F programmer needs to know
how to hide roundoff through formatted printing and needs to know
why real values that print identically may still fail a test for equality.

In the remainder of this section we introduce the simplest forms of
user-specified print formatting, including the facility for rounding
real values to a specified number of decimal places before printing.

1.7.3 Format Specifications

Extremely flexible and versatile control over the appearance of printed
output is available in F if you are willing to forego the convenience of
the default format. In place of the asterisk denoting the default format,
write a format specification or some alternative means of locating a for-
mat specification in the program. A format specification is basically a
list of edit descriptors, separated by commas and enclosed in paren-
theses. An example is

(f5.1, a, i4)

For each expression to be printed, one of the edit descriptors in the for-
mat specification is used to determine the form of the output. For ex-
ample if x = 6.3 is type real and n = −26 is type integer, then

print “(f5.1, es9.1, a, i4)”, x, x, “ and “, n

would produce the output line
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    6.3  6.3E+00 and  -26

This example shows four of the most frequently used edit descrip-
tors, f (floating point) and es (engineering and science) for printing of
reals, a (alphanumeric) for character strings, and i (integer) for inte-
gers. The edit descriptor f5.1 means that a total of five positions are
reserved for printing a real value rounded to one place after the deci-
mal point. The decimal point occupies a position and a minus sign, if
needed, occupies another position, so the largest number printable us-
ing f5.1 format is 999.9 and −99.9 is the smallest. If the number to be
printed is outside these bounds, the specified field will be filled with
asterisks. i4 editing reserves four positions for printing an integer. For
negative numbers, the minus sign takes up one of the four positions,
making i4 format suitable for integers from −999 to 9999. The es (engi-
neering/science) edit descriptor is used for printing reals in exponential
notation. For example, the es10.3 descriptor uses 10 positions, prints
the most significant digit to the left of the decimal point, and prints the
fractional part rounded to three decimal places, for example 6.023e+23
preceded by a blank character. For more details, see Section 9.8.8. The a
edit descriptor reserves space for character output. The actual length of
the character constant to be printed or the declared length of the char-
acter variable determine how many positions are used. It is also possi-
ble to reserve a specific number of positions for a character string. The
edit descriptor a10, for example, reserves 10 positions, regardless of
the data to be printed. See 9.8.12 for details.

1.7.4 Placement of Format Specifications

In the preceding example, the format specification is in the form of a
character constant. Now the necessity of the comma after the asterisk
or other format specifier in the print statement becomes apparent. It is
the means of separating the format specifier from the first item in the
list of expressions to be printed.

Since the format is a character expression, in the simplest case it is
simply a character constant that appears in the input/output statement.
For example, the following two sets of statements would produce the
same output. It is assumed that x is real and n is integer.

character (len=13), parameter :: &
      layout = “(f5.1, a, i4)”
print “(f5.1, a, i4)”, x, “ and “, n
print layout, x, “ and “, n
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1.7.5 Tab and Line Feed Edit Descriptors

The slash (/) edit descriptor starts a new line in the printed output.
Thus, a single print statement can produce several lines of output. For
example

print “(a, /, a, /, a)”, “These character strings”, &
      “all appear”, “on separate lines.”

produces the three lines of output

These character strings
all appear
on separate lines.

The t (tab) edit descriptor is used to skip to a specified position of
the output line for precise control over the appearance of the output.
Tabs may be either forward or backward on the current line. For exam-
ple,

print “(t30, i5, t50, i5, t10, i5)”, a, b, c

will print the integer values of c in positions 10-14, a in positions 30-34,
and b in positions 50-54. Some printing devices do not print position 1
of any output line. If you have such a printer on your system, a t2 edit
descriptor will skip to position 2 to get single spacing.

1.7.6 Repeated Edit Descriptors

If one or more edit descriptors are to be repeated, they may be en-
closed in parentheses and preceded by the positive integer represent-
ing the number of repetitions.

3(i4) is equivalent to 3i4 or i4,i4,i4
5(/) is equivalent to 5/ or /,/,/,/,/
2(a4,/,t2) is equivalent to a4,/,t2,a4,/,t2

The parentheses may be omitted if there is only one a, es, f, i, or / edit
descriptor inside the parentheses.

1.7.7 Examples of Formatted Output

The following examples illustrate how formatted output works. On
some printers, the first character may not appear, so it is best to put a
blank in the first position.

print “(3i2)”, 2, 3, 4
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 2 3 4

x = 7.34688e-9
print “(a, es10.3)”, “ The answer is “, x

 The answer is  7.347E-09

q1 = 5.6
q2 = 5.73
q3 = 5.79
f123 = “(a, 3(/, t2, a, i1, a, f3.1))”
print f123, “ Here come the answers--”, &
      “ q”, 1, “=”, q1, &
      “ q”, 2, “=”, q2, &
      “ q”, 3, “=”, q3

 Here come the answers--
  q1=5.6
  q2=5.7
  q3=5.8

1.7.8 Formatted Input

A format specification can be used with the read statement to indicate
how the positions of the input line are to be interpreted. Formatted in-
put is not as essential as formatted output because most natural ar-
rangements of input data are accepted by the default read formats.
However, there are two major exceptions, which sometimes make the
use of input formatting desirable. First, default formats for character
input usually require quotes around the input strings; character input
read under an a edit descriptor does not. Second, it is a small conve-
nience not to have to separate numbers with commas or blanks when
large amounts of data are read by a program. For example, it is much
harder to type 10 one-digit integers on a line of input with separating
commas than without them. Rather than discuss the rules in detail for
using formatted input, one example is given.

real :: x1, x2, x3
integer :: j1, j2, j3
character(len=4) :: c
read “(a, 3 (f2.1, i1))”, c, x1, j1, x2, j2, x3, j3

If the input line is
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1234567890123

then executing the read statement is equivalent to executing the fol-
lowing assignment statements. Notice that quotes for a format input
data must be omitted and that decimal points for f format input data
are assumed when they are omitted.

c = "1234"
x1 = 5.6
j1 = 7
x2 = 8.9
j2 = 0
x3 = 1.2
j3 = 3

Style note: It is good programming practice to use the default
read format whenever possible. Explicit input format specifica-
tions demand strict adherence to specified positions for each
value in the input data. The slightest misalignment of the input
data usually results in incorrect values assigned to the vari-
ables. By comparison, the default input format is usually rela-
tively tolerant of variations in alignment and is user-friendly.

1.7.9 Exercises

1. If the variable x has value 2.5, what does the output for the follow-
ing statement look like? Show blank positions with a “b”.

print “(f6.3, es11.1)”, x, x ** 2

2. What are the largest and smallest values that can be printed by the
statement

print “(f8.3)”, value

3. What does the following statement print? Use “b” for blank posi-
tions.

print “(a, f9.5, a)”, “!”, 1.0/3.0, “!”

1.8 Case Study: Quadratic Formula

A quadratic equation is an equation involving the square of the un-
known x and no higher powers of x. Algorithms for solution of qua-
dratic equations equivalent to the quadratic formula are found in Old
Babylonian texts dating to 1700 B.C. It is now routinely taught in high
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school algebra. In this section, we show how to write an F program to
evaluate and print the roots of a quadratic equation. We also discuss
improving the efficiency of the calculation by isolating common subex-
pressions. Sometimes there are better ways to solve a quadratic equa-
tion, particularly in cases where roundoff might be a problem (1.8.6,
Exercise 2). Also the programs in this section do not handle the case
when a, the coefficient of the x2 term, is zero.

1.8.1 The Problem

The most general quadratic equation has the form

ax2 + bx + c = 0

where a, b, and c are constants and x is the unknown. The quadratic
formula says that the roots of the quadratic equation, that is, the values
of x for which the equation is true, are given by the formula

This means that one root is obtained by adding the square root term
and the other root is obtained by subtracting the square root term.

The problem is to write a program that reads as input the three co-
efficients, a, b, and c, and prints as output the values of the two roots.
Since there is very little input, and we wish to display the answers as
they are computed, we write the program for interactive execution
with input from a terminal keyboard and output to the display screen
or printing element.

1.8.2 The Solution

Experienced programmers may regard the following pseudocode solu-
tion as obvious, as indeed it is, but the three steps of the pseudocode
solution must be considered, if not necessarily written down.

Read the coefficients a, b, and c.
Calculate the two roots by the quadratic formula.
Print the two roots.

It is but a small step to the F program that implements the
pseudocode solution. Remember that an exclamation mark (!) begins a
comment.

program quadratic_equation_solver
!  Calculates and prints the roots
!  of a quadratic equation

x b– b2 4ac–±
2a

--------------------------------------=
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!  Variables:
!     a, b, c: coefficients
!     x1, x2: roots

   real :: a, b, c, x1, x2

!  Read the coefficients
   print *, “Enter a, the coefficient of x ** 2”
   read *, a
   print *, “Enter b, the coefficient of x”
   read *, b
   print *, “Enter c, the constant term”
   read *, c

!  Calculate the roots by the quadratic formula
   x1 = (-b + sqrt (b ** 2 - 4 * a * c)) / (2 * a)
   x2 = (-b - sqrt (b ** 2 - 4 * a * c)) / (2 * a)

!  Print the roots
   print *, “The roots are”
   print *, “x1 =”, x1
   print *, “x2 =”, x2
end program quadratic_equation_solver

In the input section, each read statement is preceded by an input
prompt, that is, a print statement telling the user at the computer ter-
minal what input is expected. In the calculation section, the quadratic
formula illustrates the use of the intrinsic function sqrt.

1.8.3 Program Testing

To test the program quadratic_equation_solver, we made up several
quadratic equations with known roots. Since all variables are type real,
our first test case has simple real roots. The solutions of the quadratic
equation

x2 − 5x + 6 = 0

are 2 and 3.

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -5
 Enter c, the constant term
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 6
 The roots are
 x1 =   3.0000000
 x2 =   2.0000000

The next quadratic equation has negative and fractional roots to
test whether the program will work in these cases. The solutions of the
quadratic equation

4x2 + 8x − 21 = 0

are −3.5 and 1.5, testing both possibilities.

 Enter a, the coefficient of x ** 2
 4
 Enter b, the coefficient of x
 8
 Enter c, the constant term
 -21
 The roots are
 x1 =   1.5000000
 x2 =  -3.5000000

Notice that x1 is always the greater of the two roots because its formu-
la adds the square root term.

The next case tests irrational roots of the quadratic equation. The
golden ratio is a ratio famous from Greek mathematics. Renaissance
artists thought that the golden ratio was the most pleasing ratio for the
sides of a rectangular painting or the facade of a building. The spiral
shells of snails and the arrangement of seeds in a sunflower are related
to it. The golden ratio also is the limit of the ratio of successive terms of
the Fibonacci sequence. The two roots of the following equation are the
golden ratio and the negative of its reciprocal.

x2  − x − 1 = 0

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -1
 Enter c, the constant term
 -1
 The roots are
 x1 =   1.6180340
 x2 =  -0.6180340
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The exact solutions are (1 + ) / 2 and (1 − ) / 2, which check
with the output of the program using a hand calculator. The golden ra-
tio has many interesting properties, including the fact that 1/1.6180339
= 0.6180339.

The quadratic equation

x2 − 6x + 9 = 0

has only one solution, x = 3. You might wonder what a program de-
signed to find two roots will do with this equation.

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -6
 Enter c, the constant term
 9
 The roots are
 x1 =   3.0000000
 x2 =   3.0000000

Mathematicians call the solution of this quadratic equation a double
root. For this equation, the quantity b2 − 4ac is zero, so it doesnʹt matter
whether its square root is added or subtracted in the calculation of a
root. The answer is the same for both roots.

Next we try the equation

x2 − 1000001x + 1 = 0

Running the program produces the results

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -1000001
 Enter c, the constant term
 1
 The roots are
 x1 =   1.0000010E+06
 x2 =   0.0000000E+00

The smaller root is not accurate because b and  are nearly
equal. Cancellation of the significant digits occurs during the subtrac-
tion leaving an answer severely contaminated by rounding errors. A
way to cope with this situation is discussed in most introductory texts
on numerical computation (1.8.6, Exercise 2).

5 5

b2 4ac–
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Finally, we try a test case which we know the program quadratic_
equation_solver will not handle. The quadratic equation

x2 + 1 = 0

has no real roots. Instead, the roots are

x =  = 

+i and −i are complex numbers with no real part. We still try it anyway,
just to see what happens.

 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 0
 Enter c, the constant term
 1
 *** Attempt to take square root of negative quantity ***
 *** Execution terminated ***

Since b2 − 4ac is −4, the error message is right on the money. One
way to cope with this situation is discussed in 1.8.5.

1.8.4 Common Subexpressions

The arithmetic expressions for calculating the roots x1 and x2 both in-
volve the same subexpression, sqrt(b**2 - 4*a*c). As written, the
program quadratic_equation_solver asks the computer to recalcu-
late this subexpression as part of the calculation of x2. We can force the
computer to calculate this subexpression only once by assigning it to a
new intermediate variable sub_expression, and then calculating both
roots in terms of the variable sub_expression.

program quadratic_equation_solver_2
!  Calculates and prints the roots
!  of a quadratic equation

!  Variables:
!     a, b, c: coefficients
!     sub_expression: value common to both roots
!     x1, x2: roots

   real :: a, b, c, x1, x2, sub_expression

!  Read the coefficients
   print *, “Enter a, the coefficient of x ** 2”

1–± i±
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   read *, a
   print *, “Enter b, the coefficient of x”
   read *, b
   print *, “Enter c, the constant term”
   read *, c

!  Calculate the roots by the quadratic formula
   sub_expression = sqrt (b ** 2 - 4 * a * c)
   x1 = (-b + sub_expression) / (2 * a)
   x2 = (-b - sub_expression) / (2 * a)

!  Print the roots
   print *, “The roots are”
   print *, “x1 =”, x1
   print *, “x2 =”, x2
end program quadratic_equation_solver_2

Some optimizing F compilers will recognize that the program
quadratic_equation_solver, in its original form, calls for the calcula-
tion of the same subexpression twice without change of any of the vari-
ables in the subexpression. Such a compiler would produce the more
efficient machine language code corresponding to the second version,
quadratic_equation_solver_2, even when the programmer writes
the less efficient first version.

1.8.5 Complex Roots of a Quadratic Equation

The quadratic formula was used in the program quadratic_equation_
solver to calculate the roots of a quadratic equation. The program
worked well when the two roots were real, but it failed in the test case
of a quadratic whose roots were imaginary. In that case, the quadratic
formula calls for taking the square root of a negative number, a func-
tion evaluation with no real answer. In the next program, quadratic_
equation_solver_3, we use complex values to compute the correct an-
swer whether the roots of the quadratic are real or complex.

The subexpression

d = b2 − 4ac

is called the discriminant because it discriminates between the cases of
two real roots, a double real root, and two complex roots. If d is posi-
tive, there is a real square root of d and the quadratic formula gives
two real roots, one calculated by adding the square root of d and the
other by subtracting it. If d is zero, then so is its square root. Conse-
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quently, when d is zero the quadratic formula gives only one real root,
−b/2a.

When d is negative, on the other hand, its square root is imaginary.
The complex square root of a negative number is obtained by taking
the square root of its absolute value and multiplying the result by i, the
basis of the complex number system. For example, if d = −4, then  =
2i. Thus when d is negative, the two roots of the quadratic equation are
given by the formulas

and

However, with the use of the complex data type, the formula for
calculating the roots looks just like it does when the roots are real. The
only thing that makes quadratic_equation_solver_3 look different
from the real version is that the discriminant is converted to a complex
value and all the remaining computations are done with complex val-
ues. The two sample executions show one case where the roots are
complex and one case where they are both real.

program quadratic_equation_solver_3

!  Calculates and prints the roots
!  of a quadratic formula even if they are complex

!  Variables:  a, b, c = coefficients
!              z1, z2 = roots

   real :: a, b, c
   complex :: z1, z2

!  Read the coefficients
   read *, a, b, c
   print *, “Input data  a:”, a
   print *, “            b:”, b
   print *, “            c:”, c

!  Calculate the roots
   z1 = (-b + sqrt (cmplx (b**2 - 4*a*c))) / (2*a)
   z2 = (-b - sqrt (cmplx (b**2 - 4*a*c))) / (2*a)

!  Print the roots

d

x1
b–

2a
------ d

2a
----------i+=

x2
b–

2a
------ d

2a
----------i–=
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   print *, “The roots are:”
   print *, “z1 =”, z1
   print *, “z2 =”, z2

end program quadratic_equation_solver_3

 Input data  a:   1.0000000
             b:   0.0000000E+00
             c:   1.0000000
 The roots are:
 z1 = (  0.0000000E+00,  1.0000000)
 z2 = (  0.0000000E+00, -1.0000000)

 Input data  a:   4.0000000
             b:   8.0000000
             c: -21.0000000
 The roots are:
 z1 = (  1.5000000,  0.0000000E+00)
 z2 = ( -3.5000000,  0.0000000E+00)

1.8.6 Exercises

1. All of the programs in this section ignore the possibility that the
value of a is zero, or is close to zero. What will happen if
quadratic_equation_solver is run with input a = 0? Modify the
program to handle this case. If a = 0, what happens if b is also ze-
ro? Modify the program to handle this case also. (Section 2.2 ex-
plains how to test if a = 0.)

2. If x1 and x2 are the roots of the quadratic equation ax2 + bx + c = 0,
their product is x1 x2 = c/a. When b is much larger than either a or c,
the usual quadratic formula

does a poor job of calculating the root with the smaller absolute
value because the numerator is the difference of two nearly equal

quantities  and b. Such subtractions always reduce the
number of significant digits in the answer by the number of lead-
ing significant digits that cancel in the subtraction. Write a pro-
gram that calculates the roots of a quadratic equation using the
quadratic formula, and then recalculates the smaller root in abso-
lute value using the formula x2 = c/ax1. Compare the two sets of
roots. Test the program on the following equations.

x b– b2 4ac–±
2a

--------------------------------------=

b2 4ac–
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x2 − 10x + 1 = 0

x2 − 100x + 1 = 0

x2 − 1000x + 1 = 0

x2 − 10000x + 1 = 0

1.9 Case Study: Debugging Pendulum Calculations

This section will explain some of the steps in making a real program
work. The time it takes a pendulum to complete one swing is virtually
independent of the amplitude or maximum displacement of the pendu-
lum at the height of its swing, as long as the swing is relatively small
compared with the length of the pendulum. For this reason, pendu-
lums have long been used to keep accurate time. The problem in this
section is to write a program to calculate the frequency f (the number
of swings per second) of a pendulum, and its period T (the time it
takes to complete one swing). The input data is the length of the pen-
dulum in meters.

The formula for the frequency of a pendulum is

where g is the gravitational acceleration constant 9.80665 meters/sec2

for bodies falling under the influence of gravity near the surface of the
earth, L is the length of the pendulum in meters, and π is the mathe-
matical constant 3.14159. In addition, the formula for the period T is

1.9.1 The First Compilation

The solution to this problem uses everything we learned in this chap-
ter: it has variables, input data, computational formulas, and even the
built-in square root function. Nevertheless, it seems to be a straightfor-
ward calculation for which an F program can be written quite easily.
Here is the first attempt.

program pendulum
!  Calculates the frequency and period
!  of a pendulum of length L

!  First attempt

f 1
2π
------ g

L
---=

T 1
f
---=
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   real :: L, f, T
   real, parameter :: pi = 3.14159,
                      g = 9.80665

   print *, “Enter a value for L: “
   read *, L
   f = (1.0 / 2.0 * pi) sqrt (g / L)
   T = 1.0 / f
end program pendulum

When this program is entered into the computer, it will not com-
pile and run. The error messages we show below are illustrative ap-
proximations of the messages we get from actual F compilers. The
quality and amount of useful information contained in error messages
varies widely. We suggest comparing the error messages shown here
with the messages your system produces for the same errors.

% F pendulum.f95

Error: pendulum_1.f95, line 8: syntax error
       detected at ,@<end-of-statement>
***Invalid item in type declaration
Error: pendulum_1.f95, line 9: Implicit type for G
       detected at G@=
Error: pendulum_1.f95, line 13: syntax error
       detected at )@SQRT
***Malformed statement

Only three syntax errors isnʹt too bad for a first attempt. The first
error message is puzzling. What syntax error? The parameter assign-
ment pi = 3.14159 looks correct, echoed in the error message, and the
parameter assignment g = 9.80665 clearly is there in the next line.
The second error message is even more puzzling. g is declared right in
the line flagged by the error message. The crucial clue is before us, but
as in a good detective mystery, only the practiced eye can see it. Look-
ing back at the first error message, we now see that the compiler does
not consider the line g = 9.80665 to be a part of the real statement.
Now the problem is clear. Both error messages are related, and both
are caused by the same mistake. There is no continuation character (&)
at the end of the first line of the statement declaring the parameters. It
should read

real, parameter :: pi = 3.14159, &
                    g = 9.80665
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The compiler sees the comma, and therefore expects another parameter
assignment but, in the absence of the continuation character, it finds
the end-of-statement instead. Sometimes, when a compiler gets con-
fused, it gets very confused. It would take a very clever compiler to
print the error message

  *** Error -- missing continuation character ***

The third error message said that the compiler was expecting
something else when sqrt was found instead. The rule is that the as-
terisk for multiplication cannot be omitted in F in places where a mul-
tiplication sign can be omitted in ordinary algebraic notation. We
correct this assignment statement to the following.

   f = (1.0 / 2.0 * pi) * sqrt (g / L)

1.9.2 The Second Compilation and Run

Since all known errors have been corrected, we recompile the program.
This time, there are no error messages.

program pendulum
!  Calculates the frequency and period
!  of a pendulum of length L

   real :: L, f, T
   real, parameter :: pi = 3.14159, &
                       g = 9.80665

   print *, “Enter a value for L:”
   read *, L
   f = (1.0 / 2.0 * pi) * sqrt(g / L)
   T = 1.0 / f
   print *, “The frequency of the pendulum is”, &
                  f, “swings/sec.”
   print *, “Each swing takes”, T, “sec.”
end program pendulum

The input data should be the length of the pendulum in meters. Vi-
sualizing the size of a grandfather clock, and rounding the length of its
pendulum to the nearest whole meter, we will use an input length of
one meter. Here is what the second run produces.

  Enter a value for L:
 1
 The frequency of the pendulum is   4.9190345 swings/sec.
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 Each swing takes   0.2032919 sec.

The program does run to completion; it prints the answers, but
they are wrong! The pendulum of a grandfather clock does not make
almost five complete swings per second. One swing every two seconds
is more like it, with each half of the swing producing a tick at one sec-
ond intervals. Just because the computer prints an answer, it doesnʹt
necessarily mean that the answer is right. The computerʹs arithmetic is
almost certainly perfect, but the formula it was told to compute might
be in error.

All the evidence seems to be pointing a finger at the assignment
statement to calculate the frequency f:

f = (1.0 / 2.0 * pi) * sqrt(g / L)

or, if that statement is correct, at the statements that assign values to
the variables and parameters that appear on the right in that statement.
The assignment statement for f seems at first glance to be the equiva-
lent of the algebraic formula for the frequency, so we shift our attention
to the assignment of the parameters pi and g and the reading of the
variable L. The echo of input data shows that L is correct. The parame-
ter statement assigning pi and g seems to be correct, so we shift our
attention back to the assignment statement calculating f. The error
must be in this statement. If we still donʹt believe that it is wrong, we
could print the values of pi and g just before this statement to further
narrow the focus.

Remember the rule that a sequence of multiplications and divisions
is executed from left to right. Thus, the assignment statement executes
as though it were written

f = ((1.0 / 2.0) * pi) * sqrt(g / L)

The correct F version of the statement is

f = (1.0 / (2.0 * pi)) * sqrt(g / L)

1.9.3 The Third Compilation and Run

This time, the answers look correct. We expected a pendulum one
meter long to swing once every two seconds.

 Enter a value for L:
 1
 The frequency of the pendulum is   0.4984032 swings/sec.
 Each swing takes   2.0064075 sec.
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To check it, we calculate the algebraic formulas on a hand calculator
and get the same answers, and we could also try other pendulum
lengths in the computer.

1.9.4 Post Mortem Discussion

The authors are really not incompetent enough to make all of the errors
shown in this 14-line program, at least not in one grand tour de force.
However, even experienced programmers will make each of these er-
rors, one at a time or in combination, over the course of writing several
dozen longer programs. Thus, it is vital for programmers not only to
know how to write programs, but also to have effective strategies for
debugging programs when the inevitable bugs appear. The techniques
illustrated above: compiler error messages, well-chosen test cases
worked by hand, and diagnostic printed output will serve the pro-
grammer in good stead throughout a career.



Control Constructs 2
The programs in Chapter 1 performed simple calculations and printed
the answers, but each statement in these programs was executed exact-
ly once. Almost any useful program has the properties that some col-
lections of statements are executed many times, and different
sequences of statements are executed depending on the values of the
input data.

The F statements that control which statements are executed,
together with the statements executed, are called control constructs.
The three control constructs, the if construct, the case construct, and
the do construct, are discussed in this chapter. The stop statement
(2.4.10) also is discussed briefly. Related topics are the return

statement (3.10), masked array assignment (4.1.8) and the forall
construct (4.1.9).

2.1 Statement Blocks

A collection of statements whose execution is controlled by one of the
control constructs is called a block. For example, the statements be-
tween an if statement and the next matching else if statement form
a block (2.2). Transferring control into a block from outside is not pos-
sible, but it is possible to leave a block with a transfer of control. Any
block may contain a complete if, case, or do construct, so that these
constructs may be nested to any level.

Indentation of the blocks of a construct improves the readability of
a program. The subordinate placement of the controlled blocks visually
reinforces the fact that their execution is conditional or controlled.

Style note: The statements of each block of a construct should
be indented some consistent number of spaces more than the
statements that delimit the block.
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2.2 The if Construct

The if construct is a simple and elegant decision construct that per-
mits the selection of one of a number of blocks during execution of a
program. The general form of an if construct is

if (logical expression) then
  block of statements
else if (logical expression) then
  block of statements
else if (logical expression) then
  block of statements
else if . . .
   .
   .
   .
else

  block of statements
end if

The else if and else statements and the blocks following them may
be omitted. The end if statement must not be omitted. Some simple ex-
amples follow.

if (a == b) then
   c = a
   print *, c
end if

if (dice <= 3 .or. dice == 12) then
   print *, "You lose!"
else if (dice == 7 .or. dice == 11) then
   print *, "You win!"
else
   print *, "You have to keep rolling until you get"
   print *, "either a 7 or a", dice
end if

!  30 days has September, April, June, and November
if (month == 9 .or. month == 4 .or. &
   month == 6 .or. month == 11) then
   number_of_days = 30
!  All the rest have 31, except February
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else if (month == 1 .or. month == 3 .or. &
   month == 5 .or. month == 7 .or. &
   month == 8 .or. month == 10 .or. &
   month == 12) then
   number_of_days = 31
else if (month == 2) then
   if (leap_year) then
      number_of_days = 29
   else
      number_of_days = 28
   end if
else
   print *, month, "is not the number of a month."
end if

The if-then statement is executed by evaluating the logical expres-
sion. If it is true, the block of statements following it is executed. Exe-
cution of this block completes the execution of the entire if construct.
If the logical expression is false, the next matching else if, else, or
end if statement following the block is executed. The execution of an
else if statement is exactly the same; the difference is that an if-then
statement must begin an if construct and an else if statement must
not. The else and end if statements merely serve to separate blocks in
an if construct; their execution has no effect.

The effect of these rules is that the logical expressions in the if-
then statement and the else if statements are tested until one is
found to be true. Then the block following the statement containing
that test is executed, which completes execution of the if construct. If
all of the logical conditions are false, the block following the else
statement is executed, if there is one.

2.2.1 Case Study: Escape Velocity of a Rocket

If a rocket or other object is projected directly upward from the surface
of the earth at a velocity v, it will reach a maximum height h above the
center of the earth given by the formula

where RE is the radius of the earth (6.366 × 106 m) and g is the acceler-
ation due to gravity at the surface of the earth (9.80 m/s2). This formula
is not an unreasonable approximation, since a rocket reaches its maxi-
mum velocity within a relatively short period of time after launching,

h
RE

1 v2 2gRE⁄–
--------------------------------=
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and most of the air resistance is confined to a narrow layer near the
surface of the earth.

A close examination of this formula reveals that it cannot possibly
hold for all velocities. For example, if the initial velocity v is such that
v2 = 2gRE, then 1 − v2/2gRE is zero and the maximum height h is infi-
nite. This velocity v = 1.117 × 104 m/s (approximately 7 mi/s) is called
the escape velocity of the earth. Any object, either rocket or atmo-
spheric gas molecule, attaining this vertical velocity near the surface of
the earth will leave the earth’s gravitational field and not return. A par-
ticle starting at the escape velocity will continue rising to arbitrarily
great heights above the earth. As it does so, it will slow to practically,
but not quite, zero velocity.

At initial velocities greater than the escape velocity, the particle or
rocket’s velocity will not drop to zero. Instead it will escape from the
earth’s gravitational field with a final velocity vfinal given by the
formula

The original formula for the maximum height h gives negative answers
in these cases and should not be used. The maximum height is infinite.

2.2.2 The Problem

We wish to write a F program that reads an initial velocity of a rocket
or molecule (in meters per second) and prints an appropriate descrip-
tion of the fate of the rocket or molecule. That is, if the rocket reaches a
maximum height before falling back to earth, the maximum height
should be printed. On the other hand, if the rocket escapes the earth’s
gravitational field, the final velocity with which it escapes should be
printed.

2.2.3 The Solution in Pseudocode

From the preceding discussion, we see that the fate of the rocket or
molecule can be determined by comparing the initial velocity to the es-
cape velocity of the earth, or equivalently, by comparing v2 to 2gRE. If
v2 is smaller, then a maximum height h is reached before the rocket or
molecule falls back to earth. If the initial velocity is greater, then the
object in question escapes with a nonzero final velocity given by the
second formula. In the pseudocode solution below, the control struc-
ture is modeled exactly on the F if construct.

Read the initial velocity v
Echo the input data

vfinal v2 2gRE–=
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If (v2 < 2gRE) then
   Calculate maximum height h above center of earth
   Print that the object attains maximum height h - RE
      above the surface of the earth before returning
      to earth
else if (v2 == 2gRE) then
   Print that the initial velocity is
         the escape velocity
else
   Calculate the final velocity
   Print that the object escapes earth
         with the calculated final velocity
end if

The if construct extends from the keyword if that begins the if
construct to the keyword end if that ends the construct. The two lines
of pseudocode between the keyword then and the keywords else if
constitute a block. They are executed if and only if v2 < 2gRE. The line
of pseudocode between the second keyword then and the keyword
else is the first and only block controlled by an else if statement in
this if construct. It is executed whenever v2 = 2gRE. Finally, the two
lines of pseudocode between the keyword else and the keyword
end if are the else block. They are executed in case none of the pre-
ceding if or else if conditions are true.

2.2.4 The F Solution

Little remains to be done to refine the pseudocode solution to an exe-
cutable F program except to choose names for the F variables and pa-
rameters that most nearly resemble the variable names in the formulas
and to translate the pseudocode to F nearly line by line.

program escape
!  Accepts as input an initial velocity v
!  Prints maximum height attained,
!     if object does not escape earth
!  Prints final escape velocity, vfinal,
!     if object escapes

!  Parameters
!     g  = acceleration of gravity near earth’s surface
!             in meters / sec ** 2  (m/s**2)
!     RE = radius of the earth (in meters)
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   real :: v, h, vfinal
   real, parameter :: g = 9.80, RE = 6.366e6

   read *, v
   print *, "Initial velocity of object =", v, "m/s"
   if (v ** 2 < 2 * g * RE) then
      h = RE / (1 - v ** 2 / (2 * g * RE))
      print *, "The object attains a height of",  &
                h - RE, "m"
      print *, "above the earth’s surface " //  &
               "before returning to earth."
   else if (v ** 2 == 2 * g * RE) then
      print *, "This velocity is the escape " //  &
               "velocity of the earth."
      print *, "The object just barely escapes " //  &
               "from earth’s gravity."
   else
      vfinal = sqrt (v ** 2 - 2 * g * RE)
      print *, "The object escapes with velocity", &
                vfinal, "m/s."
   end if
end program escape

 Initial velocity of object =   1.0000000E+03 m/s
 The object attains a height of   5.1432500E+04 m
 above the earth’s surface before returning to earth.

 Initial velocity of object =   2.0000000E+04 m/s
 The object escapes with velocity   1.6589949E+04 m/s.

 Initial velocity of object =   1.1170000E+04 m/s
 The object attains a height of   1.6871994E+11 m
 above the earth’s surface before returning to earth.

2.2.5 Testing an if Construct

The goal in testing an if construct is to design test cases that exercise
each alternative in the if construct. The first sample execution shows
an initial velocity of 1.0 × 103 m/s (1 km/s), which is well below the es-
cape velocity of the earth. The sample execution shows that the rocket
reaches a maximum height of 5.14 × 104 m (51.4 km) before falling back
to earth. Calculating the appropriate formula using a hand calculator
gives the same answer.

The second sample execution shows an initial velocity of 2.0 × 104

m/s (20 km/s), which is well above the escape velocity. As expected, the
printed output shows that the rocket will escape from the earth’s grav-
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itational field, so the correct block in the if construct is executed. It
may seem surprising at first that the final velocity on escape is such a
large fraction of the initial velocity. We rechecked it using a hand calcu-
lator and got the same answer. The explanation is that an initial veloci-
ty of nearly twice the escape velocity carries with it an initial kinetic
energy (energy of motion) of nearly four times the energy of the escape
velocity. So it is not really surprising that nearly three-fourths of the
initial kinetic energy is retained and carried away with the rocket in
the form of a large final velocity.

The third sample execution is designed to test the program using
the escape velocity 1.117 × 104 m/s (11.17 km/s) as the initial velocity.
Unfortunately, there is a little bit of roundoff in the calculations, and
the middle block in the if construct is not executed. The printed answer
is not bad. It says that the rocket will rise to a height of 1.69 × 1011 m
above the surface of the earth before returning. Since this height is far-
ther than the distance to either Mars or Venus at their nearest approach
to earth, for all practical purposes the program has reported that the
rocket will escape.

2.2.6 Roundoff Error in Tests for Equality

You must expect some roundoff in any calculation using reals. The
largest source of roundoff in this problem is the fact that the physical
constants, the radius of the earth, and the gravitational acceleration,
are given to only three or four significant digits, as is the escape veloc-
ity. Even if the physical constants were given and used to more digits,
each arithmetic calculation in the computer is calculated to a fixed
number of digits. If you run this program on your computer, you will
probably notice that the last one or more digits of your computer’s
printed answers differ from the ones shown. This is to be expected. We
suggest that you try initial velocities slightly larger than 1.117 × 104 m/s
in an attempt to hit the escape velocity exactly on the nose. Quite likely
there is no computer-representable number on your machine to use as
input to cause execution of the middle alternative in the if block.
Equality tests for reals are satisfied only in special circumstances. The best
you can reasonably expect is even larger maximum heights or extreme-
ly low final escaping velocities. To avoid this test for equality, test for
approximate equality instead. In our case, the two values v2 and 2gRE
probably should be considered equal if they agree to within three sig-
nificant digits because g is given to only three significant digits. This
test for approximate equality can be used to replace the else if state-
ment in the program escape.
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else if (abs((v**2 - 2*g*RE) / (2*g*RE)) < 1.0e-3) then

2.2.7 Flowchart for an if Construct

In standard flowcharting conventions, a diamond-shaped box is used
to indicate a decision or fork in the flow of the program execution. A
rectangular box represents processing of some sort. Using these stan-
dard conventions, the flowchart in Figure 2-1 indicates how an if con-
struct is executed.

2.2.8 Case Study: Graduated Income Tax

The U.S. federal income tax is an example of a graduated or progres-
sive tax, which means that each income level is taxed at a different rate.
After all deductions, progressively higher incomes are taxed at increas-
ing rates. A program to calculate federal income tax uses a multi-alter-
native if block to select the correct tax computation formula for each
income level.

The resulting program illustrates the use of some of the logical op-
erators .and., .or., and .not. To calculate a person’s income tax lia-
bility, income for the year is modified by various exclusions,
deductions, and adjustments to arrive at a taxable income. The prob-
lem treated in this section is that of writing a program to compute the
federal income tax liability for an unmarried taxpayer based on taxable
income. Table 2-1 indicates how the tax is computed.

The input to the program is the person’s taxable income, after all
deductions and adjustments. The output is both the tax due on that
taxable income and the person’s tax bracket, that is, the rate at which
the last dollar earned is taxed.

Table 2-1 Tax table

If taxable income is

more 
than

but not 
more 
than           then income tax is

$0 $17,850 15% of taxable income

$17,850 $43,150 $2,677.50 plus 28% of excess over $17,850

$43,150 $81,560 $9,761.50 plus 33% of excess over $43,150

$81,560 . . . Use worksheet to 
figure your tax
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The central section of the program tax_computation to solve this
problem corresponds directly to the alternatives in the tax table.

program tax_computation
   real :: income, tax
   integer :: bracket

   read *, income
   print "(a, f15.2)", "Input data  income:", income

   if (income < 0) then
      print *, "Income cannot be negative."
   else if (income > 81560) then
      print *, "Tax must be figured using worksheet."
   else
   !  Find appropriate range and compute tax
      if (income==0) then
         tax = 0
         bracket = 0
      else if (income>0 .and. income<=17850) then
         tax = 0.15 * income
         bracket = 15
      else if (income>17850 .and. income<=43150) then
         tax = 2677.50 + 0.28 * (income - 17850)
         bracket = 28
      else if (income>43150 .and. income<=81560) then
         tax = 9761.50 + 0.33 * (income - 43150)
         bracket = 33
      end if
   !  End of tax computation section
      print "(a, f8.2, a, f8.2)", &
            "The tax on $", income, " is $", tax
      print "(a, i2, a)", "This income is in the ",  &
            bracket, "% tax bracket."
   end if

end program tax_computation

Each line in the tax table corresponds to an if or else if test and
a corresponding block in the tax computation if construct. If income
lies in the indicated range for that if test, then the variables tax and
bracket are calculated by the formula in the following block. The con-
ditions describing the ranges for income follow the tax table exactly.
They guarantee that only one range and one tax computation formula
applies for each possible value of income less than or equal to $81,560.
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To be more specific, let us look at a few sample executions of
tax_computation, in which the computer is supplied with different
values as input for the variable income.

Input data  income:        1000.00
The tax on $ 1000.00 is $  150.00
This income is in the 15% tax bracket.

Input data  income:       20850.00
The tax on $20850.00 is $ 3517.50
This income is in the 28% tax bracket.

Input data  income:       63150.00
The tax on $63150.00 is $16361.50
This income is in the 33% tax bracket.

Input data  income:       95000.00
 Tax must be figured using worksheet.

Consider the second run with a taxable income of $20,850. The only
condition in the tax computation section which this taxable income sat-
isfies is

income > 17850 .and. income <= 43150

The tax is computed by the formula in the following block

tax = 2677.50 + 0.28 * (income - 17850)

so that the tax computed is 2677.50 + 0.28 × (20850 − 17850) = 2677.50 +
0.28 × 3000 = 2677.50 + 840 = 3517.50. The second assignment statement
of this block assigns a tax bracket of 28 (percent) to the variable brack-
et. The remaining else if test in the if construct is skipped. Then the
two print statements that complete the else block of the outer if con-
struct are executed. Note that a complete if construct may be part of a
block controlled by another if construct.

In the last of the sample executions, using a taxable income of
$95,000, the condition in the else if statement of the outer if con-
struct is satisfied, the variables tax and bracket are not assigned val-
ues at all, and the computer prints a statement that the tax cannot be
computed using the tax table.

Style note: It is good programming practice to warn the user
when a situation occurs that the program is not designed to
handle.
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2.2.9 Nonexclusive if Conditions

Because the tax computation if construct in the program tax_
computation is based so closely on the tax table, the alternative if and
else if conditions are mutually exclusive. Just as one and only one
line of the tax table applies to each taxable income, one and only one
condition in the tax computation if construct is true (up to $81,560).

The test conditions in an if construct need not be mutually exclu-
sive. F permits more than one condition to be true. However, even if
several conditions are true, only the first such condition selects its
block for execution. The remaining conditions are not even tested. Exe-
cuting the selected block completes execution of the entire if con-
struct.

Using this rule for breaking ties when several conditions are
satisfied, we may rewrite the inner if block of the program tax_
computation with shorter test conditions.

   !  Find appropriate range and compute tax
      if (income == 0) then
         tax = 0
         bracket = 0
      else if (income <= 17850) then
         tax = 0.15 * income
         bracket = 15
      else if (income <= 43150) then
         tax = 2677.50 + 0.28 * (income - 17850)
         bracket = 28
      else
         tax = 9761.50 + 0.33 * (income - 43150)
         bracket = 33
      end if
   !  End of tax computation section

What is to be gained by shortening the if tests? Certainly, there is
less typing to enter the program. In addition, since the if tests are sim-
pler, they will execute more rapidly. Just how much more rapidly is not
clear. Not only is the correspondence between the length of the F
source program and the speed of execution of the compiled machine
language program rather loose, but input and output operations tend
to be very time consuming when compared to computational state-
ments. Thus, it is possible that most of the execution time is spent in
the read and print statements, and even a significant improvement in
the speed of the if tests produces very little change in the total execu-
tion time.
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What is lost? The most important thing that is lost is the closeness
of the correspondence between the program and the tax table. The
original program tax_computation obviously implements the tax ta-
ble, but although the new program also would implement the tax table,
this fact would not be so obvious.

Another difference is that the second if construct is slightly more
fragile or less robust. This means that although it works perfectly in its
present form, it is slightly more likely to fail if it is modified at a later
date. For example, if the order of the alternatives in the program
tax_computation is scrambled, perhaps listed in decreasing rather
than in increasing order of taxable income, the tax computation if con-
struct in the original tax_computation program still works properly,
but the replacement does not. The alternatives in the replacement if
construct must remain in increasing order or the if construct will fail
to compute taxes properly. On balance, the slight gain in efficiency and
the slightly fewer keystrokes needed do not justify the less robust pro-
gram.

Style note: Don’t sacrifice clarity of the program to shorten the
execution time by a few nanoseconds. Not only is the program
harder to get right and maintain, but with a good optimizing
compiler the improvement in execution time may be smaller
than anticipated or even nonexistent.

2.2.10 Exercises

1. Write an if construct that prints the word “vowel” if the value of
the variable letter is a vowel (i.e., A, E, I, O, or U) and the word
“consonant” if the value of letter is any other letter of the alpha-
bet. Only uppercase letters can appear as values of letter.

2. Hand simulate the programs example_1 to example_4 using the
values 45, 75, and 95 as input data (12 simulations in all). Check
your answers with a computer, if possible. Caution: These simula-
tions are tricky, but each program is syntactically correct. No in-
dentation has been used in order not to give any hints about the
structure of the if constructs. We suggest correctly indenting each
program before hand simulating it.

program example_1
   integer :: x
   read *, x
   if (x > 50) then
   if (x > 90) then
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   print *, x, " is very high."
   else
   print *, x, " is high."
   end if
   end if
end program example_1

program example_2
   integer :: x
   read *, x
   if (x > 50) then
   if (x > 90) then
   print *, x, " is very high."
   else
   end if
   print *, x, " is high."
   end if
end program example_2

program example_3
   integer :: x
   read *, x
   if (x > 50) then
   if (x > 90) then
   print *, x, " is very high."
   end if
   else
   print *, x, " is high."
   end if
end program example_3

program example_4
   integer :: x
   read *, x
   if (x > 50) then
   end if
   if (x > 90) then
   print *, x, " is very high."
   else
   print *, x, " is high."
   end if
end program example_4

3. A toll bridge charges $3.00 for passenger cars, $4.00 for buses, $6.00
for trucks under 10,000 pounds, and $10.00 for trucks over 10,000
pounds. The problem is to write a program to compute the toll.
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Use interactive input if it is available. The input data consists of
first the letter C, B, or T for car, bus, or truck, respectively. Either
uppercase or lowercase letters are permitted. If the class is T
(truck), then prompt the user for another character which is either
“<“ (meaning less than 10,000 pounds) or “>”  (meaning greater
than 10,000 pounds). The following are sample executions:

  Enter vehicle class (C, B, or T)
t
  Enter < or > to indicate weight class
<
  The toll is $6.00

  Enter vehicle class (C, B, or T)
c
  The toll is $3.00

4. The Enlightened Corporation is pleased when its employees enroll
in college classes. It offers them an 80 percent rebate on the first
$500 of tuition, a 60 percent rebate on the second $400, and a 40
percent rebate on the next $300. The problem is to compute the
amount of the rebate. The input data consists of one number, the
amount of tuition paid by the employee. A sample execution might
produce the following:

  Input data  tuition:  600
  The employee’s rebate is $  460

2.3 The case Construct

The case construct is somewhat similar to the if construct in that it
permits selection of one of a number of different alternative blocks of
instructions, providing a streamlined syntax for an important special
case of a multiway selection. The general form of a case construct is

select case (expression)
  case (case selector)
     block of statements
  case (case selector)
     block of statements
    .
    .
    .
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  [ case default
     block of statements ]
end select

The value of the expression in the select case statement must be an
integer or character string (of any length). The case selector in each
case statement is a list of items, where each item is either a single con-
stant or a range of the same type as the expression in the select case
statement. A range is two constants separated by a colon and stands
for all the values between and including the two values. The
case default statement and its block are optional.

The case construct is executed by evaluating the expression in the
select case statement. Then the expressions in the case statements
are examined until one is found with a value or range that includes the
value of the expression. The block of statements following this case
statement is executed, completing execution of the entire case con-
struct. Unlike if constructs, no more than one case statement may
match the value of the expression. If no case statement matches the
value of the expression and there is a case default statement, the
block following the case default statement is executed.

Any of the items in the list of values in the case statement may be
a range of values, indicated by the lower bound and upper bound sep-
arated by a colon (:). The case expression matches this item if the value
of the expression is greater than or equal to the lower bound and less
than or equal to the upper bound.

A flowchart indicating how a case construct is executed appears in
2-2.

Some simple examples follow.

select case (dice)
   case (2:3, 12)
      print *, "You lose!"
   case (7, 11)
      print *, "You win!"
   case default
      print *, "You have to keep rolling until you get"
      print *, "either a 7 or a ", dice
end select

select case (traffic_light)
   case ("red")
      print *, "Stop"
   case ("yellow")
      print *, "Caution"
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   case ("green")
      print *, "Go"
   case default
      print *, "Illegal value:", traffic_light
end select

select case (month)
   !  30 days has September, April, June, and November
   case (9, 4, 6, 11)
      number_of_days = 30
   !  All the rest have 31, except February

Yes

Figure 2-2   Execution flow for a case construct
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   case (1, 3, 5, 7:8, 10, 12)
      number_of_days = 31
   case (2)
      if (leap_year) then
         number_of_days = 29
      else
         number_of_days = 28
      end if
   case default
      print *, month, " is not the number of a month."
end select

select case (symbol)
   case ("a":"z")
      category = "lowercase letter"
   case ("A":"Z")
      category = "uppercase letter"
   case ("0":"9")
      category = "digit"
   case default
      category = "other"
end select

Note that the computation of income tax that was done in the pre-
vious section with an if construct cannot be done with a case con-
struct because the data type of the expression used in a select case
statement may not be real.

2.3.1 Exercises

1. Write a case construct that prints the word “vowel” if the value of
the variable letter is a vowel (i.e., A, E, I, O, or U), prints the
word “consonant” if the value of letter is any other letter of the
alphabet, and prints an error message if it is any other character.

2. Write a complete program that reads one character and uses the
case construct to print the appropriate classification of the charac-
ter.

3. A toll bridge charges $3.00 for passenger cars, $2.00 for buses, $6.00
for trucks under 10,000 pounds, and $10.00 for trucks over 10,000
pounds. The problem is to write a program to compute the toll us-
ing a case construct. Use interactive input if it is available. The in-
put data consists of first the letter C, B, or T for car, bus, or truck,
respectively. Either uppercase or lowercase letters are permitted. If



2.4 The do Construct 69

the class is T (truck), then prompt the user for another character
which is either “<“ (meaning less than 10,000 pounds) or “>”
(meaning greater than 10,000 pounds). The following are sample
executions:

  Enter vehicle class (C, B, or T)
t
  Enter < or > to indicate weight class
<
  The toll is $6.00

  Enter vehicle class (C, B, or T)
c
  the toll is $3.00

2.4 The do Construct

All of the programs so far suffer from the defect that each instruction is
executed at most once. At the enormous speed at which computers ex-
ecute instructions, it would be difficult to keep a computer busy for
very long using this type of program. By the simple expedient of hav-
ing the computer execute some instructions more than once, perhaps a
large number of times, it is possible to produce a computer program
that takes longer to execute than to write. More important is the fact
that a loop increases the difficulty of writing a program very little,
while it greatly increases the amount of useful data processing and cal-
culation done by the program.

The looping construct in F is the do construct. The general form of
the do construct is

do [ loop control ]
   block of statements
end do

The block of statements, called the loop body or do construct body,
is executed repeatedly as indicated by the loop control. Figure 2-3 is a
flowchart showing the execution of a do construct.

There are two types of loop control. In one case the loop control is
missing, in which case the loop is executed until some explicit instruc-
tion in the do body such as an exit statement terminates the loop. In
the other type of loop control, a variable takes on a progression of val-
ues until some limit is reached. After a very brief discussion of con-
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struct names, the exit statement, and the cycle statement, we will
look at examples of the different types of loop control.

2.4.1 Construct Names

A do construct may have a construct name on its first statement. It con-
sists of an ordinary F name followed by a colon. The end do statement
that ends the construct must be followed by the same construct name.
This permits more complete checking that do constructs are nested
properly and provides a means of exiting or cycling more than one lev-
el of nested loop. In the program some_powers_of_2 in Section 2.4.4,
print_power is a construct name attached to the do construct.

Figure 2-3 Execution flow for a do construct with an iteration count
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2.4.2 The exit Statement

The exit statement causes termination of execution of a loop. If the
keyword exit is followed by the name of a do construct, that named
loop (and all loops nested within it) is exited.

2.4.3 The cycle Statement

The cycle statement causes termination of the execution of one iteration
of a loop. In other words, the do body is terminated, the do variable (if
present) is updated, and control is transferred back to the beginning of
the block of statements that comprise the do body. If the keyword cy-
cle is followed by the name of a construct, all loops nested within that
named loop are exited and control is transferred back to the beginning
of the block of statements that comprise the named do construct.

2.4.4 Loops with No Loop Control

For a do construct with no loop control, the block of statements be-
tween the do statement and the matching end do statement are execut-
ed repeatedly until an exit statement or some other statement causes
it to terminate. Suppose we wish to print out all powers of two that are
less than 1000. This is done with a simple do construct with no loop
control and an exit statement.

program some_powers_of_2

   integer :: power_of_2

   power_of_2 = 1  ! The zero power of 2
   print_power: do
      print *, power_of_2
      power_of_2 = 2 * power_of_2
      if (power_of_2 >= 1000) exit print_power
   end do print_power
end program some_powers_of_2

As another example, suppose a file contains integers, one per line.
All of the integers are nonnegative, except the last integer in the file,
which is negative. The following program reads the file and computes
the average of the integers, treating the first negative integer it finds as
a signal that there is no more data.

program average
!  This program finds the average of a file of
!  nonnegative integers, which occur one per line
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!  in the input file.  The first negative number
!  is treated as the end of data.

   integer :: number, number_of_numbers, total

   total = 0
   number_of_numbers = 0
   do
      read *, number
      if (number < 0) exit
      print *, "Input data  number:", number
      total = total + number
      number_of_numbers = number_of_numbers + 1
   end do

   print *, "The average of the numbers is",  &
         real(total)  / number_of_numbers
end program average

To illustrate a simple use of the cycle statement, suppose a file of
integers similar to the one used above is presented and the task is to
count the number of odd numbers in the file prior to the first negative
number in the file. The following program accomplishes this. Recall
that the intrinsic function modulo gives the remainder when the first
number is divided by the second number.

program odd_numbers
!  This program counts the number of odd numbers
!  in a file of nonnegative integers,
!  which occur one per line in the input file.
!  The first negative number is treated as end of data.

   integer :: number, number_of_odd_numbers

   number_of_odd_numbers = 0
   do
      read *, number
      print *, "Input data  number:", number
      if (number < 0) then
         exit
      else if (modulo (number, 2) == 0) then
         cycle
      else
         number_of_odd_numbers =  &
               number_of_odd_numbers + 1
      end if



2.4 The do Construct 73

   end do

   print *, "The number of odd numbers is",  &
         number_of_odd_numbers
end program odd_numbers

These last two programs have a structure similar to that of the
heart of many programs, both simple and complicated. In pseudocode,
that structure is

do
   Attempt to read some data
   If all data have been processed, then exit
   Process the data
end do

For this kind of loop, a do construct with no loop control and an exit
statement are just right.

2.4.5 Loop Control with a do Variable

Quite frequently, the successive values taken by a variable follow a
simple pattern, like 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, or 9, 7, 5, 3. Because these
sequences occur so often in programming, there is a simple means of
assigning successive values to a variable in F using the do construct
and variable loop control. A simple example that prints the squares
and cubes of the integers 1 to 20 follows:

do number = 1, 20
   print *, number, number**2, number**3
end do

The block of this do construct consists of a single print statement. The
first time the print statement is executed, the do variable number has
the value of 1, and this number is printed as the first output line, fol-
lowed by its square and its cube. Then the do variable number takes on
the value 2, which is printed on the next line, followed by its square
and its cube. Then the do variable takes on the values 3, 4, 5, up to 20
for successive repetitions of the print statement. At this point, the pos-
sible values for the do variable number specified in the do statement are
exhausted and execution of the do construct terminates.

The general forms of loop control using a do variable are

variable = expression, expression

and
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variable = expression, expression, expression

The three integer expressions specify the starting value, the stopping
value, and the step size or stride between successive values of the do
variable. The do statement in the do construct above used constants 1
and 20 for the starting and stopping values. When the step size expres-
sion is omitted, as it is in the do construct above, a step size of 1 is
used.

A do variable must be an integer variable declared in the program
or procedure (3.11) where it is used. It must not be an array element
(4.2) or a component of a structure (6.3.1). It must not be a dummy ar-
gument (3.5.1). It must not have the pointer or target attribute (8.1.1).

A do variable must not be used for anything outside of the do loop,
except as the variable for another do loop or the index of a forall con-
struct (4.1.9).

The value of a do variable may not be changed inside the construct.
The number of times the loop is executed (unless terminated by

an exit statement, for example) is given by the formula

where m1 is the starting value, m2 is the stopping value, and m3 is the
step size.  denotes the floor function, the greatest integer less than
or equal to x. In cases where the sequence of values starting at m1 in
steps of m3 exactly reaches m2, this reduces to the simpler formula

For example, the following do loop is executed  =
5 times with the do variable assigned the values 2, 4, 6, 8, and 10.

do number = 2, 10, 2
   print *, number
end do

If the do statement were changed to

do number = 2, 11, 2

The do loop would be executed  = 5 times, as before,
and the values of the do variable number would be the same: 2, 4, 6, 8,
and 10. The do statement

do number = 1, upper_limit

max m2 m1– m3+
m3

---------------------------------- 0, 
 

x

1
m2 m1–

m3
--------------------+

10 2– 2 ) 2⁄+( )

11 2– 2+( ) 2⁄
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causes its do block to be executed no times if the value of the variable
upper_limit is less than or equal to zero.

2.4.6 Counting Backward

If the step size is negative, the do variable counts backwards. Thus, it is
possible to print the complete words to the popular camp song “Nine-
ty-Nine Bottles of Beer on the Wall” using a do statement with a nega-
tive step size. The program beer, which tells the computer to print the
verses, is given below. In the program, a print statement with no print
list is used to print a blank line between verses.

program beer
!  Prints the words of a camp song

   integer :: n

   do n = 99, 1, -1
      print *
      print *, n, "bottles of beer on the wall."
      print *, n, "bottles of beer."
      print *, "If one of those bottles " // &
               "should happen to fall,"
      print *, "there’d be", n - 1,  &
               "bottles of beer on the wall."
   end do
end program beer

Running the program produces the following output.

 99 bottles of beer on the wall.
 99 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 98 bottles of beer on the wall.
 98 bottles of beer on the wall.
 98 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 97 bottles of beer on the wall.

 97 bottles of beer on the wall.
 97 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 96 bottles of beer on the wall.
       .
       .
       .
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 1 bottles of beer on the wall.
 1 bottles of beer.
 If one of those bottles should happen to fall,
 there’d be 0 bottles of beer on the wall.

A short name n is chosen for the do variable to make it easier to
sing the program listing. The execution output shown is abbreviated
after three full verses, with the last verse also given to show how the
loop ends.

2.4.7 Case Study: Approximating a Definite Integral

The value of a definite integral is the area of a region of the plane
bounded by the three straight lines. x = a, y = 0, x = b, and the curve y =
f(x) as shown in Figure 2-4. The better part of a semester in any calcu-
lus sequence is spent seeking analytic solutions to the area problem,
that is, expressing the area by an algebraic or trigonometric expression.
At the conclusion, the calculus student acquires a modest repertoire of
useful functions that can be integrated in “closed form”.

Figure 2-4 Trapezoidal approximation to the area under a curve

y = f(x)

x = b

x = a

x

y
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It turns out to be easier to approximate the area of such regions nu-
merically, if you have a computer available. Moreover, the numerical
approximation method works even for functions that cannot be inte-
grated in closed form. If we replace the curve y = f(x) by a straight line
with endpoints a and b, the region in question is converted to a trape-
zoid, a simple four-sided figure whose area is given by the formula

Of course, the area of this trapezoid is not exactly equal to the area of
the original region with curved boundary, but the smaller the width of
the trapezoid, the better the approximation.

Specifically, the problem we wish to solve is to find the area of one
arch of the curve y = sin(x), that is, the area under this curve for x from
0 to π radians (180°) as shown in Figure 2-5. We will do it by writing a
program to calculate trapezoidal approximations to the area, choosing
a number of trapezoids sufficient to give the answer to three decimal
places.

If we call the width of each trapezoid h, we have the relationship

After a little algebra, the sum of the areas of the n trapezoids may be
expressed by the formula

Figure 2-5 Approximating the area under the curve y = sin(x)
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In the following program integral, the sum is formed by first comput-
ing

Because a do variable must be an integer, we use the integer variable i
that counts 1, 2, ...,  and compute the expression a + i*h to obtain
the sequence of values

a+h, a+2h, ..., a+(n−1)h = b−h

The program follows.

program integral
!  Calculates a trapezoidal approximation to an area
!  using n trapezoids.
!  n is read from the input file.

!  The region is bounded by lines x = a, y = 0, x = b,
!  and the curve y = sin(x).
!  a and b also are read from the input file.

   intrinsic :: sin
   real :: a, b, h, total
   integer :: i, n
 
   read *, n
   print *, "Input data  n:", n
   read *, a, b
   print *, "Input data  a:", a
   print *, "            b:", b

   h = (b - a) / n
!  Calculate the total f(a)/2+f(a+h)+...+f(b-h)+f(b)/2
!  Do the first and last terms first
   total = 0.5 * (sin(a) + sin(b))
   do i = 1, n - 1
      total = total + sin(a + i * h)
   end do

   print *, "Trapezoidal approximation to the area =", &
             h * total
end program integral

 Input data  n: 100
 Input data  a:   0.0000000E+00

f a( )
2

-------- f b( )
2

--------+ 
  0.5 f a( ) f b( )+[ ]×=

n 1–
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             b:   3.1415901
 Trapezoidal approximation to the area =   1.9998353

 Input data  n: 1000
 Input data  a:   0.0000000E+00
             b:   3.1415901
 Trapezoidal approximation to the area =   1.9999995

Since these two answers differ by only one in the fourth decimal
place, we may conclude that the approximation using 100 trapezoids is
sufficiently accurate for our purposes, and that the approximation us-
ing 1000 trapezoids is accurate to more than four decimal places. (The
alert reader may have noticed that the 6th and 7th decimal places in
the echo of the input variable b are not the correct digits of π.) There is
no need to rerun the program using more trapezoids to meet the limits
of accuracy specified in the problem statement. The answer is
1.9999995 rounded to three decimal places to get 2.000. The input data
for b was given using five decimal places as 3.14159 and the last two
places echoed represent roundoff.

2.4.8 The intrinsic statement

The intrinsic statement consists of the keyword intrinsic followed
by a double colon (::) and followed by a list of intrinsic procedure
names. It can be used to indicate the use of any intrinsic procedure for
documentation, but is required only when extending an intrinsic (7.6).

2.4.9 Exercises

1. Hand simulate the execution of the following statements, keeping
track of the value of n and prod after the execution of each state-
ment.

integer :: n, prod
prod = 1
do n = 2, 4
   prod = prod * n
end do

2. What output is produced by the following program?

program exercise
   intrinsic :: modulo
   integer :: m
   do m = 1, 20
      if (modulo(m, 2) /= 0) then
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         print *, m
      end if
   end do
end program exercise

3. What is the value of the variable total at the conclusion of each of
the following loops?

integer :: n, total

total = 0
do n = 1, 10
   total = total + 1
end do
total = 0
do n = 1, 5
   total = total + n * n
end do

total = 0
do n = 1, 14, 2
   total = total + n * n
end do

total = 0
do n = 5, 1, -1
   total = total + n
end do

4. An integer is a perfect square if it is the square of another integer.
For example, 25 is a perfect square because it is 5 × 5. Write a pro-
gram to selectively print those numbers less than 100 that are not
perfect squares. Sample output for this program should look like
the following.

  2
  3
  5
  6
  7
  8
  10
  .
  .
  .
  99
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5. Read integers from the input file until the value zero is read. Then
print the number in the file just before the first zero value. Sample
input data might be

3
7
2
10
0
9
4
0
5

Sample output for this input data is

  Input data:  buffer  3
  Input data:  buffer  7
  Input data:  buffer  2
  Input data:  buffer  10
  Input data:  buffer  0
  The last number before the first zero is 10

6. Write a program that prints the smallest power of 3 that exceeds
5000.

7. In 1970, the population of New Jersey was 7,168,192 and it was in-
creasing at the rate of 18% per decade. The area of New Jersey is
7521 square miles. On the basis of the 18% growth rate continuing
indefinitely into the future, predict the population of New Jersey
every decade from 1980 on. Stop the predictions when the average
number of square feet per person is less than 100. Print out all esti-
mates. Execution of the program should produce something like
the following.

  year     population    sq ft / person
  1980       8458466.           24789.6
  1990       9980990.           21007.3
     .              .                 .
     .              .                 .
     .              .                 .

For partial confirmation of the validity of the prediction model,
look up the 1980, 1990, and 2000 census data for New Jersey and
compare the actual data with your program’s predictions.
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8. The mathematical expression

produces better and better approximations to the famous mathe-
matical constant e = 2.718281828459045... as n gets large. However,
the computed result of this expression may be disappointingly in-
accurate if the selected real kind does not permit many significant
digits of 1/n to be retained in the sum 1+1/n. Write a program to
calculate the expression

for n taking on successive powers of two: 1, 2, 4, 8, 16, ... and suc-
cessive powers of three: 1, 3, 9, 27, 81, ... . Run this program using
each of the real kinds available on your computer.

2.4.10 The stop Statement

The stop statement causes execution of a program to stop. With the
use of modern control constructs, a program usually should stop by
coming to the end of the program. However, there are some occasions
where the stop statement is very convenient to use. For example, when
print statements are inserted for debugging, it is often desirable to stop
the program after a few such statements are executed or after the first
few iterations of a loop are executed. Also, when severe errors are de-
tected in the middle of a procedure that is being executed, it is much
easier to execute a stop statement than exit out through what may be
many layers of nested subroutine calls or function references.

read *, income
if (income < 0) then
   print *, "Error: income is less than zero."
   stop
end if

2.4.11 The go to and continue Statements

The if, case, and do constructs are sufficient to build almost any pro-
gram. However, there are some rare occasions that seem to require a
direct branch to a different part of the program. This can be done with

1 1
n
---+ 

  n

1 1
n
---+ 

  n
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the go to statement, which can transfer control to a continue state-
ment.

The form of the go to statement is

go to label

where label is a string of one to five decimal digits, at least one of
which must be nonzero. When the statement is executed, control is
passed to the continue statement with that label. The continue state-
ment with the label must be after the go to statement; in other words,
branching backward in a program is not permitted.

The continue statement has the form

label continue

and its only function is to serve as the destination of a go to statement.
Branching from outside a construct (if, case, do, where, or forall)

to a continue statement inside the construct is not permitted.
One situation in which it is convenient to use a go to statement is

when a serious error condition occurs inside a fairly complex con-
struct, such as nested do loops. Another is when you want to execute
some code upon exit from a loop, but only if a certain condition has oc-
curred inside the loop. We illustrate the use of these two statements
with a snippet of code that does just this.

do i = 1, list_size
   if (list(i) == search_key) then
      location = i
      go to 10
   end if
end do

print *, "Search key", search_key, "not found"
stop

10 continue
print *, "Search key", search_key, &
         "found at location", location

This code can be written without using a go to statement, but it
might not be as easy to understand as the program segment above.
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Modules and Procedures 3
Large programs are extremely difficult to debug and maintain unless
they are split into independent modules. Even relatively short pro-
grams are greatly improved when their component parts are refined as
procedures. Modules provide a place to put data declarations so that
they can be used and shared by programs. Modules also provide the
place to put an F procedure, which is either a function or a subroutine,
and to put definitions of user-defined types; these are basic building
blocks of a program and are usually used by more than one part of a
program.

Modules are especially useful when building a “package” or “li-
brary” of data and procedures that may be accessible to many different
programs.

3.1 Modules

A module is a program unit that is not executed directly, but contains
data specifications and procedures that may be utilized by other pro-
gram units via the use statement.

There are two sorts of modules, the private module and the public
module. A public module is used to collect the information in other
modules and make them available as a single module; these are useful
when building large collections of programs. A public module consists
of just use statements and the public statement; it contains no declara-
tions or procedures. An example is

module p
   use m1
   use m2
   use m3
   public
end module p



86 Modules and Procedures

The general form of a private module is:

module name
   [ use statements
   private ]
   declaration statement
   access statements
contains

   subroutines and functions
end module name

The private statement must appear in the module if there are any use
statements, and must not appear otherwise.

Most of the modules illustrated in this book are private modules,
which are described in the remainder of this section.

3.1.1 Writing and Using Modules

To begin with a very simple example, one use of a module is to include
the definition of constants that might be useful in programs. The mod-
ule math_module contains the values of π, e, and γ; of course, it could
contain many more useful constants. Note that these constants have
default kind, regardless of the number of decimal digits that appear.

module math_module

   real, public, parameter :: pi = &
         3.1415926535897932384626433832795028841972
   real, public, parameter :: e = &
         2.7182818284590452353602874713526624977572
   real, public, parameter :: gamma = &
         0.5772156649015328606065120900824024310422

end module math_module

Any program that needs these constants can simply use the module.

program circle

   use math_module
   real :: radius = 2.2, area

   area = pi * radius ** 2
   print *, area

end program circle
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It is also possible to declare variables in a module. The module
declarations_module declares logical variables flag_1 and flag_2,
which could then be used in any program that uses the module.

module declarations_module

   logical, public :: flag_1, flag_2

end module declarations_module

program using_modules

   use declarations_module

   logical, parameter :: f = .false.
   flag_1 = f
   flag_2 = .not. f
      . . .

end program using_modules

Most implementations require that a module be compiled before
any program that uses the module is compiled. Thus, if the module
and program above are placed in the same source file, the module
must come before the program. Also, the use statement is required,
even if both module and program are in the same file.

3.1.2 Public and Private Access

An access statement consists of either private or public followed by
a colon and a list of the names of procedures in the module. Each mod-
ule procedure must be listed in either a public or private access state-
ment. The procedures listed in a private statement can be called only
from within the module; the procedures listed in a public statement
can be used in any other module, procedure, or program that uses the
module.

 In addition, each parameter, variable, and type (6) in a module
must have either the public or private attribute in its declaration. As
will be illustrated by examples in Chapter 7, it is possible for the pro-
grammer of a module to use the access statements to restrict the vari-
ables and procedures in the module that are accessible outside the
module. This is done to “hide” implementation details in the module
and is accomplished by declaring things private.
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3.1.3 The use Statement

The simple form of the use statement is just the keyword use followed
by a module to be used, as illustrated by the previous example. A use
statement may appear in a program, subroutine, function, another
module, or a dummy procedure interface.

However, with the use statement, there are two ways to affect the
way that names in a module are accessed by another program unit. The
first is that the names used in the module may be changed in the pro-
gram unit using the module. This may be necessary because the pro-
gram is using two or more modules that contain declarations of the
same name. Or it simply may be desirable to change the name to suit
the taste or needs of the programmer of the program unit.

For example, in a subroutine using module math_module, the pro-
grammer may decide that the name e is too short to allow a clear un-
derstanding of its purpose. This can be fixed by renaming the variable
e to the longer name logarithm_base with the use statement.

use math_module, logarithm_base => e

Any number of rename clauses may appear in the use statement.
The second way to affect the names accessed in a module is to have

an only clause in the use statement. In the program circle in 3.1.1,
only the constant π is needed. It is possible to prevent other names in
the module from conflicting with names in the program; this can be ac-
complished with the use statement.

use math_module, only : pi

If, in addition, it were desirable to use and rename the parameter e to
logarithm_base, this could be done with the statement:

use math_module, only : pi, logarithm_base => e

There can be many names, with or without renaming, in a list after the
colon. A use statement can refer to only only one module, but there
can be more than one use statement in a program for a module.

use m, only : x
use m, only : y
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3.2 Procedures

There are two kinds of procedures: functions and subroutines. A func-
tion looks much like an F program, except that it begins with the key-
word function instead of the keyword program. Once written, a
function is used just like the built-in functions discussed in 1.5 to com-
pute a value that may be used in any expression. A subroutine also
looks like an F program or a function, except that the first line begins
with the keyword subroutine. A subroutine may be used to perform
any computation and is invoked by executing a call statement.

All procedures are placed in a module.
Functions and subroutines whose first statements contain the key-

word recursive are permitted to call themselves directly or indirectly;
recursion (3.15) is used to write clear and simple programs for what
might otherwise be difficult programming tasks.

Functions and subroutines whose first statements contain the key-
word elemental allow the programmer to more simply write a proce-
dure that handles an array of values on an element-by-element basis
(7.1.2).

The keyword pure (3.7) on a function or subroutine statement indi-
cates that the procedure has no side effects. All functions must be pure
with or without the keyword, but it is required in some cases anyway.

Style note: Self-contained subtasks should be written as proce-
dures.

3.3 Subroutines

Suppose the task at hand is to read in three real numbers and print
them in ascending order. The main steps needed to accomplish this
task are: (1) read in the numbers, (2) sort them, and (3) print them. The
program sort_3 does this.

program sort_3

   call read_the_numbers()
   call sort_the_numbers()
   call print_the_numbers()

end program sort_3

It seems obvious (if the names are chosen well) that it performs the
three steps described above needed to solve the problem. However, if
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you try to compile this into an executable program, you will be told
that the three procedures are missing. We must write statements that
directly reflect those three steps and put the details elsewhere.

3.3.1 The call Statement

The call statement is used to indicate that the computation represent-
ed by a subroutine is to be performed. The keyword call is followed
by the name of the subroutine and by a list of arguments (3.5) in paren-
theses. The parentheses are required even if there are no arguments.
The program sort_3 contains three call statements.

3.3.2 Writing a Subroutine

A subroutine is very similar to a program except that the first state-
ment is a subroutine statement that begins with the keyword subrou-
tine and ends with a list of arguments in parentheses. The parentheses
are required even if there are no arguments. The last statement of a
subroutine is the end subroutine statement, which contains the name
of the subroutine.

The subroutine read_the_numbers consists of the subroutine
statement, the statements that read and echo the numbers, and the end
subroutine statement that terminates the subroutine.

subroutine read_the_numbers ()
   read *, n1, n2, n3
   print *, "Input data  n1:", n1
   print *, "            n2:", n2
   print *, "            n3:", n3
end subroutine read_the_numbers

It is not necessary to declare the variables n1, n2, and n3 because
they will be declared elsewhere.

The other two subroutines are constructed similarly (see below).

3.4 Putting Procedures in a Module

We now show how the program to sort three numbers can be orga-
nized using a module to contain the subroutines. The module also will
contain the declaration of the three private variables n1, n2, and n3 be-
cause they are used by the procedures in the module. The module
sort_3_module also contains the three subroutines after a contains
statement. A subroutine swap is needed by sort_the_numbers; it also
is placed in the module and is declared to be private, because it is not



3.4 Putting Procedures in a Module 91

needed outside the module. An alternative method would be to put
swap in a different module.

Procedures appear just before the last end statement of the module
containing them and they are preceded by a contains statement,
which consists of simply the keyword contains.

module sort_3_module

   real, private :: n1, n2, n3
   real :: temp

   public :: read_the_numbers,  &
             sort_the_numbers,  &
             print_the_numbers
   private :: swap

contains

subroutine read_the_numbers()
   read *, n1, n2, n3
   print *, "Input data  n1:", n1
   print *, "            n2:", n2
   print *, "            n3:", n3
end subroutine read_the_numbers
  
subroutine sort_the_numbers()
   if (n1 > n2) then
      temp = n1
      n1 = n2
      n2 = temp
   end if
   if (n1 > n3) then
      temp = n1
      n1 = n3
      n3 = temp
   end if
   if (n2 > n3) then
      temp = n2
      n2 = n3
      n3 = temp
   end if
end subroutine sort_the_numbers

subroutine print_the_numbers()
   print *, "The numbers, in ascending order, are:"
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   print *, n1, n2, n3
end subroutine print_the_numbers

end module sort_3_module

The following program uses the module to sort three numbers. The
statement

use sort_3_module

indicates that there are procedures or data in a module called
sort_3_module that are needed by the program. Indeed, the computa-
tions will each be done with subroutines that are in the module.

program sort_3

   use sort_3_module

   call read_the_numbers()
   call sort_the_numbers()
   call print_the_numbers()

end program sort_3

Running the program produces

 Input data  n1:   2.2000000
             n2:   7.6999998
             n3:   5.5000000
 The numbers, in ascending order, are:
   2.2000000   5.5000000   7.6999998

3.5 Arguments

Something worth noticing is that there are three lines that occur three
times in the subroutine sort_the_numbers, all doing the same kind of
operation, namely, swapping the values of two variables if they are in
the wrong order. This illustrates the second good reason to use a proce-
dure: to write some statements once and use them many times, either
within the same program or in different programs. In this case, the
computation that is performed three times is represented the first time
by the three F statements:

temp = n1
n1 = n2
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n2 = temp

However, each time this swapping operation occurs in the subroutine,
different named variables are involved. This is no obstacle if a subrou-
tine with arguments is used as illustrated by the subroutine named
swap.

subroutine swap(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap

To call this subroutine, values are sent to it by placing them in pa-
rentheses after the name of the subroutine in the call statement. Thus,
to swap the values of n1 and n2, use the statement

call swap(n1, n2)

n1 and n2 are called arguments. Argument passing applies to both
subroutines and functions and so is described in 3.8.

The subroutine sort_the_numbers can now use swap.

subroutine sort_the_numbers()
   if (n1 > n2) then
      call swap(n1, n2)
   end if
   if (n1 > n3) then
      call swap(n1, n3)
   end if
   if (n2 > n3) then
      call swap(n2, n3)
   end if
end subroutine sort_the_numbers

3.5.1 Dummy Arguments and Local Variables

There are two new variables a and b in the subroutine swap that serve
as place holders for the two numbers to be swapped. These are dummy
arguments and must be declared in the subroutine even if they have
the same name as a variable declared in the containing module.

The variable temp is used only in the subroutine swap. By declaring
temp to be type real within the subroutine swap, we make this variable
local to the subroutine, so that its value will not be confused with any
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value outside the subroutine. The declaration of temp can be removed
from the subroutine sort_the_numbers.

3.5.2 Argument Intent

In F you must indicate the intent of use of each dummy argument of a
subroutine or function unless it is a pointer (8) or dummy procedure
(3.8.8). The intent may be in, which means that the dummy argument
cannot be changed within the procedure; it may be out, which means
that the actual argument must not be used until given a value in the
procedure and usually is used to pass a value back to the calling pro-
gram; or it may be in out, which means that the dummy argument is
expected both to receive an initial value from and return a value to the
corresponding actual argument. Thus, for dummy arguments with in-
tent out or in out, the corresponding actual argument must be a vari-
able.

The intent is an attribute given to an argument when it is declared
within the procedure. All arguments to a function (except pointers and
procedures), must have intent in.

The intent attribute is provided to make the program more easily
understood by a human reader and to allow the compiler to catch er-
rors when the programmer violates the stated intent.

3.5.3 Exercises

1. Write a module named swap_module that contains only the subrou-
tine swap.

2. Remove swap from the module sort_3_module and rename it
sort_module.

3. Write and test a public module sort_3_module that uses swap_
module and sort_module.

4. Write a subroutine sort_4_numbers that arranges the four integer
variables i1, i2, i3, and i4 into ascending order. Test the subrou-
tine by putting it in a program that reads four numbers, calls the
subroutine, and prints the sorted values.

5. Write a subroutine that reads in values for a loan principal amount
p, an annual interest rate rannual, and the number of months m in
which the loan is to be paid off. The monthly payment is given by
the formula

pay r p 1 r+( )m×

1 r+( )m 1–
--------------------------------=
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where the monthly interest rate r = rannual /12. The subroutine
should print out a monthly schedule of the interest, principal paid,
and remaining balance. Test the subroutine with a program that
calls it with p = $106,500, rannual = 7.25%, and m = 240 months.

3.6 Functions

If the purpose of a procedure is to compute one value (which may be a
compound value consisting of a whole array or structure) and the pro-
cedure has no side effects (3.7), a function is the sort of procedure to
use. The value of a function is computed when the name of the func-
tion, together with its arguments, is placed anywhere in an expression.

To illustrate a simple use of a function, suppose the task is to print
out a table of values of the function

for values of x equal to 1, 10, 100, ..., 1010. A program to do this is

module f_module

   integer, parameter, public :: largest_power = 10
   public :: f

contains

function f(x)  result(f_result)

   real, intent(in) :: x
   real :: f_result

   integer, parameter :: kind_needed =  &
      selected_real_kind(largest_power + 1)

   f_result = (1 + 1 / real(x, kind_needed)) ** x

end function f

end module f_module

program function_values

   use f_module
   real :: x
   integer :: i

f x( ) 1 1
x
---+ 

  x
=
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   do i = 0, largest_power
      x = 10.0 ** i
      print "(f15.1, f15.5)", x, f(x)
   end do

end program function_values

            1.0        2.00000
           10.0        2.59374
          100.0        2.70481
         1000.0        2.71692
        10000.0        2.71815
       100000.0        2.71827
      1000000.0        2.71828
     10000000.0        2.71828
    100000000.0        2.71828
   1000000000.0        2.71828
  10000000000.0        2.71828

In this program the evaluation of the function occurs once for each
execution of the do construct, but the expression that evaluates the
function occurs only once. In this case, a function is used to put the de-
tails of evaluating the function in another place, making the program a
little easier to read. When this is done, there is also the advantage that
if a similar table of values is needed, but for a different function, the
main program does not need to be changed; only the function needs to
be changed.

This function illustrates an interesting use of the selected_real_
kind intrinsic function. In the function, the intermediate result 1 + 1/x
must be computed to get the desired answers. For x=1010, this value is
1.0000000001, which has 11 significant digits, so a kind of real must be
used that will hold this many digits. If a real kind with fewer signifi-
cant digits is used, the expression 1 + 1/x may evaluate as 1.00000,
yielding an incorrect value for f_result. Both the largest power of x
used and the kind needed to compute the function for this largest pow-
er are provided as parameters (named constants).

The type conversion

real(x, kind_needed)

converts the already real value x to a real kind of the required preci-
sion, and the rules for mixed mode arithmetic guarantee that at least
this precision is used throughout the calculation. kind_needed must be
a parameter.
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3.6.1 Writing a Function

A function is almost like a subroutine except that its first statement
uses the keyword function. Like a subroutine, it may have arguments
that are written in parentheses in the function statement. This is fol-
lowed by the keyword result and the name of the result variable. The
last statement of a function is the end function statement, which con-
tains the name of the function.

A difference between a subroutine and a function is that a function
must provide a value that is returned as the value of the function. This
is done by assigning a value to a result variable during execution of
the function. This result variable is indicated by placing its name in pa-
rentheses at the end of the function statement following the keyword
result. The result variable is declared within the function and is used
just like any other local variable, but the value of this variable is the
one that is returned as the value of the function to the program using
the function. Intent is not declared for the result variable—its appear-
ance in the result clause effectively makes its intent out. The function f
computes the values required in our example and uses the result vari-
able f_result to hold the result.

3.6.2 Invoking a Function

A programmer-defined function is called by writing its name, followed
by its arguments, in any expression in the same manner that a built-in
function (1.5) is invoked.

3.6.3 Exercises

1. Write a function median_of_3 that selects the median of its three
integer arguments. If all three numbers are different, the median is
the number that is neither the smallest nor the largest. If two or
more of the three numbers are equal, the median is one of the
equal numbers.

2. Write a function average_of_4 that computes the average of four
real numbers.

3. Write a function cone_volume(r, h) that returns the volume of a
cone. The formula for the volume of a cone is V = πr2h/3, where r is
the radius of the base and h is its height.

4. Write a function round(x, n) whose value is the real value x
rounded to the nearest multiple of 10n. For example, round
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(463.2783, -2) should be 463.28, which has been rounded to the
nearest hundredth.

3.7 Pure Procedures and Side Effects

When a procedure is executed, a side effect is a change in the status of
the program that is something other than just computing a value to re-
turn to the calling procedure. Examples are changing a variable de-
clared in a program or module above the contains statement or
reading data from a file. When the following F language rules are fol-
lowed, most side effects will not occur. Some of the rules involve fea-
tures described later.

The programmer may indicate that a procedure has no side effects
by putting the keyword pure in the function or subroutine statement.
All functions must be pure with or without the keyword, except that
one not declared pure explicitly may contain print statements.

1. All dummy arguments in a function (except pointers and proce-
dures, which never have an intent attribute) must have intent in.

2. A local variable must not have the save attribute or be initialized.

3. Any subroutine that is called, including a defined assignment (7.3)
must be pure.

4. There is no input/output statement, except for an internal read or
write statement (9.3.6).

5. The use statement (3.1.3) permits a function to import names from
a module without placing them in the dummy argument list. The
following additional rules are necessary to prevent side effects
with such variables. Any variable that is accessed from a module
by a use statement or has intent in must not appear as any of the
following:

a. the variable on the left of an assignment statement

b. as an input item in an internal read statement

c. a character string used as the file in an internal write
statement

d. the variable assigned a value as an iostat specifier in an
input/output statement using an internal file



3.8 Argument Passing 99

e. either the pointer or the target in a pointer assignment
statement

f. the right side of an assignment statement, if the left side is of
derived type with a pointer component

g. the object to be allocated or deallocated or the status variable in
either an allocate or deallocate statement

A procedure that is invoked in any of the following circumstances
must be pure; that is, the procedure heading must contain the keyword
pure or the keyword elemental.

1. a function referenced in a forall statement (4.1.9)

2. a function referenced in a specification statement (4.1.12)

3. a procedure that is passed as an actual argument to a pure proce-
dure (3.8.8)

4. a procedure referenced in a pure procedure, including those refer-
enced by any function, a defined operator (7.4), or defined assign-
ment (7.3)

3.8 Argument Passing

One of the important properties of both functions and subroutines is
that information may be passed to the procedure when it is called and
information may be returned from the procedure to the calling pro-
gram when the procedure execution ends. This information passing is
accomplished with procedure arguments and, in the case of a function,
the function result. A correspondence is set up between actual argu-
ments in the calling program and dummy arguments in the procedure.
The corresponding arguments need not have the same name, and the
correspondence is temporary, lasting only for the duration of the proce-
dure call.

3.8.1 Agreement of Arguments

In this subsection, we try to emphasize general principles, but for the
sake of having all the important rules in one place, we list exceptions
needed to implement these language features along with forward refer-
ences to the sections where they are discussed.

Except for dummy arguments declared as optional (3.8.7), the
number of actual and dummy arguments must be the same. Each actu-
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al argument corresponds to a dummy argument. The default corre-
spondence is the first actual argument with the first dummy argument,
the second with the second, etc. However, keyword-identified argu-
ments (3.8.6) can be used to override the default, and provide clear, or-
der-independent specification of the correspondence between actual
and dummy arguments.

The data type and kind parameter of each actual argument must
match that of the corresponding dummy argument.

Additionally, if the dummy argument is a pointer (8), the actual ar-
gument must be a pointer.

If the subroutine or function is generic (7.1), there must be exactly
one specific procedure with that generic name for which all the above
rules of agreement of actual and dummy arguments are satisfied (how-
ever, keyword actual arguments also can be used to determine which
procedure is specified). For given actual arguments, F selects that spe-
cific procedure for which there is agreement of actual and dummy ar-
guments.

3.8.2 Passing Arguments to Dummy Arguments with Intent out

If an actual argument is passed to a dummy argument that has intent
out or intent in out, it must be a variable (which includes an array
name, an array element, an array substring, a structure component, or
a substring) so that it makes sense to give it a value. Any reference to
the corresponding dummy argument in the subroutine causes the com-
puter to behave as if the reference were to the corresponding actual ar-
gument supplied by the calling program. Statements in the subroutine
causing changes to such a dummy argument cause the same changes to
the corresponding actual argument. A dummy argument in a function
must not be intent out or intent in out.

3.8.3 Passing Arguments to Dummy Arguments with Intent in

An actual argument that is a constant (either literal or named) or an ex-
pression more complicated than a variable must correspond to a dum-
my argument with intent in. The dummy argument then must not
have its value changed during execution of the procedure. There is no
way to pass a value back to the calling program using such an argu-
ment. Modifying the value of an argument in a function is not possible;
all dummy arguments must have intent in.
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3.8.4 An Example of Passing Variables

Let us look again at the subroutine swap discussed earlier and how it is
used in the program sort_3 in 3.4. In the subroutine statement, the
subroutine name swap is followed by a list (a, b) of variables enclosed
in parentheses. The variables a and b in that list are the dummy argu-
ments for the subroutine swap. They have intent in out.

Suppose that in executing the first read statement of the subrou-
tine read_the_numbers, the computer reads and assigns to the variable
n1 the value 3.14, assigns to the variable n2 the value 2.718, and assigns
to the variable n3 the value 1.414. Since 3.14, the value of n1, is greater
than 2.718, the value of n2, the computer executes the call statement

call swap(n1, n2)

The effect of this call statement is as if it were replaced by the follow-
ing statements.

! Copy-in phase
a = n1
b = n2

temp = a
a = b
b = temp

! Copy-out phase
n1 = a
n2 = b

In this example, the dummy arguments a and b both have intent
in out. For a procedure with arguments with intent out, the copy-in
phase may be skipped and for a procedure with arguments with intent
in, the copy-out phase may be skipped.

3.8.5 An Example of Passing Expressions

Suppose a function is to be written that computes the following sum of
certain terms of an arithmetic progression:

The arguments to this function are m, n, s (the starting value), and d,
the difference between terms. A function to do this computation is con-
tained in the program series

s d i×+( )
i m=

n
∑
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program series

   integer, parameter :: n = 100
   print *, series_sum(n+300, 2*n+500, 100.0, 0.1)

contains

function series_sum(m, n, s, d)  &
      result(series_sum_result)

   integer, intent(in) :: m, n
   real, intent(in) :: s, d
   real :: series_sum_result
   integer :: i

   series_sum_result = 0
   do i = m, n
      series_sum_result = series_sum_result + s + i * d
   end do

end function series_sum

end program series

which produces the answer 46655.0. All four actual arguments in the
call of series_sum are constants and therefore may be passed to the in-
tent in arguments of the function series_sum.

3.8.6 Keyword Arguments

With the use of keyword arguments, it is not necessary to put the ar-
guments in the correct order, but it is necessary to know the names of
the dummy arguments. The same computation may be made using the
statement

print *, &
      series_sum(d=0.1, m=400, n=700, s=100.0)

It is even possible to call the function using keywords for some argu-
ments and not for others. In this case, the rule is that all actual argu-
ments prior to the first keyword argument must match the
corresponding dummy argument correctly and once a keyword argu-
ment is used, the remaining arguments must use keywords. Thus, the
following is legal:

print *, series_sum(400, 700, d=0.1, s=100.0)
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3.8.7 Optional Arguments

In our example computation of an arithmetic series, a common occur-
rence would be that the value of m is 0. It is possible to indicate that
certain arguments to a procedure are optional arguments in the sense
that they do not have to be present when the procedure is called. An
optional argument must be declared to be such within the procedure;
usually, there would be some statements within the procedure to test
the presence of the optional argument on a particular call and perhaps
do something different if it is not there. In our example, if the function
series_sum is called without the argument m, the value zero is used. To
do this, the intrinsic function present (A.4) is used to test whether an
argument has been supplied for the dummy argument m, and if an ac-
tual argument is not present, the lower bound for the sum is set to ze-
ro. To handle both cases with the same do loop, a different variable,
temp_m, is used to hold the lower bound. One reason a different vari-
able is used is that a dummy argument corresponding to an actual argument
that is not present must not be given a value within the procedure. The other
reason is that all function arguments are intent in, and so cannot be
changed anyway.

function series_sum(m, n, s, d)  &
      result(series_sum_result)

   integer, optional, intent(in) :: m
   integer, intent(in) :: n
   real, intent(in) :: s, d
   real :: series_sum_result
   integer :: i, temp_m

   if (present(m)) then
      temp_m = m
   else
      temp_m = 0
   end if

   series_sum_result = 0
   do i = temp_m, n
      series_sum_result = series_sum_result + s + i * d
   end do

end function series_sum

This new version of the function can now be called with any of the
following statements, all of which compute the same sum:
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print *, series_sum(0, 700, 100.0, 0.1)
print *, series_sum(0, 700, d=0.1, s=100.0)
print *, series_sum(n=700, d=0.1, s=100.0)
print *, series_sum(d=0.1, s=100.0, n=700)
print *, series_sum(m=0, n=700, d=0.1, s=100.0)

3.8.8 Procedures as Arguments

An actual argument and the corresponding dummy argument may be
a procedure. The actual argument itself may be a dummy procedure.
An intrinsic procedure may not be passed as an actual argument.

In a function or subroutine that has a procedure as a dummy argu-
ment, the dummy argument must be “declared”, much as every other
dummy argument is declared. However, to “declare” a procedure,
quite a bit of information must be provided. An interface block is used
for this purpose. An interface block basically consists of the procedure
itself with all of the executable code and declarations of local variables
removed, leaving all of the information about its arguments and the re-
sult returned if it is a function.

In 3.13, the numerical integration routine has a dummy argument
that is the function to be integrated. In this case, the function has one
real argument and the result is real. Thus, the interface block for this
dummy argument is

   interface
   function f(x) result(f_result)
      real, intent(in) :: x
      real :: f_result
   end function f
   end interface

In this case, the interface block contains almost the whole function
because there is only one executable statement in the function. In gen-
eral, of course, the executable part of a function may be fairly lengthy
and the interface block will be much smaller than the whole function.

3.8.9 Exercises

1. Write a program that tests cone_volume (Exercise 3 of 3.6.3) using
keywords to call the function with arguments in an inverted order.

2. Rewrite the function cone_volume (Exercise 3 of 3.6.3) to make the
radius an optional argument with a default value of 1 if it is not
present. Test the revised function by using it both with the argu-
ment present and with the argument missing.
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3.9 Using a Function in a Declaration Statement

Some intrinsic functions are not allowed in declarations—for example,
in the specification of the size of an array. However, in some circum-
stances, it is possible to invoke a user-defined function, which may, in
turn, call any intrinsic function. There are more details and an example
in 4.1.12.

3.10 The return Statement

The return statement causes execution of a procedure to terminate
with control given back to the calling procedure. With the use of mod-
ern control constructs, a procedure usually should terminate by com-
ing to the end of the procedure. However, there are situations in which
it is better to use a return statement than introduce a complicated set
of nested if constructs. Most of the programs in this book are too sim-
ple to require use of the return statement.

3.11 Scope

The scope of a name is the set of lines in an F program where that
name may be used and refer to the same parameter, variable, proce-
dure, or type. In general, the scope of a parameter or variable declared
in a program or module above the contains statement extends
throughout that program from the program or module statement to the
corresponding end statement, including any contained procedures, ex-
cept those in which the name is used to declare some other object in
the procedure.

A name declared in a procedure has scope extending only from the
beginning to the end of that procedure, not to any other procedure.

Names declared with the public attribute above the contains
statement in a module have larger scope. This scope includes all mod-
ules and programs that use the module and do not exclude the name
with an only clause. These ideas are illustrated by the following mod-
ule segment.

module m
   public :: s
   integer, private :: a, b
   . . .
contains
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subroutine s()
   real :: b
   . . .
   print *, a, b
   . . .

The values of a and b are printed in the subroutine. a is the integer
variable declared in the module; its scope includes the subroutine be-
cause it is not redeclared. However, it is a real value that is printed for
b, which is the b declared in the subroutine s. The scope of the integer
b declared in the module does not include the subroutine s. That is,
there are two variables with the name b, an integer variable b, whose
scope is the module and does not include the subroutines, and a real
variable b, whose scope consists of the subroutine s only.

The name of a procedure, its number and type of arguments, their
names for use only in keyword actual arguments, as well as the type of
its result variable if it is a function, are considered as declared in the
containing module, and its scope extends throughout the module.
Therefore, a procedure can be called by any procedure in the module
and, if it is public, any procedure in a program or another procedure
that uses the module.

3.12 The save Attribute

Unless something special is done by the programmer, the value of a
variable that is local to a procedure is not saved between calls to the
procedure. Suppose it is desirable to have a variable in a subroutine
that counts the number of times the subroutine is called; this might be
useful for debugging, for example.

subroutine s()
   integer, save :: call_count = 0

   call_count = call_count + 1
   print *, "This is execution #", call_count,  &
            "of subroutine s."
!      . . .
end subroutine s

In this case, the value of the local variable count is saved between calls
of the subroutine because it is declared with the save attribute.
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If a variable is given an initial value in a subroutine or function, it
must also be given the save attribute.

3.13 Case Study: Numerical Integration

In 2.4.7, we wrote a program integral to approximate the definite in-
tegral

by dividing the interval from a to b into n equal pieces, approximating
the curve with straight lines, and computing the sum of the areas of the
n trapezoids with the formula

In the program integral, the values for a, b, and n were read as input
data. Now that we have procedures, a better approach is to write a
function integral with arguments a, b, and n. The other problem with
the program integral is that the name of the function to be integrated
(sin, in the example), was “hard-wired” into the source code and could
not be changed without rewriting and recompiling the program. Since
it is possible to pass a procedure as an argument, we can make the
name of the function an additional argument f to our function integral.

However, if we want to test the program on the trigonometric sine
function as in Chapter 2, it is necessary to write a function whose only
purpose is to call the intrinsic sin function. This is necessary because
passing an intrinsic function as an argument is not allowed. This func-
tion sine is put in its own module sine_module. The executable state-
ments of the function integral use the dummy function argument f in
place of the particular function sin, resulting in the following program
integrate.

module integrate_module

   public :: integral

contains

function integral(f, a, b, n)  result(integral_result)
!  Calculates a trapezoidal approximation to an area
!  using n trapezoids.

!  The region is bounded by lines x = a, y = 0, x = b,
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!  and the curve y = f(x).

   interface
      function f(x) result(f_result)
         real, intent(in) :: x
         real :: f_result
      end function f
   end interface

   real, intent(in) :: a, b
   integer, intent(in) :: n
   real :: integral_result
   real :: h, total
   integer :: i

   h = (b - a) / n
!  Calculate the sum f(a)/2+f(a+h)+...+f(b-h)+f(b)/2
!  Do the first and last terms first
   total = 0.5 * (f(a) + f(b))
   do i = 1, n - 1
      total = total + f(a + i * h)
   end do

   integral_result = h * total

end function integral

end module integrate_module

module sine_module

   public :: sine

contains

function sine(x) result(sine_result)

   intrinsic :: sin
   real, intent(in) :: x
   real :: sine_result

   sine_result = sin(x)

end function sine

end module sine_module
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program integrate

   use integrate_module
   use sine_module

   print *, integral(sine, a=0.0, b=3.14159, n=100)

end program integrate

Here is the result of running the program, which computes the integral
of the trigonometric sine function from 0 to π.

   1.9998353

3.14 Case Study: Calculating Probabilities

Consider the problem of calculating the probability that a throw of two
dice will yield a 7 or an 11. One way to solve this problem is to have a
computer simulate many rolls of the dice and count how many times
the result is 7 or 11. The probability of throwing 7 or 11 is then the
number of successful throws divided by the total number of times the
throw of the dice was simulated.

3.14.1 The Built-In Subroutine random_number

The heart of a probabilistic simulation program is a procedure that
generates pseudorandom numbers. In F, such a procedure is built in; it
is a subroutine named random_number. The subroutine places uniform-
ly distributed real numbers greater than or equal to 0 and less than 1 in
the actual argument. The argument may be a single real variable or a
real array. In this section, we will use random_number to generate one
value at a time; in 4.6.1, we will use the same subroutine with an array
as the argument to generate a whole array of random numbers with
one subroutine call.

3.14.2 Computing the Probability of a 7 or 11

The program to estimate the probability of rolling 7 or 11 with two dice
is built on a subroutine random_int, which in turn is based on the in-
trinsic subroutine random_number. To simulate the roll of one die, we
need a subroutine that returns an integer from 1 to 6. The subroutine
random_int has three arguments, random_result, low, and high. The
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first is used to store the result, which is, with approximately equal
probability, any integer that is greater than or equal to low, the second
argument, and that is less than or equal to high, the third argument.
For example, the statement

call random_int(digit, 0, 9)

assigns to digit one of the 10 one-digit integers 0, 1, 2, ..., 9.
random_int is written as a subroutine, rather than a function for two
reasons:

1. It calls the subroutine random_number, which has the side effect of
modifying the “seed” of the random generator; hence random_int
itself has side effects. A function must never have a side effect.

2. If it were a function, it would be tempting to set the value of the
variable dice with the statement

dice = random_int(1, 6) + random_int(1, 6)

An optimizing compiler might change this into the statement

dice = 2 * random_int(1, 6)

and each roll of the dice would produce an even number!

The program seven_11 simulates the event of rolling the dice 1000
times and computes a pretty good approximation to the true answer,
which is 6/36 + 2/36 = 22.22%.

module random_int_module

   public :: random_int

contains

subroutine random_int(random_result, low, high)

   integer, intent(out) :: random_result
   integer, intent(in) :: low, high
   real :: uniform_random_value

   call random_number(uniform_random_value)
   random_result =  &
      int((high - low + 1) * uniform_random_value + low)

end subroutine random_int
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end module random_int_module

program seven_11

   use random_int_module

   integer, parameter :: number_of_rolls = 1000
   integer :: die_1, die_2, dice, i, wins

   wins = 0
   do i = 1, number_of_rolls
      call random_int(die_1, 1, 6)
      call random_int(die_2, 1, 6)
      dice = die_1 + die_2
      if ((dice == 7) .or. (dice == 11)) then
         wins = wins + 1
      end if
   end do

   print "(a, f6.2)",  &
      "The percentage of rolls that are 7 or 11 is",  &
       100.0 * real(wins) / real(number_of_rolls)

end program seven_11

Here is the result of one execution of the program.

The percentage of rolls that are 7 or 11 is 22.40

3.14.3 Exercises

1. Write a program that determines by simulation the percentage of
times the sum of two rolled dice will be 2, 3, or 12. You might want
to use a case construct (2.3).

2. Two dice are rolled until a 4 or 7 comes up. Write a simulation pro-
gram to determine the percentage of times a 4 will be rolled before
a 7 is rolled. What was the largest sequence of rolls before the issue
was decided?

3. Write a simulation program to determine the percentage of times
exactly 5 coins will be heads and 5 will be tails, if 10 fair coins are
tossed simultaneously.
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4. Use the subroutine random_int to create a program that deals a
five-card poker hand. Remember that the same card cannot occur
twice in a hand. Use a character valued function face_value(n)
that returns "Ace" for 1, "2" for 2, ..., "10" for 10, "Jack" for 11,
"Queen" for 12, and "King" for 13, and another character-valued
function suit(m) for the suit.

5. Modify the subroutine random_int so that the arguments low and
high are optional. If low is not present, use the value 1. If high is
not present, use the value low + 1. Test the subroutine with many
different calls in which the optional arguments are omitted, argu-
ments are called with keywords, and the arguments are in different
orders.

3.15 Recursion

Recursion may be thought of as a mechanism to handle flow of control
in a program, but its implementation requires dynamic storage alloca-
tion. Each time a recursive function or subroutine is called, there must
be space for new copies of the variables that are local to the procedure.
There is no way to tell at compile time how many times the routine
will call itself, hence there is no way to determine the amount of stor-
age needed to store copies of the variables local to a recursive proce-
dure.

The use of recursion is a very powerful tool for constructing pro-
grams that otherwise can be quite complex, particularly if the process
being modeled is described recursively. However, depending on the
implementation available, recursion can require a substantial amount
of runtime overhead. Thus, the use of recursion illustrates the classic
trade off between time spent in constructing and maintaining a pro-
gram and execution time. In some cases, a process described recursive-
ly can be transformed into an iterative process in a very straight-
forward manner; in other cases, it is very hard and the resulting proce-
dure is very difficult to follow. It is in these cases that recursion is such
a valuable tool. We will illustrate some examples that fall into each cat-
egory. A recursive version of the numerical integration program is dis-
cussed in 3.16.
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3.15.1 The Factorial Function

First, let’s look at the mathematical definition of the factorial function
n! defined for nonnegative integers. It is a simple example that will il-
lustrate many of the important ideas relating to recursion.

0! = 1
n! = n × (n−1)!   for n > 0

To use this definition to calculate 4!, apply the second line of the defini-
tion with n = 4 to get 4! = 4 × 3!. To finish the calculation we need the
value of 3!, which can be determined by using the second line of the
definition again. 3! = 3 × 2!, so that 4! = 4 × 3 × 2!. Using the second line
of the definition two more times yields 2! = 2 × 1! and 1! = 1 × 0!. Final-
ly, the first line of the definition can be applied to compute 0! = 1. Plug-
ging all these values back in produces the computation

4! = 4×3×2×1×1 = 24

From this, it is pretty obvious that an equivalent definition for n! is

n! = n×(n−1)×(n-2)×...×3×2×1

for integers greater than zero. So this is an example for which it should
be quite easy to write an iterative program as well as a recursive one,
but to illustrate the recursive technique, let’s first look at the recursive
version. It should be easy to understand because it follows the recur-
sive definition very closely.

module factorial_module

   public :: factorial

contains

recursive function factorial(n)  &
      result(factorial_result)

   integer, intent(in) :: n
   integer :: factorial_result

   if (n <= 0) then
      factorial_result = 1
   else
      factorial_result = n * factorial(n - 1)
   end if
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end function factorial

end module factorial_module

The function is called using its name in an expression as shown by
the simple program that computes 12!.

program test_factorial

use factorial_module
print*, "12! =", factorial(12)

end program test_factorial

 12! = 479001600

For a recursive function or subroutine, the keyword recursive
must be placed on the procedure heading line. This version of the func-
tion returns a result of 1 for a negative value of n for which the mathe-
matical factorial function n! is undefined. Another alternative is to treat
a negative argument as an error, but returning 1 keeps the example
simple.

This program illustrates something often called tail recursion,
which means that the only recursive call occurs as the very last step in
the computation of the procedure. It is always easy to turn a process
involving only tail recursion into an iterative process. Here is the itera-
tive version of the factorial function.

function factorial(n) result(factorial_result)

   integer, intent(in) :: n
   integer :: factorial_result
   integer :: i

   factorial_result = 1
   do i = 2, n
      factorial_result = i * factorial_result
   end do

end function factorial

Note that the do loop will be executed zero times for any value of n
that is less than 2, so that the value of 1 will be returned in these cases.



3.15 Recursion 115

3.15.2 The Fibonacci Sequence

This next example illustrates not only the use of recursion when an it-
erative program would do as well, but a case in which a decision to im-
plement a program based on a recursive definition yields an algorithm
that has very poor running time, even if recursive function calls had no
overhead.

The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21, 34, ..., arises in such
diverse applications as the number of petals in a daisy, the maximum
steps it takes to recognize a sequence of characters, and the most pleas-
ing proportions for a rectangle, the “golden section” of Renaissance
artists and mathematicians. It is defined by the relations

f(1) =1
f(2) =1
f(n) = f(n−1) + f(n−2)   for n>2

Starting with the third term, each Fibonacci number is the sum of the
two previous Fibonacci numbers. Naive incorporation of the recur-
rence relation in a recursive function program is very easy, but produc-
es an execution time disaster for all but the smallest values of n.

recursive function fibonacci(n)  &
      result(fibonacci_result)

   integer, intent(in) :: n
   integer :: fibonacci_result

   if (n <= 2) then
      fibonacci_result = 1
   else
      fibonacci_result = fibonacci(n - 1) +  &
                         fibonacci(n - 2)
   end if

end function fibonacci

If the function is used to calculate f(7), for example, the recursive calls
request computation of f(6) and f(5). Then the computation of f(6) again
calls for the computation of f(5) as well as f(4). Thus, values of f are
computed over and over with the same argument. In fact, the number
of recursive function calls resulting from a single call to fibonacci(n)
exceeds the answer, which is approximately 0.447×1.618n. The execu-
tion time of this function is called exponential because it depends on a
number greater than 1 raised to the nth power.
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To make this computation much more efficient, values of f must be
saved and reused when needed, rather than being recomputed. The
next function to compute the Fibonacci sequence is iterative rather than
recursive. It uses the variables f_i and f_i_minus_1 to hold the two
most recently computed values of f and is iterative rather than recur-
sive.

function fibonacci(n)  &
      result(fibonacci_result)

   integer, intent(in) :: n
   integer :: fibonacci_result
   integer :: f_i, save_f_i, i, f_i_minus_1

   if (n <= 2) then
      fibonacci_result = 1
   else
      f_i_minus_1 = 1
      f_i = 1
      do i = 3, n
         save_f_i = f_i
         f_i = f_i + f_i_minus_1
         f_i_minus_1 = save_f_i
      end do
      fibonacci_result = f_i
   end if

end function fibonacci

Although it may not be obvious at first glance why one must save the
value of f_i in a variable save_f_i and only later copy it to
f_i_minus_1, this function is by far more time and space efficient than
the previous version. The speed increase is so dramatic that it is worth
having a couple of lines of code that are not completely obvious.

3.15.3 The Towers of Hanoi

According to legend, there is a temple in Hanoi that contains a ritual
apparatus consisting of 3 posts and 64 gold disks of graduated size that
fit on the posts. When the temple was built, all 64 gold disks were
placed on the first post with the largest on the bottom and the smallest
on the top, as shown schematically in Figure 3-1. It is the sole occupa-
tion of the priests of the temple to move all the gold disks systematical-
ly until all 64 gold disks are on the third post, at which time the world
will come to an end.
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There are only two rules that must be followed:

1. Disks must be moved from post to post one at a time.

2. A larger disk may never rest on top of a smaller disk on the same
post.

A smaller version of this apparatus with only eight disks made of
plastic is sold as a recreational puzzle. The sequence of moves neces-
sary to solve the simpler puzzle is not obvious and often takes hours to
figure out. We propose to write a simple recursive procedure hanoi
that prints complete directions for moving any number of disks from
one post to another.

The recursive procedure hanoi is based on the following top-down
analysis of the problem. Suppose n disks are to be moved from a start-
ing post to a final post. Because the largest of these n disks can never
rest on a smaller disk, at the time the largest disk is moved, all n−1
smaller disks must be stacked on the free middle post as shown in Fig-
ure 3-2.

For the number of disks n>1, the algorithm has 3 steps.

Figure 3-1 The towers of Hanoi

Figure 3-2 Locations of the disks when the largest disk is to be moved
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1. Legally move the top n−1 disks from the starting post to the free
post.

2. Move the largest disk from the starting post to the final post.

3. Legally move the n−1 disks from the free post to the final post.

The middle step involves printing a single move instruction. The first
and third steps represent simpler instances of the same problem—sim-
pler in this case because fewer disks must be moved. Therefore, the
first and third steps may be handled by recursive procedure calls. In
case n=0, there are no instructions to be printed, and this provides a
nonrecursive path through the procedure for the simplest case. The F
subroutine hanoi, its test program test_hanoi, and a sample execu-
tion output for four disks are shown. It is not easy to write an iterative
version of this program.

module hanoi_module

   public :: hanoi

contains

recursive subroutine hanoi(number_of_disks,  &
      starting_post, goal_post)
  
   integer, intent(in) ::  &
   number_of_disks, starting_post, goal_post
   integer :: free_post
   ! all_posts is the sum of the post values 1+2+3
   ! so that the free post can be determined
   ! by subtracting the starting_post and the
   ! goal_post from this sum.
   integer, parameter :: all_posts = 6
 
   if (number_of_disks > 0) then
      free_post =  &
      all_posts - starting_post - goal_post
      call hanoi(number_of_disks - 1,  &
                  starting_post, free_post)
      print *, "Move disk", number_of_disks,  &
            "from post", starting_post,  &
            "to post", goal_post
      call hanoi(number_of_disks - 1,  &
                  free_post, goal_post)
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   end if

end subroutine hanoi

end module hanoi_module

program test_hanoi

   use hanoi_module
  
   integer :: number_of_disks

   read *, number_of_disks
   print *, "Input data  number_of_disks:",  &
         number_of_disks
   print *
   call hanoi(number_of_disks, 1, 3)
  
end program test_hanoi

 Input data  number_of_disks: 4

 Move disk 1 from post 1 to post 2
 Move disk 2 from post 1 to post 3
 Move disk 1 from post 2 to post 3
 Move disk 3 from post 1 to post 2
 Move disk 1 from post 3 to post 1
 Move disk 2 from post 3 to post 2
 Move disk 1 from post 1 to post 2
 Move disk 4 from post 1 to post 3
 Move disk 1 from post 2 to post 3
 Move disk 2 from post 2 to post 1
 Move disk 1 from post 3 to post 1
 Move disk 3 from post 2 to post 3
 Move disk 1 from post 1 to post 2
 Move disk 2 from post 1 to post 3
 Move disk 1 from post 2 to post 3

3.15.4 Indirect Recursion

It is possible for procedures a and b to be indirectly recursive in the
sense that a calls b and b calls a. An example of this kind of recursion
occurs in the function term in 5.3.
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3.15.5 Exercises

1. Write a recursive function bc(n, k) to compute the binomial coeffi-

cient , , using the relations

   for 0<k<n

2. Write an efficient program to compute the binomial coefficient .

3. The following recurrence defines f(n) for all nonnegative integer
values of n.

f(0) = 0
f(1) = f(2) = 1
f(n) = 2f(n−1) + f(n−2) − 2f(n−3)   for n>2

Write a function f to compute f(n), . Also have your program
verify that for , f(n) = [(−1)n+1+2n ]/3.

4. For positive integers a and b, the greatest common divisor of a and
b satisfies the following recurrence relationship:

gcd(a,b) = b   if a mod b = 0
gcd(a,b) = gcd(b,a mod b)   if  a mod b ≠ 0

Write a recursive function gcd(a,b) using these recurrences. Test
the program by finding gcd(24,36), gcd(16,13), gcd(17,119), and
gcd(177,228).

3.16 Case Study: Adaptive Numerical Integration

To illustrate a very effective use of recursion to solve a problem of cen-
tral importance in numerical computing, let us return to the program
integrate from 3.13 that computes an approximation to a definite in-
tegral
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that represents the area bounded by the lines x=a, x=b, y=0, and the
curve y=f(x), by a sum of the areas of n trapezoids, each of width h. The
program used a function integral that takes arguments that are a
function, the lower and upper limits of integration, and an integer that
indicates the number of intervals to be used to form the approximating
sum. The example in 3.13 computes

integral(sine, a=0.0, b=3.14159, n=100)

passing the function sine to be integrated as the first argument to the
function integral.

Now suppose we want to integrate a function such as

Instead of using the previous version of the function integral, a
slightly more sophisticated recursive function is used because decreas-
ing the width of each trapezoid may not be the most efficient way to
improve the accuracy of a trapezoidal approximation. In regions where
the curve y=f(x) is relatively straight, trapezoids approximate the area
closely, and further reductions in the width of the trapezoids produces
little further reduction in the error, which is already small. In regions
where the curve y=f(x) bends sharply, on the other hand, the area under
the curve is approximated less well by trapezoids, and it would pay to
concentrate the extra work of computing the areas of thinner trape-
zoids in such regions.

Another advantage of the function integral in this section is that
it takes as input argument the maximum permitted error in the answer,
rather than the number of subdivisions, whose relationship to the error
in the answer is hard to predict in general.

The recursive function integral written in this section uses an
adaptive trapezoidal method of approximating the area under a curve,
requesting extra calculations through a recursive call only in those re-
gions where the approximation by trapezoids is not yet sufficiently ac-
curate.

Mathematicians tell us that the error E(h) in approximating the area
of the almost rectangular region with top boundary y=f(x) by the area
of one trapezoid is approximately −1/12fʹʹ(c)h3, where h is the width of
the trapezoid, and c is some x value in the interval, whose exact loca-
tion may not be known, but which matters little because for reasonable
functions fʹʹ(x) varies little over a small interval of width h. The depen-
dence of E(h) on h3 shows why the error drops rapidly as h decreases,
and the dependence of E(h) on fʹʹ(c) shows why the error is smaller

f x( ) e x– 2

=
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when fʹʹ(x) is smaller, at places such as near inflection points (where
the tangent line crosses the curve) where fʹʹ(x)=0. If the same region is
approximated by the sum of the areas of two trapezoids, each of width
h/2, the error in each of them is approximately −1/12fʹʹ(c1)(h/2)3, or
1/8E(h), if we assume fʹʹ(x) changes little over such a small interval so
that fʹʹ(c)~fʹʹ(c1). Since there are two trapezoids, the total error E(h/2) is
approximately E(h)/4. If T(h) and T(h/2) are the two trapezoidal approx-
imations and I is the exact integral, we have approximately

             

             

             

This formula provides a way to check whether the trapezoidal approx-
imations are better than a specified error tolerance. Since

approximately, the two-trapezoid approximation is sufficiently accu-
rate if

If not, then the error tolerance is split in two, and the adaptive trape-
zoidal function integral is called again to approximate the area of
each half of the region to within half of the original error tolerance.
Thus, only regions where the approximation error is still large are fur-
ther subdivided.

module integral_module

   public :: integral

contains

recursive function integral(f, a, b, tolerance)  &
      result(integral_result)

   intrinsic :: abs
   interface
      function f(x) result(f_result)
         real, intent(in) :: x
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         real :: f_result
      end function f
   end interface
   real, intent(in) :: a, b, tolerance
   real :: integral_result
   real :: h, mid
   real :: one_trapezoid_area, two_trapezoid_area
   real :: left_area, right_area

   h = b - a
   mid = (a + b) /2
   one_trapezoid_area = h * (f(a) + f(b)) / 2.0
   two_trapezoid_area = h/2 * (f(a) + f(mid)) / 2.0 + &
                        h/2 * (f(mid) + f(b)) / 2.0
   if (abs(one_trapezoid_area - two_trapezoid_area)  &
         < 3.0 * tolerance) then
      integral_result = two_trapezoid_area
   else
      left_area = integral(f, a, mid, tolerance / 2)
      right_area = integral(f, mid, b, tolerance / 2)
      integral_result = left_area + right_area
   end if

end function integral

end module integral_module

To test the function integral, we write a small test program and a
function subprogram f. The test program will evaluate

to an accuracy of 0.01. The curve  is an unnormalized error
distribution function, used extensively in probability and statistics. Its
integral is  (approximately 1.772454). It is assumed that function_
module contains a function f that evaluates .

program integrate

   use function_module
   use integral_module
   use math_module, only : pi

   real :: x_min, x_max
   real :: answer
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xd
4–

4
∫

y e x2–=

π
f x( ) e x2–=
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   x_min = -4.0
   x_max = 4.0
   answer = integral(f, x_min, x_max, 0.01)
   print "(a, f11.6)",  &
         "The integral is approximately ",  &
          answer
   print "(a, f11.6)",  &
         "The exact answer is           ",  &
          sqrt(pi)

end program integrate

The integral is approximately    1.777074
The exact answer is              1.772454

Because the modules integral_module and math_module both
might be useful in contexts other than with this simple test program, it
makes sense to keep them separate. When parts of a program are kept
in separate files, the process of compiling and running the program
could be a little more complicated, although how this is done depends
on the system being used. In any case, it is important to ensure that the
current version of each piece of the program is the one that is used.
Many systems have programs, such as make, that help with this task.

Comparing the adaptive trapezoidal approximation to the exact
answer, we see that the difference is approximately 0.0046, which is
less than the specified error tolerance 0.01. Figure 3-3 shows the ap-

Figure 3-3 Approximating trapezoids used to calculate the integral of 

y e x2–=

x

y

1 2-1-2

e x2–
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proximating trapezoids used between x=−2 and x=+2 to obtain the an-
swer; trapezoids not shown have boundary points at x=−4, −3, −2, 2, 3,
and 4. Notice that more trapezoids are required to keep within the er-
ror tolerance in the highly curved regions near the maximum of the
function and where it first approaches zero than are required in the rel-
atively straight regions near the two inflection points where the curve
switches from concave upward to concave downward.

3.16.1 Exercises

1. Determine the number of trapezoids needed to evaluate

to an accuracy of 0.01 using the nonadaptive integration function
discussed in 3.13.

2. Determine the approximate value of

using both the adaptive integration method of this section and the
nonadaptive integration method discussed in 3.13. The area under
the curve y=f(x) between x=a−h and x=a+h may be approximated by
the area under a parabola passing through the three points (a−
h,f(a−h)), (a,f(a)), and (a+h,f(a+h)). The approximation, called Simp-
son’s approximation, is given by the formula

with error −1/90fʹʹʹʹ(c)h5 for some c in the interval of integration.

Use these facts to write a recursive adaptive Simpson’s approxima-
tion function patterned on the adaptive trapezoidal approximation
function integral in this section. Compare the number of recur-
sive function calls for your adaptive Simpson’s approximation
function with the number required to achieve the same accuracy
with the adaptive trapezoidal rule.

3.17 Bit Intrinsic Procedures

Sometimes it is convenient to be able to manipulate the individual bits
of an F integer value. One example might involve using the bits of a
large array of integers to represent the states of the components of an
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electronic circuit. The following example uses only two integer values
to store and manipulate bits just to see how things work.

The bits of integer value are numbered right to left starting with bit
0 on the right; the integer is assumed to be stored using a binary repre-
sentation. The first executable statement of the program starts with in-
teger value 0, whose bits are all 0, and sets bit 3 to 1 using the intrinsic
function bset. Then bit two is also set by immediately calling bset
again and the result is saved as the value of b1100. Since the decimal
equivalent of binary 1100, which has bits 3 and 2 set, is 12, the result of
this assignment is the same as setting the variable b1100 to 12. Similar-
ly, bits 3 and 1 of b1010 are set, resulting in b1010 having the value 10.

This is all verified by printing b1100 as an integer and using the in-
trinsic function btest to check which of the bits 3, 2, 1, and 0 of b1100
and b1010 are set. Similar print statements are used to show the val-
ues of ior and iand applied to these two values.

program bits

   integer :: b1100, b1010
   character(len=*), parameter :: &
      form = "(a15, 4l2)"
   integer :: k

   b1100 = ibset(ibset(0,3),2)
   b1010 = ibset(ibset(0,3),1)

   print *, "The integer value of b1100 is", b1100
   print *

   print form, "b1100", &
      (btest(b1100, k), k = 3, 0, -1)
   print form, "b1010", &
      (btest(b1010, k), k = 3, 0, -1)
   print form, "Logical or", &
      (btest(ior(b1100,b1010), k), k = 3, 0, -1)
   print form, "Logical and", &
      (btest(iand(b1100,b1010), k), k = 3, 0, -1)
 
end program bits

Running this program produces output that illustrates how logical
or and logical and are computed.
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 The integer value of b1100 is 12

          b1100 T T F F
          b1010 T F T F
     Logical or T T T F
    Logical and T F F F

The other bit intrinsic procedures are ibclr, which sets a bit to 0,
ieor, which computes exclusive or, ishft and ishftc which perform
end-off and circular shifts, not, which complements the bits of its argu-
ment, and the mvbits subroutine, which copies bits from one integer to
another.

3.17.1 Exercise

1. Write a function number_of_bits(n) that counts the number of
bits in an integer argument n that are 1. Test the function by print-
ing its values for n = −16, −15, .., −2, −1, 0, 1, 2, ..., 16. Also print the
values of the function for huge(n) and −huge(n).
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Arrays 4
In ordinary usage, a list is a sequence of values, usually all represent-
ing data of the same kind, or otherwise related to one another. A list of
students registered for a particular course and a list of all students en-
rolled at a college are examples.

In F, a collection of values of the same type is called an array. We
will also refer to a one-dimensional array as a “list”. Frequently, the
same operation or sequence of operations is performed on every ele-
ment in an array. On a computer that performs one statement at a time,
it makes sense to write such programs by specifying what happens to a
typical element of the array and enclosing these statements in a suffi-
cient number of do constructs (loops) to make them apply to every ele-
ment. F also has powerful operations and intrinsic functions that
operate on whole arrays or sections of an array. Programs written us-
ing these array operations are often clearer and are more easily opti-
mized by F compilers. Especially on computers with parallel or array
processing capabilities, such programs are more likely to take advan-
tage of the special hardware to increase execution speed.

4.1 Declaring and Using Arrays in F

We introduce the use of arrays with an example involving credit card
numbers.

4.1.1 A Credit Card Checking Application

As an example of a problem that deals with a list, suppose that a com-
pany maintains a computerized list of credit cards that have been re-
ported lost or stolen or that are greatly in arrears in payments. The
company needs a program to determine quickly whether a given credit
card, presented by a customer wishing to charge a purchase, is on this
list of credit cards that can no longer be honored.
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Suppose that a company has a list of 8262 credit cards reported lost
or stolen, as illustrated in Table 4-1.

Since all of the 8262 numbers in the list must be retained simulta-
neously in the computer’s main memory for efficient searching, and
since a simple (scalar) variable can hold only one value at a time, each
number must be assigned as the value of a variable with a different name
so that the computer can be instructed to compare each account num-
ber of a lost or stolen card against the account number of the card of-
fered in payment for goods and services.

4.1.2 Subscripts

It is possible to use variables with the 8262 names

lost_card_1
lost_card_2
lost_card_3
 .
 .
 .
lost_card_8262

to hold the 8262 values. Unfortunately, the F language does not recog-
nize the intended relationship between these variable names, so the
search program cannot be written simply. The F solution is to declare a
single object name lost_card that consists of many individual integer
values. The entire collection of values may be referenced by its name

Table 4-1 Lost credit cards

Account number of 1st lost credit card 2718281

Account number of 2nd lost credit card 7389056

Account number of 3rd lost credit card 1098612

Account number of 4th lost credit card 5459815

Account number of 5th lost credit card 1484131

. .

. .

. .

Account number of 8262nd lost credit card 1383596
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lost_card and individual card numbers in the list may be referenced
by the following names:

lost_card(1)
lost_card(2)
lost_card(3)
   .
   .
   .
lost_card(8262)

This seemingly minor modification of otherwise perfectly accept-
able variable names opens up a new dimension of programming capa-
bilities. All the programs in this chapter, and a large number of the
programs in succeeding chapters, use arrays.

The numbers in parentheses that specify the location of an item
within a list (or array) are subscripts, a term borrowed from mathe-
matics. Although mathematical subscripts are usually written below
the line (hence the name), such a form of typography is impossible on
most computer input devices. A substitute notation, enclosing the sub-
script in parentheses or brackets, is adopted in most computer lan-
guages. It is customary to read the expression x(3) as “x sub 3”, just as
if it were written x3.

The advantage of this method of naming the quantities over using
the variable names lost_card_1, lost_card_2, ..., lost_card_8262
springs from the following programming language capability: The sub-
script of an array variable may itself be a variable, or an even more compli-
cated expression.

The consequences of this simple statement are much more pro-
found than would appear at first sight.

For a start in describing the uses of a subscript that is itself a vari-
able, the two statements

i = 1
print *, lost_card(i)

produce exactly the same output as the single statement

print *, lost_card(1)

namely, 2718281, the account number of the first lost credit card on the
list. The entire list of account numbers of lost credit cards can be print-
ed by the subroutine print_lost_cards.
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subroutine print_lost_cards(lost_card)

   integer, dimension(:), intent(in) :: lost_card
   integer :: i

   do i = 1, 8262
      print *, lost_card(i)
   end do

end subroutine print_lost_cards

As an example of an array feature in F, the collection of card numbers
as a whole can be referenced by its name and so the do construct can be
replaced by the one statement

 print *, lost_card

The replacement just made actually creates a different output. The
difference is that using the do loop to execute a print statement 8262
times causes each card number to be printed on a separate line. The
new version indicates that as many as possible of the card numbers
should be printed on one line, which might not produce acceptable
output. Adding a simple format for the print statement instead of us-
ing the default produces a more desirable result, printing four card
numbers per line.

print “(4i8)”, lost_card

This is a little better, but another problem is that the number of lost
and stolen cards varies daily. The subroutine will not be very useful if
it makes the assumption that there are exactly 8262 cards to be printed
each time. The declaration of an array-valued dummy argument indi-
cates the number of subscripts, but does not fix the size of the dummy
array.

integer, dimension(:), intent(in) :: lost_card

The colon indicates that the size of the array lost_card is to be as-
sumed from the array that is the actual argument given when the sub-
routine is called. Also, this passed-on size can be used to print the
entire list of cards using the intrinsic function size.

do i = 1, size(lost_card)
   print *, lost_card(i)
end do
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The result would be a general subroutine for printing a list of integers.

4.1.3 Array Declarations

The name of an array must obey the same rules as an ordinary variable
name. Each array must be declared in the declaration section of pro-
gram, module, or procedure. A name is declared to be an array by put-
ting the dimension attribute in a type statement followed by a range of
subscripts, enclosed in parentheses. For example,

real, dimension(1:9) :: x, y
logical, dimension(-99:99) :: yes_no

declares that x and y are lists of 9 real values and that yes_no is a list
of 199 logical values. These declarations imply that a subscript for x or
y must be an integer expression with a value from 1 to 9 and that a
subscript for yes_no must be an integer expression whose value is
from −99 to +99.

In a function or subroutine, the range of a dummy argument con-
sists of just the colon, possibly preceded by a lower bound, and the
subscript range is determined by the corresponding actual argument
passed to the procedure. This sort of dummy argument is called an as-
sumed-shape array. If no lower bound is given, the subscript range is
from 1 to the size of the array, in each dimension.

subroutine s(d)
   integer, dimension(:, :, 0:), intent(in) :: d

In this case, the subscripts on the dummy array d range from 1 to
size(d,1) for the first subscript, from 1 to size(d,2) for the second,
and from 0 to size(d,3)-1 for the third.

A list of character strings may be declared in a form like the fol-
lowing:

character(len=8), dimension(0:17) :: char_list

In this example, the variable char_list is a list of 18 character strings,
each of length 8.

If char_list were a dummy argument, its length must be “*” and
its subscripts must be “:”, so its declaration would be

character(len=*), dimension(:), &
      intent(in out) :: char_list
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The shape of an array is a list of the number of elements in each di-
mension. A 9 × 7 array has shape (9,7); the array char_list declared
above has shape (18); and the array declared by

integer, dimension(9, 0:99, -99:99) :: iii

has shape (9,100,199). When only one number is given in a dimension
declaration in place of a subscript range, it is used as the upper sub-
script bound and the lower bound is 1.

The shape of a scalar is a list with no elements in it. The shape of a
scalar or array can be computed using the shape intrinsic function.

The declaration of a local array also may use values of other dum-
my arguments or values in its host (program or module) to establish
extents and hence the shape of the array; such arrays are called auto-
matic arrays. For example, the statements

subroutine s2(dummy_list, n, dummy_array)
   real, dimension(:) :: dummy_list
   real, dimension(size(dummy_list)) :: local_list
   real, dimension(n, n) :: dummy_array, local_array 
   real, dimension(2*n+1) :: longer_local_list

declare that the size of dummy_list is to be the same as the size of the
corresponding actual argument, that the array local_list is to be the
same size as dummy_list, and that dummy_array and local_array are
both to be two-dimensional arrays with n × n elements. The last decla-
ration shows that some arithmetic on other dummy arguments is per-
mitted in calculating array bounds; these expressions may include
references to certain intrinsic functions, such as size and user-defined
functions, in some circumstances (4.1.12).

If an array is declared outside a procedure, it must either be de-
clared with constant fixed bounds or be declared to be allocatable or
pointer and be given bounds by the execution of an allocate state-
ment (4.1.5) or a pointer assignment (8.1.1). In the first case, our lost
and stolen card program might contain the declaration

integer, dimension(8262) :: lost_card

This is not satisfactory if the number of lost cards changes frequently.
In this situation, one solution is to declare the array to have a suffi-
ciently large upper bound so that there will always be sufficient space
to hold the card numbers. Because the upper bound is fixed, there
must be a variable whose value is the actual number of cards lost. As-
suming that the list of lost credit cards is stored in a file connected to
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the standard input unit (unit=*), the following program fragment
reads, counts, and prints the complete list of lost card numbers. The
read statement has an iostat keyword argument whose value is set to
zero if no error occurs and is set to a negative number if there is an at-
tempt to read beyond the last data item in the file. In the program
read_cards, the longer form of the read statement is required by the
use of iostat (9.2.8).

program read_cards

integer, dimension(20000) :: lost_card
integer :: number_of_lost_cards, i, iostat_var

do i = 1, 20000
   read (unit=*, fmt=*, iostat=iostat_var) lost_card(i)
   if (iostat_var < 0) then
      number_of_lost_cards = i - 1
      exit
   end if
end do
   . . .
print “(4i8)”, lost_card(1:number_of_lost_cards)

end program read_cards

Although the array lost_card is declared to have room for 20,000 en-
tries, the print statement limits output to only those lost card numbers
that actually were read from the file by specifying a range of subscripts
1:number_of_lost_cards (see 4.1.6 for details about this notation).

4.1.4 Array Constructors

Rather than assign array values one by one, it is convenient to give an
array a set of values using an array constructor. An array constructor is
a sequence of scalar values defined along one dimension only. An array
constructor is a list of values, separated by commas and delimited by
the pair of two-character symbols “(/” and “/)”. There are three possi-
ble forms for the array constructor values:

1. A scalar expression as in

x(1:4) = (/ 1.2, 3.5, 1.1, 1.5 /)

2. An array expression as in

x(1:4) = (/ a(i, 1:2), a(i+1, 2:3) /)
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3. An implied do loop as in

x(1:4) = (/ (sqrt(real(i)), i=1,4) /)

If there are no values specified in an array constructor, the result-
ing array is zero sized. The values of the components must have the
same type and type parameters (kind and length). The rank of an array
constructor is always one; however, the reshape intrinsic function can
be used to define rank-two to rank-seven arrays from the array con-
structor values. For example,

reshape ( (/ 1, 2, 3, 4, 5, 6 /), (/ 2, 3 /) )

is the 2 × 3 array 

An implied do list is a list of expressions, followed by something that
is like an iterative control in a do statement. The whole thing is con-
tained in parentheses. It represents a list of values obtained by writing
each member of the list once for each value of the do variable replaced
by a value. For example, the implied do list in the array constructor
above

(sqrt(real(i)), i=1,4)

is the same as the list

sqrt(real(1)), sqrt(real(2)),
sqrt(real(3)), sqrt(real(4))

A do variable must be an integer variable declared in the program
or procedure where it is used. It must not be an array element. or a
component of a structure (6). It must not be a dummy argument. It
must not have the pointer or target attribute (8.1). An implied do
also can be used in an input/output list (9.3.3).

4.1.5 Dynamic Arrays

Dynamic storage allocation means that storage may be allocated or
deallocated for variables during execution of the program. With dy-
namic storage allocation, the program can wait until it knows during ex-
ecution exactly what size array is needed and then allocate only that
much space. Memory also can be deallocated dynamically, so that the
storage used for a large array early in the program can be reused for
other large arrays later in the program after the values in the first array
are no longer needed.

1 3 5
2 4 6
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For example, instead of relying on an end-of-file condition when
reading in the list of lost cards, it is possible to keep the numbers
stored in a file with the number of lost cards as the first value in the
file, such as

8262
2718281
7389056
1098612
5459815
1484131
   .
   .
   .
1383596

The program can then read the first number, allocate the correct
amount of space for the array, and read the lost card numbers.

integer, dimension(:), allocatable :: lost_card
integer :: number_of_lost_cards
integer :: allocation_status
   . . .
! The first number in the file is
! the number of lost card numbers in the
! rest of the file.
read *, number_of_lost_cards
allocate (lost_card(number_of_lost_cards), &
          stat=allocation_status)

if (allocation_status > 0) then
   print *, “Allocation error”
   stop
end if

! Read the numbers of the lost cards
read “(i7)”, lost_card
   . . .

In the declaration of the array lost_card, the colon is used to indicate
the rank (number of dimensions) of the array, but the bound is not
pinned down until the allocate statement is executed. The allocat-
able attribute indicates that the array is to be allocated dynamically.
Because the programmer doesn’t know how many lost cards there will
be, there is no way to tell the compiler that information. During execu-
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tion, the system must be able to create an array of any reasonable size
after reading from the input data file the value of the variable
number_of_lost_cards.

If there is an allocation error (insufficient memory, for example),
the variable allocation_status is set to a positive value, which may
be tested by the programmer.

The component of a derived type (6.2) and a function result (3.6.1)
may be allocatable.

The deallocate statement may be used to free the allocated stor-
age. Arrays declared allocatable in a procedure are deallocated when
execution of the procedure is completed, if the array is allocated.

4.1.6 Array Sections

In the following statement, used in the program read_cards, a section
of the array lost_card is printed.

print “(4i8)”, lost_card(1:number_of_lost_cards)

On many occasions such as the one above, only a portion of the ele-
ments of an array is needed for a computation. It is possible to refer to
a selected portion of an array, called an array section. A parent array is
an aggregate of array elements, from which a section may be selected.

In the following example

real, dimension(10) :: a
   . . .
a(2:5) = 1.0

the parent array a has 10 elements. The array section consists of ele-
ments a(2), a(3), a(4), and a(5). The section is an array itself and the
value 1.0 is assigned to all four of the elements in a(2:5).

In addition to the ordinary subscript that can select a subobject of
an array, there are two other mechanisms for selecting certain elements
along a particular dimension of an array. One is a subscript triplet, and
the other is a vector subscript.

The syntactic form of a subscript triplet is

[ expression ] : [ expression ]  [ : expression ]

where each set of brackets encloses an optional item and each expres-
sion must produce a scalar integer value. The first expression gives a
lower bound, the second an upper bound, and the third a stride. If the
lower bound is omitted, the lower bound that was declared or allocat-
ed is used. (Note that an assumed-shape dummy array is treated as if it
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were declared with lower bound 1 unless a lower bound is given ex-
plicitly.) If the upper bound is omitted, the upper bound that was de-
clared or allocated is used. If the declared bounds are :, the number of
elements in each dimension is the size in that dimension. The stride is
the increment between the elements in the section referenced by the
triplet notation. If omitted, it is assumed to be one. For example, if v is
a one-dimensional array (list) of ten numbers

v(0:4)

represents elements v(0), v(1), v(2), v(3), and v(4) and

v(3:7:2)

represents elements v(3), v(5), and v(7).
Each expression in the subscript triplet must be scalar. The values

of any of the expressions in triplet notation may be negative. The stride
must not be zero. If the stride is positive, the section is from the first
subscript up to the second in steps of the stride. If the stride is nega-
tive, the section is from the first subscript down to the second, decre-
menting by the stride.

Another way of selecting a section of an array is to use a vector
subscript. A vector subscript is an integer array expression of rank
one. For example, if iv is a list of three integers, 3, 7, and 2, and x is a
list of 9 real numbers 1.1, 2.2, ..., 9.9, the value of x(iv) is the list of
three numbers 3.3, 7.7, and 2.2—the third, seventh, and second ele-
ments of x.

Ordinary subscripts, triplets, and vector subscripts may be mixed
in selecting an array section from a parent array. An array section may
be empty.

Consider a more complicated example. If b were declared in a type
statement as

real, dimension(10, 10, 5) :: b

then b(1:4:3, 6:8:2, 3) is a section of b, consisting of four elements:

b(1, 6, 3)   b(1, 8, 3)
b(4, 6, 3)   b(4, 8, 3)

The stride along the first dimension is 3; therefore, the notation refer-
ences the first subscripts 1 and 4. The stride in the second dimension is
2, so the second subscript varies by 2 and takes on values 6 and 8. In
the third dimension of b, there is no triplet notation, so the third sub-
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script is 3 for all elements of the section. The section would be one that
has a shape of (2, 2), that is, it is two dimensional, with extents 2 and 2.

To give an example using both triplet notation and a vector sub-
script suppose again that b is declared as above:

real, dimension(10, 10, 5) :: b

then b(8:9, 5, (/ 4, 5, 4/)) is a 2 × 3 array consisting of the six
values

b(8, 5, 4)   b(8, 5, 5)   b(8, 5, 4)
b(9, 5, 4)   b(9, 5, 5)   b(9, 5, 4)

If vs is a list of three integers, and vs = (/ 4, 5, 4/), the expression
b(8:9, 5, vs) would have the same value as b(8:9, 5, (/4, 5, 4/)).
The expression b(8:9, 5, vs) cannot occur on the left side of an as-
signment because of the duplication of elements of b.

The pack and unpack intrinsic functions (A.8.6) may be useful in
similar situations. As one simple example, the following program
prints the positive elements of the array: 3, 7, and 4.

program print_pack

integer, dimension(6) :: x = (/3, -7, 0, 7, -2, 4/)
print *, pack(x, mask = (x > 0))

end program print_pack

4.1.7 Array Assignment

Array assignment assigns values to a collection of array elements. A
simple example is

real, dimension(100, 100) :: a
   . . .
a = 0

Array assignment is permitted under two circumstances: when the ar-
ray expression on the right has exactly the same shape as the array on
the left, and when the expression on the right is a scalar. The term for
this is that the expression on the right of the equals is conformable to
the variable on the left. Note that, for example, if a is a 9 × 9 array, the
section a(2:4, 5:8) is the same shape as a(3:5, 1:4), so the assign-
ment

a(2:4, 5:8) = a(3:5, 1:4)
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is valid, but the assignment

a(1:4, 1:3) = a(1:3, 1:4)

is not valid because. even though there are 12 elements in the array on
each side of the assignment, the left side has shape (4, 3) and the right
side has shape (3, 4).

When a scalar is assigned to an array, the value of the scalar is as-
signed to every element of the array. Thus, for example, the statement

m(k+1:n, k) = 0

sets the elements m(k+1, k), m(k+2, k), ..., m(n, k) to zero.

4.1.8 The where Construct

The where construct may be used to assign values to only those ele-
ments of an array where a logical condition is true; thus, it is often
called a masked array assignment. For example, the following state-
ments set the elements of b and c to zero in those positions where the
corresponding element of a is negative. The other elements of b and c
are unchanged. a, b, and c must be arrays of the same shape.

where (a < 0)
   b = 0
   c = 0
end where

The logical condition in parentheses is an array of logical values con-
formable to each array in the assignment statement. In the example
above, comparison of an array of values with a scalar produces the ar-
ray of logical values.

The where construct permits any number of array assignments to
be done under control of the same logical array. elsewhere statements
within a where construct permit array assignments to be done where
the logical expression is false and to indicate other conditions to affect
additional statements. A where construct may contain nested where
constructs.

The following statements assign to the array a the quotient of the
corresponding elements of b and c in those cases where the element of
c is not zero. In the positions where the element of c is zero, the corre-
sponding element of a is set to zero and the zero elements of c are set
to 1.

where (c /= 0) ! c/=0 is a logical array.
   a = b / c   ! a and b must conform to c.
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elsewhere
   a = 0       ! The elements of a are set to 0
               ! where they have not been set to b/c.
   c = 1       ! The 0 elements of c are set to 1.
end where

The following program contains statements to set the array of inte-
gers key to −1, 0, or 1, depending on whether the corresponding ele-
ment of the real array a is negative, zero, or positive, respectively. To
see that the statements work correctly, the array a is filled with random
numbers using the random_number subroutine. The values below the
diagonal are negative; those above the diagonal are positive; and the
diagonal is set to 0.

program elsewhere_example

integer, parameter :: n=9
integer, dimension(n,n) :: key
integer :: i, j

real, dimension(n,n) :: a

call random_number(a)
do i=1, n
   do j = 1, n
      if (i > j) then
         ! Put negative numbers below the diagonal
         a(i,j) = -a(i,j) - 2.0
      else if (i < j) then
         ! Put positive numbers above the diagonal
         a(i,j) = a(i,j) + 2.0
      else
         ! Put zeros on the diagonal
         a(i,j) = 0.0
      end if
   end do
end do

where (a > 0)
   key = 1
elsewhere (a < 0)
   key = -1
elsewhere
   key = 0
end where
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print "(9f5.1)", (a(i,:),i=1,9)
print *
print "(9i5)", (key(i,:),i=1,9)

end program elsewhere_example

Here is the result of one execution of the program.

  0.0  2.6  2.8  2.3  2.1  2.5  2.3  2.5  2.3
 -3.0  0.0  2.6  2.9  2.4  2.4  2.8  2.6  2.9
 -2.3 -2.8  0.0  3.0  2.2  2.4  2.4  3.0  2.3
 -2.9 -2.3 -2.2  0.0  2.7  2.6  2.6  2.9  2.9
 -2.6 -2.2 -2.8 -2.3  0.0  2.1  2.5  2.5  2.5
 -2.1 -2.9 -2.5 -2.3 -2.1  0.0  2.7  2.8  2.3
 -2.3 -2.6 -2.9 -2.6 -2.9 -2.9  0.0  2.8  2.5
 -2.8 -2.8 -3.0 -2.7 -2.9 -2.2 -2.9  0.0  2.7
 -2.4 -2.1 -2.2 -2.1 -2.8 -2.8 -2.1 -2.6  0.0

    0    1    1    1    1    1    1    1    1
   -1    0    1    1    1    1    1    1    1
   -1   -1    0    1    1    1    1    1    1
   -1   -1   -1    0    1    1    1    1    1
   -1   -1   -1   -1    0    1    1    1    1
   -1   -1   -1   -1   -1    0    1    1    1
   -1   -1   -1   -1   -1   -1    0    1    1
   -1   -1   -1   -1   -1   -1   -1    0    1
   -1   -1   -1   -1   -1   -1   -1   -1    0

Within a where construct, only array assignments, nested where
constructs, and where statements are permitted. The shape of all arrays
in the assignment statements must conform to the shape of the logical
expression following the keyword where. The assignments are execut-
ed in the order they are written—first those in the where block, then
those in the elsewhere block.

4.1.9 The forall Construct

The forall construct is much like a parallel array assignment, but it al-
lows cases not permitted by array assignment where the arrays must
be conformable. Here is an example.

program for_all

   integer :: i
   integer, dimension(4) :: a, b
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   a(4) = 9
   b(4) = 9

   forall (i = 1:3)
      a(i) = i
      b(i) = a(i+1)
   end forall

   print *, a
   print *, b

end program for_all

The output from this program is

 1 2 3 9
 2 3 9 9

The first thing to notice is that the assignments to the elements of a
cannot be done with an array assignment. The second thing is that al-
though the forall construct looks a lot like a do construct, a signifi-
cant difference is that in the forall construct all of the assignments to
the elements of a are completed before any assignments to elements of
b. If this were not the case, there would be an attempt to assign values
to b from elements of a that have no value. For example, if after assign-
ing 1 to a(1), the assignment

b(1) = a(2)

were executed, a(2) would not have the value 2 that it has after assign-
ing values to the first three elements of a.

It is possible to have two or more index control variables in one
forall statement and it is possible to have a condition that may even
involve the indices, something not possible with a where construct.
This is illustrated by the following forall construct that puts values
on and above the diagonal of the array c.

program for_all2

   integer :: i, j
   integer, dimension(3, 3) :: c = 0

   forall (i = 1:3, j = 1:3, i<=j)
      c(i, j) = i + j
   end forall
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   print “(3i5)”, (c(i, :), i=1,3)

end program for_all2

    2    3    4
    0    4    5
    0    0    6

A forall construct may contain only assignment statements, where
constructs, and nested forall constructs.

4.1.10 Intrinsic Operators

All intrinsic operators and many intrinsic functions may be applied to ar-
rays, operating independently on each element of the array. For example,
the expression abs(a(k:n, k)) results in a one-dimensional array of n − k
+ 1 nonnegative real values. A binary operation, such as *, may be applied
only to two arrays of the same shape or an array and a scalar. It multiplies
corresponding elements of the two arrays or multiplies the elements of the
array by the scalar. The assignment statement

a(k, k:n+1) = a(k, k:n+1) / pivot

divides each element of a(k, k:n+1) by the real scalar value pivot. In es-
sence, a scalar value may be considered an array of the appropriate size
and shape with all its entries equal to the value of the scalar.

4.1.11 Element Renumbering in Expressions

An important point to remember about array expressions is that the
elements in an expression may not have the same subscripts as the
elements in the arrays that make up the expression. They are renumbered
with 1 as the lower bound in each dimension. Thus, it is legal to add
y(0:7) + z(-7:0), which results in an array whose eight values are
considered to have subscripts 1, 2, 3, ..., 8.

The renumbering must be taken into account when referring back to
the original array. Suppose v is a one-dimensional integer array that is giv-
en an initial value with the declaration

integer, dimension(0:6), parameter ::  &
      v = (/ 3, 7, 0, -2, 2, 6, -1 /)

The intrinsic function maxloc returns a list of integers giving the position
(subscript) of the largest element of an array. maxloc(v) is (/ 2 /) because
position 2 of the list v contains the largest number, 7, even though it is
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v(1) that has the value 7. Also, maxloc(v(2:6)) is the list (/ 4 /) be-
cause the largest entry, 6, occurs in the fourth position in the section
v(2:6).

There is also an intrinsic function, minloc, whose value is the list of
subscripts of a smallest element of an array. For example, if a =

, the value of minloc(a) is (/3, 2/) because a(3, 2) is the

smallest element of the array.

4.1.12 Using a Function in a Declaration Statement

Some intrinsic functions are not allowed in declarations—for example,
in the specification of the size of an array. However, it is possible to in-
voke a user-defined function, which may, in turn, call any intrinsic
function. Suppose, when an array a is passed as an argument to the
subroutine ss, a working array of size approximately equal to the log-
arithm of the size of a is needed within the subroutine. As illustrated
by the following program, this can be done by defining a pure function
ll to compute the size of the work array.

module m

   public :: ll

contains

   pure function ll(n) result(rl)
      integer, intent(in) :: n
      integer :: rl
      rl = ceiling(log(real(n)))
   end function ll

end module m

program p

   use m
   integer, dimension(1000) :: a = 1
   call ss(a)

contains

   subroutine ss(d)

1 8 0
5 1– 7
3 2– 9
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      integer, dimension(:), intent(in) :: d
      integer, dimension(ll(size(d))) :: td
      td = d(1:size(td))
      print *, size(d), size(td)
   end subroutine ss

end program p

The main restriction is that the function (ll in this case) must be de-
clared pure explicitly (3.7).

4.1.13 Exercises

1. Write a statement that declares values to be an array of 100 real
values with subscripts ranging from −100 to −1.

2. Use an array constructor to assign the squares of the first 100 posi-
tive integers to a list of integers named squares. For example,
squares(5) = 25.

3. If a chess or checkers board is declared by

character(len=1), dimension(8, 8) :: board

the statement

board = "R"

assigns the color red to all 64 positions. Write a statement or state-
ments that assigns “B” to the 32 black positions. Assume that
board(1, 1) is to be red so that the board is as shown.

R B R B R B R B

B R B R B R B R

R B R B R B R B

B R B R B R B R

R B R B R B R B

B R B R B R B R

R B R B R B R B

B R B R B R B R
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4. Suppose list is a one-dimensional array that contains n <
max_size real numbers in ascending order. Write a subroutine in-
sert(list, n, max_size, new_entry) that adds the number
new_entry to the list in the appropriate place to keep the entire list
sorted. Hint: write a subroutine shift that shifts the upper k ele-
ments one position higher in the array. See also the intrinsic func-
tions cshift and eoshift.

5. Write a function that finds the angle between two three-dimension-
al real vectors. If v = (v1, v2, v3), the magnitude of v is |v| = 
where  is the vector dot product of v with itself. The cosine of
the angle between v and w is given by

The built-in function acos (arccosine) may be used to find an angle
with a given cosine.

4.2 Searching a List

The previous section describes the appropriate terminology and some
of the F rules concerning arrays and subscripts. This section makes a
start toward illustrating the power of arrays as they are used in mean-
ingful programs. The application throughout this section is that of
checking a given credit card account number against a list of account
numbers of lost or stolen cards. Increasingly more efficient programs
are presented here and compared.

4.2.1 The Problem: Credit Card Checking

When a customer presents a credit card in payment for goods or ser-
vices, it is desirable to determine quickly whether it can be accepted or
whether it previously has been reported lost or stolen or canceled for
any other reason. The subroutines in this section perform this task. See
4.1.3 and 4.1.5 for ways to read the list lost_card.

4.2.2 Sequential Search through an Unordered List

The first and simplest strategy for checking a given credit card is sim-
ply to search from beginning to end through the list of canceled credit
cards, card by card, either until the given account number is found in
the list, or until the end of the list is reached without finding that ac-
count number. In the subroutine search_1, this strategy, called a se-
quential search, is accomplished by a do construct with exit that scans

v v⋅
v v⋅

θcos v w⋅
v w
-------------=
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the list until the given account number is found in the list or all of the
numbers have been examined.

Style note: It is good programming practice to make the search-
ing part of the program a separate subroutine.

Other versions of the credit card program in this section will be ob-
tained by modifying this subroutine.

The two ways of exiting from the search loop both pass control to
the end subroutine statement. However, they have a different effect
on the dummy argument found. When the credit card being checked is
not in the list, the search loop is executed until the list is exhausted.
This normal completion of the do construct allows control to fall
through to the end subroutine statement with the value of found still
false. When the card being checked is found in the list, the logical vari-
able found is set to true before exiting the do construct. The calling pro-
gram can test the actual argument passed to the dummy variable found
to decide whether the card number was found in the list. The intrinsic
function size used in this subroutine returns an integer value that is
the number of elements in the array lost_card.

subroutine search_1(lost_card, card_number, found)

   integer, dimension(:), intent(in) :: lost_card
   integer, intent(in) :: card_number
   logical, intent(out) :: found
   integer :: i

   found = .false.
   do i = 1, size(lost_card)
      if (card_number == lost_card(i)) then
         found = .true.
         exit
      end if
   end do

end subroutine search_1

This subroutine makes a nice example for illustrating how individ-
ual elements of an array can be manipulated; but in F, it is often better
to think of operations for processing the array as a whole. In fact, using
the built-in array functions, it is possible to do the search in one line.

found = any(lost_card(1:size(lost_card))==card_number)

The comparison
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lost_card(1:size(lost_card)) == card_number

creates a list of logical values with true in any position where the value
of card_number matches a number in the list lost_card. The intrinsic
function any is true if any of the elements in a list of logical values is
true; it is false otherwise. The intrinsic function any may be thought of
as an extension of the binary operator .or. to arrays.

The basic strategy of the program search_1 is to check a credit
card account number supplied as input against each account number,
in turn, in the list of canceled or lost cards, either until a match is
found or until the list is exhausted. These alternatives are not equally
likely. Most credit cards offered in payment for purchases or services
represent the authorized use of active, valid accounts. Thus, by far the
most usual execution of the subroutine search_1 is that the entire list
is searched without finding the card number provided.

The number of comparisons a program must make before accept-
ing a credit card is some measure of the efficiency of that program. For
example, when searching for an acceptable credit card in a list of
10,000 canceled credit cards, the subroutine search_1 usually makes
10,000 comparisons. On a traditional computer, the elapsed computer
time for the search depends on the time it takes to make one compari-
son and to prepare to make the next comparison. However, on a com-
puter with vector or parallel hardware, many comparisons may be
done simultaneously and the intrinsic functions, probably written by
the implementor to take advantage of this special hardware, might pro-
vide very efficient searching.

If the search must be performed on a traditional computer by mak-
ing one comparison at a time, the search can be made more efficient by
maintaining the list in order of increasing card number. As soon as one
canceled card number examined in the search is too large, all subse-
quent ones will also be too large, so the search can be abandoned early.
The subroutine search_2 presumes that the list is in increasing order.

subroutine search_2(lost_card, card_number, found)

   integer, dimension(:), intent(in) :: lost_card
   integer, intent(in) :: card_number
   logical, intent(out) :: found
   integer :: i

   found = .false.
   do i = 1, size(lost_card)
      if (card_number <= lost_card(i)) then
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         found = (card_number == lost_card(i))
         exit
      end if
   end do

end subroutine search_2

Before accepting a presented account number, search_1 always
must search the entire list, but search_2 stops as soon as it reaches a
number in the list of canceled account numbers that is larger than or
equal to the presented number.

Roughly speaking, the average number of comparisons needed for
an acceptance by search_2 is about half the list size, plus one addition-
al comparison to determine whether the last entry examined was exact-
ly the account number of the credit card being checked. For a list of
10,000 canceled cards, it would take an average of 5001 comparisons,
significantly better than the 10,000 for search_1.

To a limited extent, this increased efficiency in the checking pro-
gram is counterbalanced by some additional computer time needed to
maintain the list of canceled credit cards in increasing order. However,
the list is likely to be searched much more often than it is modified, so
almost any increase in the efficiency of the checking program results,
in practice, in an increase in the efficiency of the entire operation.

4.2.3 Program Notes

The sequential search loop in the subroutine search_2 is not quite as
straightforward as it seems at first glance. When the presented card
card_number is compared against an entry lost_card(i), three things
can happen:

1. card_number is too high, in which case the search continues.

2. They match, in which case the presented card card_number has
been found.

3. card_number is too low, in which case further search is futile.

The three possibilities are not equally likely. Case 1 can occur as many
as 10,000 times in one search. Cases 2 and 3 can only happen once per
search. It is important to test first for the most frequently occurring
case. Otherwise, there will be two tests per iteration, slowing the
search loop appreciably. This subroutine tests for the first case, and
then, if it is false, determines whether case 2 or case 3 applies. The fol-
lowing if construct also does the tests in this same optimal order; but
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if the order of testing alternatives is changed, twice as many tests are
done.

found = .false.
do i = 1, size(lost_card)
   if (card_number > lost_card(i)) then
      cycle
   else if (card_number == lost_card(i)) then
      found = .true.
      exit
   else
      exit
   end if
end do

4.2.4 Binary Search

Sequential search is a brute force technique. It works well for short lists
but is very inefficient for large ones. A somewhat different strategy, di-
vide and conquer, is employed in a binary search. Half of the list can
be eliminated in one comparison by testing the middle element. Then
half the remaining elements are eliminated by another test. This contin-
ues until there is only one element left; then this element is examined
to see if it is the one being sought. The list must be ordered for binary
search. Note that a binary search is similar to what you do when look-
ing up a telephone number in a phone book.

Table 4-2 shows how a binary search is used to try to find the num-
ber 2415495 in a list of 16 numbers. The numbers are given in increas-
ing order in the first column. The presented number 2415495 is not in
the list, but this fact plays no role in the search procedure until the
very last step.

As a first step in binary searching, the list is divided in half. An as-
terisk follows the eighth number in column 1 because it is the last entry
in the first half of the list. Since the given number 2415495 is less than
(or equal to) the eighth entry 2980957, the second half of the list can be
eliminated from further consideration. Column 2 shows only the first
half of the original list (entries 1 through 8) retained as the segment
still actively being searched.

The procedure is repeated. An asterisk follows the fourth entry in
column 2 because it is the last entry in the first half of the segment of
the list still actively being searched. Since the given number 2415495 is
greater than the fourth number 1627547, this time it is the first half of
the active segment that is eliminated and the second half (entries 5
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through 8 of the original list) that is retained. This is shown in column
3 of Table 4-2.

In the next stage, the second remaining number 2202646, which
was the sixth entry in the original list, is marked with an asterisk be-
cause it is the last entry of the first half of the segment still being
searched. Since this number is exceeded by the given number 2415945,
the second half of the segment in column 3 (entries 7 and 8) is retained
as the active segment in column 4. The seventh entry of the original
list, the number 2718281, is the last entry of the first half of the remain-
ing list of two entries and thus is marked with an asterisk in column 4
to indicate its role as a comparison entry. Since the given number

Table 4-2 A binary search that fails

Before any 
comparisons

After one 
comparison

After two 
comparisons

After three 
comparisons

After four 
comparisons

Given 
number

1096633 1096633

1202604 1202604

1484131 1484131

1627547 1627547*

2008553 2008553 2008553

2202646 2202646 2202646*

2718281 2718281 2718281 2718281* 2718281 ≠ 2415495

2980957* 2980957 2980957 2980957

3269017

4034287

4424133

5459815

5987414

7389056

8103083

8886110

* An asterisk denotes the comparison entry at each stage, which is the last 
entry of the first half of the segment still under active consideration.
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2415495 is less than this, the other entry (the eighth original entry) is
discarded, and column 5 shows that after four comparisons, only the
seventh entry 2718281 remains as a candidate.

Since only one entry remains, a test for equality is made between
the given number 2415495 and the one remaining entry 2718281. They
are not equal. Thus, the given number is not in the list. Note that the
previous comparisons of these two numbers were merely to determine
whether the given number was less than or equal to the seventh entry.
Table 4-3 shows how the binary search works for the number 7389056,
which is found in the list of 16 numbers. As before, the first column
lists the original numbers with an asterisk following the last number of
the first half of the list, the eighth entry. The number 7389056 is greater
than the eighth entry, so the second half of the list (entries 9 to 16) is re-
tained in column 2. A comparison of the given number 7389056 with
the last entry of the first half of the segment remaining in column 2, the
twelfth original entry 5459815, eliminates entries 9 through 12.

Table 4-3 A binary search that is successful

Before any 
comparisons

After one 
comparison

After two 
comparisons

After three 
comparisons

After four 
comparisons

Given 
number

1096633

1202604

1484131

1627547

2008553

2202646

2718281

2980957*

3269017 3269017

4034287 4034287

4424133 4424133

5459815 5459815*

5987414 5987414 5987414 5987414*

7389056 7389056 7389056* 7389056 7389056  = 7389056
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A comparison with the fourteenth entry, marked with an asterisk
in column 3, eliminates the fifteenth and sixteenth entries. One more
comparison of the given number 7389056 against the thirteenth entry,
marked with an asterisk in column 4, eliminates that entry and leaves
only the fourteenth entry 7389056. The final test for equality of the giv-
en number and the only remaining candidate in the list yields success,
and it can be reported that the given number is the fourteenth entry in
the list.

For the purpose of explanation, it is most convenient to use a list
size that is an exact power of 2, that is, 2, 4, 8, 16, 32, .... This avoids
fractions when the size of the list segment still under consideration is
halved repeatedly. However, this is not essential; the use of integer di-
vision by 2 in the subroutine binary_search permits it to search a list
of any length.

subroutine binary_search(lost_card, card_number, found)

   integer, dimension(:), intent(in) :: lost_card
   integer, intent(in) :: card_number
   logical, intent(out) :: found
   integer :: first, half, last, only

   first = 1
   last = size(lost_card)
   do
      if (first == last) exit
      half = (first + last) / 2
      if (card_number <= lost_card(half)) then
         ! Discard second half
         last = half
      else
         ! Discard first half
         first = half + 1
      end if

8103083 8103083 8103083

8886110 8886110 8886110

* An asterisk denotes the comparison entry at each stage, which is the last 
entry of the first half of the segment still under active consideration.

Table 4-3 A binary search that is successful

Before any 
comparisons

After one 
comparison

After two 
comparisons

After three 
comparisons

After four 
comparisons

Given 
number
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   end do

   ! The only remaining subscript to check is first
   ! (which is the same as last)
   only = first
   found = (card_number == lost_card(only))

end subroutine binary_search

When the part of the list still under consideration has been reduced to
a single element by repeated bisection, the first element left is the last
and only element left and the do construct is exited to test it.

4.2.5 Efficiency of a Binary Search

As before, we can get a reasonable indication of the efficiency of a
search method by seeing how many times the given account number is
compared against account numbers in the list of lost or stolen cards in
the most usual event that the card number is not in the list.

The number of comparisons required in the binary search can be
counted easily. With one data comparison, a list of items to be searched
can be cut in half. When the list is reduced to one element, a final com-
parison determines whether that candidate is the credit card being
searched for or not. Thus, with n+1 comparisons, it is possible to search
2n items. Turning it around the other way, n items may be searched us-
ing log2n+1 comparisons. Thus, for example, 15 comparisons suffice for
binary searching all lists of length up to 16,384 (=214). This is consider-
ably better than the 8192 comparisons needed for a sequential search!
However, keep in mind that on a computer with intrinsic parallelism, it
may be better to use the intrinsic functions and hope that the imple-
mentation takes advantage of the parallelism to do many comparisons
simultaneously. Even if it does, whether or not it is faster than the bina-
ry search depends on the size of the list and the amount of parallelism
in the system.

4.2.6 Exercises

1. What changes need to be made to the subroutine binary_search to
search a list of integers with kind long (1.2.11)?

2. How could the subroutine search_2 be improved if you wanted to
start at the end of the list when searching for a “large” number?
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4.3 Sorting

Frequently it is necessary to sort a list of numbers or character strings.
For example, the list lost_card in the previous section must be sorted
for the binary search to work. One of the simplest ways to do this is to
compare every number in the list with every other number in the list
and swap them if they are out of order. As with the previous examples
in this chapter, the sorting is done with a subroutine so that it can be
put in a module and be used by many programs.

subroutine sort_1(list)

   real, dimension(:), intent(in out) :: list
   integer :: i, j

   do i = 1, size(list) - 1
      do j = i + 1, size(list)
         if (list(i) > list(j))  &
               call swap(list(i), list(j))
      end do
   end do

end subroutine sort_1

The subroutine swap of 3.5 that exchanges the values of two variables is
assumed to be available, perhaps in a module. This is a very simple al-
gorithm for sorting, but it is very inefficient and should not be used to
sort more than a few hundred items.

A second approach to sorting a list is to find the smallest number
in the list and put it in the first position, then find the smallest number
in the remainder of the list and put it in the second position, etc. The
built-in function minloc can be used effectively for this sort.

For an array a of rank n, that is, with n subscripts, the value of
minloc(a) is a one-dimensional array whose entries are the n subscript
positions of a smallest element of a. As described in 4.1.11, if the lower
bound in a particular dimension is 1, the subscript position and the
subscript value are the same. If not, the actual subscript can be found
by adding the declared lower bound − 1 to the subscript position. In
the subroutine sort_2, the subscript of list(i:) containing a minimal
element is min_loc(1)+i-1, where min_loc is an array with one ele-
ment used temporarily to store the value of minloc(list(i:)).

subroutine sort_2(list)
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   real, dimension(:), intent(inout) :: list
   integer :: i
   integer, dimension(1) :: min_loc

   do i = 1, size(list) - 1
      min_loc = minloc(list(i:))
      call swap(list(i), list(i + min_loc(1) - 1))
   end do

end subroutine sort_2

This subroutine appears to be just about as inefficient as sort_1, be-
cause execution of the minloc function involves searching through the
elements of list(i:) to find the smallest one. Indeed, it may be just as
inefficient; however, if it is executed on a system with parallelism, the
minloc function may be faster than a sequential search.

4.3.1 Quick Sort

One of the best sorting algorithms is called “quick sort” or “partition
sort”. Whereas sort_1 needs to make approximately n2/2 comparisons
to sort n numbers, the quick sort needs approximately nlog2n compari-
sons. To get an idea of the amount of improvement, for n = 1000 items,
sort_1 would require approximately 500,000 comparisons and the
quick sort would require approximately 10,000 comparisons, a ratio of
50 to 1; for n = 1,000,000 items, sort_1 would require approximately
500,000,000,000 comparisons and the quick sort would require approx-
imately 100,000,000 comparisons, a ratio of 5000 to 1.

As might be expected, the quick sort is a bit more complicated. It is
a divide-and-conquer algorithm like binary search. To sort a list of
numbers, an arbitrary number (such as the first, last, or middle one) is
chosen from the list. All the remaining numbers in turn are compared
with the chosen number; the ones smaller are collected in a “smaller”
set and the ones larger are collected in a “larger” set. The whole list is
sorted by sorting the “smaller” set, following them with all numbers
equal to the chosen number, and following them with the sorted list of
“larger” numbers. Note that sorting the “smaller” and “larger” lists in-
volves using the quick sort routine recursively (3.15).

recursive subroutine quick_sort(list)

   real, dimension(:), intent(in out) :: list
   real, dimension(:), allocatable :: smaller, larger
   integer :: i,  &
         number_smaller, number_equal, number_larger
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   real :: chosen

   if (size(list) > 1) then
      allocate (smaller(size(list)))
      allocate (larger(size(list)))
      chosen = list(1)
      number_smaller = 0
      number_equal = 1
      number_larger = 0

      do i = 2, size(list)
         if (list(i) < chosen) then
            number_smaller = number_smaller + 1
            smaller(number_smaller) = list(i)
         else if (list(i) == chosen) then
            number_equal = number_equal + 1
         else
            number_larger = number_larger + 1
            larger(number_larger) = list(i)
         end if
      end do

      call quick_sort(smaller(1:number_smaller))
      list(1:number_smaller) =  &
           smaller(1:number_smaller)
      list(number_smaller+1:  &
           number_smaller+number_equal) = chosen
      call quick_sort(larger(1:number_larger))
      list(number_smaller+number_equal+1:) =  &
           larger(1:number_larger)
      deallocate (smaller, larger)
   end if

end subroutine quick_sort

Although the subroutine quick_sort follows the description fairly
closely and sorts with order nlog2n comparisons, it wastes a lot of
space in each subroutine call creating new smaller and larger lists.
However, by clever management of the available space (in fact, each el-
ement is replicated up to log2n times, creating a total memory use of
nlog2n reals), the entire list can be sorted without using any arrays ex-
cept the original argument list itself. In the following version of the
quick sort, the “smaller” numbers are collected together by placing
them at the beginning of the list and the “larger” numbers are collected
together by placing them at the end of the list. Also, every effort is
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made to eliminate unnecessary moving or swapping of elements in the
list. To do serious sorting, this version should be used.

The details of the quick-sorting algorithm are still quite tricky and
must be clarified further before an efficient and bug-free subroutine
can be written. First, while it is possible to maintain two lists in a sin-
gle one-dimensional array—the list smaller that grows up from the
bottom of the array list and the list larger that grows down from the
top of the array list—it is difficult to manage three lists in one array.
Thus, the conditions for the sublists smaller and larger are relaxed to
allow entries equal to the test element chosen to qualify for either of
these sublists. Since these elements are the largest elements in the sub-
list smaller, and the smallest elements in the sublist larger, they are
reunited in the middle of the array list when both sublists are sorted
in place.

Second, since there are (essentially) no extra storage spaces for list
elements, the only way to remove an unsuitably large element from the
left (i.e., smaller) part of the list is to swap it with an unsuitably small
element from the right (i.e., larger) part of the list. Each pass through
the main loop of the subroutine quick_sort consists of a search for an
unsuitably large element on the left, a search for an unsuitably small
element on the right, and a swap.

If the input list is in completely random order, it doesn’t matter
which element of the list is chosen as the test element. We use the mid-
dle element of the input list for two reasons: (1) one of the more likely
nonrandom orders of a list is that the list is already sorted; choosing
the middle element as test element provides much better splits than the
first or last in this case; (2) if the test element is the middle element,
both the search in the left list for a “large” element and the search in
the right list for a “small” element are guaranteed not to run off the
ends of the list, because the middle element will stop both searches. A
test for invalid subscripts can be eliminated from these two inner loops
if the test element is the middle element.

The only argument to the subroutine quick_sort is the list of
numbers to be sorted. Recall that within the subroutine, regardless of
the lower and upper bound of the actual argument, the dummy argu-
ment has lower bound 1 and upper bound n = size(list).

recursive subroutine quick_sort(list)

   real, dimension(:), intent(in out) :: list

   integer :: i, j, n
   real :: chosen, temp



4.3 Sorting 161

   integer, parameter :: max_simple_sort_size = 6

   n = size(list)
   if (n <= max_simple_sort_size) then
      ! Use interchange sort for small lists
      call interchange_sort(list)
   else
      ! Use partition (“quick”) sort
      chosen = list(n/2)
      i = 0
      j = n + 1

      do
         ! Scan list from left end
         ! until element >= chosen is found
         do
            i = i + 1
            if (list(i) >= chosen) exit
         end do
         ! Scan list from right end
         ! until element <= chosen is found
         do
            j = j - 1
            if (list(j) <= chosen) exit
         end do
         if (i < j) then
            ! Swap two out of place elements
            temp = list(i)
            list(i) = list(j)
            list(j) = temp
         else if (i == j) then
            i = i + 1
            exit
         else
            exit
         end if
      end do

      if (1 < j) call quick_sort(list(:j))
      if (i < n) call quick_sort(list(i:))
   end if  ! test for small array

end subroutine quick_sort

subroutine interchange_sort(list)
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   real, dimension(:), intent(in out) :: list
   integer :: i, j
   real :: temp

   do i = 1, size(list) - 1
      do j = i + 1, size(list)
         if (list(i) >  list(j)) then
            temp = list(i)
            list(i) = list(j)
            list(j) = temp
         end if
      end do
   end do

end subroutine interchange_sort

4.3.2 Sorting Small Lists

The subroutine quick_sort has been made more efficient by the addi-
tion of the following statements that test if the quantity of numbers to
be sorted is small and call an interchange sort if it is.

if (n <= max_simple_sort_size) then
   ! Use interchange sort for small lists
   call interchange_sort(list)

Why be concerned about this? Quick sort rarely is used to sort such
small lists, and even if it is, it is only relative efficiency that suffers: the
absolute time required to quick sort a small list is very small. The an-
swer is that although the user might not call quick_sort often to sort a
very small list, because it is a divide-and-conquer technique, the quick-
sort algorithm subdivides the list again and again until finally it calls
itself recursively many times to sort very small lists. Thus, small ineffi-
ciencies in the quick sorting of small lists contribute many times over
to form large inefficiencies in the quick sorting of large lists.

The solution is simple: for lists below a certain minimum size,
interchange_sort is used. The subroutine quick_sort sorts all lists of
size up to max_simple_sort_size using the compact and simple sort-
ing algorithm of the subroutine sort_1 for such lists. For larger lists, it
uses the quick sort algorithm. Some experimenting with randomly gen-
erated large lists and different values of max_simple_sort_size indi-
cates that for this simple sorting algorithm and this implementation of
the quick-sort algorithm, max_simple_sort_size = 6 is probably a
good choice. Your mileage may vary (see Exercise 3).
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4.3.3 Exercises

1. Modify the subroutine quick_sort so that a public variable named
swap_count records the number of times two values are swapped.
This provides a crude measure of the complexity of the sorting al-
gorithm. Experiment with the program by generating 1000 num-
bers using the built-in subroutine random_number discussed in
3.14.1. Also collect data about actual running time using the built-
in subroutine cpu_time.

2. Execute quick_sort with randomly generated lists of numbers of
various sizes of n between 16 and 32,768 to see if the number of
values swapped is proportional to nlog2n.

3. Vary the parameter max_simple_sort_size and test quick_sort
using randomly generated lists of size n = 1000. What value of
max_simple_sort_size produces the fewest swaps? Don’t forget to
count the swaps in interchange_sort. Does this value of
max_simple_sort_size also produce the shortest actual running
time? If time permits, see if the results change when n is increased
to 10,000.

4.4 Selecting

A common problem is to find the median of a list of numbers, that is,
the one that would be in the middle of the list if the list were in order.
One way to do this is to sort the list and look at the element in the mid-
dle, but this is quite inefficient. The best sorting algorithms require
nlog2n steps to sort n numbers, whereas the median of n numbers can
be found in n steps.

The trick is one that is often applicable to recursive procedures:
solve a slightly more general problem instead. In this case the more
general problem to solve is to find the number that would be in posi-
tion k, 1 ≤ k ≤ n, if a list of n numbers were in order. Then to find the
median, simply find the number in position k = n/2.

A good algorithm to select the kth element is similar to the quick-
sort algorithm. Arbitrarily pick one of the numbers in the list. As with
the quick sort, separate the numbers into three collections: the numbers
smaller than the chosen number, the numbers equal to the chosen
number, and the numbers larger than the chosen number. Suppose the
size of each of these collections is s, e, and l, respectively. If k ≤ s, the
number we are looking for is in the collection of smaller numbers, and,
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in fact, is the kth number in that collection in order; this number can be
found by applying the same selection algorithm recursively to the list
of smaller numbers. If s ≤ k ≤ s+e, then the number chosen is the one we
are looking for and the search is complete. If s+e < k, the number we are
looking for is in the collection of larger numbers; it is, in fact, the one
in position k−s−e in that list in order, so it can be found by recursively
calling the selection procedure.

Here is the F program; the selected element is returned as the value
of the variable element and the logical variable error indicates if a po-
sition outside the bounds of the list is requested. The procedure
quick_select is written as a subroutine instead of a function because
it returns two values.

recursive subroutine quick_select  &
      (list, k, element, error)

   real, dimension(:), intent(in) :: list
   integer, intent(in) :: k
   real, intent(out) :: element
   logical, intent(out) :: error
   real, dimension(:), allocatable :: smaller, larger
   integer :: i, n,  &
         number_smaller, number_equal, number_larger
   real :: chosen
   n = size(list)
   if (n <= 1) then
      error = .not. (n == 1 .and. k == 1)
      if (error) then
         element = 0.0  ! A value must be assigned
                 ! because element is intent(out)
      else
         element = list(1)
      end if

   else
      allocate (smaller(n), larger(n))
      chosen = list(1)
      number_smaller = 0
      number_equal = 1
      number_larger = 0

      do i = 2, n
         if (list(i) < chosen) then
            number_smaller = number_smaller + 1
            smaller(number_smaller) = list(i)
         else if (list(i) == chosen) then
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            number_equal = number_equal + 1
         else
            number_larger = number_larger + 1
            larger(number_larger) = list(i)
         end if
      end do

      if (k <= number_smaller) then
         call quick_select  &
               (smaller(1:number_smaller),  &
                k, element, error)
      else if (k <= number_smaller + number_equal) then
         element = chosen
         error = .false.
      else
         call quick_select  &
               (larger(1:number_larger),  &
                k - number_smaller - number_equal,  &
                element, error)
      end if
      deallocate (smaller, larger)
   end if

end subroutine quick_select

4.4.1 Exercises

1. Modify the subroutine quick_select so that a variable named
compare_count records the number of times two values are com-
pared. This provides a crude measure of the complexity of the se-
lection algorithm. Experiment with the program by generating
10,000 numbers using the built-in subroutine random_number dis-
cussed in 3.14.1. Also collect data about actual running time using
the built-in subroutine cpu_time.

2. Execute quick_select with randomly generated lists of numbers
of various sizes n to see if the number of values compared is pro-
portional to n.

3. Rewrite quick_select to reduce the amount of temporary storage
used, using the second version of quick_sort in 4.3.1 as a model.

4. Instead of using list(1) as the value of chosen in the subroutine
quick_select, use list(k). Repeat the timing experiments to see
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if this makes any difference. Try the experiments using both ver-
sions with a list that is already sorted.

4.5 Case Study: Solving Linear Equations

The operations of searching, sorting, and selecting discussed in the
previous sections involve, by their nature, mostly operations on a sin-
gle element of a list, one at a time. In many situations, particularly in
numerical computations, whole arrays or sections of arrays can be pro-
cessed at once. To explore an example of this type, we look at the prob-
lem of solving n simultaneous equations of the form

a11x1 + a12x2 + ... + a1nxn = b1

a22x2 + a22x2 + ... + a2nxn = b2

. . .

an1xn + an2x2 + ... + annxn = bn

In matrix notation, this system of equations would be written as

Solving the equations is done by performing combinations of the
following operations, none of which changes the values of the solu-
tions. The three operations are (1) interchanging equations (which
amounts to interchanging rows in the matrix of coefficients), (2) multi-
plying an equation (i.e., row) by a constant, and (3) adding one equa-
tion (i.e., row) to another equation. The operations of interchanging
columns in the matrix of coefficients (which amounts to renaming vari-
ables) and multiplying a column by a constant (which amounts to
re-scaling the values of the variable represented by that column) are
sometimes used in solving simultaneous linear equations, but are not
used in the solution presented below.

These equations will be solved by a process called Gaussian elimi-
nation. Combinations of these operations are performed until the equa-
tions are in a form where all coefficients below the diagonal of the

a11 a12 … a1n

a21 a22 … a2n

  …  
an1 an2 … ann

x1

x2

…
xn

b1

b2

…
bn

=
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coefficient matrix are zero and all coefficients on the main diagonal are
one; this constitutes the first phase of Gaussian elimination. In broad
outline, what happens in this phase is that the first equation is solved
for the first variable x1 (i.e., its coefficient is made 1), and then appro-
priate multiples of the first equation are subtracted from each of the re-
maining equations to eliminate the variable x1 from equations 2 to n.
Then the second equation is solved for x2, and multiples of it are sub-
tracted from the remaining equations to eliminate x2 also from equa-
tions 3 to n. Eventually, all the variables x1, x2, ..., xn−1 are eliminated
from the nth equation, which can now be solved for xn. At the end of
the first phase, the set of equations takes the form

The second phase of Gaussian elimination is called back
substitution. The last equation is already solved for xn = dn. The
answer for xn is substituted into the next to last equation, which
contains only variables xn−1 and xn after the first phase, so it can be
solved for xn−1. Then the answers for both xn and xn-1 are substituted
into the previous equation to solve for xn-2, and so forth until all the
variables xn, xn−1, ..., xn−2 are substituted into the first equation to solve
for x1.

An equivalent form of the back-substitution phase, which is used
sometimes, is to subtract appropriate multiples of the nth equation
from all previous equations to eliminate xn from equations 1 to n−1.
Then multiples of equation n−1 are subtracted from equations 1 to n−2
to eliminate xn−1 from these equations. The process continues upward
through the equations until each equation has only one variable, or
equivalently, until every entry in the matrix of coefficients above the
diagonal is zero. The equations now have the form

x1 c12x2 c13x3 … c1n 1– xn 1– c1nxn+ + + + + d1=

x2 c23x3 … c2n 1– xn 1– c2nxn+ + + + d2=

x3 … c3n 1– xn 1– c3nxn+ + + d3=

… …=
xn 1– cn 1n– xn+ dn 1–=

xn dn=
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which is solved for all of its variables. In the program solve_linear_
equations, we use the first method, substituting directly without
changing the triangular matrix of coefficients to this completely diago-
nalized form.

If all goes well, the process of solving the system of linear equa-
tions is no more complicated than what we just described; however, a
general solution must foresee and provide for all possibilities, even the
possibility that the set of equations is inconsistent and has no solution.

The first potential problem is that when we try to solve the first
equation for the first variable x1, we might find that the first equation
does not involve x1 (i.e., a11 = 0). If some other equation involves x1,
that is, if some ak1 ≤ 0, then we can swap the first and kth equations (to
make a11 ≤ 0 after the swap) so that we can solve the new first equation
for x1 and proceed. On the other hand, if no equation involves x1, then
the system of equations does not uniquely determine x1 and we must
report this as an undetermined system of equations.

A similar problem might occur when we try to solve the kth equa-
tion for xk. If the coefficient akk is zero at this point in the computation,
then we must seek a later equation, say the mth, for which amk ≤  0, and
swap it with the kth equation before proceeding. If all remaining coeffi-
cients in the kth column are zero, then xk is not uniquely determined.

Conventional wisdom, which we follow in this program, says that
even if akk is nonzero, it is still better to swap the kth equation with that
later equation for which the absolute value |amk| is largest. Part of the
reason is that roundoff error in calculations with the real coefficients
often results in a coefficient that should be zero being calculated as a
small nonzero value, but almost never results in it being calculated as a
large nonzero value. Swapping akk with amk, the coefficient with the
largest magnitude, greatly reduces the risk of dividing by a coefficient
akk that should have been calculated as zero.

The program solve_linear_equations makes heavy use of array
operations and intrinsics to achieve compactness (and to illustrate the
use of the operations and intrinsics). If these operations are not second
nature, some statements in solve_linear_equations may require
some puzzling out, perhaps by writing equivalent do constructs.

x1 e1=

x2 e2=

… …=
xn en=
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subroutine solve_linear_equations(a, x, b, error)

   real, dimension(:, :), intent(in) :: a
   real, dimension(:), intent(out) :: x
   real, dimension(:), intent(in) :: b
   logical, intent(out) :: error
   real, dimension(:, :), allocatable :: m
   integer, dimension(1) :: max_loc
   real, dimension(:), allocatable :: temp_row
   integer :: n, k

   error = size(a, dim=1) /= size(b) .or.  &
           size(a, dim=2) /= size(b)
   if (error) then
      x = 0.0
      return
   end if

   n = size(b)
   allocate (m(n, n+1), temp_row(n+1))
   m(1:n, 1:n) = a
   m(1:n, n+1) = b

   ! Triangularization phase
   triang_loop: do k = 1, n

      max_loc = maxloc(abs(m(k:n, k)))
      temp_row(k:n+1) = m(k, k:n+1)
      m(k, k:n+1) = m(k-1+max_loc(1), k:n+1)
      m(k-1+max_loc(1), k:n+1) = temp_row(k:n+1)

      if (m(k, k) == 0) then
         error = .true.
         exit triang_loop
      else
         m(k, k:n+1) = m(k, k:n+1) / m(k, k)
         m(k+1:n, k+1:n+1) = m(k+1:n, k+1:n+1) -  &
            spread(m(k, k+1:n+1), 1, n-k) *  &
            spread(m(k+1:n, k), 2, n-k+1)
      end if

   end do triang_loop

   ! Back substitution phase

   if (error) then
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      x = 0.0
   else
      do k = n, 1, -1
         x(k) = m(k, n+1) -  &
               sum(m(k, k+1:n) * x(k+1:n))
      end do
   end if

   deallocate (m, temp_row)

end subroutine solve_linear_equations

The array m is created in the subroutine solve_linear_ equations
because the constant terms are subject to the same operations as the co-
efficients of the variables during the calculations of Gaussian elimina-
tion. It consists of the array a of coefficients enlarged by one column
into which is placed the list of constants b. This is accomplished using
the statements

real, dimension(:, :), allocatable :: m
n = size(b)
allocate (m(n, n + 1))
m(1:n, 1:n) = a
m(1:n, n+1) = b

Several array intrinsic functions are used in the subroutine solve_
linear_equations. The size function is used to find the number of
equations and variables, which is the size of the list b. The function
spread takes an array and increases its dimension (i.e., number of sub-
scripts) by one by duplicating entries along a chosen dimension. Sup-
pose that m is the 3 × 4 array

then m(1, 2:4) is the one-dimensional array

and spread(m(1, 2:4), dim=1, count=2) is the two-dimensional ar-
ray

11 12 13 14
21 22 23 24
31 32 33 34

12 13 14
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which consists of two copies of m(1, 2:4) spread downward, that is,
entries that differ only in the first subscript are duplicates. Similarly,
spread(m(2:3, 1), dim=2, count=3) is the array

consisting of three copies of m(2:3, 1) spread to the right, with dupli-
cate entries that differ only in the second subscript. Since these two ar-
rays are the same size and shape, they may be multiplied; the value of
spread(m(1, 2:4), 1, 2) * spread(m(2:3, 1), 2, 3) is the ar-
ray

Thus, the resulting value of m after executing the statement

m(2:3, 2:4) = m(2:3, 2:4) -       &
        spread(m(1, 2:4), 1, 2) *  &
        spread(m(2:3, 1), 2, 3)

is

It is not necessary to set m(1,2:3) to 0 to complete this step in the tri-
angularization because these elements are never looked at again.

The intrinsic function sum finds the sum of all the elements of an
array. If a is a one-dimensional array, then the statement

s = sum(a)

gives the same result (subject to rounding errors) as the statements

s = 0
do i = lbound(a), ubound(a)

12 13 14
12 13 14

21 21 21
31 31 31

12 21× 13 21× 14 21×
12 31× 13 31× 14 31×

11 12 13 14
21 22 12 21×– 23 13 21×– 24 14 21×–
31 32 12 31×– 33 13 31×– 34 14 31×–
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   s = s + a(i)
end do

For higher-dimensional arrays, a nested do loop is needed for each di-
mension of the array to achieve the effect of the built-in function sum.
Besides the added simplicity and clarity of using the expression sum(a)
in place of nested loops, it is much easier for compilers to recognize
that sum(a) applies the same operation to the entire array and there-
fore might be a suitable expression for parallel execution if the hard-
ware permits. The do loop versions explicitly ask for the calculations to
be done in a specific order and thus may not benefit from optimization.

Many other functions that operate on arrays are described briefly
in Appendix A.

4.6 Case Study: Calculating Probabilities

In 3.14.2, we considered the problem of calculating the probability that
a throw of two dice will yield a 7 or an 11. The resulting program used
the built-in subroutine random_number to generate a random number
between 0 and 1. We now provide a slightly different solution using
the same procedure random_number, but with an array as the first argu-
ment.

4.6.1 Generating an Array of Random Numbers

When the argument to the built-in subroutine random_number is a real
array, the array is filled with a collection of real numbers each greater
than or equal to 0 and less than 1. In general, the numbers are not all
the same, although, by chance, some pairs of them might be equal.

Also, in this section, we will rewrite the subroutine random_int to
return an array of integers from low to high. The subroutine
random_int calls the built-in subroutine random_number, but now with
an array as the argument. Note that the computational part of the sub-
routine is identical to the scalar version presented in 3.14.2.

subroutine random_int(result, low, high)

   integer, dimension(:), intent(out) :: result
   integer, intent(in) :: low, high
   real, dimension(:), allocatable ::  &
         uniform_random_value

   allocate (uniform_random_value(size(result)))
   call random_number(uniform_random_value)
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   result =  &
   int((high - low + 1) * uniform_random_value + low)
   deallocate (uniform_random_value)

end subroutine random_int

Using the techniques discussed in 7.1, it is possible to make the
subroutine random_int a generic subroutine, so that when it is called
with a scalar first argument, it returns a single scalar value, and when
it is called with an array first argument, it returns an array of pseudo-
random integer values. An easier way to handle arrays is to make the
subroutine random_int elemental as described in 7.1.2.

4.6.2 Computing the Probability of a 7 or 11 Using Arrays

Using the array version of the subroutine random_int, the program to
estimate the probability of rolling 7 or 11 with two dice is a bit shorter
than the scalar version. We leave it to the reader to ponder whether it is
easier or more difficult to understand than the scalar version.

program seven_11

   integer, parameter :: number_of_rolls = 1000
   integer, dimension (number_of_rolls) ::  &
         dice, die_1, die_2
   integer :: wins

   call random_int (die_1, 1, 6)
   call random_int (die_2, 1, 6)
   dice = die_1 + die_2
   wins = count ((dice == 7) .or. (dice == 11))

   print “(a, f6.2)”,  &
   “The percentage of rolls that are 7 or 11 is”, &
   100.0 * real (wins) / real (number_of_rolls)

contains

subroutine random_int . . .
   . . .

end program seven_11

The built-in function count returns the number of true values in
any logical array; in this case the value in the array is true if the corre-
sponding value in the array dice is 7 or 11. This version of the pro-
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gram seven_11 should produce an answer similar to the one produced
by the scalar version.

4.6.3 Exercises

1. Use random_int to write a program that determines by simulation
the percentage of times the sum of two rolled dice will be 2, 3, or
12.

2. Two dice are rolled until a 4 or 7 comes up. Use random_int to
write a simulation program to determine the percentage of times a
4 will be rolled before a 7 is rolled.

3. Use random_int to write a simulation program to determine the
percentage of times exactly 5 coins will be heads and 5 will be tails,
if 10 fair coins are tossed simultaneously.

4. Is it reasonable to use the array version of random_int with an ar-
ray argument to create a program that deals a five-card poker
hand? Remember that the same card cannot occur twice in a hand.

4.7 Date and Time Subroutines

There are three subroutines useful for getting information about the
data and time: date_and_time, system_clock, and cpu_time.
system_clock returns information about the computer’s internal clock.

4.7.1 Timing a Program

The following program illustrates a simple use of date_and_time to
get the current date and cpu_time to compare the timings of two ways
to do a matrix multiplication. One way uses do loops and the other
uses the intrinsic function matmul. The timing is done by calling
cpu_time before and after the code to be timed. The time spent execut-
ing the code is then the difference between the two values returned,
given in seconds.

program time_matrix_multiply

   ! Compare times of the matmul
   !    intrinsic vs. DO loops

   integer, parameter :: n = 1000
   real, dimension(n, n) :: a, b, c1, c2
   character(len=8) :: date
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   real :: start_time, stop_time
   integer :: i, j, k
   character(len=*), parameter :: &
      form = "(t2, a, f0.3, a)"

   ! Get date to print on report

   call date_and_time(date=date)

   print *, "Timing report dated: " // &
      date(1:4) // "-" // date(5:6) // "-" // date(7:8)

   call random_number(a)
   call random_number(b)
   call cpu_time(start_time)
   c1 = 0
   do k = 1, n
      do j = 1, n
         do i = 1, n
            c1(i, j) = c1(i, j) + a(i, k) * b(k, j)
         end do
      end do
   end do
   call cpu_time(stop_time)
   print *
   print form, "Time of DO loop version is: ", &
      stop_time - start_time, " seconds."

   call cpu_time(start_time)
   c2 = matmul(a,b)
   call cpu_time(stop_time)

   print *
   print form, "Time of matmul version is: ", &
      stop_time - start_time, " seconds."

   print *
   if (any(abs(c1-c2) > 1.0e-4)) then
      print *, &
         "There are significantly different values."
   else
      print *, "They are approximately the same."
   end if

end program time_matrix_multiply
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Here is one sample result of executing the program. Try this on
your computer to see how your results differ.

 Timing report dated: 2005-11-02

 Time of DO loop version is: 5.641 seconds.

 Time of matmul version is: 2.641 seconds.

 They are approximately the same.

4.7.2 Exercise

1. Write a program to time the generation of one million random
numbers, first one at a time with one million calls to the intrinsic
subroutine random_number, then with one call passing the whole
array.
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In a computer program, a piece of written text is called a character
string. Character strings have been used throughout this book to retain
messages and identify information printed out but not processed in
any other way. This chapter reviews this simple use of character strings
and presents computer programs in which the character strings them-
selves are the center of interest.

5.1 Use of Character Data in F Programs

5.1.1 Character String Declarations

A character string variable in an F program is declared to be type char-
acter. Each object of type character has a length, which is the number of
characters that the string has. For example, the declaration

character(len=7) :: string_7

declares the variable string_7 to be a character string of length 7.
Character dummy arguments and character parameters must have

their length designated as an asterisk, indicating that their length will
be determined by the corresponding actual argument or constant.

It is possible for a character string to have length zero. It is not par-
ticularly useful to declare a variable to have length zero because such a
variable could only assume one value, called the null string. However,
the null string can arise as a result of a computation, and a variable
could be declared to be length zero in a program generated by another
computer program.

The characters in a character string are numbered 1 to n, where n is
the length of the string.

It is possible to have an array of character strings, all of the same
length. The following declares string_array to be a 5 × 9 × 7 array of
character strings of length 20.
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character(len=20), dimension(5, 9, 7) :: string_array

5.1.2 Character Parameters

A character constant may be given a name using the parameter at-
tribute. As a simple example, the program hello prints a character pa-
rameter or named character constant, instead of a literal character
constant.

program hello
   character(len=*), parameter :: &
         message = "Hello, I am a computer."
   print *, message
end program hello

Running the program produces

 Hello, I am a computer.

Note that the name of the character parameter must be declared, just
like a character variable, but the length must be an asterisk indicating
that the length is to be determined from the value of the string.

5.1.3 Character Constants

Recall that a character constant is enclosed in quotation marks (double
quotes). This makes it possible for the computer to tell the difference
between the character constant "yes" and the variable yes, or between
the character constant "14" and the integer constant 14.

5.1.4 Assigning Values to Character Variables

A variable that has been declared to be a character string may be as-
signed a value that is a character string. A simple example is provided
by the following program that assigns a string to a character variable
used in a print statement instead of executing alternative print state-
ments containing different messages.

program test_sign
   real :: number
   character(len=8) :: number_sign

   read *, number
   if (number > 0) then
      number_sign = "positive"
   else if (number == 0) then
      number_sign = "zero"
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   else
      number_sign = "negative"
   end if
   print *, number, "is ", number_sign
end program test_sign

A sample output:

  -2.3000000 is negative

5.1.5 Length of a Character String

The length of a character string is the number of characters in the
string. The length of an F character string is fixed and is never nega-
tive. Each blank occurring in the string is counted in its length. The
built-in function len gives the length of a character string. Thus,

len("love") is 4
len("Good morning.") is 13
len(" ") is 1
len("    ") is 4
len("bg7*5 ad") is 8

As with other functions, the argument of the function len may be a
variable or more general expression, as well as a constant.

During execution of a program, a character string variable always
has its declared length. However, the length of a character string as-
signed to a character variable may be different from the length de-
clared for that variable. For example, if the input number is zero in the
program test_sign, the four-character constant ʺzeroʺ is assigned to
the eight-character variable sign. This assignment is legal. Four blanks
are added to the end of the string zero to make its length 8, the de-
clared length of the variable sign. Thus, the new value of the variable
sign is "zero ".

On the other hand, if the character string to be assigned to a vari-
able is longer than the declared length of the variable, characters are
truncated from the right end of the string prior to assignment. For ex-
ample, if the string name has a declared length of 3, the assignment
statement

name = "Jonathan"

results in the string “Jon” being assigned to name.
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In a subprogram, the length of a character dummy argument must
be given as an asterisk (*), which means that the length of the corre-
sponding actual argument is to be used. Such a dummy argument is
said to have assumed length. For example,

subroutine process(c)
character(len=*), intent(in) :: c

The length of a local character string may depend on values related
to the dummy arguments; such strings are called automatic, as they are
very similar to automatic arrays (4.1.5).

For example, a temporary local string can be declared to hold the
value of an argument passed in.

subroutine ss(c)
   character(len=*), intent(in) :: c
   character(len=len(c)) :: temp_c
   temp_c = c
   . . .

The intrinsic function len provides information that is otherwise unob-
tainable in the case where a character string, such as the variable c
above, is a dummy argument with its length given by an asterisk. The
programmer knows the length of all other character strings from their
declarations.

5.1.6 Input of Character Strings

When character strings are supplied as input data for a read statement
with the default format (*), the string should be enclosed in quotes,
just like a character constant. When using an a format, however, sur-
rounding quotes must be omitted; any quotes among the characters
read are considered to be part of the character constant.

5.1.7 Character Collating Sequences

The F programming language uses the standard 128-character ASCII
character set. The acronym ASCII stands for “American Standard Code
for Information Interchange”; however, essentially the same code is
also the international standard ISO 646:1983.

The intrinsic ordering for characters, called the collating sequence,
is determined by this standard. Table 5-1 shows a selection of printable
characters in the ASCII collating sequence. One character is considered
“less than” another character if it precedes the other character in the
collating sequence.
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5.1.8 The Built-In Functions ichar and char

The built-in function ichar produces an integer representing the ASCII
code of the character given as argument. For example, ichar("A") is
65.

The function char returns the character with a given code. For ex-
ample, char(65) gives the ASCII character in position 65, which is “A”.

5.1.9 A Testing Technique for Character Output

The program explore_character_set will allow you to explore the
ASCII collating sequence one character at a time. You type the charac-
ter code and the computer prints the character with that code. It should
be run interactively.

program explore_character_set

! Prints the character with given character code
! in the default kind

   integer :: code

   print *, "Type a character code"
   read *, code
   print "(i5, 3a)", code, ">", char(code), "<"

end program explore_character_set

 Type a character code
65
   65>A<

The blank character is a perfectly valid character (ASCII code 32).
To better see the value of char, the value is printed surrounded by the
printable characters > and <. A blank character will then conspicuously
occupy the print or display position between its delimiters.

Table 5-1 The collating sequence for printable ASCII characters

blank !  ʺ # $ % & ‘ ( ) * + , - . /

0 1 2 3 4 5 6 7 8 9 : ; < = > ? @

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z [ \ ] ^ _ `

a b c d e f g h i j k l m n o p q r s t u v w x y z { | } ~
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You must expect some surprises when you run the program
explore_character_set. Most of the characters from 0 to 31 do not
print. Some, like the line feed, char(10) in ASCII, direct the printer to
perform some action rather than print a character. The delimiters > and
< will help you figure out what action was taken.

Table 5-2 summarizes executions of the program explore_

character_set. It is the output of a program similar to explore_
character_set that uses loops to show the printable ASCII characters
and their corresponding codes, eight per line of output. Codes 0
through 31 and code 127 represent special control characters such as
the “bell” character, backspace, and newline. Code 32 represents the
blank character.

5.1.10 Comparison of Character Strings

In F the comparison operators

<, <=, ==, /=, >, >=

may be used to compare character values according to the ASCII collat-
ing sequence.

The ordering of strings is an extension of the ordinary lexicograph-
ic (i.e., dictionary) ordering of words, but uses the processor codes to
order characters other than letters. If the first character of one character

Table 5-2 The printable ASCII characters

 32     33 !   34 “   35 #   36 $   37 %   38 &   39 ‘

 40 (   41 )   42 *   43 +   44 ,   45 -   46 .   47 /

 48 0   49 1   50 2   51 3   52 4   53 5   54 6   55 7

 56 8   57 9   58 :   59 ;   60 <   61 =   62 >   63 ?

 64 @   65 A   66 B   67 C   68 D   69 E   70 F   71 G

 72 H   73 I   74 J   75 K   76 L   77 M   78 N   79 O

 80 P   81 Q   82 R   83 S   84 T   85 U   86 V   87 W

 88 X   89 Y   90 Z   91 [   92 \   93 ]   94 ^   95 _

 96 `   97 a   98 b   99 c  100 d  101 e  102 f  103 g

104 h  105 i  106 j  107 k  108 l  109 m  110 n  111 o

112 p  113 q  114 r  115 s  116 t  117 u  118 v  119 w

120 x  121 y  122 z  123 {  124 |  125 }  126 ~      
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string precedes the first character of the second string in the collating
sequence, then we say the first character string is less than the second.
If the first characters are equal, the second characters are used to de-
cide which character string is smaller. If the second characters match
also, the third characters are used to decide, and so on. The character
string with the smaller character in the first position where the two
strings differ is considered the smaller character string. When character
strings of different lengths are compared, the shorter one is treated as
if it were padded with enough blanks at the end to make it the same
length as the longer one. For example,

"apple" < "bug" < "cacophony" < "doldrums"

"earache" < "elephant" < "empathy" < "equine"

"phlegmatic" < "phonograph" < "photosynthetic"

"dipole" < "duplicate" == "duplicate   " < "dynamic"

In the first line of expressions, decisions are made on the basis of the
first letter of the strings. In the second line, since each string has first
letter “e”, decisions are made on the basis of the relative collating posi-
tion of the second letters. In the third set of comparisons, third or
fourth letters differ.

From these examples, it is clear that the natural order of character
strings corresponds exactly to ordinary alphabetic order when the
character strings are words written either entirely in lowercase or en-
tirely in uppercase letters.

String ordering does not take meaning into account. For example,
although

"1" < "2" < "3" < "4"

as expected, it is also true that

"four" < "one" < "three" < "two"

and, worse yet

"12" < "2"

String ordering also is sensitive to upper and lower case. The two char-
acter strings

"word"       "WORD"

are not equal.



184 Character Data

5.1.11 Substrings

Many character-processing applications require breaking down a string
into individual characters or subsequences of characters. Examples are
decomposing a word into letters or a sentence into words. The key idea
in such a decomposition is a substring.

A substring of a character string is any consecutive sequence of
characters in the string. For example, “J”, “ne D”, and “Doe” are sub-
strings of the character string “Jane Doe”, but “JDoe” is not a sub-
string. Every character string is regarded as a substring of itself. The
string of length zero (the null string) is a substring of every string; it
occurs between every pair of characters and at both the beginning and
end of the string. The following table indicates all the substrings of the
character string “then”.

Length 0:  “ ” (the null string)
Length 1:  “t”  “h”  “e”  “n”
Length 2:  “th”  “he”  “en”
Length 3:  “the”  “hen”
Length 4:  “then”

5.1.12 Referencing Substrings

There is a convenient way to refer to any contiguous subsequence of
characters of a character string. This is done by writing after any char-
acter variable or array element two integer expressions that give the
positions of the first and last characters in the substring. These two ex-
pressions are separated by a colon and enclosed in parentheses. The
positions are numbered from 1 to n, where n is the length of the string.
An example is string(k:m), where the values of k and m are positive
integers less than or equal to the length of string and k ≤ m. If k > m,
the result is the null string. For example if c = “crunch”,

c(2:4) is run
c(1:6) is crunch
c(3:2) is the null string
c(2:7) is illegal
c(5:5) is c

The last example illustrates how to refer to a single character of a
string. The program single_letters tells the computer to print, one at
a time, the characters of a string supplied as input.
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program single_letters
!  Print individually the letters of an input string

   integer :: k
   character(len=10) :: string

   read "(a)", string
   print *, "Input data  string: ", string

   do k = 1, len(string)
      print *, "|", string(k : k), "|"
   end do

   print *, "====="
end program single_letters

 Input data  string: SHAZAM    
 |S|
 |H|
 |A|
 |Z|
 |A|
 |M|
 | |
 | |
 | |
 | |
 =====

5.1.13 Trimmed Length of a String

It is a nuisance that the length of a character variable is always the
same regardless of its value. A definition of length that is suitable for
many applications is the length of the substring that includes all char-
acters up to and including the last nonblank character, but excluding
terminal blanks. Using substrings, it is possible to write a function
my_len_trim (trimmed length) that computes this value.

function my_len_trim(string) result(len_trim_result)

   character(len=*), intent(in) :: string
   integer :: len_trim_result
   integer :: k

   len_trim_result = 0
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   do k = len(string), 1, -1
      !  or until nonblank found
      if (string(k:k) /= " ") then
         len_trim_result = k
         exit
      end if
   end do

end function my_len_trim

Actually, the function len_trim is a built-in function that computes
exactly the same result as my_len_trim given above. In addition, there
is a built-in function trim, whose value is the given character string
with all trailing blanks removed. The value of trim(string) is the
same as string(1:len_trim(string)) and is used in the sample pro-
gram plural in 5.1.16.

The program substrings_of_length_2 prints all substrings of
length two of any character string supplied as input. The upper bound
len_trim(string) − 1 on the do variable k is the starting point of the
last substring of length two that doesn’t contain a trailing blank.

program substrings_of_length_2
   character(len=20) :: string
   integer :: k

   read "(a)", string
   print *, "Input data  string: ", string
   do k = 1, len_trim(string) - 1
      print *, string(k:k+1)
   end do

   print *, "====="
end program substrings_of_length_2

 Input data  string: High their!         
 Hi
 ig
 gh
 h 
  t
 th
 he
 ei
 ir
 r!
 =====
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By adapting the method of the program substrings_of_length_2,
we could write a program to print out all the substrings of any given
length. Using a double loop, we could write a program that lists all
substrings of all possible lengths. Tasks like these are provided as exer-
cises at the end of this section.

5.1.14 Reassigning the Value of a Substring

It is possible to reassign the value of a substring without affecting the
rest of the string. For instance, the three lines

name = "John X. Public"
initial = "Q"
name(6:6) = initial

tell the computer to change the value of the variable name from “John
X. Public” to “John Q. Public”. Similarly the three lines

name = "John Xavier Public"
new_middle_name = "Quincy"
name(6:11) = new_middle_name

direct the computer to change the value of the variable name from
“John Xavier Public” to “John Quincy Public”.

In reassigning the value of a substring as in the above two exam-
ples, it is necessary that the length of the new substring value exactly
equal the length of the old substring value. The following example
shows how to use a loop to make room for a longer replacement sub-
string. It is assumed that the declared length of name is at least 17 char-
acters.

name = "John Paul Public"
!  Move last name and blank one position to the right
do letter = 16, 10, -1
   name(letter+1:letter+1) =  &
         name(letter:letter)
end do
!  Insert middle name
name(6:10) = "Peter"

Note that it would not be correct to have the do variable count for-
ward from 10 to 16. That loop would first move the blank in position
10 to position 11, which is what is desired. However, for the second it-
eration of the loop, the value of letter would be 11 and the blank just
placed in position 11 would be moved to position 12. Next, the blank in
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position 12 would be moved to position 13. The total effect of the loop
would be to put blanks in positions 11 through 17.

It is possible to replace the do block that moves the last name one
position to the right with the single statement

name(11:17) = name(10:16)

5.1.15 Finding the Position of One String in Another

There are numerous reasons for wanting to know if one string is con-
tained as a substring in another. We might want to know if a particular
letter is in a word or if a certain word is in a sentence. The built-in
function index tells even more than that; it tells where to find the first
instance of one character string as a substring of another. For example,

index("monkey", "on")

is 2 because the substring “on” begins at the second letter of the string
“monkey” and

index("monkey", "key")

is 4 because the substring “key” begins at the fourth letter of “mon-
key”.

If the string supplied as the second argument occurs more than
once as a substring of the string supplied as the first argument, the
function value is the location of the beginning of the leftmost occur-
rence, so that

index("banana", "ana")

is 2 even though characters 4 to 6 of “banana” also are “ana”. If the sec-
ond argument is not a substring of the first argument, rather than call-
ing it an error and halting, a function value of zero is used as a signal.
For example,

index("monkey", "off")

is 0. A program that calls the function index can test for the signal val-
ue zero if desired.

The function index is a built-in function in F; but to provide a bet-
ter understanding of how the function works, a programmer-defined
version of the function called my_index follows. The intrinsic function
index has an optional third argument back not implemented in this
version. In the intrinsic version, when back is true, the search is for the
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rightmost occurrence of the substring. For example, index("banana",
"ana", .true.) is 4, but index("banana", "ana", .false.) is 2.

function my_index(text, string)  result(index_result)
!  Searches for string as a substring of text.
!  If found, index is the position of the first
!  character of the leftmost occurrence of string
!  in text.  If not found, index = 0

   character(len=*), intent(in) :: text, string
   integer :: index_result
   integer :: left_end, right_end

   index_result = 0
   do left_end = 1, len(text) - len(string) + 1
      right_end = left_end + len(string) - 1
      if (text(left_end:right_end) == string) then
         index_result = left_end
         exit
      end if
   end do

end function my_index

5.1.16 Concatenation

The only built-in operation that can be performed on strings that pro-
duces a string result is concatenation. The concatenation of two strings
is formed simply by placing one string after the other. The symbol for
concatenation is two slashes (//). The concatenation operator in F is
less useful than it might be because strings are all fixed length. The
program plural attempts to form the plural of given words by the
method of putting the letter “s” at the end. Obviously, this program is
not very useful as it stands, but it does illustrate the use of the concat-
enation operator.

program plural

   character(len=18) :: word
   integer :: ios

   do ! until out of words
      read (unit=*, fmt="(a)", iostat=ios) word
      if (ios < 0) then  ! end of file
         exit
      end if
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      print *, "Input data  word: ", trim(word)
      print *, "  Plural of word: ", trim(word) // "s"
   end do

end program plural

 Input data  word: program
   Plural of word: programs
 Input data  word: programmer
   Plural of word: programmers
 Input data  word: matrix
   Plural of word: matrixs
 Input data  word: computer
   Plural of word: computers
 Input data  word: horses
   Plural of word: horsess

The read statement in the program plural needs both a format
specification and an option iostat (input/output status) that sets the
integer variable ios to a negative value when attempting to read be-
yond the end of the file. Thus, the long form (9.3.2) is required. Howev-
er, we still want to use the default input unit, so we can write

read (unit=*, fmt="(a)", iostat=ios) word

The default input format is not used because we do not want to type
quotes around the input string.

5.1.17 Exercises

1. What is the value of each of the following expressions?

len ("5 feet")
len ("alphabet")
len ("abcdefghijklmnopqrstuvwxyz")
len ("42")

2. List all the substrings of length 3 of the string “alphabet”.

3. Write a program that reads a character string of maximum length
50 and prints all substrings of length 3. If you can’t think of any-
thing better, use as input data

"These are the times that try our souls."

The output from this sample input should be
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run substrings_3

  The
  hes
  ese
  .
  .
  .
  uls
  ls.

4. Write a program that reads a character string of maximum length
10 and prints all of its substrings.

5. Write a program that sorts a list of at most 200 character strings.
Each character string is at most 50 characters long and occupies the
leftmost positions of one line in the input file. Use the end-of-file
test to terminate reading of input data. You may be surprised at
what happens if you accidentally type a blank in the leftmost col-
umn of one of the lines in the input file. Then again, after you think
about it, you might not be.

6. A computer system maintains a list of valid passwords. Write a
program that accepts an 8-character password and checks it against
its list of valid passwords. The program should print “ok” if the
password is in the list and “Try again” if it is not. Give the user two
additional tries, replying with successively nastier messages each
time the user fails to give the correct password. Hint: Keep a list of
responses as well as a list of passwords. A sample execution might
produce the following output:

  Welcome to the super special simulated system
  Enter your password:
bug free
  Try again
  Enter your password:
silicon
  Are you sure you have a password?
  Enter your password:
i love f
  ok

7. Read a character string of maximum length 50 as input and print it
in reverse order. Ignore trailing blanks. You must use a character-
valued function reverse(string). If the input is
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until

the output should be

run test_reverse

  Input data  string:  until
  litnu

8. Nicely displayed headings add impact to a document. Write a pro-
gram to take a character string as input and print it surrounded by
a border of exclamation marks. Again, ignore trailing blanks in the
input. Leave one blank before the first character and after the last
character in the display. If the input is

Payroll Report

the output should be

  Input data  title:  Payroll Report

  !!!!!!!!!!!!!!!!!!
  ! Payroll Report !
  !!!!!!!!!!!!!!!!!!

9. Write a logical-valued function f_name that determines whether or
not its character string argument is a legal F name.

10. Write a function char_to_int that accepts a character string and
returns a vector of integers, one for each character in the string.
The integer value should be 1 through 26, reflecting the position in
the alphabet if the character is either an uppercase or lowercase
letter; the value should be zero, otherwise. For example,
char_to_int("e") = (/5/) and char_to_int("a-z") = (/1, 0, 26/).

11. Write a function int_to_binary that converts an integer to a char-
acter string that is the binary representation of the integer. Adjust
the 1s and 0s in the right-hand portion of the string and pad the re-
mainder of the string with blanks. The string should contain no in-
significant zeros, except that the integer 0 should produce the
string consisting of all blanks and one character “0”. If the integer
is negative, the first nonblank character should be a minus sign; if
it is positive, the first nonblank character should be”1”. Declare the
function result to have length 5. If the declared length is not long
enough to contain the result, it should consist of all asterisks.
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int_to_binary(5) is bb101
int_to_binary(0) is bbbb0
int_to_binary(-4) is b−100
int_to_binary(77) is *****

You must write the function in such a way that changing the length of
the function result to 16 requires no additional changes in the function.

12. Modify the function my_index given in 5.1.15 to have an optional third
argument back, making it identical to the intrinsic function index.
When back is true, the search proceeds backward from right to left.

5.2 Text Analysis

There are numerous reasons for examining text in minute detail, word by
word and letter by letter. One of the reasons is to determine the authorship
of an historical or literary work. Such quantities as the average length of a
word or the frequency of usage of certain letters can be important clues.
Computers have been useful in studying text from this viewpoint.

5.2.1 Blanking Out Punctuation

We start with some routines that perform simple text manipulation pro-
cesses. The subroutine blank_punct (blank out punctuation) uses the sub-
string value reassignment facility and the intrinsic function index. Keep in
mind that a function value zero means the function index has determined
that the second supplied argument is not a substring of the first supplied
argument. The subroutine blank_punct regards any character besides a
letter or a blank as a “punctuation mark” to be blanked out.

The program test_bp (test blank out punctuation) is intended to show
how the subroutine blank_punct works.

module blank_module

public :: blank_punct

contains

subroutine blank_punct (text)
! Blank out punctuation
! Retain only letters and blanks

   character(len=*), intent(in out) :: text
   character(len=*), parameter :: letter_or_b =  &
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         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz "
   integer :: i

   ! Replace any character that is not a blank
   ! or letter with a blank
   do i = 1, len_trim(text)
      if (index(letter_or_b, text(i:i)) == 0) then
         text(i:i) = " "
      end if
   end do
end subroutine blank_punct

end module blank_module

program test_bp

   use blank_module
   character(len=100) :: text
   text = "Suppress5$,superfluous*/3punctuation."
   call blank_punct(text)
   print *, text

end program test_bp

 The result is

Suppress     superfluous     punctuation                                                                

A slightly different version of the subroutine blank_punct uses the
verify built-in function. The verify function scans the first argument,
checking that each character in the string is also in the string that is the
second argument. If each character in the first argument is also in the
second, the value of the function is 0. Otherwise, the value of the func-
tion is the character position of the leftmost character in the first argu-
ment that is not in the second argument. For example the value of
verify("banana", "nab") is 0 and the value of verify("banana",
"ab") is 3, the position in “banana” of the first letter that is neither “a”
nor “b”.

subroutine blank_punct(text)
! blank out punctuation
! retain only letters and blanks

   character(len=*), intent(in out) :: text
   character(len=*), parameter :: letter_or_b =  &
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         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz "
   integer :: i

   ! Replace any character that is not a blank
   ! or letter with a blank
   do
      i = verify(text, letter_or_b)
      if (i == 0) exit
      text(i:i) = " "
   end do
end subroutine blank_punct

The subroutine blank_punct needs a character string of length 53
that does not fit conveniently on one line. The concatenation operator
is used to break the line.

5.2.2 Excising a Character from a String

When a character of a string is blanked out, as by the subroutine
blank_punct, that character is replaced by a blank and the length of
the character string remains unchanged. When a character is excised
from a string, not only is the character removed, but also all of the
characters to the right of the excised character are moved one position
to the left. Thus, when a character is excised from a string, the trimmed
length (that is, not including trailing blanks) of the string is decreased
by at least one. Of course, the declared total length of the string cannot
change in F and so a blank is added as the rightmost character. The
character in position c of name can be excised by the statement

name(c:) = name(c+1:)

A blank is added because name(c+1:) is one character shorter than
name(c:).

The subroutine compress_bb (compress double blanks) removes all
double blanks from a string except those that occur at the right end. It
is called by a program words that lists all the words in a string; the pro-
gram words is discussed in the next subsection.

subroutine compress_bb (text)
!  Removes double blanks, except at right end
   character(len=*), intent(in out) :: text
   integer :: i

   do
      i = index(trim(text), "  ")
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      if (i == 0) exit
      text(i:) = text(i+1:)
   end do
end subroutine compress_bb

5.2.3 Efficiency of compress_bb

In most cases, efficiency of the code does not matter. But there are
some programs (weather prediction, for example) that require the most
efficient programs we can write. Also, since this little subroutine might
be used by other programs, we should make some attempt to make it
perform well.

The subroutine compress_bb is not efficient because each time a
double blank is found, all the characters to the right are moved one po-
sition to the left. Thus the characters near the end of the string may be
moved many times. It would be better to move each character once to
its final position if possible.

Here are informal instructions to accomplish this. Implementing it
in F is left as an exercise.

Set the logical variable final_is_blank to false
Set the integer variable final to 0
Do original = 1 to length of text
   If final_is_blank is false or &
         original character of text is not blank
      Increment final by 1
      Copy original character to final character
      Set final_is_blank equal to &
            (final character of text is blank)
   end if
end do

5.2.4 Listing All the Words

We now turn our attention to the problem of listing all the words in a
text. For this purpose, the program words regards a substring as a
word if and only if it consists entirely of letters and both the character
immediately before it (if any) and the character immediately after it (if
any) are not letters. The program does not consult a dictionary to see
whether the word has been approved by a lexicographer.

program words

   use words_module
   character(len=200) :: text
   integer :: end_of_word



5.2 Text Analysis 197

   read "(a)", text
   print *, "Input data  text: ", trim(text)

   ! Blanking out the punctuation,
   ! compressing the multiple blanks,
   ! and ensuring that the first character is a letter
   ! are pre-editing tasks to simplify the job.
   call blank_punct(text)
   call compress_bb(text)
   text = adjustl(text)

   ! Print all the words.
   if (len_trim(text) == len(text)) then
      ! The text is all one long word.
      print *, text
   else
      ! Each word is followed by exactly one blank.
      do ! until all words are printed
         if (len_trim(text) == 0) exit
         end_of_word = index(text, " ") - 1
         print *, text(1:end_of_word)

         ! Discard word just printed
         text = text(end_of_word+2:)
      end do
   end if

end program words

 Input data  text: Then, due to illness*, he resigned.
 Then
 due
 to
 illness
 he
 resigned

If the string supplied as input to the program words contains no
letters, the pre-editing provides a string of all blanks to the do loop that
prints all the words. The do loop exits correctly on the first iteration
without printing any words because the trimmed length is zero. In the
usual case, however, a word starts at position 1 of text and stops im-
mediately before the first blank. The computer prints the word and dis-



198 Character Data

cards it and the blank immediately following it, so that the next word
to be printed begins at location 1 of the resulting character string.

Even after the subroutines blank_punct and compress_bb are
called, it is possible that the first character of the string is a blank. Ap-
plication of the built-in function adjustl shifts the string to the left to
eliminate any leading blanks, filling in the end of the string with a
blank for each position shifted.

5.2.5 Average Word Length

To compute the average length of words in a given text, it is necessary
to determine both the total number of letters in each word and the total
number of words. The most direct way that comes to mind is used by
the program avg_word_len_1 (average word length, version 1).

program avg_word_len_1
   Initialize word count and letter count to zero
   Read text
   Start scan at leftmost character of the text
   Do until end of text is reached
      Locate the beginning and end of a word
      If no more words then exit the loop
      Increase the letter count
            by the number of letters in the word
      Increase the word count by 1
   Print “average word length = “,
         letter count / word count
end program avg_word_len_1

After reading in the text, the computer starts to look for the first
word at the extreme left. Blanks, commas, and other nonletters are
passed over to find the beginning of a word. Then letters are counted
until the first nonletter is reached, such as a blank or punctuation
mark, which signals the end of the word. These steps are repeated for
each word in the text. Each time it locates a word, the computer in-
creases the letter count by its length and the word count by one.

The refinement of avg_word_len_1 is straightforward. It uses the
intrinsic function scan that works like verify, except that it looks for
the first occurrence of any character from a set of given characters, in
this case the alphabetic characters.

program avg_word_len_1
!  Calculate the average word length of input text

   character(len=200) :: text
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   integer :: word_begin, word_end
   integer :: word_count, letter_count
   character(len=*), parameter :: alphabet =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz"

   letter_count = 0
   word_count = 0
   read "(a)", text
   print *, "Input data  text: ", trim(text)

   do  ! until no more words
      word_begin = scan(text, alphabet)
      if (word_begin == 0) exit
      text = text(word_begin:)
      word_end = verify(text, alphabet) - 1
      if (word_end == -1) word_end = len(text)
      letter_count = letter_count + word_end
      word_count = word_count + 1
      text = text(word_end+2:)
   end do

   print *, "Average word length =",  &
         real(letter_count) / word_count

end program avg_word_len_1

 Input data  text: Never mind the whys and wherefores.
 Average word length =   4.8333335

 Input data  text: I computed the average word length.
 Average word length =   4.8333335

The sample execution output of the program avg_word_len_1
might suggest that to use average word length as a test for authorship,
one should have a fairly large sample of text.

5.2.6 Modification for a Large Quantity of Text

If the amount of text is very large, the computer might not have
enough memory to hold it all at one time. Also, in some F systems,
there is a maximum length for character strings. For these reasons, it
may be desirable to modify the program avg_word_len_1 so that it
reads the text one line at a time, rather than all at once. The program
avg_word_len_2 incorporates such a modification. Much of the main
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program avg_word_len_1 is put into the subroutine one_line (process
one line).

module word_length_2_module

   public :: one_line

   character(len=*), parameter, private :: alphabet =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz"
   character(len=200), public :: text
   integer, public :: word_count, letter_count

contains

subroutine one_line()
!  Accumulate statistics on one line of input text.
   integer :: word_begin, word_end

   do  ! until no more words
      word_begin = scan(text, alphabet)
      if (word_begin == 0) exit
      text = text(word_begin:)
      word_end = verify(text, alphabet) - 1
      if (word_end == -1) then
         word_end = len(text)
      end if
      letter_count = letter_count + word_end
      word_count = word_count + 1
      text = text(word_end+2:)
   end do

end subroutine one_line

end module word_length_2_module

program avg_word_len_2
!  Calculate the average word length of input text.
!  Text may have many lines, terminated by end of file.

   use word_length_2_module
   integer :: ios

   letter_count = 0
   word_count = 0
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   do  ! until no more lines of text
      read (unit=*, fmt="(a)", iostat=ios) text
      if (ios < 0) exit
      print *, "Input data  text: ", trim(text)
      call one_line()
   end do

   print *, "Average word length =",  &
         real(letter_count) / word_count

end program avg_word_len_2

 Input data  text: One of the more important uses
 Input data  text: of the character manipulation
 Input data  text: capability of computers is
 Input data  text: in the analysis of text.
 Average word length =   4.8947368

5.2.7 Frequency of Occurrence of Letters

There are two basic ways to count the number of occurrences of each
letter of the alphabet in a given text. Both ways use 27 counters, one for
each letter of the alphabet and one to count all the other characters.

One way to tabulate letter frequencies in a line of text is first to
scan it for all occurrences of the letter “a”, then to scan it for all occur-
rences of the letter “b”, and so on through the alphabet. This requires
26 scans of the whole line. This method is embodied in the pseudocode
program letter_count_1.

program letter_count_1
   Initialize
   do
      Read line of text
      If no more text, exit loop
      do letter = “a”, “z”
         Scan line of text, counting occurrences
               of that letter (either uppercase
               or lowercase)
         Calculate the number of nonletters and
               increment nonletter total
      end do
   end do
   Print the counts
end program letter_count_1
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The second way to count letter frequencies in a line of text is to be-
gin with the first symbol of the text, to decide which of the 27 counters
to increment, to continue with the second letter of the line of text, to
see which counter to increment this time, and so on through the text.
This second way is implemented by the pseudocode program
letter_count_2.

program letter_count_2
   Initialize
   do
      Read a line of text
      If no more text, exit loop
      Do for each character in the line of text
         If the character is a letter then
            Increment the count for that letter
         else
            Increment the nonletter count
         end if
      end do
   end do
   Print the counts
end program letter_count_2

By the method of the program letter_count_1, the text must be
scanned completely for each letter of the alphabet. By the method of
the program letter_count_2, the text is scanned just once. Thus, the
second program executes considerably faster than the first one and so
only the program letter_count_2 is supplied below.

In F, the subscripts of the array of counters cannot be “a”, “b”, etc.
A subscript must be type integer. Therefore, subscripts 1 through 26
are used to count the number of occurrences of each letter of the alpha-
bet and subscript 0 is used to count the characters that are not letters.

module letter_count_2_module

public :: count_letters, print_counts

!  Variables:
!     tally(0) = count of nonletters
!     tally(1) - tally(26) = counts of A/a - Z/z

   character(len=*), parameter, private :: alphabet =  &
         "ABCDEFGHIJKLMNOPQRSTUVWXYZ" //  &
         "abcdefghijklmnopqrstuvwxyz"
   character(len=200), public :: text
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   integer, dimension(0:26), public :: tally

contains

subroutine count_letters()
!  Count letters in one line of text
   integer :: i, letter

   do i = 1, len_trim(text)
      letter = index(alphabet, text(i:i))
      if (letter > 26) letter = letter - 26
      tally(letter) = tally(letter) + 1
   end do
end subroutine count_letters

subroutine print_counts()
!  Print the frequency counts

   integer :: letter

   print *
   print "(2a10)", "Letter", "Frequency"
   do letter = 1, 26
      print "(a10, i10)",  &
            alphabet(letter:letter), tally(letter)
   end do
   print "(a10, i10)", "Other", tally(0)
end subroutine print_counts

end module letter_count_2_module

program letter_count_2
!  Count frequency of occurrence in a text
!  of each letter of the alphabet

   use letter_count_2_module

   integer :: ios

   tally = 0  ! Set entire array to zero

   do  ! until no more lines in file
      read (unit=*, fmt="(a)", iostat=ios) text
      if (ios < 0) exit
      print *, "Input data  text: ", trim(text)
      call count_letters()
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   end do

   call print_counts()

end program letter_count_2

 Input data  text: One of the important text analysis
 Input data  text: techniques (to determine authorship)
 Input data  text: is to make a frequency count of
 Input data  text: letters in the text.

    Letter Frequency
         A         6
         B         0
         C         3
         D         1
         E        15
         F         3
         G         0
         H         5
         I         7
         J         0
         K         1
         L         2
         M         3
         N         8
         O         8
         P         2
         Q         2
         R         5
         S         6
         T        16
         U         4
         V         0
         W         0
         X         2
         Y         2
         Z         0
     Other        20

This is a good example to illustrate how and where different vari-
ables and parameters are declared. The variable count is a public vari-
able in the module because it is used in the program letter_count_2.
The parameter alphabet and the variable text are private because
they are not needed in the program letter_count_2, but are above the
contains statement because they are used in both of the module pro-
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cedures. The remaining variables are declared within the subroutines
because they are needed in only one subroutine.

5.2.8 Palindromes

Another aspect of text analysis is searching for patterns. Perhaps the
text repeats itself every so often, or perhaps the lengths of the words
form an interesting sequence of numbers. One pattern for which we
search here is called a “palindrome”, which means that the text reads
the same from right to left as from left to right. The word “radar” is a
palindrome, for example. Liberal palindromers customarily relax the
rules so that punctuation, spacing, and capitalization are ignored. To
liberal palindromers, the names “Eve”, “Hannah”, and “Otto” are all
palindromes, as is the sentence

“Able was I ere I saw Elba.”

something Napoleon might have said, except that he preferred speak-
ing French.

The program palindrome satisfies the most conservative palin-
dromers. As the two sample runs show, it accepts the string

“NAT SAW I WAS TAN”

as a palindrome, but it rejects the string

“MADAM I’M ADAM”

It is straightforward to modify the program palindrome to apply a
more liberal test for palindromes; simply preprocess the text as in the
program words in 5.2.4. The subroutine blank_punct converts all non-
letters to blanks, the subroutine compress_bb can be modified to excise
all blanks, and a subroutine fold_cases can be written to change all
lowercase letters to uppercase.

module c_or_blank_module

public :: c_or_blank

contains

function c_or_blank(c) result(c_or_blank_result)
!  Tests if c is blank
!  Returns "blank" if it is
!  Returns c otherwise
   character(len=*), intent(in) :: c



206 Character Data

   character(len=5) :: c_or_blank_result

   if (c == " ") then
      c_or_blank_result = "blank"
   else
      c_or_blank_result = c
   end if
end function c_or_blank

end module c_or_blank_module

program palindrome
!  Tests for a palindrome

   use c_or_blank_module

   character(len=200) :: text
   integer :: l, left, right
   logical :: match

   read "(a)", text
   print *, "Input data  text: ", trim(text)

   right = len_trim (text)
   match = .true.
   do l = 1, right / 2
      if (text(l:l) /= text(right:right)) then
         left = l
         match = .false.
         exit
      else
         right = right - 1
      end if
   end do

   if (match) then
      print *, "Palindrome"
   else
      print *, "Not a palindrome"
      print*, "Character",left,"from the left is ",&
            c_or_blank(text(left:left))
      print*, "Character",left,"from the right is ",&
            c_or_blank(text(right:right))
   end if

end program palindrome
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 Input data  text: NAT SAW I WAS TAN
 Palindrome

 Input data  text: MADAM I'M ADAM
 Not a palindrome
 Character 5 from the left is M
 Character 5 from the right is blank

5.2.9 Exercises

1. Write the more efficient version of compress_bb described in 5.2.3.

2. Mark Twain wrote in “The Awful German Language” (in A Tramp
Abroad) that he heard a California student in Heidelberg say, in one
of his calmest moods, that he would rather decline two drinks than
one German adjective. Write a program to help out this California
student. The input data consists of a German adjective, for exam-
ple,

gut

The output might be

Input data  adj:  gut

 der gute  Mann    die gute Frau    das gute Kind
 des guten Mannes  der guten Frau   des guten Kindes
 dem guten Mann    der guten Frau   dem guten Kind
 den guten Mann    die gute Frau    das gute Kind

3. (a) Write a program to move all blanks that occur in an input string
to the end of the string. (b) Modify the program so that blanks
within matched pairs of quotes are not removed. If the input data
is

do i = 1, 10, 2

the output should be

  Input data  source:  do i = 1, 10, 2
  doi=1,10,2

4. Calculate the ratio of letters in the first half of the alphabet to let-
ters in the second half of the alphabet in an input text.

5. An alliteration is a sequence of words all starting with the same let-
ter. Write a program alliteration that counts the most consecu-
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tive words in an input text starting with the letter “P” or “p”. For
the sample input data

In his popular paperback, “Party Pastimes People
Prefer”, prominent polo player Paul Perkins
presents pleasing palindromes.

the output should be

  14

5.3 Case Study: Expression Evaluation

In 3.15.4 it was mentioned that it is possible for recursive procedures to
call each other. This is illustrated in this section with an example that
also gives a little insight into how computer programs are processed,
producing the answers that we expect to see when a program is run.

In this book, the syntax or form of F statements is given by a very
informal description. The following definitions use a more formal nota-
tion to describe a small part of F, namely, a class of arithmetic expres-
sions involving only nonnegative integer constants, addition (+),
multiplication (*), and parentheses. A more complete description of
this notation can be found in Appendix B.

The first thing to do is describe what a number is.

number is digit
or digit number

This says that a number is either a single digit or a digit followed by
another (shorter) number. It is a recursive definition because the defini-
tion of number involves number as part of the second option. As with
any recursive definition or program, there must be a way to terminate
the recursion; in this case, a number must eventually be just a digit, the
first choice for number. A digit is a single character 0, 1, ..., or 9. This is
a situation in which the recursion is not very essential and a number
can be described more simply as a sequence of one or more digits, but
this provides a very simple example of the definitions of other syntac-
tic objects that are a little more complicated.

The fundamental building block of an expression is called a
primary. Primaries are the basic components out of which expressions
are built; they are treated as operands and combined using arithmetic
operators. In our case it is either a number or any other expression
enclosed in parentheses.
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primary is number
or ( expression )

The next rule indicates how to build expressions using just prima-
ries and multiplication to form what are called terms. A term is a se-
quence of primaries separated by the multiplication symbol (*). It can
also be described recursively with the rule

term is primary
or primary * term

This description says that a term is either a primary by itself or a primary
followed by the multiplication symbol and another (simpler) term. Ex-
amples of terms are

64
111*2222
397*43*(2899*64352)

In the last case one of the primaries is (2899*64352), which is an ex-
ample of an expression enclosed in parentheses.

The description of an expression is similar to that of a term. An ex-
pression is a sequence of terms separated by the plus (+) operator and
can be described recursively in our notation by

expression is term
or term + expression

Examples of expressions are all of the example terms given in the pre-
vious list and the following as well.

111+2222
111+2222*33
(111+2222)*33

The last two are seen to be expressions in slightly different ways. For
111+2222*33, 111 is a term and 2222*33 is an expression, because it is
a term consisting of two primaries separated by *. However,
(111+2222)*33 consists of an expression in parentheses followed by *
and the number 33. This illustrates that the syntax rules indicate how
the expression is to be broken down into components, which, in turn,
indicates how the value of the expression will be computed.

It is now possible to see how intertwined these definitions are. We
started with the definition of a primary that involved an expression.
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But the definition of expression involves the definition of term, which
involves the definition of primary!

It is possible to construct a program that determines if a string of
characters is a legal expression as defined above. This program can be
implemented using the recursive definitions directly or it can take ad-
vantage of the tail recursion in the definitions of number, term, and ex-
pression in order to be a little more efficient. However, it is not as easy
to see how to handle the second alternative in the definition of primary
without a recursive call to determine if it is an expression in parenthe-
ses.

It is interesting that it is possible to write a program that is not
much more complicated than one that just tests the legality of an ex-
pression, but that computes the value of any legal expression. Giving
the rules that determine the value of each expression specifies the se-
mantics or meaning of the expression. It is easy to transform the rules
given above into rules that compute the value of any expression.

A primary is either a number or an expression in parentheses; the
value of a primary is either the value of the number or the value of the
expression in parentheses. This sounds so simple that it may seem like
it doesn’t even say anything, but it does give the value of any primary
in terms of its components. By the way, we will assume that the value
of a number is “obvious”, although it is not hard to define the value of
a number in terms of its digits.

The description of the value of a term and an expression are very
similar. If a term is a primary, its value is the value of the primary,
which is defined in the previous paragraph. If it is primary * term, its
value is the product of the value of the primary and the term. Similarly,
the value of expression is either the value of a term or the sum of the
values of a term and another expression.

We can now begin to write some of the functions that will return
the value of the various kinds of expressions. Blanks are not permitted
or are removed by preprocessing. Taking them in the same order as be-
fore, primary is a function that computes the value of a primary. We
agree to return the value −1 if the string is not a legal primary. This
works because only nonnegative integer constants are allowed and
there is no subtraction operator.

recursive function primary(string)  &
      result(primary_result)

   character(len=*), intent(in) :: string
   integer :: primary_result
   integer :: ls
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   ! See if it is a number
   primary_result = number(string)
   ls = len(string)
   ! If not, see if it is an expression in parens
   if (primary_result < 0 .and. ls > 0) then
      if (string(1:1) == "(" .and.  &
          string(ls:ls) == ")") then
         primary_result =  &
               expression(string(2:ls-1))
      end if
   end if

end function primary

The first executable statement evaluates the primary as if it were a
number. If it is a number, the value is not −1 and its value is also the
value of the primary. If the value is −1, the other option is that the pri-
mary is an expression enclosed in parentheses. The first and last char-
acters are checked—if they are left and right parentheses, respectively,
the expression between is evaluated and is used as the value of the pri-
mary.

To check that a string is a number, which must be a string of one or
more digits, the verify function is used. It returns 0 if all the charac-
ters are digits. Also, if the length of the string is greater than zero, an
internal read statement (9.3.6) is used to convert the string of digits to
an integer value.

function number(string) result(number_result)

   character(len=*), intent(in) :: string
   integer :: number_result

   ! Check that it is one or more digits
   if (len(string) > 0 .and.  &
         verify(string, "0123456789") == 0) then
      read (unit=string, fmt=*) number_result
   else
      number_result = -1
   end if

end function number

The function term that returns the value of a string if it is a term
and −1 otherwise first checks to see if the string is a primary. If it is, the
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value of the primary is the value of the term. If it is not a primary, it
must be a primary followed by * followed by another term.

recursive function term(string) result(term_result)

   character(len=*), intent(in) :: string
   integer :: term_result
   integer :: op

   ! Check if it is a primary
   term_result = primary(string)
   if (term_result < 0) then
      ! If not a primary,
      ! find the first * outside parens
      op = position(string, "*") 
      if (op > 0) then
         term_result =  &
            combine(primary(string (:op-1)),  &
                       term(string (op+1:)), "*")
      end if
   end if

end function term

We have made the function a bit more efficient by realizing that a
primary cannot contain a multiplication sign unless it is inside paren-
theses. So we look for the leftmost multiplication sign that is not en-
closed in parentheses. This is done by scanning the string, counting a
left parenthesis as +1 and a right parenthesis as −1 and finding the first
* at a place where the count is zero (and hence the parentheses to the
left are balanced). The function position does this and returns 0 if it
doesn’t find such a multiplication symbol.

function position(string, op_symbol)  &
      result(position_result)

   character(len=*), intent(in) :: string, op_symbol
   integer :: position_result
   integer :: p, paren_count

   position_result = 0
   paren_count = 0
   do p = 1, len(string)
      if (string(p:p) == "(") then
         paren_count = paren_count + 1
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      else if (string(p:p) == ")") then
         paren_count = paren_count - 1
      else if (string(p:p) == op_symbol .and.  &
               paren_count == 0) then
         position_result = p
         exit
      end if
   end do

end function position

It is interesting to note that a case construct cannot be used to select
which operation to perform because the items in parentheses in each
case statement must be constants; an item cannot be the character
string that is the dummy argument operator.

If position is positive, the function term treats the characters to
the left of the * as a primary and the characters to the right as another
term, getting their values and multiplying them together if neither is
−1. The function combine is used to multiply two values together,
except that it returns −1 if either argument is −1. It is also used to add
two values, so it takes a third argument that indicates which operation
to perform.

function combine(x, y, op_symbol)  &
      result(combine_result)

   integer, intent(in) :: x, y
   character(len=*), intent(in) :: op_symbol
   integer :: combine_result
   if (x < 0 .or. y < 0) then
      combine_result = -1
   else
      select case (op_symbol)
         case ("+")
            combine_result = x + y
         case ("*")
            combine_result = x * y
         case default
            combine_result = -1
      end select
   end if

end function combine
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The function expression is very similar to term. The names of the
functions called are changed, and the operator passed to combine is +
instead of *.

All of these functions are put in a module.

module expression_module

public :: expression, term, primary, number, &
          position, combine

contains

recursive function expression (string) . . .

recursive function term (string) . . .

recursive function primary (string) . . .

function number (string) . . .

function position (string, op_symbol) . . .

function combine (x, y, op_symbol) . . .

end module expression_module

program expression_evaluation

   use expression_module
   character(len=100) :: line
   integer :: status, value

   do
      read (unit=*, fmt="(a)", iostat=status) line
      if (status < 0) exit
      print *
      print *, "Input data  line:  ", trim(line)
      value = expression(trim(line))
      print *, "The value of the expression is: ", value
   end do

end program expression_evaluation

Input data  line:  (443+29)(38+754)
 The value of the expression is:  -1
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 Input data  line:  89+23*4
 The value of the expression is:  181

 Input data  line:  (((((((555)))))))
 The value of the expression is:  555

 Input data  line:  64+23*(5388+39)*(54*22+3302*2)
 The value of the expression is:  972605296

5.3.1 Exercises

1. Give a recursive definition of the value of a number that uses the
value of a digit.

2. Extend the expression_evaluation program to allow negative
constants, subtraction, and division.
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Structures and Derived Types 6
F arrays allow data to be grouped, but only if all items have the same
data type. It is often useful to use a structure, which is a compound ob-
ject consisting of values that may be of different data types. Derived
types are used to define the form of structures. It is possible to define
new operations on defined types, creating abstract data types. Derived
types and their operations are defined in a module, making them glo-
bally available to many programs.

An interesting kind of structure is a recursive data structure, which
can be built and manipulated using pointers. Examples of these struc-
tures in the form of linked lists and trees are found in Chapter 8.

6.1 Structures

A structure is a collection of values, not necessarily of the same type.
The objects that make up a structure are called its components. The
components of a structure are identified by F names, whereas the ele-
ments of an array are identified by numerical subscripts.

A good example of the use of a structure might be provided by a
simple text editor, such as the one supplied with many Basic program-
ming language systems. Each line in a Basic program consists of a line
number and one or more statements. When the editor is running, the
program being edited could be represented in the editing program as
two arrays, one to hold line numbers and one to hold the text of each
line. Perhaps a better way to do this is to have a single object called
line consisting of two components, an integer line_number and a
character string statement. The entire Basic program would then be an
array of these structures, one for each line.

The components of a structure may be arrays or other structures.
The elements of an array may be a structure. The elements of an array
may not be arrays, but this functionality can be achieved with an array
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whose elements are structures whose only component is an array or by
a higher dimensional (rank) array.

To give a slightly more complicated example, suppose we wish to
store in our computer the contents of our little black book that contains
names, addresses, phone numbers, and perhaps some remarks about
each person in the book. In this case, each entry in the book can be
treated as a structure containing four components: name, address,
phone number, and remarks. The diagram in Figure 6-1 represents the
organization of this information.

The name of the structure is person, and it has four components:
name, address, phone, and remarks. Sometimes one or more compo-
nents might be broken down into lower-level components. For in-
stance, if the owner of the black book wanted to contact every
acquaintance in a particular city, it would be helpful to have the com-
ponent address itself be a structure with components number, street,
city, state, and postal zip_code. With this organization of the data, it
would be possible to have a computer program scan the entries for city
and state without having to look at the street address or zip code. For
similar reasons, it might be convenient to subdivide each telephone
number into a three-digit area code and a seven-digit local number, as-
suming all of the numbers are in North America. This more refined
data organization is represented schematically by the structure in Fig-
ure 6-2.

Figure 6-1 Diagram of the structure person.
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6.2 Derived Types

As was discussed in 1.2, there are five intrinsic F data types: integer, re-
al, complex, logical, and character. A programmer may define a new
data type, called a derived type. In F, a derived type can be used only
to define a structure. Conversely, a structure can occur in a program
only as a value of some derived type.

A type definition begins with the keyword type, followed by ei-
ther the private or public accessibility attribute, followed by two co-
lons (::) and the name of the type being defined. The components of
the type are given in the form of ordinary type declarations. The type

Figure 6-2 A refined structure person.
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definition ends with the keywords end type, followed by the name of
the type being defined.

All type definitions are put above the contains statement in a
module. In other words, a type definition must not appear in a main
program or a procedure.

Let’s start first with the Basic editor example, for which each line of
the program consists of a line number and some text. A definition of a
type that would be useful in this example is

type, public :: line
   integer :: line_number
   character(len=line_length) :: text
end type line

where line_length is an integer parameter (named constant).
Let us next return to the example of the little black book. To define

the type phone_type in that example, area_code and number are each
declared to be integer components:

type, public :: phone_type
   integer :: area_code, number
end type phone_type

The definition of the type address_type is a little more complicated
because some of the components are character strings and some are in-
tegers:

type, public :: address_type
   integer :: number
   character(len=30) :: street, city
   character(len=2) :: state
   integer :: zip_code
end type address_type

Now that the types address_type and phone_type have been de-
fined, it is possible to define a type suitable for one entry in the black
book. Note that the names address_type and phone_type were used
for the names of the types, so that the names address and phone could
be used for the components of the type person_type.

type, public :: person_type
   character(len=40) :: name
   type(address_type) :: address
   type(phone_type) :: phone
   character(len=100) :: remarks
end type person_type
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6.2.1 Exercises

1. Design a data structure suitable for information on a college stu-
dent to be used by the college registrar. Write the type definitions
needed for this data structure.

2. Assuming that airlines accept reservations for flights up to one
year in advance, design a data structure suitable for storing infor-
mation associated with each reservation. Write the type definitions
needed for this data structure.

3. Design a data structure suitable to hold information on each flight
to be made by an airline during the next year. Write the type defi-
nitions needed for this data structure.

4. Design a data structure suitable for a bank to keep the information
on a checking account. Write the type definitions needed for this
data structure.

6.3 Declaring and Using Structures

Given the type definition for line in 6.2 that can be used to hold a line
number and one line of a Basic program, a variable new_line that
could be used to represent one line of the program can then be de-
clared by

type(line) :: new_line

As shown in this example, a variable is declared to be a derived
type with a declaration that is similar to the declaration of a variable of
intrinsic type, except that the name of the intrinsic type is replaced by
the keyword type and the name of the type in parentheses. Note that
in a type definition, the name of the type is not enclosed in parentheses,
but in a type declaration, the name of the type is enclosed in parenthe-
ses.

The entire program to be edited could be represented by a single
variable declared to be an array of values of type line:

type(line), dimension(max_lines) :: basic_program

With this declaration, some parts of the editor are a little easier to write
and read because any operations that must be done to both a line num-
ber and the text can be expressed as a single operation on a line. For
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example, if two arrays were used, the print statement of a subroutine
list_program might have been written

print “(i5, tr1, a)”, line_number(n), text(n)

It can now be written

print “(i5, tr1, a)”, basic_program(n)

where the tr (tab right) edit descriptor (9.8.13) indicates a number of
print positions to skip.

To use the type declarations for the address book, joan can be de-
clared to be type person_type with the statement

type(person_type) :: joan

and the little black book can be declared to be an array of type
person_type:

type(person_type), dimension(1000) :: black_book

Of course, any program or module that is to contain a derived type
declaration must use the module containing the derived type definition
(or be in the module or program containing the definition).

6.3.1 Referencing Structure Components

A component of a structure is referenced by writing the name of the
structure followed by a percent sign (%) and then the name of the com-
ponent. Suppose joan is an F variable declared to be type person_type
as shown above. Then Joan’s address is referenced by the expression

joan % address

Style note: Blanks are permitted, but not required, around the
percent sign in a structure component reference. We usually
use the blanks because it improves readability.

The object joan % address is itself a structure. If it is desired to re-
fer to one of the components of this structure, another percent symbol
is used. For example, the state Joan lives in is

joan % address % state

and her area code is

joan % phone % area_code
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To see how structures can be used in a program, suppose the con-
tents of the little black book are stored as the value of the variable
black_book declared above, and suppose we want a subroutine that
will print out the names of all persons who live in a given postal zip
code. The subroutine simply goes through the entire contents of the
black book, one entry at a time, and prints out the name of any person
with the appropriate zip code.

Style note: If you use F names followed by the suffix _type to
name derived types, the same name without the suffix is avail-
able for variables and structure components of that type. For
example, the component name can be type name_type and ad-
dress can be address_type. This convention is used frequent-
ly in this book, but not always.

6.3.2 Structure Constructors

Each derived-type definition creates a structure constructor, whose
name is the same as that of the derived type. For example, if you define
a type named boa, you have a boa constructor. This constructor may be
used much like a function to create a structure of the named type. The
arguments are values to be placed in the individual components of the
structure. For example, using the type phone_type in 6.2, an area code
and telephone number may be assigned with the statement

joan % phone = phone_type(505, 2750800)

It is not necessary that the function arguments be constants. If john
also is type person_type and john % address has been given a value,
the variable joan of type person_type can be assigned a value with the
statement

joan = person_type ("Joan Doe", john % address,  &
       phone_type (505, fax_number - 1),  &
       "Same address as husband John")

6.3.3 Default Initialization

There is no way in F to indicate that (for example) every integer vari-
able should be initialized to zero. Something like this can be done with
derived types, however. Default initialization indicates that certain
components of a derived type are to be set to a specified value each
time an object of that type is created by a declaration or allocation. In
the following example, the x and y components of structures of type
point are always initialized to 1.1 and 2.2, respectively.
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program default_initialization

   type :: point
      real :: x = 1.1, y = 2.2
   end type point

   type(point) :: p
   print *, p % x, p % y

end program default_initialization

The first executable statement of this program prints the two com-
ponents of p. Except for a variable of derived type that is initialized or
default initialized, this is not legal because it would not have a predict-
able value.

There is another example of default initialization in the tree sort
program in 8.4.

6.3.4 Exercises

1. Write a program that builds a small database of friends’ addresses
and phone numbers by using the type definitions and declarations
in this chapter. The program should prompt the user for informa-
tion about each entry, keep the entries in an array, and write the
whole database to a file when the program is terminated. The fol-
lowing statements from Chapter 9 should be of interest:

open (unit=9, file="pfile",  &
      status="replace", action="write")

write (unit=9, fmt=“(...)”)  &
      black_book(entry_number)

close (unit=9, status="keep")

The open statement establishes that any operations using in-
put/output unit 9 will refer to the file named “pfile”. “replace” in-
dicates that a new file is to be built, replacing any existing file with
the same name. “keep” indicates that the file is to be kept when the
program that builds the database stops.

2. Write a program that finds entries in the database created in Exer-
cise 1 based on information provided by the user of the program.
The statement
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open (unit=9, file="pfile", status="old", &
      position="rewind", action="read")

can be used to connect unit 9 to file “pfile” created by the program
in the previous exercise. “old” indicates that the file is already
there; “rewind” says to position the file at its beginning; and
“read” indicates that the file will only be read and nothing will be
written to it.
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Extending F 7
In F, the programmer may create generic procedures, define new oper-
ators, and extend the definition of intrinsic functions, existing opera-
tors, and assignment. This allows the user to define a very special
environment for each application.

7.1 Generic Procedures

Many intrinsic procedures are generic in that they allow arguments of
different types. For example, the intrinsic function abs will take an in-
teger, real, or complex argument. The programmer also can write ge-
neric procedures.

In 3.5 there is a subroutine that exchanges the values of any two
real variables. It would be nice to have a similar routine that swapped
integer values, but the normal rules of argument matching presented in
3.8.1 indicate that the types of the dummy and actual arguments must
match. This is true, but it is possible to have one procedure name swap
stand for several swapping routines, each with different names. The
correct routine is picked for execution based on the types of the argu-
ments, just as for generic intrinsic functions.

Here is the swap subroutine from 3.5, but with its name changed to
swap_reals.

subroutine swap_reals(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_reals

It is easy to construct a similar subroutine swap_integers.
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subroutine swap_integers(a, b)
   integer, intent(in out) :: a, b
   integer :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_integers

The way to make them both callable by the generic name swap is to
place the name swap in an interface statement and list the module pro-
cedures that can be called when the arguments match appropriately.
The result is an interface block that has a different form from the one
used to declare a dummy procedure in 3.8.8.

   public :: swap
   private :: swap_reals, swap_integers
   interface swap
      module procedure swap_reals, swap_integers
   end interface

When the interface block and the two subroutines are placed in a
module, a program that uses the module can call swap with either two
integer arguments or two real arguments. Here is the module and a
program that tests the generic procedure swap.

module swap_module

   public :: swap
   private :: swap_reals, swap_integers

   interface swap
      module procedure swap_reals, swap_integers
   end interface

contains

subroutine swap_reals(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_reals
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subroutine swap_integers(a, b)
   integer, intent(in out) :: a, b
   integer :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_integers

end module swap_module

program test_swap

   use swap_module

   real :: x, y
   integer :: i, j

   x = 1.1
   y = 2.2

   i = 1
   j = 2

   call swap(x, y)
   print *, x, y

   call swap(i, j)
   print *, i, j

end program test_swap

Running this program produces

   2.2000000   1.1000000
 2 1

7.1.1 Exercises

1. Extend the generic subroutine swap to handle arrays of integers.

2. Extend the generic subroutine swap to handle character strings.

3. Extend the generic subroutine swap to handle real values with pre-
cision greater than that of the default.

4. The program seven_11 in 3.14.2 calls the function random_int,
which produces one pseudorandom real value. The program
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seven_11 in 4.6.2 calls the function random_int, which produces
an array of pseudorandom real values. Write a module that makes
random_int generic in the sense that it can be called to either pro-
duce a single value or an array of values, depending on its argu-
ments.

7.1.2 Elemental Procedures

One way to extend the generic subroutine swap, as requested by Exer-
cise 1 of the previous section, is to write another module procedure
and add it to the list of module procedures implementing the generic
subroutine swap. A far easier solution is to make the subroutine swap_
integers elemental.

An elemental procedure is one written with scalar (nonarray)
dummy arguments, but which can be called with array actual argu-
ments. When this is done, the computation in the procedure is per-
formed element-by-element on each element of the array (or arrays) as
if the invocation of the procedure were in a loop, executed once for
each element of an array.

Here is how the swap generic subroutine swap can be made to ap-
ply to integer arrays and how it could be called to swap two arrays.

module swap_module

   public :: swap
   private :: swap_reals, swap_integers

   interface swap
      module procedure swap_reals, swap_integers
   end interface

contains

elemental subroutine swap_reals(a, b)
   real, intent(in out) :: a, b
   real :: temp
   temp = a
   a = b
   b = temp
end subroutine swap_reals

elemental subroutine swap_integers(a, b)
   integer, intent(in out) :: a, b
   integer :: temp
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   temp = a
   a = b
   b = temp
end subroutine swap_integers

end module swap_module

program test_swap_arrays

   use swap_module

   integer, dimension(3) :: i = (/1, 2, 3/), &
                            j = (/7, 8, 9/)

   call swap(i, j)
   print *, i
   print *, j

end program test_swap_arrays

 7 8 9
 1 2 3

Here are some rules for elemental procedures:

1. All of the dummy arguments must be scalar.

2. With a couple of unusual exceptions, the actual arguments must all
be conformable.

3. An elemental procedure may not be recursive.

4. No dummy argument may be a pointer (8) and the result may not
be a pointer.

5. No dummy argument may be a procedure.

6. Each elemental procedure also is pure.

Here is another example of an elemental function.

program test_elemental_function

   character(len=*), parameter :: &
         format = "(3f7.2)"
   print format, f(1.1)
   print format, f((/1.1, 2.2, 3.3/))
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contains

   elemental function f(x) result(rf)

     real, intent(in) :: x
     real :: rf

     rf = x**2 + 3

   end function f

end program test_elemental_function

   4.21
   4.21   7.84  13.89

7.2 The private and public Statements

In Chapter 3, modules were used mostly to contain declarations and
procedures that are intended to be used by other programs. Therefore,
most of the parameters, variables, and procedures were declared to be
public. In this chapter, it is frequently desirable to prevent parts of the
module from being accessible to other programs. Thus, many of the
modules in this chapter will use the private statement and private
attribute to indicate procedures, operators, assignments, types, param-
eters, and variables that are to be inaccessible outside the module. On
the other hand, any of these things that are to be accessible will be de-
clared to be public.

The public and private statements are used with a list of proce-
dures, operators, and assignments. Types, parameters, and variables
are given the public or private attribute in their declarations.

Only procedures, operators, and assignments defined in the mod-
ule containing the private or public statement may be listed in the
statement. This includes operators and assignments that are extended
in the module, even if they have been accessed by use association. This
rule prevents passing entities through a private module unless they
have been extended in the module.

7.3 Extending Assignment

When an assignment statement is executed, sometimes the data type of
the expression on the right-hand side of the assignment symbol (=) is
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converted to the type of the variable on the left-hand side. For exam-
ple, if i is integer and r is real, the assignment

r = i

causes the integer value of i to be converted to type real for assign-
ment to r. Suppose we would like to extend this feature so that a logi-
cal value can be assigned to an integer with a false value being
converted to zero and a true value converted to one when the assign-
ment

i = log

is written with log logical type and i integer type. To do this, a sub-
routine that does the assignment must be written and an interface
block must be given that indicates which subroutine does the assign-
ment with conversion. Both of these things must be placed in a mod-
ule. The subroutine that will do the conversion follows.

subroutine integer_gets_logical(i, logical_expression)

   integer, intent(out) :: i
   logical, intent(in) :: logical_expression

   if (logical_expression) then
      i = 1
   else
      i = 0
   end if

end subroutine integer_gets_logical

The interface block indicates that assignment is extended by the
subroutine integer_gets_logical. The public statement indicates
that the extended assignment is available when the module is used,
and the private statement indicates that the procedure integer_
gets_logical is not accessible outside the module.

   public :: assignment(=)
   private :: integer_gets_logical

   interface assignment(=)
      module procedure integer_gets_logical
   end interface
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Here is the complete module to accomplish this task with a program
that tests it.

module int_logical_module

   public :: assignment(=)
   private :: integer_gets_logical

   interface assignment(=)
      module procedure integer_gets_logical
   end interface
 
contains

subroutine integer_gets_logical(i, l)

   integer, intent(out) :: i
   logical, intent(in) :: l

   if (l) then
      i = 1
   else
      i = 0
   end if

end subroutine integer_gets_logical

end module int_logical_module

program test_int_logical

   use int_logical_module
   integer :: i, j
   
   i = .false.
   print *, i
   j = (5 < 7) .and. (sin(0.3) < 1.0)
   print *, j

end program test_int_logical

 0
 1
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A subroutine that serves to define an assignment must have exactly
two arguments; the first must be intent out or in out and the second
intent in.

7.3.1 Exercise

1. Write a module with a procedure and an interface block that ex-
tends assignment to allow assigning an integer to a logical variable.
The logical variable should be set to true if the integer is 1 and set
to false otherwise. Test the procedure with a program that uses the
module.

7.4 Extending Operators

Suppose we now want to be able to use + in place of .or., * in place of
.and., and - in place of .not. to manipulate logical values. This can be
done by extending these operators, which already work with numeric
operands. Functions must be written and the names of the functions
placed in an interface block in a module. The interface statement con-
tains the keyword operator in this case. Here is a complete module
and program to implement and test the extension of + to logical oper-
ands.

module logical_plus_module

   public :: operator(+)
   private :: log_plus_log

   interface operator(+)
      module procedure log_plus_log
   end interface

contains

function log_plus_log(x, y)  &
      result(log_plus_log_result)

   logical, intent(in) :: x, y
   logical :: log_plus_log_result

   log_plus_log_result = x .or. y

end function log_plus_log



236 Extending F

end module logical_plus_module

program test_logical_plus

   use logical_plus_module

   print *, .false. + .false.
   print *, .true. + .true.
   print *, (2.2 > 5.5) + (3.3 > 1.1)
   print *, (2.2 > 5.5) .or. (3.3 > 1.1)

end program test_logical_plus

 F
 T
 T
 T

Note that the parentheses in the expression in the third print state-
ment are necessary because + has a higher precedence than >. They are
not necessary in the fourth print statement because .or. has lower
precedence than >.

A function used to extend an operator must have one or two argu-
ments (depending on the operator being extended), both of which must
be intent in.

7.4.1 Exercise

1. Write a module that extends the == and /= operators to allow com-
parison of both scalar logical values and arrays of logical values.
Note that the built-in operators .eqv. and .neqv. are used for this
purpose.

7.5 User-Defined Operators

In addition to extending the meaning of the F built-in operators, it is
possible to make up new names for operators. If we were to add the
operation of testing if an integer is prime, there is probably not a good
unary built-in operator that would be suitable to extend to this use.
Any name consisting of from 1 to 31 letters preceded and followed by
a period may be used, except that the operator name cannot be either
of the logical constants .true. or .false. or the operators .and.,
.or., or .not. For historical reasons, it also must not be any of the
Fortran operators .lt., .le., .eq., .ne., .gt., or .ge. For example,



7.6 Extending Intrinsic Functions 237

we might pick .prime. for the name of the operator that returns true or
false depending on whether its operand is a prime integer. Defining a
new operator is similar to extending an existing one; its name is used
in an interface statement and the function, which must have one or two
intent in arguments, is named in a module procedure statement.

interface operator (.prime.)
   module procedure prime
end interface operator (.prime.)

This operator could now be used just like any built-in unary operator,
as illustrated by the following if statement:

if (.prime. b .and. b > 100) print *, b

The precedence of a defined binary operator is always lower than
all other operators, and the precedence of a defined unary operator is
always higher than all other operators. Therefore, in the example
above, .prime. is evaluated before .and.

7.5.1 Exercise

1. Implement and test the operator .prime. described in this section.

7.6 Extending Intrinsic Functions

Many programmers are surprised that the sqrt function may be used
with a real or complex argument, but not with an integer argument.
One possible reason is that there might be some controversy about
whether the result should be an integer or real value. For example,
should sqrt(5) be 2.236068, a type real approximation to the square
root, or 2, the largest integer less than the real square root? The integer
square root is sometimes useful; one example is in determining the up-
per bound on factors of an integer i. It is not hard to compute either
value with the expressions sqrt(real(i)) and int(sqrt(real(i)))
for any integer i, but it would be nice to just write sqrt(i). We will ex-
tend the sqrt function to take an integer argument and return an inte-
ger value. This is done by writing an interface block and the function
to do the computation. Here is the interface, the function, and a brief
testing program. In the program, the 0.5 is used to avoid any problems
with roundoff.

Putting the keyword elemental on the function statement creates
an array version for each of the ranks. It is called with a one-dimen-
sional array in the program test_integer_sqrt.
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Unlike with operators, it is possible to change the meaning of an
intrinsic function definition for one type of argument without affecting
the availability of that intrinsic for other types. For example, it is possi-
ble to change the definition of the cosine function cos for double preci-
sion arguments, but not affect the intrinsic definition for complex.

module integer_sqrt_module

   intrinsic :: sqrt
   public :: sqrt
   private :: sqrt_int

   interface sqrt
      module procedure sqrt_int
   end interface

contains

elemental function sqrt_int(i) &
      result(sqrt_int_result)

   integer, intent(in) :: i
   integer :: sqrt_int_result

   sqrt_int_result = int(sqrt(real(i) + 0.5))

end function sqrt_int

end module integer_sqrt_module

program test_integer_sqrt

   use integer_sqrt_module

   integer :: k
   integer, dimension(20) :: &
      n = (/ (k, k = 1, 20) /)

   print "(20i3)", n, sqrt(n)

end program test_integer_sqrt

  1  2  3  4  5  6  7  8  9 10 11 12 13 14 15 16 17 18 19 20
  1  1  1  2  2  2  2  2  3  3  3  3  3  3  3  4  4  4  4  4
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An intrinsic function must be listed in an intrinsic statement in a
module containing a description of an extension.

A better way to compute the square root of an integer is with an it-
erative technique called “Newton-Raphson”. This is illustrated in the
module to compute with big integers discussed later in this chapter.

7.6.1 Exercises

1. Extend the intrinsic subroutine random_number so that it has the
functionality of random_int in the previous exercise when called
with arguments that are type integer. Allow both scalar and array
arguments.

2. Modify the extended intrinsic subroutine random_number of the
previous exercise so that the arguments low and high are optional
as was done for random_int in Exercise 5 of 3.14.3.

7.7 Computing with Big Integers

Suppose we are interested in adding, multiplying, and dividing very
large integers, possibly with hundreds of digits. This kind of capability
is needed to factor large integers, a task very important in cryptogra-
phy and secure communications. The F intrinsic integer type has a lim-
it on the size of numbers it can represent; the largest integer can be
determined on any F system as the value of the intrinsic function
huge(0). A typical limit is 231−1, which is 2,147,483,647. This problem
can be solved by creating a new data type, called big_integer, decid-
ing which operations are needed, and writing procedures that will per-
form the operations on values of this type. All of this will be placed in
a module called big_integers so that it can be used by many pro-
grams.

7.7.1 The Type Definition for Big Integers

The first task is to decide how these large integers will be represented.
Although a linked list of digits is a possibility, it seems more straight-
forward to use an array of ordinary F integers. The only remaining
thing to decide is how much of a big integer to put into each element of
the array. One possibility would be to put as large a number into each
element as possible. To make it easier to conceptualize with simple ex-
amples, we will store one decimal digit in each element. However, be-
cause the abstract data type paradigm is followed, changing the representation
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so that larger integers are stored in each array element can be implemented eas-
ily without changing the programs using the big_integer module.

The following type definition does the job. It uses a parameter
nr_of_digits that has arbitrarily been set to 100; this allows decimal
numbers with up to 100 digits to be represented using this scheme. The
parameter nr_of_digits has the private attribute, which means it
cannot be accessed outside the module.

integer, parameter, private :: nr_of_digits = 100

type, public :: big_integer
   private
   integer, dimension(0:nr_of_digits) :: digit
end type big_integer

The array digit has 101 elements. digit(0) holds the units digit; dig-
it(1) holds the tens digit; digit(2) holds the hundreds digit; and so
on. The extra element in the array is used to check for overflow—if any
value other than zero gets put into the largest element, that will be con-
sidered to exceed the largest big_integer value and, after we have ex-
tended the intrinsic function huge, the value is set to the largest
possible big integer.

The private statement indicates that we donʹt want anybody that
uses the module to be able to access the component digit of a variable
of type big_integer; we will provide all of the operations necessary to
compute with such values. The private statement is discussed in 3.1.2.

The next thing to do is to define some operations for big integers.
The first necessary operations assign values to a big integer and print
the value of a big integer. Letʹs take care of the printing first.

The following subroutine prints the value of a big integer. It takes
advantage of the fact that each element of the array digit is a single
decimal digit. This subroutine print_big is inside the module
big_integers and so has access to all the data and procedures in the
module.

subroutine print_big(b)

   type(big_integer), intent(in) :: b
   integer :: n, first_significant_digit
   character(len=10) :: format
   ! Find first significant digit
   first_significant_digit = 0  ! In case b = 0
   do n = nr_of_digits, 1, -1
      if (b%digit(n) /= 0) then
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         first_significant_digit = n
         exit
      end if
   end do

   ! Set format = "(<first_significant_digit+1>i1)"
   write (unit=format, fmt="(a, i6, a)")  &
         "(", first_significant_digit + 1, "i1)"
   write (unit=*, fmt=format, advance="no")  &
         b%digit(first_significant_digit:0:-1)

end subroutine print_big

The basic strategy is to print the digits in i1 format, but first the
leftmost nonzero digit must be located, both to compute the multiplier
in the format specification and to avoid printing long strings of leading
zeros. This way, there is also no problem if the parameter nr_of_
digits is changed.

Another interesting feature is that we use a formatted write to a
character variable in order to convert an integer subscript to character
form for inclusion in an edit descriptor. In effect, we calculate the ap-
propriate print format on the fly. The write statement that produces
the value of the big integer uses advance="no" so that it could be print-
ed on the same line with other output, such as an identifying message.
This feature is discussed in 9.2.6.

In order to test this subroutine, we need to have a way to assign
values to a big integer. One possibility is to write a procedure that will
assign an ordinary F integer to a big integer, but this will limit the size
of the integer that can be assigned. A second possibility is to write the
integer as a character string consisting of only digits 0-9 (we are not al-
lowing negative numbers). This is done by the subroutine big_gets_
char(b, c) that assigns the integer represented by the character string
c to the big integer b. If c contains a character other than one of the
digits, the subroutine returns huge_big(b) (produced in the next sec-
tion), the largest possible big integer, as an error signal. This is also the
value returned for b if the character string c is too long.

subroutine big_gets_char(b, c)

   type(big_integer), intent(out) :: b
   character(len=*), intent(in) :: c
   integer :: n, i

   if (len(c) > nr_of_digits) then



242 Extending F

      b = huge_big(b)
      return
   end if

   b%digit = 0
   n = 0
   do i = len(c), 1, -1
      b%digit(n) = index("0123456789", c(i:i)) - 1
      if (b%digit(n) == -1) then
         b = huge_big(b)
         return
      end if
      n = n + 1
   end do

end subroutine big_gets_char

7.7.2 The Function huge_big

Here is the function huge_big that returns the largest value of type
big_integer. It has an argument of type big_integer because we will
use it to extend the intrinsic function huge.

pure function huge_big(b) result(huge_big_result)

   type(big_integer), intent(in) :: b
   type(big_integer) :: huge_big_result

   huge_big_result%digit(:nr_of_digits-1) = 9
   huge_big_result%digit(nr_of_digits) = 0

end function huge_big

The function must be pure because we later need to call it from a
pure subroutine.

7.7.3 Putting the Procedures in a Module

Now that we have enough operations defined on big integers to at least
try something meaningful, we next need to package them all in a mod-
ule. The module that we have created so far follows:

module big_integers_module

   public :: big_gets_char
   public :: print_big
   public :: huge_big
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   integer, parameter, private :: nr_of_digits = 100

   type, public :: big_integer
      private
      integer, dimension(0:nr_of_digits) :: digit
   end type big_integer

contains

subroutine print_big(b)

   type(big_integer), intent(in) :: b
   integer :: n, first_significant_digit
   character(len=10) :: format

   ! Find first significant digit
   first_significant_digit = 0  ! In case b = 0
   do n = nr_of_digits, 1, -1
      if (b%digit(n) /= 0) then
         first_significant_digit = n
         exit
      end if
   end do

   ! Set format = "(<first_significant_digit+1>i1)"
   write (unit=format, fmt="(a, i6, a)")  &
         "(", first_significant_digit + 1, "i1)"
   write (unit=*, fmt=format, advance="no") &
      b%digit(first_significant_digit:0:-1)

end subroutine print_big
subroutine big_gets_char(b, c)

   type(big_integer), intent(out) :: b
   character(len=*), intent(in) :: c
   integer :: n, i

   if (len(c) > nr_of_digits) then
      b = huge_big(b)
      return
   end if

   b%digit = 0
   n = 0
   do i = len(c), 1, -1
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      b%digit(n) = index("0123456789", c(i:i)) - 1
      if (b%digit(n) == -1) then
         b = huge_big(b)
         return
      end if
      n = n + 1
   end do

end subroutine big_gets_char

pure function huge_big(b)  result(huge_big_result)

   type(big_integer), intent(in) :: b
   type(big_integer) :: huge_big_result

   huge_big_result%digit(0:nr_of_digits - 1) = 9
   huge_big_result%digit(nr_of_digits) = 0

end function huge_big

end module big_integers_module

With the module available, we can write a simple program to test
the assignment and printing routines for big integers.

program test_big_1

   use big_integers_module
   type(big_integer) :: b1

   call big_gets_char(b1, "71234567890987654321")
   call print_big(b1)
   print *

   call big_gets_char(b1, "")
   call print_big(b1)
   print *

   call big_gets_char(b1, "123456789+987654321")
   call print_big(b1)
   print *

end program test_big_1

71234567890987654321
0
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99999999999999999999999999999999999999999999 . . .

7.7.4 Assigning Big Integers

The name for the subroutine big_gets_char was picked because it
converts a character string to a big integer. But this is just like intrinsic
assignment that converts an integer to a real value when necessary. In-
deed, it is possible to use the assignment statement to do the conver-
sion from character to type big integer. It is done by extending
assignment as described in 7.3. While we are at it, we can use the func-
tion huge_big to extend the intrinsic function huge.

public :: assignment (=)
private :: big_gets_char

interface assignment (=)
   module procedure big_gets_char
end interface

intrinsic :: huge
public :: huge
private :: huge_big

interface huge
   module procedure huge_big
end interface

Now any user of the module can use the assignment statement instead
of calling a subroutine, which makes the program a lot easier to under-
stand. Also, huge can be called with an argument of type big_integer.

program test_big_2

   use big_integers_module
   type(big_integer) :: b1
   b1 = "71234567890987654321"
   call print_big(b1)
   print *
   b1 = ""
   call print_big(b1)
   print *
   b1 = "123456789+987654321"
   call print_big(b1)
   print *

end program test_big_2
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The result of running this version is identical to the previous output.
With conversion from character strings to big integers using the as-

signment statement, there is no need to have the subroutine big_gets_
char available. It is declared private. Similarly huge_big is declared
private.

7.7.5 Adding Big Integers

Now that we can assign to a big integer variable and print its value, it
would be nice to be able to perform some computations with big inte-
gers. Addition can be done with a function that adds just like we do
with pencil and paper, adding two digits at a time and keeping track of
any carry, starting with the rightmost digits. The function big_plus_
big does this.

pure function big_plus_big(x, y)  &
      result(big_plus_big_result)

   type(big_integer), intent(in) :: x, y
   type(big_integer) :: big_plus_big_result
   integer :: carry, temp_sum, n

   carry = 0
   do n = 0, nr_of_digits
      temp_sum = &
         x%digit(n) + y%digit(n) + carry
      big_plus_big_result%digit(n) =  &
            modulo(temp_sum, 10)
      carry = temp_sum / 10
   end do

   if (big_plus_big_result%digit(nr_of_digits) /= 0 &
         .or. carry /= 0) then
      big_plus_big_result = huge(big_plus_big_result)
   end if

end function big_plus_big

In mathematics, the symbols + and − are used to add and subtract
integers. It is nice to do the same with big integers, and it is possible to
do so by extending the generic properties of the operations already
built into F. Note that + already can be used to add two integers, two
real values, or one of each. The intrinsic operator + also can be used to
add two arrays of the same shape. In that sense, addition is already ge-
neric. We now extend the meaning of this operation to our own newly
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defined type, big_integer. This is done with another interface block,
this time with the keyword operator, followed by the operator being
extended. The + operator is public, but the function big_plus_big is
private. The function is explicitly pure because it will be called from a
pure subroutine.

   public :: operator (+)
   interface operator (+)
      module procedure big_plus_big
   end interface
   private :: big_plus_big

The use of the plus operator to add two big integers is tested by the
program test_big_3.

program test_big_3

   use big_integers_module
   type(big_integer) :: b1, b2

   b1 = "1234567890987654321"
   b2 = "9876543210123456789"
   call print_big(b1 + b2)

end program test_big_3

The output is

11111111101111111110

Using only the procedures written so far, it is not possible to use
the expression b + i in a program where b is a big integer and i is an
ordinary integer. To do that, we must write another function and add
its name to the list of functions in the interface block for the plus oper-
ator. Similarly, it would be necessary to write a third function to handle
the case i + b, because the arguments are in the reverse order of the
function that implements b + i. Even if that is not done, the number
999 could be added to b using the statements

temp_big_integer = "999"
b = b + temp_big_integer

Similar interface blocks and functions can be written to make the
other operations utilize symbols, such as - and *. The precedence of
the extended operators when used to compute with big integers is the
same as when they are used to add ordinary integers. This holds true
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for all built-in operators that are extended. The following program
tests the extended multiplication operator (the function is not shown).
By looking at the last digit of the answer, it is possible to see that the
multiplication is done before the addition.

program test_big_5

   use big_integers_module
   type(big_integer) :: a, b, c

   a = "1"
   b = "9999999999999999999"
   c = "9999999999999999999"
   call print_big(a + b * c)

end program test_big_5

99999999999999999980000000000000000002

7.7.6 New Operators for Big Integers

In addition to extending the meaning of the F built-in operators, it is
possible to make up new names for operators. For example we could
define a new operator .prime., whose operand is a big integer and
whose value is true if the big integer is a prime and is false otherwise.
Its name is used in an interface statement and the function.

public :: operator (.prime.)
interface operator (.prime.)
   module procedure prime
end interface operator (.prime.)

This operator could now be used just like any built in unary operator,
as illustrated by the following if statement:

if (.prime. b) call print_big(b)

7.7.7 Raising a Big Integer to an Integer Power

Exponentiation, like the factorial function, has both an iterative defini-
tion and a recursive definition. They are

   n times

and

xn x x …×× x=

x0 1=
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  for n > 1

Since F has an exponentiation operator ** for integer and real num-
bers, it is not necessary to write a procedure to do that. However, it
may be necessary to write an exponentiation procedure for a new data
type, such as our big integers. We suppose that the multiply operator
(*) has been extended to form the product of two big integers. The task
is to write a procedure for the module that will raise a big integer to a
power that is an ordinary nonnegative integer. This time, the simple it-
erative procedure is presented first.

function big_power_int(b, i)  &
      result(big_power_int_result)

   type(big_integer), intent(in) :: b
   integer, intent(in) :: i
   type(big_integer) :: big_power_int_result
   integer :: n

   big_power_int_result = "1"
   do n = 1, i
      big_power_int_result = big_power_int_result * b
   end do

end function big_power_int

It would be straightforward to use the recursive factorial function as a
model and construct a recursive version of the exponentiation function;
but this is another example of tail recursion, and there is no real advan-
tage to the recursive version. However, think about how you would
calculate x18 on a calculator that does not have exponentiation as a
built-in operator. The clever way is to compute x2 by squaring x, x4 by
squaring x2, x8 by squaring x4, x16 by squaring x8, and finally x18 by
multiplying the results obtained for x16 and x2. This involves a lot few-
er multiplications than doing the computation the hard way by multi-
plying x by itself 18 times. To utilize this scheme to construct a
program is fairly tricky. It involves computing all the appropriate pow-
ers x2, x4, x8, ..., then multiplying together the powers that have a 1 in
the appropriate position in the binary representation of n. For example,
since 18 = 100102, powers that need to be multiplied are 16 and 2.

It happens that there is a recursive way of doing this that is quite
easy to program. It relies on the fact that xn can be defined with the fol-
lowing less obvious recursive definition below. The trick that leads to
the more efficient recursive exponentiation function is to think of the

xn x xn 1–×=
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problem “top-down” instead of “bottom-up”. That is, solve the prob-
lem of computing x18 by computing x9 and squaring the result. Com-
puting x9 is almost as simple: square x4 and multiply the result by x.
Eventually, this leads to the problem of computing x0, which is 1. The
recursive definition we are looking for is

where the first line of the second equation is used for n positive and
even and the second when n is positive and odd and where  is the
floor function, which for positive integers is the largest integer less
than or equal to its argument. This definition can be used to construct
a big_power_int function that is more efficient than the iterative ver-
sion.

recursive function big_power_int(b, i)  &
      result(big_power_int_result)

   type(big_integer), intent(in) :: b
   integer, intent(in) :: i
   type(big_integer) :: big_power_int_result
   type(big_integer) :: temp_big

   if (i <= 0) then
      big_power_int_result = "1"
   else
      temp_big = big_power_int(b, i / 2)
      if (modulo(i, 2) == 0) then
         big_power_int_result = temp_big * temp_big
      else
         big_power_int_result = temp_big * temp_big * b
      end if
   end if

end function big_power_int

7.7.8 Exercises

1. Extend the equality operator (==) and the “less than” (<) operator
to compare two big integers.

x0 1=

xn x n 2⁄( )
2

x n 2⁄( )
2

x×




=
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2. Extend the equality operator (==) to compare a big integer with a
character string consisting of digits. Hint: use extended assignment
to assign the character string to a temporary big integer, then use
the extended equality operator from Exercise 1 to do the compari-
son.

3. Extend the multiplication operator (*) to two big integers.

4. Use the result of the previous exercise to compute 100! = 100 × 99 ×
... × 2 × 1. It may be necessary to increase the value of the parame-
ter nr_of_digits.

5. Extend the subtraction operator (-) so that it performs “positive”
subtraction. If the difference is negative, the result should be 0.

6. The representation of big integers used in this section is very inef-
ficient because only one decimal digit is stored in each F integer ar-
ray element. It is possible to store a number as large as possible,
but not so large that when two are multiplied, there is no overflow.
This largest value can be determined portably on any system with
the statements

integer, parameter :: &
      d = (range(0) - 1) / 2, &
      base = 10 ** d

! Base of number system is 10 ** d,
! so that each "digit" is 0 to 10**d - 1

On a typical system that uses 32 bits to store an integer, with one
bit used for the sign, the value of the intrinsic inquiry function
range(0) is 9 because 109 < 231 < 1010. To ensure that there is no
chance of overflow in multiplication, this number is decreased by
one before dividing by 2 to determine the number of decimal digits
d that can be stored in one array element digit of a big integer. In
our example, this would set d to 4. The value of base is then 10**d,
or 104 = 10,000. With this scheme, instead of storing a number from
0 to 9 in one integer array element, it is possible to store a number
from 0 to base − 1, which is 9,999 in the example. In effect, the big
number system uses base 10,000 instead of base 10 (decimal).

Determine the value of range (0) on your system.

7. Modify the type definition for big_integer module so that a num-
ber from 0 to base − 1 is stored in each element of the array. The
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number of elements in the array should be computed from the pa-
rameter nr_of_digits.

8. Determine the largest number that can be represented as the value
of a big integer using the type definition in the previous exercise.

9. Modify the procedure big_gets_char to use the more efficient rep-
resentation of big integers.

10. Modify the procedure print_big to use the more efficient repre-
sentation of big integers. In the format, i1 should be replaced by
id.d, where d is the number of decimal digits stored in each array
element (9.8.5).

11. Modify the subroutine big_plus_big using the new type defini-
tion for big_integer. It is very similar to the one developed in this
section, except that the base is now not 10, but base.

12. Extend the operator * to multiply a big integer by an ordinary inte-
ger.

13. Extend huge using the new representation. Write a test program
that prints huge(b).

14. Approximately n multiplications are required to compute xn by the
iterative version of the function big_power_int. Estimate the num-
ber of multiplications needed to compute xn by the recursive ver-
sion.

15. Project: Write a module to do computation with rational numbers.
The rational numbers should be represented as a structure with
two integers, the numerator and the denominator. Provide assign-
ment, some input/output, and some of the usual arithmetic opera-
tors. Addition and subtraction are harder than multiplication and
division, and equality is nontrivial if the rational numbers are not
reduced to lowest terms.

16. Modify the module in the previous exercise to use big integers for
the numerator and denominator.

17. Project: Write a module to manipulate big decimal numbers such
as

28447305830139375750302.3742912561209239123636292

using the big_integer module as a model.
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In F, a pointer variable or simply a pointer is best thought of as a
“free-floating” name that may be associated dynamically with or
“aliased to” some data object. The data object already may have one or
more other names or it may be an unnamed object.

Syntactically, a pointer is just any sort of variable that has been giv-
en the pointer attribute in a declaration. A variable with the pointer at-
tribute may be used just like any ordinary variable, but it may be used
in some additional ways as well. To understand how F pointers work,
it is almost always better to think of them simply as aliases. Another
possibility is to think of the pointers as “descriptors”, sufficient to de-
scribe a row of a matrix, for example.

This chapter illustrates general uses for objects with the pointer at-
tribute.

8.1 The Use of Pointers in F

Each pointer in an F program is in one of the three following states:

• It may be undefined, which is the condition of each pointer at the
beginning of a program, unless it has been initialized.

• It may be null, which means that it is not the alias of any data ob-
ject.

• It may be associated, which means that it is the alias of some target
data object.

The terms “disassociated” and “not associated” are used when a
pointer is in state 1 or 2. However, the associated intrinsic inquiry
function discussed later (8.1.5) distinguishes between states 2 and 3
only; its arguments must not be undefined.
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8.1.1 The Pointer Assignment Statement

To start with a very simple example, suppose p is a real variable with
the pointer attribute, perhaps given with the declaration

real, pointer :: p

Suppose r is also a real variable. Then it is possible to make p an alias
of r by the pointer assignment statement

p => r

For those that like to think of pointers, rather than aliases, this state-
ment causes p to point to r. Any variable aliased or “pointed to” by a
pointer must be given the target attribute when declared, and the tar-
get must have the same type, kind, and rank as the pointer. However, it
is not necessary that the variable have a defined value. For our exam-
ple above, these requirements are met by the presence of the following
declaration:

real, target :: r

A variable with the pointer attribute may be an object more com-
plicated than a simple variable. It may be an array or structure, for ex-
ample. The following declares v to be a pointer to a one-dimensional
array of reals:

real, dimension(:), pointer :: v

With v so declared, it may be used to alias any one-dimensional array
of reals, including a row or column of some two-dimensional array of
reals. For example,

v => real_array(4, :)

makes v an alias of the fourth row of the array real_array. Of course,
real_array must have the target attribute for this to be legal.

real, dimension(100, 100), target :: real_array

Once a variable with the pointer attribute is an alias for some data
object, that is, it is pointing to something, it may be used in the same
way that any other variable may be used. For the example above using
v,

print *, v
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has exactly the same effect as

print *, real_array(4, :)

and the assignment statement

v = 0

has the effect of setting all of the elements of the fourth row of the ar-
ray real_array to 0.

A different version of the pointer assignment statement occurs
when the right side also is a pointer. This is illustrated by the following
example, in which p1 and p2 are both real variables with the pointer at-
tribute and r is a real variable with the target attribute.

real, target :: r
real, pointer :: p1, p2
r = 4.7
p1 => r
p2 => p1
r = 7.4
print *, p2

After execution of the first assignment statement, r is a name that re-
fers to the value 4.7:

The first pointer assignment causes p1 to be an alias for r, so that the
value of the variable p1 is 4.7. The value 4.7 now has two names, r and
p1, by which it may be referenced.

The next pointer assignment

p2 => p1

4.7

r

r

p1 4.7
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causes p2 to be an alias for the same thing that p1 is an alias for, so the
value of the variable p2 is also 4.7. The value 4.7 now has three names
or aliases, r, p1, and p2.

Changing the value of r to 7.4 causes the value of both p1 and p2 also
to change to 7.4 because they are both aliases of r. Thus, the next print
statement

print *, p2

prints the value 7.4.
The pointer assignment statement

p => q

is legal whatever the status of q. If q is undefined, p is undefined; if it
is null, p is nullified; and if it is aliased to or associated with a target, p
becomes associated with the same target. Note that if q is associated
with some target, say t, it is not necessary that t have a defined value.

8.1.2 The Difference between Pointer and Ordinary Assignment

We can now illustrate the difference between pointer assignment,
which transfers the status of one pointer to another, and ordinary as-
signment involving pointers. In an ordinary assignment in which
pointers occur, the pointers must be viewed simply as aliases for their
targets. Consider the following statements:

real, pointer :: p1, p2
real, target  :: r1, r2
   . . .
r1 = 1.1
r2 = 2.2
p1 => r1
p2 => r2

r

p2 4.7

p1
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This produces the following situation:

Now suppose the ordinary assignment statement

p2 = p1

is executed. This statement has exactly the same effect as the statement

r2 = r1

because p2 is an alias for r2 and p1 is an alias for r1. The situation is
now:

because the value 1.1 has been copied from r1 to r2. The values of p1,
p2, r1, and r2 are all 1.1. Subsequent changes to r1 or p1 will have no
effect on the value of r2.

If, on the other hand, the pointer assignment statement

p2 => p1

were executed instead, this statement would produce the situation

In this case, too, the values of p1, p2, and r1 are 1.1, but the value of r2
remains 2.2. Subsequent changes to p1 or r1 do change the value of p2.
They do not change the value of r2.

If the target of p1 is changed to r2 by the pointer assignment state-
ment

p1 => r2

r1

p1 1.1

r2

p2 2.2

r1

p1 1.1

r2

p2 1.1

r1

p1 1.1

r2
p2

2.2
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the target r1 and value 1.1 of p2 do not change, producing the follow-
ing situation:

The pointer p2 remains an alias for r1; it does not remain associated
with p1.

8.1.3 The allocate and deallocate Statements

With the allocate statement, it is possible to create space for a value
and cause a pointer variable to refer to that space. The space has no
name other than the pointer mentioned in the allocate statement. For
example,

allocate (p1)

creates space for one real number and makes p1 an alias for that space.
No real value is stored in the space by the allocate statement, so it is
necessary to assign a value to p1 before it can be used, just as with any
other real variable.

As in the allocate statement for allocatable arrays, it is possible to
test if the allocation is successful. This might be done with the state-
ment

allocate (p1, stat=allocation_status)

The statement

p1 = 7.7

r1

p2 1.1

r2

p1 1.1

p1
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sets up the following situation.

Before a value is assigned to p1, it must either be associated with an
unnamed target by an allocate statement or be aliased with a target
by a pointer assignment statement.

The deallocate statement throws away the space pointed to by its
argument and makes its argument null (state 2). For example,

deallocate (p1)

disassociates p1 from any target and nullifies it.

After p1 is deallocated, it must not be referenced in any situation that
requires a value; however it may be used, for example, on the right
side of a pointer assignment statement. If other pointer variables were
aliases for p1, they, too, no longer reference a value; however, they are
not nullified automatically.

8.1.4 The null Intrinsic Function

At the beginning of a program, a pointer variable (just as all other vari-
ables) is not defined, unless it is initialized. A pointer variable must not
be referenced to produce a value when it is not defined, but it is some-
times desirable to have a pointer variable be in the state of not pointing
to anything, which might signify the last item in a linked list, for exam-
ple. This occurs when it is set to the value of the null intrinsic function,
which creates a condition that may be tested and assigned to other
pointers by pointer assignment (=>). A pointer is nullified with a point-
er assignment such as

p1 => null()

p1 7.7

p1
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If the target of p1 and p2 are the same, nullifying p1 does not nulli-
fy p2. On the other hand, if p1 is null, then executing the pointer as-
signment

p2 => p1

causes p2 to be null also.
A null pointer is not associated with any target or other pointer.

8.1.5 The associated Intrinsic Function

The associated intrinsic function may be used to determine if a point-
er variable is pointing to, or is an alias for, another object. To use this
function, the pointer variable must be defined; that is, it must either be
the alias of some data object or be null. The associated function indi-
cates which of these two cases is true; thus it provides the means of
testing if a pointer is null.

The associated function may have a second argument. If the sec-
ond argument is a target, the value of the function indicates whether
the first argument is an alias of the second argument. If the second ar-
gument is a pointer, it must be defined; in this case, the value of the
function is true if both pointers are null or if they are both aliases of
the same target. For example, the expression

associated(p1, r)

indicates whether or not p1 is an alias of r, and the expression

associated(p1, p2)

indicates whether p1 and p2 are both aliases of the same thing or they
are both null.

If two pointers are aliases of different parts of the same array, they
are not considered to be associated. For example, the following pro-
gram will print the value false.

program test_associated
   real, target, dimension(4) :: a
   real, pointer, dimension(:) :: p, q
   a = (/ 1, 2, 3, 4 /)
   p => a(1:3)
   q => a(2:4)
   print *, associated(p, q)
end program test_associated
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8.1.6 Dangling Pointers and Unreferenced Storage

There are two situations that the F programmer must avoid. The first is
a dangling pointer. This situation arises when a pointer variable is an
alias for some object that gets deallocated by an action that does not in-
volve the pointer directly. For example, if p1 and p2 are aliases for the
same object, and the statement

deallocate (p2)

is executed, it is obvious that p2 is now disassociated, but the status of
p1 appears to be unaffected, even though the object to which it was
pointing has disappeared. A reference to p1 is now illegal and will pro-
duce unpredictable results. It is the responsibility of the programmer
to keep track of the number of pointer variables referencing a particu-
lar object and to nullify each of the pointers whenever one of them is
deallocated.

A related problem of unreferenced storage can occur when a
pointer variable that is an alias of an object is nullified or set to alias
something else without a deallocation. If there is no other alias for this
value, it is still stored in memory somewhere, but there is no way to re-
fer to it. This is not important if it happens to a few simple values, but
if it happens many times to large arrays, the efficient management of
storage could be hampered severely. In this case, it is also the responsi-
bility of the programmer to ensure that objects are deallocated before
all aliases of the object are modified. F systems are not required to have
runtime “garbage collection” to recover the unreferenced storage, but
some do.

8.2 Case Study: Solving a Heat Transfer Problem

To see a simple example where a pointers are really just aliases, consid-
er the problem of determining the temperature at each point of a
square plate when a heat source is applied to two edges and the heat
has had time to be distributed throughout the plate.

For our purposes, we will assume that the plate consists of a 10 x
10 array of points. A constant source of heat with value 1.0 is applied
to the left edge (column 1) of the plate and heat values 1.0, 0.9, 0.8, ...,
0.2, 0.1 are applied to the points at the top of the plate. We assume that
the temperature in the plate assumes a steady state when the tempera-
ture at each internal point is the average of the temperatures of the
four points neighboring the point—the points to the north, east, west,
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and south. Thus, the program does an iterative calculation: at each step
the temperature at each internal point is replaced by the average of the
four surrounding points. This can be done as an array operation:

temp = (n + e + s + w) / 4.0

The role of the pointers in this program is simply to give a short
name to some of the sections of the two-dimensional array named
plate. This makes it easier to understand that the main computational
step is averaging the points to the north, east, south, and west.

Note also the use of parameters tolerance and plate_format in
the program.

!  A simple solution to the heat transfer problem
!     using arrays and pointers

program heat

real, dimension(10,10), target :: plate
real, dimension(8,8)           :: temp
real, pointer, dimension(:,:)  :: n, e, s, w, inside
real, parameter :: tolerance = 1.0e-4
character(len=*), parameter :: &
   plate_format = "(10f5.2)"

real    :: diff
integer :: i,j, niter

! Set up initial conditions
plate = 0
plate(1:10,1) = 1.0  ! boundary values
plate(1,1:10) = (/ ( 0.1*j, j = 10, 1, -1 ) /)

!  Point to parts of the plate
inside => plate(2:9,2:9)
n => plate(1:8,2:9)
s => plate(3:10,2:9)
e => plate(2:9,1:8)
w => plate(2:9,3:10)

! Iterate
niter = 0
do
  temp = (n + e + s + w)/4.0
  diff = maxval(abs(temp-inside))
  niter = niter + 1
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  inside = temp
  print *, niter, diff
  if (diff < tolerance) then
    exit
  endif
end do

do i = 1, 10
  print plate_format, plate(1:10,i)
enddo

end program heat

Here are the results produced by the last print statement after the
computation has converged.

 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
 0.90 0.89 0.88 0.87 0.85 0.82 0.77 0.69 0.49 0.00
 0.80 0.78 0.76 0.74 0.71 0.66 0.59 0.48 0.29 0.00
 0.70 0.67 0.65 0.62 0.58 0.52 0.45 0.34 0.19 0.00
 0.60 0.57 0.54 0.50 0.46 0.41 0.34 0.25 0.13 0.00
 0.50 0.47 0.43 0.40 0.36 0.31 0.25 0.18 0.10 0.00
 0.40 0.36 0.33 0.30 0.26 0.23 0.18 0.13 0.07 0.00
 0.30 0.26 0.23 0.20 0.18 0.15 0.12 0.08 0.04 0.00
 0.20 0.14 0.12 0.10 0.09 0.07 0.06 0.04 0.02 0.00
 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8.3 Linked Lists

Linked lists have many uses in a wide variety of application areas; one
example in science and engineering is the use of a linked list to repre-
sent a queue in a simulation program. Lists of values can be imple-
mented in F in more than one way. Perhaps the most obvious way is to
use an array. Another is to use pointers and data structures to create a
linked list. The choice should depend on which operations are going to
be performed on the list and the relative frequency of those operations.
If the only requirement is to add and delete numbers at one end of the
list, as is done if the list is treated as a stack, then an array is an easy
and efficient way to represent the list. If items must be inserted and de-
leted often at arbitrary points within the list, then a linked list is nice;
with an array, many elements would have to be moved to insert or de-
lete an element in the middle of the list. Another issue is whether stor-
age is to be allocated all at once, using an array, or element by element
in a linked list implementation. The implementation of linked lists us-
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ing pointers also uses recursion effectively, but iteration also could be
used.

A linked list of numbers (or any other objects) can be thought of
schematically as a bunch of boxes, often called nodes, each containing a
number and pointer to the box containing the first number in the rest of
the list. Suppose, for example, the list contains the numbers 14, 62, and
83. In the lists discussed in this section, the numbers always will ap-
pear in numeric order, as they do in this example. Figure 8-1 contains a
pictorial representation of the list.

We will illustrate the F techniques for manipulating linked lists by
constructing a module to manipulate linked lists in which the nodes
contain integers and the lists are sorted with the smallest number at
the head of the list. The procedures of the module sorted_integer_
lists_module use recursion. The recursion is usually tail recursion, so,
in one sense, not much is gained. However, it turns out that much of
the detailed manipulation of pointers is eliminated and the recursive
versions do not need such things as a dummy node at the head of the
list or “trailing pointers”, which are necessary in the nonrecursive im-
plementations of linked lists. This makes the routines a lot easier to
write, understand, and maintain, but perhaps a little less efficient to
execute on systems that have a high overhead for procedure calls.

8.3.1 Recursive List Processing

The approach to writing recursive routines to process a list is to view
the list itself as a recursive data structure. That is, a list of integers is ei-
ther empty or it is an integer followed by a list of integers. This sug-

Figure 8-1 A linked list of integers

a_list
14

62

83



8.3 Linked Lists 265

gests that to process a list of numbers, process the first number in the
list and then process the rest of the list with the same routine, quitting
when the list is empty.

To view the list as a recursive data structure as described above,
the object of type node should consist of a value and another object,
rest_of_list, of type list. An object of type list is a structure con-
sisting of one component that is the pointer to a node. The overall
structure of the module and the type definitions for the module are

module sorted_integer_lists_module

   public :: insert, empty, delete, print_list

   type, public :: list
      private
      type(node), pointer :: first => null()
   end type list

   type, private :: node
      integer :: value
      type(list) :: rest_of_list
   end type node

contains

   . . .

end module sorted_integer_lists_module

The public statement lists the module procedures that will be
available to any program using the module sorted_integer_l ists_
module. The public attribute on the definition of the type list indicates
that the type will also be available to programs that use the module.

The private statement in the definition of the type list indicates
that although the type list is available to any program that uses the
module, the user will not be able to access the internal structure of type
list. The component first is default initialized to null, which means
that each time an object of type list is declared or allocated, the com-
ponent first is null.

The user is able to declare variables to be type list and process
lists with the public module procedures insert, empty, delete, and
print_list. The private attribute on the type node indicates that it is
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not available to users of the module; it is available only within the
module.

8.3.2 Abstract Data Types

The purpose is to provide the user of the module with an abstract data
type, that is, with the name of the list type and all necessary proce-
dures to manipulate these lists. If it is desirable to change the imple-
mentation, we can be sure that no program has accessed the lists in any
way except those provided by the public procedures in this module.

It is important to be able to declare which details of a module are
private to the module and therefore hidden from all external users of
the module, and which are public.

Now we must decide what operations are needed. We will supply
a function empty(any_list) that returns the logical value indicating
whether or not the list any_list is empty; a subroutine insert
(any_list, number) that inserts number into list any_list; a subrou-
tine delete(any_list, number, found) that deletes one occurrence of
number from a list any_list, if it is there, and indicates if it is found;
and a subroutine print_list(any_list) that prints the numbers in
the list in order. Some of these are pretty simple and could be done
easily without a procedure, but the purpose is to include all necessary
operations in the module sorted_integer_lists_module and be able
to change the implementation.

8.3.3 Inserting a Number

Let’s next do the subroutine that inserts a number into a list. The recur-
sive version is deceptively simple. First, two special cases must be con-
sidered: If the list l is empty, a first node must be created and the
number placed in its value field. Then the rest_of_list field is made
empty because there are no other elements in the list. The F statements
to do this are

allocate (l%first)
l%first%value = number

It is not necessary to assign a value to l%first%rest_of_list%first
because it is default initialized to null.

The second special case is insertion before the first element of the
sorted list. This is appropriate when the number to be inserted is small-
er than the first element (and therefore also smaller than all other ele-
ments, because the list is sorted). Again, a new first node is created and
the number placed in its value field. However, this time the rest_of_
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list field of this new first node is set equal to the original list before
the insertion because all other numbers in the list follow this new num-
ber. The F statements to do this are

temp_list = l
allocate(l%first)
l%first%value = number
l%first%rest_of_list = temp_list

A temporary variable of type list is necessary to prevent losing the
reference to the list when a new first node is allocated. Notice that or-
dinary assignment (=) is used for variables of type list because they
are not pointers but structures containing pointer components.

These are the nonrecursive base cases of the recursive subroutine
insert. The only other remaining case is when the number to be in-
serted is greater than or equal to the first element of the list. However,
in this case, the insertion can be completed by a recursive call to insert
the number in the rest of the list. The complete subroutine insert fol-
lows.

recursive subroutine insert(l, number)

   type(list), intent(in out) :: l
   integer, intent(in) :: number
   type(list) :: temp_list

   if (empty(l)) then
      allocate (l%first)
      l%first%value = number
   else if (number < l%first%value) then
      ! insert at the front of the list l
      temp_list = l
      allocate(l%first)
      l%first%value = number
      l%first%rest_of_list = temp_list
   else
      call insert(l%first%rest_of_list, number)
   end if

end subroutine insert

As is typical with recursive algorithms, the program listing
appears simpler than the execution. To help understand why the
recursive subroutine insert works, we simulate its execution to insert
the number 62 in a sorted list containing 14 and 83. The list supplied to
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the dummy argument l at the top level call to insert is shown in
Figure 8-2.

The first item in the list is not less than 62, so a second level call to in-
sert is made to insert 62 into the rest of the list as shown in Figure 8-3.

This time the new number 62 is less than the first element 83 of the
list referenced by dummy argument l, so the nonrecursive alternative
to insert before the first element is selected. Figure 8-4 shows the situa-
tion after the allocate statement.

Figure 8-5 shows the situation after the structure assignment state-
ment that links the new node to the rest of the list starting with the
number 83.

8.3.4 Determining if a List is Empty

The function that determines if a list is empty is straightforward. Recall
that a pointer is not associated if it is null.

Figure 8-2 Top level call to insertion subroutine

Figure 8-3 Second level call to insertion subroutine

l
14

83

14

83

temp_listl
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function empty(l) result(empty_result)

   type(list), intent(in) :: l
   logical :: empty_result
   empty_result = .not. associated(l%first)

end function empty

8.3.5 Deleting a Number

The subroutine to delete a number from a list, if it is there, is quite similar
to the subroutine to insert. There are two special nonrecursive cases. If the

Figure 8-4 Allocating a new node for a linked list

Figure 8-5 The linked list after the new number is inserted
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l
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list l is empty, the number cannot be deleted from it, so found is set to
false. If the number is the first number in the list l, deleting it may be
accomplished by making l start with its second element (if any) using
the statement

l = l%first%rest_of_list

Also, it is a good idea to deallocate the space for the deleted node. The
statements

temp_list = l
deallocate (temp_list)

accomplish this. The first of these must be done before l is reassigned,
and the second afterward.

In case the list l is not empty, but the desired number is not its first
element, the number is deleted by a recursive call to delete it from the
rest of l. The full subroutine delete follows.

recursive subroutine delete(l, number, found)

   type(list), intent(in out) :: l
   integer, intent(in) :: number
   logical, intent(out) :: found
   type(list) :: temp_list

   if (empty(l)) then
      found = .false.
   else if (l%first%value == number) then
      ! Delete node pointed to by l%first
      temp_list = l
      l = l%first%rest_of_list
      deallocate(temp_list%first)
      found = .true.
   else
      call delete(l%first%rest_of_list, number, found)
   end if

end subroutine delete

For example, if the number 62 is to be deleted from a list with ele-
ments 14, 62, and 83, the first call has l%first pointing to the node
containing 14. Because this is not the desired number, a second recur-
sive call is made with l%first pointing to the node containing 62, as
shown in Figure 8-6. This node is deleted by making the rest_of_list
field of the node containing 14 (which is the actual argument corre-
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sponding to the dummy argument l) point to the node containing 83
and deallocating the node containing 62.

The last subroutine needed to complete the module is one that
prints the numbers in the list in order. This just involves recursively
traversing the list as in the subroutines insert and delete.

recursive subroutine print_list(l)

   type(list), intent(in) :: l

   if (associated(l%first)) then
      print *, l%first%value
      call print_list(l%first%rest_of_list)
   end if

end subroutine print_list

Although this is just an instance of tail recursion, the procedure is
quite a bit simpler than any iterative version.

8.3.6 Sorting with a Linked List

With the integer list module just created, it is possible to write a simple
but inefficient sorting program. The program works by reading in a file
of numbers and inserting each number into a list as it is read. When all
the numbers have been put into the list, it is printed, producing all the
numbers in order.

Figure 8-6 The second (recursive) call to the deletion routine

14

62

83

l temp_list
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program list_sort

   use sorted_integer_lists_module

   type(list) :: l
   integer :: number, ios

   do
      read (unit=*, fmt=*, iostat=ios) number
      ! A negative value for ios indicates end of file
      if (ios < 0) exit
      call insert(l, number)
   end do

   call print_list(l)

end program list_sort

Style note: A very important point to note is that even when the
procedures in the module sorted_integer_lists_module are
rewritten to use iteration instead of recursion, or even if arrays
are used to represent the lists, creating yet another list module,
a program such as list_sort that uses one of these modules
does not have to be changed at all (unless the name of the
module is changed). This illustrates one of the real benefits of
using modules. However, although the source code for the pro-
gram is unchanged, whenever a module changes, any program
that uses the module must be recompiled.

8.3.7 Exercise

1. Create a different version of the sorted_integer_lists_module
with all of the same public types and procedures. However, this
version should implement a list with a dynamic array, rather than a
linked list.

2. Use first the linked list version and then the array version of the
programs to manipulate lists of integers to construct a program
that sorts integers. Experiment with each program, sorting differ-
ent quantities of randomly generated integers to determine an ap-
proximate formula for the complexity of the program. Is the
execution time (or some other measure of complexity, such as the
number of statements executed) proportional to nlog2n? Is it pro-
portional to n2?
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8.4 Trees

One of the big disadvantages of using a linked list to sort numbers is
that the resulting program has poor expected running time. In fact, for
the program list_sort, the expected running time is proportional to
n2, where n is the number of numbers to be sorted. A much more effi-
cient sorting program can be constructed if a slightly more complicated
data structure, the binary tree, is used. The resulting program,
tree_sort, has an expected running time proportional to n log2n in-
stead of n2.

It is quite difficult to write nonrecursive programs to process trees,
so we will think of trees as recursive structures right from the start. Us-
ing this approach, a binary tree of integers is either empty or is an in-
teger, followed by two binary trees of integers, called the left subtree
and right subtree.

8.4.1 Sorting with Trees

To sort numbers with a tree, we will construct a special kind of ordered
binary tree with the property that the number at the “top” or “root”
node of the tree is greater than all the numbers in its left subtree and
less than or equal to all the numbers in its right subtree. This partition-
ing of the tree into a left subtree containing smaller numbers and a
right subtree containing larger numbers is exactly analogous to the
partitioning of a list into smaller and larger sublists that makes quick-
sort (4.3.1) an efficient algorithm. This property will hold not only for
the most accessible node at the “top” of the tree (paradoxically called
the “root” of the tree), but for all nodes of the tree. To illustrate this
kind of tree, suppose a file of integers contains the numbers 265, 113,
467, 264, 907, and 265 in the order given. To build an ordered binary
tree containing these numbers, first start with an empty tree. Then read
in the first number 265 and place it in a node at the root of the tree, as
shown in Figure 8-7.

Figure 8-7 The root of a tree

265
t
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The blank boxes in the lower part of a node are understood to rep-
resent null pointers.

When the next number is read, it is compared with the first. If it is
less than the first number, it is placed as a node in the left subtree; if it
is greater than or equal to the first number, it is placed in the right sub-
tree. In our example, 113 < 265, so a node containing 113 is created and
the left subtree pointer of the node containing 265 is set to point to it,
as shown in Figure 8-8.

The next number is 467, and it is placed in the right subtree of 265
because it is larger than 265. The result is shown in Figure 8-9.

.

Figure 8-8 Adding the number 113 to the tree

.

Figure 8-9 Adding the number 467 to the tree
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The next number is 264, so it is placed in the left subtree of 265. To
place it properly within the left subtree, it is compared with 113, the
occupant of the top of the left subtree. Since 264 > 113, it is placed in
the right subtree of the one with 113 at the top to obtain the tree shown
in Figure 8-10.

The next number 907 is larger than 265, so it is compared with 467
and put in the right subtree of the node containing 467, as shown in
Figure 8-11.

The final number 265 is equal to the number in the root node. An
insertion position is therefore sought in the right subtree of the root.
Since 265 < 467, it is put to the left of 467, as shown in Figure 8-12. No-
tice that the two nodes containing the number 265 are not even adja-
cent, nor is the node containing the number 264 adjacent to either node
with key 265. This doesn’t matter. When the tree is printed, they will
come out in the right order.

8.4.2 Type Declarations for Trees

The declaration for the node of a tree is similar to the declaration for
the node of a linked list, except that the node must contain two point-
ers, one to the left subtree and one to the right subtree. As with lists,

.

Figure 8-10 Adding the number 907 to the tree
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.

Figure 8-11 Adding the number 907 to the tree

.

Figure 8-12 The final ordered binary tree
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we could have tree be a derived data type, which implies it must be a
structure with one component, a pointer to the node of a tree. But just
to be different, let’s not have tree be a derived type. The extra syntax
needed to select the pointer component using the % symbol clutters up
the program enough that we will simply declare things that would be
trees to be pointers to a node, the root node of the tree. Thus, the only
declaration needed is

type, public :: node
   integer :: value
   type(node), pointer ::  left => null(), &
                          right => null()
end type node

8.4.3 The insert Subroutine

The subroutine that inserts a new number into the tree is a straightfor-
ward implementation of the following informal recipe: if the tree is
empty, make the new entry the only node of the tree; if the tree is not
empty and the number to be inserted is less than the number at the
root, insert the number in the left subtree; otherwise, insert the number
in the right subtree.

recursive subroutine insert(t, number)

   type(node), pointer :: t  ! A tree
   integer, intent(in) :: number

   ! If (sub)tree is empty, put number at root
   if (.not. associated(t)) then
      allocate (t)
      t%value = number
   ! Otherwise, insert into correct subtree
   else if (number < t%value) then
      call insert(t%left, number)
   else
      call insert(t%right, number)
   end if

end subroutine insert

Notice that the pointer components of the type node are default ini-
tialized to null, which means that each time a node is created by either
a declaration or an allocation, those pointers are set to null. Thus, there
is no need for a pointer assignment to nullify them.
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8.4.4 Printing the Tree in Order

The recipe for printing the nodes of the tree follows from the way the
tree has been built. It is simply to print in order the values in the left
subtree of the root, print the value at the root node, then print in order
the values in the right subtree. This subroutine is shown in the follow-
ing complete module and program that sort a file of integers by read-
ing them all in, constructing an ordered binary tree, and then printing
out the values in the tree in order.

module tree_module

public :: insert, print_tree

type, public :: node
   integer :: value
   type(node), pointer ::  left => null(), &
                          right => null()
end type node

contains

   recursive subroutine insert(t, number)

      type(node), pointer :: t  ! A tree
      integer, intent(in) :: number

      ! If (sub)tree is empty, put number at root
      if (.not. associated(t)) then
         allocate (t)
         t%value = number
      ! Otherwise, insert into correct subtree
      else if (number < t%value) then
         call insert(t%left, number)
      else
         call insert(t%right, number)
      end if

   end subroutine insert

   recursive subroutine print_tree(t)

   ! Print tree in infix order

      type(node), pointer :: t  ! A tree
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      if (associated(t)) then
         call print_tree(t % left)
         print *, t%value
         call print_tree(t % right)
      end if

   end subroutine print_tree

end module tree_module

program tree_sort

! Sorts a file of integers by building a
! tree, sorted in infix order.
! This sort has expected behavior n log n,
! but worst case (input is sorted) n ** 2.

   use tree_module

   ! Start with an empty tree
   type (node), pointer :: t => null()
   integer :: number, ios

   do
      read (unit=*, fmt=*, iostat=ios) number
      if (ios < 0) exit
      call insert(t, number) ! Put next number in tree
   end do

   ! Print nodes of tree in infix order
   call print_tree(t)

end program tree_sort

8.4.5 Exercises

1. Experiment with the program tree_sort, sorting different quanti-
ties of randomly generated integers to determine an approximate
formula for the complexity of the program. It should be propor-
tional to nlog2n.

2. Draw a tree that would be constructed by the program tree_sort
given an input file with the same numbers as in 8.3.1, but in the or-
der 113, 264, 265, 265, 467, 907. What happens to the efficiency of
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inserting new nodes into this tree compared to the tree given in
Figure 8-12?

3. Run the tree sort program in this section with two different input
files, one consisting of 20,000 random numbers and the other con-
sisting of the same numbers already sorted. Write the results to a
file, rather than printing them.
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The facilities needed to do simple input and output tasks were de-
scribed in Chapter 1, and many examples of these statements were dis-
cussed throughout the other chapters. Sometimes it is necessary to use
the more sophisticated input/output features of F, which are probably
superior to those found in any other high level language. This chapter
describes in some detail these features, including direct access in-
put/output, nonadvancing input/output, unformatted input/output, the
use of internal files, file connection statements, the inquire statement,
file positioning statements, and formatting.

The input/output statements are

read
print
write
open
close
inquire
backspace
endfile
rewind

The read, write, and print statements are the ones that do the actual
data transfer; the open and close statements deal with the connection
between an input/output unit and a file; the inquire statement pro-
vides the means to find out things about a file or unit; and the back-
space, endfile, and rewind statements affect the position of the file.

Because this chapter is needed only for the more sophisticated
kinds of input and output, it is organized a little bit differently from
other chapters. The first part contains a discussion of some fundamen-
tal ideas needed for a thorough understanding of how F input/output
works. The next part of the chapter contains a description and exam-
ples of the special kinds of data transfer statements. Then there is a dis-
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cussion of the open, close, inquire, backspace, rewind, and endfile
statements. The final part contains a more detailed description of for-
matting than that provided in 1.7.

Input and output operations deal with collections of data called
files. The data are organized into records, which may correspond to
lines on a computer terminal, lines on a printout, or parts of a disk file.
The descriptions of records and files in this chapter are to be consid-
ered abstractions and do not necessarily represent the way data is
stored physically on any particular device. For example, an F program
may produce a file of answers. This file might be printed, and the only
remaining physical representation of the file would be the ink on the
paper. Or it might be written onto magnetic tape and remain there for
a few years, eventually to be erased when the tape is used to store oth-
er information.

The general properties of records are discussed first.

9.1 Records

There are two kinds of records, data records and endfile records. A
data record is a sequence of values. Thus, a data record may be repre-
sented schematically as a collection of small boxes, each containing a
value, as shown in Figure 9-1.

The values in a data record may be represented in one of two ways:
formatted or unformatted. If the values are characters readable by a
person, each character is one value and the data is formatted. For ex-
ample, the statement

write (unit=*, fmt="(i1, a, i2)") 6, ",", 11

would produce a record containing the four character values “6” “,”
“1” and “1”. In this case, the record might be represented schematically
as Figure 9-2.

Unformatted data consist of values usually represented just as they
are stored in computer memory. For example, if integers are stored us-
ing an eight-bit binary representation, execution of the statement

Figure 9-1 Schematic representation of the values in a record

. . .
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write (unit=9) 6, 11

might produce an unformatted record that looks like Figure 9-3.

9.1.1 Formatted Records

A formatted record is one that contains only formatted data. A format-
ted record may be created by a person typing at a terminal or by an F
program that converts values stored internally into character strings
that form readable representations of those values. When formatted
data is read into the computer, the characters must be converted to the
computer’s internal representation of values, which is often a binary
representation. Even character values may be converted from one char-
acter representation in the record to another internal representation.
The length of a formatted record is the number of characters in it; the
length may be zero.

9.1.2 Unformatted Records

An unformatted record is one that contains only unformatted data.
Unformatted records usually are created by running an F program, al-
though, with the knowledge of how to form the bit patterns correctly,
they could be created by other means. Unformatted data often require
less space on an external device. Also, it is usually faster to read and
write unformatted data because no conversion is required. However, it
is not as suitable for reading by humans, and usually it is not suitable
for transferring data from one computer to another because the inter-
nal representation of values is machine dependent. The length of an
unformatted data record depends on the number of values in it, but is

Figure 9-2 A formatted record with four character values

Figure 9-3 An unformatted record with two integer values

6 , 1 1

00000110 00001011
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measured in some processor-dependent units such as machine words;
the length may be zero. The length of an unformatted record that will
be produced by a particular output list may be determined by the in-
quire statement (9.6).

9.1.3 Endfile Records

The other kind of record is the endfile record, which, at least conceptu-
ally, has no values and has no length. There can be at most one endfile
record in a file and it must be the last record of a file. It is used to mark
the end of a file.

An endfile record may be written explicitly by the programmer us-
ing the endfile statement. An endfile record also is written implicitly
when the last data transfer statement involving the file was an output
statement, the file has not been repositioned, and

1. a backspace statement is executed,

2. a rewind statement is executed, or

3. the file is closed.

9.1.4 Record Length

In some files, the lengths of the records are fixed in advance of data be-
ing put in the file; in others, it depends on how data is written to the
file. For external formatted advancing sequential output (9.3.4), a
record ends whenever a slash (/) edit descriptor is encountered and at
the conclusion of each input/output operation (write or print).

9.1.5 Printing of Formatted Records

Sometimes output records are sent to a device that interprets the first
character of the record as a control character. Thus, it is usually a good
idea to leave the first character of each output record blank. List-direct-
ed output formatting (*) does this.

9.2 Files

A file is a collection of records. A file may be represented schematical-
ly with each box representing a record, as shown in Figure 9-4.

The records of a file must be either all formatted or all unformat-
ted, except that the file may contain an endfile record as the last record.
A file may have a name, but the length of the names and the characters
that may be used in the names depend on the system being used. The
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set of names that are allowed often is determined by the operating sys-
tem as well as the F compiler.

A distinction is made between files that are located on an external
device, such as a disk, and files in memory accessible to the program.
The two kinds of files are

1. External files

2. Internal files

The use of the files is illustrated schematically in Figure 9-5.

9.2.1 External Files

An external file usually is stored on a peripheral device, such as a tape,
a disk, or a computer terminal. For each external file, there is a set of

Figure 9-4 Schematic representation of records in a file

Figure 9-5 Internal and external files

...
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allowed access methods, a set of allowed forms (formatted or unfor-
matted), a set of allowed actions, and a set of allowed record lengths.
How these characteristics are established is dependent on the comput-
er system you are using, but usually they are determined by a combi-
nation of requests by the user of the file and actions by the operating
system.

9.2.2 Internal Files

Internal files are stored in memory as values of character variables. The
character values may be created using all the usual means of assigning
character values or they may be created with an output statement us-
ing the variable as an internal file. If the variable is a scalar, the file has
just one record; if the variable is an array, the file has one record for
each element of the array. The length of the record is the number of
characters declared or assumed for the character variable. Only format-
ted sequential access is permitted on internal files. For example, if
char_array is an array of two character strings declared by

character(len=7), dimension(2) :: char_array

the statement

write (unit=char_array, fmt="(f7.5, /, f7.5)") &
         10/3.0, 10/6.0

produces the same effect as the assignment statements

char_array(1) = "3.33333"
char_array(2) = "1.66667"

9.2.3 Existence of Files

Certain files are known to the processor and are available to an execut-
ing program; these files are said to exist at that time. For example, a
file may not exist because it is not anywhere on the disks accessible to
a system. A file may not exist for a particular program because the user
of the program is not authorized to access the file. F programs usually
are not permitted to access special system files, such as the operating
system or the compiler, in order to protect them from user modifica-
tion. The inquire statement may be used to determine whether or not
a file exists.

In addition to files that are made available to programs by the pro-
cessor for input, output, and other special purposes, programs may
create files needed during and after program execution. When the pro-
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gram creates a file, it is said to exist, even if no data has been written
into it. A file no longer exists after it has been deleted. Any of the in-
put/output statements may refer to files that exist for the program at
that point during execution. Some of the input/output statements (in-
quire, open, close, write, print, rewind, and endfile) can refer to
files that do not exist. For example, a write statement can create a file
that does not exist and put data into that file. An internal file always
exists.

9.2.4 File Access Methods

There are two access methods for external files:

1. Sequential access

2. Direct access

Sequential access to the records in the file begins with the first record
of the file and proceeds sequentially to the second record, and then to
the next record, record by record. The records are accessed in the order
that they appear in the file, as indicated in Figure 9-6. It is not possible
to begin at some particular record within the file without reading from
the current record down to that record in sequential order.

When a file is being accessed sequentially, the records are read and
written sequentially. For example, if the records are written in any arbi-
trary order using direct access and then read using sequential access,
the records are read beginning with record number one of the file, re-
gardless of when it was written.

When a file is accessed directly, the records are selected by record
number. Using this identification, the records may be read or written in
any order. For example, it is possible to write record number 47 first,
then write record number 13. In a new file, this produces a file repre-

Figure 9-6 Sequential access
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sented by Figure 9-7. Either record may be read without first accessing
the other.

The following rules apply when accessing a file directly:

1. If a file is to be accessed directly, all of the records must be the
same length.

2. It is not possible to delete a record using direct access.

3. Nonadvancing input/output is prohibited.

4. An internal file must not be accessed directly.

Each file has a set of permissible access methods, which usually
means that it may be accessed either sequentially or directly. However,
it is possible that a file may be accessed by either method. The file ac-
cess method used to read or write the file must be one of the allowed
access methods for the file; it is established when the file is connected
to a unit (9.2.7). The same file may be accessed sequentially by a pro-
gram, then disconnected and later accessed directly by the same pro-
gram, if both types of access are permitted for the file.

9.2.5 File Position

Each file being processed by a program has a position. During the
course of program execution, records are read or written, causing the
position of the file to change. Also, there are F statements that cause
the position of a file to change; an example is the backspace statement.

The initial point is the point just before the first record. The termi-
nal point is the point just after the last record. These positions are illus-
trated by Figure 9-8. If the file is empty, the initial point and the
terminal point are the same.

A file may be positioned between records. In the example pictured
in Figure 9-9, the file is positioned between records 2 and 3. In this
case, record 2 is the preceding record and record 3 is the next record.
Of course, if a file is positioned at its initial point, there is no preceding
record, and there is no next record if it is positioned at its terminal
point.

Figure 9-7 A file written using direct access

record 13

record 47
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There may be a current record during execution of an input/output
statement or after completion of a nonadvancing input/output state-
ment as shown in Figure 9-10, where record 2 is the current record.

Figure 9-8 Initial and terminal points of a file

Figure 9-9 A file positioned between records

Figure 9-10 A file positioned within a current record
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When there is a current record, the file is positioned at the initial
point of the record, between values in a record, or at the terminal point
of the record as illustrated in Figure 9-11.

An internal file is always positioned at the beginning of a record
just prior to data transfer.

9.2.6 Advancing and Nonadvancing I/O

Advancing input/output is record oriented. Completion of an in-
put/output operation always positions the file at the end of a record.
Nonadvancing input/output is character oriented. After reading and
writing, the file position may be between characters within a record.

Nonadvancing input/output is restricted to use with external se-
quential formatted files and may not be used with list-directed format-
ting.

9.2.7 Units and File Connection

Input/output statements refer to a particular file by specifying its unit.
For example, the read and write statements do not refer to a file di-
rectly, but refer to a unit number, which must be connected to a file.
The unit number for an external file is a nonnegative integer. The name
of an internal file also is called a unit; it is a character variable. In the
following examples, 5 and char_string are units.

read (unit=5) a
write (unit=char_string, fmt="(i3)") k

Some rules and restrictions for units are:

1. The unit * specifies a processor determined unit number. On input,
it is the same unit number that the processor would use if a read
statement appeared without the unit number. On output, it is the
same unit number that the processor would use if a print state-

Figure 9-11 Positions within a record of a file

. . .

Initial point Between values Terminal point
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ment appeared without the unit number. The unit specified by an
asterisk may be used only for formatted sequential access.

2. File positioning, file connection, and inquiry must use external
files.

3. A unit number identifies one and only one unit in an F program.
That is, a unit number is global to an entire program; a particular
file may be connected to unit 9 in one procedure and referred to
through unit 9 in another procedure.

Only certain unit numbers may be used on a particular computing
system. The unit numbers that may be used are said to exist. Some unit
numbers on some processors are always used for data input (for exam-
ple, unit 5), others are always used for output (for example, unit 6). In-
put/output statements must refer to units that exist, except for those
that close a file or inquire about a unit. The inquire statement may be
used to determine whether or not a unit exists.

To transfer data to or from an external file, the file must be con-
nected to a unit. Once the connection is made, most input/output state-
ments use the unit number instead of using the name of the file
directly. An internal file always is connected to the unit that is the
name of the character variable. There are two ways to establish connec-
tion between a unit and an external file:

1. Execution of an open statement in the executing program

2. Preconnection by the operating system

Only one file may be connected to a unit at any given time. If the
unit is disconnected after its first use on a file, it may be reconnected
later to another file or it may be reconnected later to the same file. A
file that is not connected to a unit may not be used in any statement ex-
cept the open, close, or inquire statements. Some units may be pre-
connected to files for each F program by the operating system, without
any action necessary by the program. For example, on many systems,
units 5 and 6 are always preconnected to the default input and default
output files, respectively. Preconnection of units also may be done by
the operating system when requested by the user in the operating sys-
tem command language. In either of these cases, the user program
does not require an open statement to connect the file; it is preconnect-
ed.
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9.2.8 Error, End-of-File, and End-of-Record Conditions

During execution of input/output statements, error conditions can oc-
cur. Error conditions may be checked by using the iostat= specifier on
many input/output statements. Each error condition will result in some
positive value for the iostat variable, but the values used will depend
on the computer system being used. Examples of errors are attempting
to open a file that does not exist or attempting to read input consisting
of letters when the input variable is type integer. When such an error
occurs, the value of the iostat variable may be tested and alternative
paths selected.

If a read statement attempts to read an endfile record, the iostat
variable will be set to some negative value. It will also be set to a nega-
tive value when reading beyond the end of a record with a nonadvanc-
ing read statement. These conditions cannot both occur at the same
time.

If there is both an error condition and either an end-of-file or end-
of-record condition, the iostat variable will be set to a positive value
to indicate that an error has occurred.

The program count_lines counts the number of lines in a file and
illustrates the use of iostat to determine when the end of the file is
encountered. The sample run shows what happens when the input to
the program is the program itself.

 The input file is:

     program count_lines
     
     character(len=100) :: line
     integer :: tally, status
     
     tally = 0
     print *, "The input file is:"
     print *  ! a blank line
     
     do
        read (unit=*, fmt="(a)", iostat=status) line
        if (status < 0) exit
        write (unit=*, fmt="(t6, a)") trim(line)
        tally = tally + 1
     end do
     
     print *
     print *, "The file contains", tally, "lines."
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     end program count_lines

 The file contains 19 lines.

The intrinsic function trim removes trailing blank characters on
the output lines.

9.3 Data Transfer Statements

The data transfer statements are the read, write, and print state-
ments. In previous chapters we have seen examples of various kinds of
data transfer statements. The general forms for the data transfer state-
ments are as follows. Optional parts of a statement appear in square
brackets.

read ( io-control-spec-list ) [ input-item-list ]
read format [ , input-item-list ]
write ( io-control-spec-list ) [ output-item-list ]
print format [ , output-item-list ]

Some examples of data transfer statements are

read (unit=9, iostat=is) x
write (unit=16, rec=14) y
read "(f10.2)", z
print *, zt

9.3.1 The Format Specifier

The format specifier (format in the syntax for the print statement and
the short form of the read statement) may be a character expression in-
dicating explicit formatting or an asterisk (*) indicating list-directed or
default formatting.

9.3.2 The Control Information List

The input/output control specification list must contain a unit specifier
of the form

unit= io-unit

and may contain at most one each of the following optional items:

fmt= format
rec= scalar-int-expr
iostat= scalar-default-int-variable
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advance= scalar-char-expr
size= scalar-default-int-variable

The input/output unit must be a nonnegative integer expression indi-
cating an external unit connected to a file, an asterisk indicating a pro-
cessor-dependent external unit, or a character variable of default type
indicating an internal unit.

The allowed forms of a format are the same within a control infor-
mation list as they are in the print statement and the short form of the
read statement.

There are lots of additional rules about which combinations of
these items may occur; some of these rules will be covered in the dis-
cussion of various types of data transfer statements in the following
sections.

9.3.3 The Input/Output List

The input/output list consists basically of variables in a read statement
and expressions in a write or print statement. An implied-do loop
also may appear in an input/output list.

print "(19, f9.2)", (i, x(i), i = 1, n)

9.3.4 External Formatted Advancing Sequential Access I/O

The title of this section is a mouthful, but this is the kind of input/out-
put that has been illustrated throughout the book. For formatted input
and output, the file consists of characters. These characters are convert-
ed into representations suitable for storing in computer memory dur-
ing input and converted from an internal representation to characters
on output. When a file is accessed sequentially, records are processed
in the order in which they appear in the file. Advancing input/output
means that the file is positioned after the end of the last record read or
written when the input/output is finished.

Templates that may be used to construct explicitly formatted se-
quential access data statements are

read ( unit= unit-number  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
[ , advance= scalar-char-expr ]  &
) [ input-list ]

read format [ , input-list ]
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write ( unit= unit-number  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
[ , advance= scalar-char-expr ]  &
) [ output-list ]

print format [ , output-list ]

The format may be a character expression whose value is a format spec-
ification, or an asterisk indicating list-directed default formatting. For
advancing input/output, the expression in the advance= specifier must
evaluate to yes, if it is present; nonadvancing input/output is discussed
in Section 9.3.5. The advance= specifier must not be present if the for-
mat is an asterisk designating list-directed formatting.

Examples of formatted reading are

read (unit=15, fmt=fmt_100) a, b, c(1:40)
read (unit=9, fmt="(2f20.5)", iostat=iend) x, y
read (unit=*, fmt="(5e20.0)", advance="yes") y(1:kk)
read *, x, y
read "(2f20.5)", x, y
read *

Examples of formatted writing are

write (unit=9, fmt=fmt_103, iostat=is) a, b, c, s
write (unit=7, fmt=*) x
write (unit=*, fmt="(f10.5)") x
print "(a, es14.6)", " y = ", y
print *, "y = ", y
print *

When an advancing sequential access input/output statement is ex-
ecuted, reading or writing of data begins with the next character in the
file. If the previous input/output statement was a nonadvancing state-
ment, the next character transferred may be in the middle of a record,
even if the statement being executed is an advancing statement. The
difference between the two is that an advancing input/output state-
ment always leaves the file positioned at the end of the record when
the data transfer is completed.

The iostat specifier may be used to check for an end-of-file or an
error condition.
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9.3.5 Nonadvancing Data Transfer

Like advancing input/output, the file is read or written beginning with
the next character; however, nonadvancing input/output leaves the file
positioned after the last character read or written, rather than skipping
to the end of the record. Nonadvancing input/output is sometimes
called partial record input/output. It may be used only with explicitly
formatted external files connected for sequential access. It may not be
used with list-directed input/output.

Templates that may be used to construct nonadvancing input/out-
put statements are

read ( unit= unit-number  &
, fmt= format  &
, advance= scalar-char-expr  &
[ , size= scalar-default-int-variable ]  &
[ , iostat= scalar-default-int-variable ]  &
) [ input-list ]

write ( unit= unit-number  &
, fmt= format  &
, advance= scalar-char-expr  &
[ , iostat= scalar-default-int-variable ]  &
) [ output-list ]

The scalar character expression in the advance= specifier must
evaluate to no for nonadvancing input/output. The format is a charac-
ter expression whose value is a format specification; it must not be an
asterisk designating list-directed formatting.

The size= variable is assigned the number of characters read on in-
put. It does not count trailing blanks.

Examples of nonadvancing data transfer statements are

advancing = "no"
read (unit=15, fmt=fmt_100, advance=advancing) a, b, c
read (unit=9, fmt="(a)", advance="no",  &
      size=rec_size, iostat=ios) line
write (unit=16, fmt="(i1)", advance=advancing) n
write (unit=16, fmt=fmt_200, advance="no") x(1:n)

The iostat specifier may be used to check for an end-of-file, end-
of-record, or error condition.

One of the important uses of nonadvancing input/output occurs
when the size of the records is not known. To illustrate this, the follow-
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ing program counts the number of characters in a file, reading the in-
put one character at a time. iostat values for end-of-record and end-
of-file are required to be negative, but are otherwise processor depen-
dent. The values −2 and −1 are typical, but the manual for your system
should be consulted.

program char_count
   integer, parameter :: end_of_record = -2
   integer, parameter :: end_of_file = -1
   character(len=1) :: c
   integer :: character_count, ios

   character_count = 0
   do
      read (unit=*, fmt="(a)", advance="no", &
            iostat=ios) c
      if (ios == end_of_record) then
         cycle
      else if (ios == end_of_file) then
         exit
      else
         character_count = character_count + 1
      end if
   end do

   print *, "The number of characters in the file is", &
            character_count
end program char_count

Another obvious use is to print part of a line at one place in a pro-
gram and finish the line later. If things are implemented properly, it
also should be possible to use nonadvancing input/output to supply a
prompt to a terminal and have the user type in data on the same line.
This is not absolutely guaranteed, because many systems consider in-
put from a terminal and output to the terminal to involve two different
files. Here is a simple example:

program test_sign
   integer :: number
   write (unit=*, fmt="(a)", advance="no")  &
         "Type in any integer: "
   read *, number
   write (unit=*, fmt="(a, i9, a)", advance=”no”)  &
         "The number ", number, " is "
   if (number > 0) then
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      print *, "positive."
   else if (number == 0) then
      print *, "zero."
   else
      print *, "negative."
   end if
end program test_sign

Type in any integer: 36
The number        36 is  positive.

9.3.6 Data Transfer on Internal Files

Transferring data from machine representation to characters or from
characters back to machine representation can be done between two
variables in an executing program. A formatted sequential access input
or output statement is used; list-directed formatting is permitted. The
format is used to interpret the characters. The internal file and the in-
ternal unit are the same character variable.

Templates that may be used to construct data transfer statements
on an internal file are

read ( unit= default-char-variable  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
) [ input-list ]

write ( unit= default-char-variable  &
, fmt= format  &
[ , iostat= scalar-default-int-variable ]  &
) [ output-list ]

Examples of data transfer statements on internal files are

read (unit=char_24, fmt=fmt_1, iostat=io_err) &
      mary, x, j, name
write (unit=char_var, fmt=*) x

Some rules and restrictions for using internal files are:

1. The unit must be a character variable that is not an array section
with a vector subscript.

2. Each record of an internal file is a scalar character variable.

3. If the file is an array or an array section, each element of the array
or section is a scalar character variable and thus a record. The or-
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der of the records is the order of the array elements (for arrays of
rank two and greater, the first subscript varies most rapidly). The
length of the record, which must be the same for each record, is the
length of one array element.

4. If the character variable is an array or part of an array that has the
pointer attribute, the variable must be allocated before its use as an
internal file.

5. If the number of characters written is less than the length of the
record, the remaining characters are set to blank. If the number of
characters is greater than the length of the record, the remaining
characters are truncated.

6. The records in an internal file are assigned values when the record
is written. An internal file also may be assigned a value by a char-
acter assignment statement, or some other means.

7. To read a record in an internal file, it must be defined.

8. An internal file is always positioned at the beginning before a data
transfer occurs.

9. Only formatted sequential access is permitted on internal files.
List-directed formatting is permitted.

10. File connection, positioning, and inquiry must not be used with in-
ternal files.

11. The use of the iostat specifier is the same as for external files.

12. On input, blanks are ignored in numeric fields.

13. On list-directed output, character constants are delimited with
quotes.

As a simple example of the use of internal files, the following
write statement converts the value of the integer variable n into the
character string s of length 10:

write (unit=s, fmt="(i10)") n

If n = 999, the string s would be “bbbbbbb999”, where b represents a
blank character. To make the conversion behave a little differently, we
can force the first character of s to be a sign (9.8.16) and make the rest
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of the characters digits, using as many leading zeros as necessary
(9.8.5).

write (unit=s, fmt="(sp, i10.9)") n

Now if n = 999, the string s will have the value “+000000999”.
Another use of internal input/output is to read data from a file di-

rectly into a character string, examine it to make sure it has the proper
form for the data that is supposed to be read, then read it with format-
ting conversion from the internal character string variable to the vari-
ables needed to hold the data. To keep the example simple, suppose
that some input data record is supposed to contain 10 integer values,
but they have been entered into the file as 10 integers separated by co-
lons. List-directed input requires that the numbers be separated by
blanks or commas. One option is to read in the data, examine the char-
acters one at a time, and build the integers; but list-directed input will
do everything except find the colon separators. So another possibility is
to read in the record, change the colons to commas, and use an internal
list-directed read statement to convert the character string into 10 inte-
ger values. Here is a complete program, but it just reads in the num-
bers and prints them.

program p_internal

   character(len=100) :: internal_record
   integer, dimension(10) :: numbers
   integer :: colon_position

   read (unit=*, fmt="(a)") internal_record
   do
      colon_position = index(internal_record, ":")
      if (colon_position == 0) exit
      internal_record (colon_position:colon_position) &
           = ","
   end do

   read (unit=internal_record, fmt=*) numbers
   print "(5i5)", numbers

end program p_internal

If the input is

3:24:53:563:-34:290:-9:883:9:224
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the output is

    3   24   53  563  -34
  290   -9  883    9  224

Of course, in a real program, some error checking should be done
to make sure that the internal record has the correct format after the
colons are converted to commas.

Another example of formatted writing to an internal file occurs in
the big integers module in 7.7.1, in which this feature is used to con-
struct a format specification tailored to the exact length of the output
data of a later print statement.

9.3.7 Unformatted Input/Output

For unformatted input and output, the file usually consists of values
stored using the same representation used in program memory. This
means that no conversion is required during input and output. Unfor-
matted input/output may be done using both sequential and direct ac-
cess. It is always advancing.

Direct access is indicated by the presence of a rec= specifier; se-
quential access occurs when no rec= specifier is present.

Templates that may be used to construct unformatted access data
statements are

read ( unit= unit-number  &
[ , rec= record-number ]  &
[ , iostat= scalar-default-int-variable ]  &
) [ input-list ]

write ( unit= unit-number  &
[ , rec= record-number ]  &
[ , iostat= scalar-default-int-variable ]  &
) [ output-list ]

Examples of unformatted access reading are

read (unit=8) a, b, c(1:n, 1:n)
read (unit=9, rec=14, iostat=iend) x, y
read (unit=4) y

Examples of unformatted access writing are

write (unit=9, iostat=is) a, b, c, s
write (unit=7, iostat=status) x
write (unit=9, rec=next_record_number) x
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The record number given by the rec= specifier is a scalar integer
expression whose value indicates the number of the record to be read
or written. If the access is sequential, the file is positioned at the begin-
ning of the next record prior to data transfer and positioned at the end
of the record when the input/output is finished, because nonadvancing
unformatted input/output is not permitted. The iostat specifier may
be used in the same way it is used for formatted input/output.

Unformatted access is very useful when creating a file of data that
must be saved from one execution of a program and used for a later ex-
ecution of the program. Suppose, for example that a program deals
with the inventory of a large number of automobile parts. The data for
each part (in a module in our simple example) consists of the part
number and the quantity in stock.

type, public :: part
   integer :: id_number, qty_in_stock
end type part

type (part), dimension(10000), public :: part_list
integer, public:: number_of_parts

Suppose the integer variable number_of_parts records the number of
different parts that are stored in the array part_list. At the end of the
program, the number of parts and the entire part list can be saved in
the file named part_file with the following statements:

open (unit=9, file="part_file",  &
      position="rewind", form="unformatted",  &
      action="write", status="replace")
write (unit=9), number_of_parts,  &
      part_list(1:number_of_parts)

At the beginning of the next execution of the program, the inventory
can be read back into memory with the statements:

open (unit=9, file="part_file",  &
      position="rewind", form="unformatted",  &
      action="read", status="old")
read (unit=9), number_of_parts, &
                 part_list(1:number_of_parts)

See 9.4 for the description of the open statement.
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9.3.8 Direct Access Data Transfer

When a file is accessed directly, the record to be processed is the one
given by the record number in a rec= specifier. The file may be format-
ted or unformatted.

Templates that may be used to construct direct access data state-
ments are

read ( unit= unit-number  &
, [ fmt= format ]  &
, rec= record-number  &
[ , iostat= scalar-default-int-variable ]  &
) [ input-list ]

write ( unit= unit-number ]  &
[ , fmt= format ]  &
, rec= record-number  &
[ , iostat= scalar-default-int-variable ]  &
) [ output-list ]

The format must not be an asterisk.
Examples of direct access input/output statements are

read (unit=7, fmt=fmt_x, rec=32) a
read (unit=10, rec=34, iostat=io_status) a, b, d
write (unit=8, fmt="(2f15.5)", rec=n+2) x, y

The iostat specifier is used just as it is with sequential access.
To illustrate the use of direct access files, let us consider the simple

automobile parts example used in 9.3.7 to illustrate unformatted in-
put/output. In this example, suppose that the parts list is so large that
it is not feasible to read the entire list into memory. Instead, each time
information about a part is needed, just the information about that one
part is read from an external file. To do this in a reasonable amount of
time, the file must be stored on a device such as a disk, where each
part is accessible as readily as any other. Analogous but more realistic
examples might involve the bank accounts for all customers of a bank
or tax information on all tax payers in one country. This time a struc-
ture is not needed, because the only information in the file is the quan-
tity on hand. The part identification number is used as the record
number of the record in the file used to store the information for the
part having that number. Also, the array is not needed because the pro-
gram deals with only one part at a time.
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Suppose we just need a program that looks up the quantity in stock
for a given part number. This program queries the user for the part
number, looks up the quantity on hand by reading one record from a
file, and prints out that quantity.

program part_info
   integer :: part_number, qty_in_stock

   print *, "Enter part number"
   read *, part_number
   open (unit=9, file="part_file",  &
         access="direct", recl=10,  &
         form="unformatted",  &
         action="read",  status="old")
   read (unit=9, rec=part_number) qty_in_stock
   print *, "The quantity in stock is", qty_in_stock
end program part_info

Of course, the program could be a little more sophisticated by us-
ing a loop to repeat the process of asking for a part number and pro-
viding the quantity in stock. Also, there must be other programs that
create and maintain the file that holds the database of information
about the parts. A more complex organization for the file may be nec-
essary if the range of legal part numbers greatly exceeds the actual
number of different parts for which information is saved.

9.4 The open Statement

The open statement establishes a connection between a unit and an ex-
ternal file and determines the connection properties. After this is done,
the file can be used for data transfers (reading and writing) using the
unit number. It is not necessary to execute an open statement for files
that are preconnected to a unit.

The open statement may appear anywhere in a program and, once
executed, the connection of the unit to the file is valid in the main pro-
gram or any subprogram for the remainder of that execution, unless a
close statement affecting the connection is executed.

If a file is connected to one unit, it may not be connected to a dif-
ferent unit at the same time.

Execution of an open statement using a unit that is already open is
not permitted.
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9.4.1 Syntax Rule for the open Statement

The form of the open statement is

open ( connect-spec-list )

where the permissible connection specifications are

unit= external-file-unit
file= file-name-expr
access= scalar-char-expr
action= scalar-char-expr
form= scalar-char-expr
iostat= scalar-default-int-variable
position= scalar-char-expr
recl= scalar-int-expr
status= scalar-char-expr

Examples are

open (unit=9, iostat=ios, &
      status="scratch", action="readwrite")
open (unit=8, access="direct", file="plot_data", &
      status="old", action="read")

Some rules and restrictions for the open statement are

1. An external unit number is required.

2. A specifier may appear at most once in any open statement.

3. The file= specifier must appear if the status is old, new, or re-
place; the file= specifier must not appear if the status is
scratch.

4. The status= specifier must appear.

5. The action= specifier must appear. It must not be read if the status
is new or replace. It must be readwrite if the status is scratch.

6. The position= specifier must appear if the access is sequential
and the status is old.

7. The character expression established for many of the specifiers
must contain permitted values in a list of alternative values as de-
scribed below. For example, old, new, replace, and scratch are
permitted for the status= specifier; any other combination of let-
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ters is not permitted. Uppercase letters may be used. Trailing
blanks in any specifier are ignored.

9.4.2 The Connection Specifiers

iostat= The iostat= specifier must be a default integer vari-
able. It is given a value that is a positive integer if there
is an error condition while executing the open state-
ment and zero if there is no error.

file= The file= specifier indicates the name of the file to be
connected. If the name is omitted, the connection will
be made to a processor-determined file.

status= The value of the status= specifier must be old, new,
replace, or scratch. old refers to a file that must ex-
ist. new refers to a file that must not exist. If the status
is replace and the file does not exist, it is created and
given a status of old. If the status is replace and the
file does exist, it is deleted, a new file is created with
the same name, and its status is changed to old.
scratch refers to a scratch file that exists only until ter-
mination of execution of the program or until a close
is executed on that unit. Scratch files must be un-
named. replace is recommended when it is not certain
if there is an old version, but it is to be replaced if there
is one.

access= The value of the access= specifier must be direct or
sequential. direct refers to direct access. sequential
refers to sequential access. The method must be an al-
lowed access method for the file. If the file is new, the
allowed access methods given to the file must include
the one indicated. If the access is direct, there must be a
recl= specifier to specify the record length.

form= The value of the form= specifier must be formatted or
unformatted. formatted indicates that all records will
be formatted. unformatted indicates that all records
will be unformatted. If the file is connected for direct
access, the default is unformatted. If the file is connect-
ed for sequential access, the default is formatted. If the
file is new, the allowed forms given to the file must in-
clude the one indicated.
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recl= The recl= specifier has a positive value that specifies
the length of each record if the access method is direct
or the maximum length of a record if the access meth-
od is sequential. If the file is connected for formatted
input/output, the length is the number of characters. If
the file is connected for unformatted input/output, the
length is measured in processor-dependent units. The
length may, for example, be the number of computer
words. If the file exists, the length of the record speci-
fied must be an allowed record length. If the file does
not exist, the file is created with the specified length as
an allowed length.

position= The value of the position= specifier must be rewind or
append. rewind positions the file at its initial point. ap-
pend positions the file at the terminal point or just be-
fore an endfile record, if there is one. The file must be
connected for sequential access. If the file is new, it is
positioned at its initial point.

action= The value of the action= specifier must be read,
write, or readwrite. read indicates that write, print,
and endfile statements are prohibited. write indicates
that read statements are prohibited. readwrite indi-
cates that any input/output statement is permitted.

9.5 The close Statement

Execution of a close statement terminates the connection of a file to a
unit. Any connections not closed explicitly by a close statement are
closed by the operating system when the program terminates. The
form of the close statement is

close ( close-spec-list )

The items in the close specification list may be selected from

unit= external-file-unit
iostat= scalar-default-int-variable
status= scalar-char-expr

Examples are

close (unit=9)
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close (unit=8, iostat=ir, status="keep")

Some rules for the close statement are

1. An external unit number is required.

2. A close statement may refer to a unit that is not connected or does
not exist, but it has no effect. This is not considered an error.

3. The status= specifier must have a value that is keep or delete. If
it is keep, the file continues to exist after closing the file. If it has
the value of delete, the file will not exist after closing the file. The
default value is keep, except that the default for scratch files is
delete. If you specify a status for a scratch file, it must be de-
lete.

4. The rules for the iostat= specifier are the same as for the open
statement.

5. A specifier must not appear more than once in a close statement.

6. Connections that have been closed may be reopened at a later point
in an executing program. The new connection may be to the same
or to a different file.

9.6 The inquire Statement

The inquire statement provides the capability of determining infor-
mation about a file’s existence, connection, access method, or other
properties during execution of a program. For each property inquired
about, a scalar variable of default kind is supplied; that variable is giv-
en a value that answers the inquiry. The variable may be tested and op-
tional execution paths selected in a program based on the answer
returned. The inquiry specifiers are indicated by keywords in the in-
quire statement. A file inquiry may be made by unit number, by the
file name, or by an output list that might be used in an unformatted di-
rect access output statement.

The values of the character items (except name) are always in up-
percase.

9.6.1 Syntax Rule for the inquire Statement

The form of an inquiry by unit number or file name is

inquire ( inquiry-spec-list )
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An inquiry by unit must include the following in the inquiry spec-
ification list:

unit= external-file-unit

An inquiry by name must include the following in the inquiry
specification list:

file= file-name

The expression for the file name may refer to a file that is not connect-
ed or does not exist. The value for the file name must be acceptable to
the system. An inquire statement must not have both a file specifier
and a unit specifier.

In addition, the inquiry specification list may contain the following
items. The type of the item following the keyword is indicated; each
item following the keyword and equals sign must be a scalar variable
of default kind, if it is not type character.

access= character
action= character
direct= character
exist= logical
form= character
formatted= character
iostat= integer
name= character
named= logical
nextrec= integer
number= integer
opened= logical
position= character
read= character
readwrite= character
recl= integer
sequential= character
unformatted= character
write= character

Examples of the inquire statement are

inquire (unit=9, exist=ex)
inquire (file="t123", opened=op, access=ac)
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9.6.2 The iolength Inquiry

The form of an inquire statement used to determine the length of an
output item list is

inquire ( iolength= scalar-default-int-variable ) &
                   output-item-list

The length value returned in the scalar integer variable will be an ac-
ceptable value that can be used later as the value of the recl= specifier
in an open statement to connect a file whose records will hold the data
indicated by the output list of the inquire statement.

An example of this form of the inquire statement is

inquire (iolength=iolen) x, y, cat

9.6.3 Specifiers for Inquiry by Unit or File Name

This section describes the syntax and effect of the inquiry specifiers
that may appear in the unit and file forms of the inquire statement.
The values returned in the inquiry specification list are those current at
that point in the execution of the program.

The iostat inquiry specifier indicates error condition information
about the inquiry statement execution itself. If an error condition
occurs, all the inquiry specifiers are undefined except the iostat
specifier.

exist= If the inquiry is by unit, the logical variable indicates
whether or not the unit exists. If the inquiry is by file,
the logical variable indicates whether or not the file ex-
ists.

opened= If the inquiry is by unit, the logical variable indicates
whether or not the unit is connected to some file. If the
inquiry is by file, the logical variable indicates whether
or not the file is connected to some unit.

number= The value returned is the number of the unit connected
to the file. If there is no unit connected to the file, the
value is −1.

named= The scalar logical value is true if and only if the file has
a name.

name= The value is the name of the file if the file has a name;
otherwise, the designated variable becomes undefined.
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The processor may return a name different from the
one given in the file= specifier by the program, be-
cause a user identifier or some other processor require-
ment for file names may be added. The name returned
will be acceptable for use in a subsequent open state-
ment. The case (upper or lower) used is determined by
the processor.

access= The value returned is SEQUENTIAL if the file is connect-
ed for sequential access, DIRECT if the file is connected
for direct access, or UNDEFINED if the file is not connect-
ed.

sequential= The value returned is YES if sequential access is an al-
lowed method, NO if sequential access is not an allowed
method, or UNKNOWN if the processor does not know if
sequential access is allowed.

direct= The value returned is YES if direct access is an allowed
method, NO if direct access is not an allowed method,
or UNKNOWN if the processor does not know if direct ac-
cess is allowed.

form= The value returned is FORMATTED if the file is connected
for formatted input/output, UNFORMATTED if the file is
connected for unformatted input/output, or UNDEFINED
if the file is not connected.

formatted= The value returned is YES if formatted input/output is
permitted for the file, NO if formatted input/output is
not permitted for the file, or UNKNOWN if the processor
cannot determine if formatted input/output is permit-
ted for the file.

unformatted= The value returned is YES if unformatted input/output
is permitted for the file, NO if unformatted input/output
is not permitted for the file, or UNKNOWN if the processor
cannot determine if unformatted input/output is per-
mitted for the file.

recl= The integer value returned is the maximum record
length of the file. For a formatted file, the length is in
characters. For an unformatted file, the length is in pro-
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cessor-dependent units. If the file does not exist, the
specified variable becomes undefined.

nextrec= The integer value returned is one more than the last
record number read or written in a file connected for
direct access. If no records have been processed, the
value is 1. The specified variable becomes undefined if
the file is not connected for direct access or if the file
position is indeterminate because of a previous error
condition.

position= The value returned is REWIND if the file is connected
with its position at the initial point, APPEND if the file is
connected with its position at the end point or UNDE-
FINED if the file is not connected, is connected for di-
rect access or if any repositioning has occurred since
the file was connected.

action= The value returned is READ if the file is connected limit-
ing the access to input, WRITE if the file is connected
limiting the access to output, READWRITE if the file is
connected for input and output, or UNDEFINED if the file
is not connected.

read= The value returned is YES if read is one of the allowed
actions for the file, NO if read is not one of the allowed
actions for the file, or UNKNOWN if the processor is un-
able to determine if read is one of the allowed actions
for the file.

write= The value returned is YES if write is one of the allowed
actions for the file, NO if write is not one of the allowed
actions for the file, or UNKNOWN if the processor is un-
able to determine if write is one of the allowed actions
for the file.

readwrite= The value returned is YES if input and output are al-
lowed for the file, NO if input and output are not both
allowed for the file, or UNKNOWN if the processor is un-
able to determine if input and output are allowed for
the file.
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9.6.4 Table of Values Assigned by inquire

Table 9-1 indicates the values assigned to the various variables by the
execution of an inquire statement.

Table 9-1 Values assigned by the inquire statement

Inquire by file Inquire by unit

Specifier Unconnected Connected Connected Unconnected

access= UNDEFINED SEQUENTIAL or DIRECT UNDEFINED

action= UNDEFINED READ, WRITE, or 
READWRITE UNDEFINED

direct= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

exist=
true if file exists,
false otherwise

true if unit exists,
false otherwise

form= UNDEFINED FORMATTED or 
UNFORMATTED UNDEFINED

formatted= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

iostat= 0 for no error, a positive integer for an error

name=
Filename (may not be same 

as file=value)

Filename if 
named, else 
undefined

Undefined

named= true
true if file 

named, false 
otherwise

false

nextrec= Undefined If direct access, next record #; 
else undefined Undefined

number= −1 Unit number −1

opened= false true false

position= UNDEFINED REWIND, APPEND,
ASIS, or UNDEFINED UNDEFINED

read= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

readwrite= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

recl= Undefined If direct access, record length; 
else maximum record length Undefined

sequential= UNKNOWN YES, NO, or UNKNOWN UNKNOWN
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9.7 File Positioning Statements

Execution of a data transfer usually changes the position of a file. In
addition, there are three statements whose main purpose is to change
the position of a file. Changing the position backwards by one record is
called backspacing. Changing the position to the beginning of the file
is called rewinding. The endfile statement writes an endfile record
and positions the file after the endfile record.

The syntax of the file positioning statements is

backspace ( position-spec-list )
rewind ( position-spec-list )
endfile ( position-spec-list )

A position specification may be either of the following:

unit= external-file-unit
iostat= scalar-default-int-variable

Examples of file positioning statements are

backspace (unit=8, iostat=status)
rewind (unit=10)
endfile (unit=10, iostat=ierr)

Rules and restrictions for file positioning statements:

1. The backspace, rewind, and endfile statements may be used only
to position external files.

2. The external file unit number is required.

3. The files must be connected for sequential access.

9.7.1 The backspace Statement

Execution of a backspace statement causes the file to be positioned be-
fore the current record if there is a current record, or before the preced-
ing record if there is no current record. If there is no current record and

unformatted= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

write= UNKNOWN YES, NO, or UNKNOWN UNKNOWN

iolength= recl= value for output-item-list

Table 9-1 Values assigned by the inquire statement
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no preceding record, the position of the file is not changed. If the pre-
ceding record is an endfile record, the file becomes positioned before
the endfile record. If a backspace statement causes the implicit writing
of an endfile record and if there is a preceding record, the file becomes
positioned before the record that precedes the endfile record.

If the file is already at its initial point, a backspace statement does
not affect it. Backspacing over records written using list-directed for-
matting is prohibited.

9.7.2 The rewind Statement

A rewind statement positions the file at its initial point. Rewinding has
no effect on the position of a file already at its initial point.

9.7.3 The endfile Statement

The endfile statement writes an endfile record and positions the file
after the endfile record written. Writing records past the endfile record
is prohibited. After executing an endfile statement, it is necessary to
execute a backspace or a rewind statement to position the file before
the endfile record prior to reading or writing the file.

9.8 Formatting

Data usually is stored in memory as the values of variables in some bi-
nary form. For example, the integer 6 may be stored as
0000000000000110, where the 1s and 0s represent bits. On the other
hand, formatted data records in a file consist of characters. Thus, when
data is read from a formatted record, it must be converted from charac-
ters to the internal representation, and when data is written to a for-
matted record, it must be converted from the internal representation
into a string of characters. A format specification provides the infor-
mation needed to determine how these conversions are to be per-
formed. The format specification is basically a list of edit descriptors
that describe the format for the values in the input/output list.

A format specification is written as a character string or expression.
The character expression, when evaluated, must be a valid format spec-
ification. Using these methods is called explicit formatting.

There is also list-directed formatting. Formatting (that is, conver-
sion) occurs without specifically providing the editing information
usually contained in a format specification. In this case, the editing or
formatting is implicit. List-directed editing, also called “default format-
ting”, is explained in 9.8.17.



316 Input and Output

Some rules and restrictions pertaining to format specifications are:

1. If the expression is a character array, the format is derived in array
element order.

2. If the expression is an array element, the format must be entirely
contained within that element.

9.8.1 Format Specifications

The items that make up a format specification are edit descriptors,
which may be data edit descriptors or control edit descriptors. Each
data list item must have a corresponding data edit descriptor; other de-
scriptors control spacing, tabulation, etc.

Each format item has one of the following forms:

[ r ] data-edit-desc
control-edit-desc
[ r ] ( format-item-list )

where r is an integer literal constant called a repeat factor; it must be a
positive integer with no kind parameter value.

Examples:

read (unit=*, fmt="(5e10.1, i10)") max_values, k
print "(a, 2i5)", "The two values are: ", n(1), n(2)

The data edit descriptors have the forms shown in Table 9-2, where
w specifies the width of the field, m the minimum number of digits
written, d the number of decimal places, and e the number of digits in
the exponent.

Table 9-2 Data Edit Descriptors

Descriptor Data type

i w [ . m ] decimal integer

f w . d real, positional form

es w . d [ e e ] real, scientific form

en w . d [ e e ] real, engineering form

l w logical

a [ w ] character (“alphabetic”)
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w, m, d, and e must be integer literal constants with no kind param-
eter. w must be nonnegative for the i and f edit descriptors; it must be
positive for the es, l, and a edit descriptors. e must be positive. d and
m must be nonnegative. The values of m, d, and e must not exceed the
value of w.

When w is not zero, it designates the width of the field in the file,
that is, the number of characters transferred to or from the file. When w
is zero, the value is printed in the smallest field in which it fits. Also, as
explained in 9.8.5 to 9.8.10, in the description of each edit descriptor, m
is the number of digits in the number field, d is the number of digits af-
ter the decimal point, and e is the number of digits in the exponent.

The control edit descriptors have the forms shown in Table 9-3. n is
a positive integer literal constant with no kind parameter.

9.8.2 Formatted Data Transfer

When formatted data transfer is taking place, the next item in the in-
put/output list is matched up with the next data edit descriptor to de-
termine the form of conversion between the internal representation of
the data and the string of characters in the formatted record. Before
this matching process occurs, the input/output list is considered to be
expanded by writing out each element in an array and each component
in a structure. Analogously, the repeated edit descriptors are consid-
ered to be expanded, and the whole specification is considered to be
repeated as often as necessary to accommodate the entire list, as ex-
plained below regarding the use of parentheses. Let’s take an example:

Table 9-3 Control Edit Descriptors

Descriptor Function

t n tab to position n

tl n tab left n positions

tr n tab right n positions

[ n ] / next record

: stop formatting if i/o list is 
exhausted

s default printing of plus sign

sp print plus sign

ss suppress plus sign
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print "(i5, 2(i3, tr1, i4), i5)", i, n(1:4), j

The expanded input/output list would be

i, n(1), n(2), n(3), n(4), j

and the expanded list of edit descriptors would be

i5, i3, tr1, i4, i3, tr1, i4, i5

As the formatting proceeds, each input/output list item is read or
written with a conversion as specified by its corresponding data edit
descriptor. Note that complex data type items require two real data
edit descriptors. The control edit descriptors affect the editing process
at the point they occur in the list of edit descriptors.

An empty format specification such as ( ) is restricted to in-
put/output statements without a list of items. The effect on input is
that one record is skipped in the input file. The effect on output is that
no characters are written to the record.

Control edit descriptors do not require a corresponding data item
in the list. When the data items are completely processed, any control
edit descriptors occurring next in the expanded list of edit descriptors
are processed and then the formatting terminates.

9.8.3 Parentheses in a Format Specification

The action indicated by encountering a right parenthesis in a format
specification depends on the nesting level. The rules are the following:

1. When the rightmost right parenthesis is encountered and there are
no more data items, input/output terminates.

2. When the rightmost right parenthesis is encountered and there are
more data items, the format is searched backward first until a right
parenthesis is encountered, then back to the matching left paren-
thesis. If there is no other right parenthesis except the outermost
one, format control reverts to the left parenthesis at the beginning
of the format specification. A slash edit descriptor is considered to
occur after processing the rightmost right parenthesis and before
processing the left parenthesis.

3. If there is a repeat factor encountered when reverting to the left pa-
renthesis, the repeat before the parenthesis is reused.

4. Sign control is not affected. It remains in effect until another sign
edit descriptor is encountered.
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This process is illustrated by the following two cases:

print "(a, i5)", "x", 1, "y", 2, "z", 3

is equivalent to

print "(a, i5, /, a, i5, /, a, i5)",  &
      "x", 1, "y", 2, "z", 3

and

print "(a, (i5))", "x", 1, 2, 3

is equivalent to

print "(a, i5, /, i5, /, i5)", "x", 1, 2, 3

The first format is a little more flexible because numbers could be add-
ed to the output list without changing the format.

9.8.4 Numeric Editing

The edit descriptors that cover numeric editing are i, f, en, and es. The
following rules apply to all of them.

On input:

1. Leading blanks are not significant.

2. Within a field, blanks are ignored.

3. Plus signs may be omitted in the input data.

4. In numeric fields that have a decimal point and correspond to f,
en, or es edit descriptors, the decimal point in the input field over-
rides placement of the decimal point indicated by the edit descrip-
tor.

5. There must be no kind parameter in the input data.

On output:

1. A positive or zero internal value may have a plus sign, depending
on the sign edit descriptors used.

2. The number is right justified in the field. Leading blanks may be
inserted.

3. If the number or the exponent is too large for the field width spec-
ified in the edit descriptor, the output field is filled with asterisks.
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The processor must not produce asterisks when elimination of op-
tional characters (such as the optional plus sign indicated by the sp
edit descriptor) will allow the output to fit into the output field.

9.8.5 Integer Editing

The integer edit descriptor is

i w [. m ]

w is the field width unless w = 0, in which case the minimal neces-
sary field width is used; m is the least number of digits to be output. m
has no affect on an input field. If m is omitted, its default value is 1.
The value of m must not exceed the value of w unless w = 0. Leading
zeros pad an integer field to the value of m. The field on output con-
sists of an optional sign and the magnitude of the integer number with-
out leading zeros, except in the case of padding to the value of m. All
blanks are output only if the magnitude is zero and m = 0.

Input. The character string in the file must be an optionally signed
integer constant.

Output. The field consists of leading blanks, followed by an op-
tional sign, followed by the unsigned value of the integer. At least one
digit must be output unless m is 0 and the output value is 0.

Example:

read (unit=15, fmt="(i5, i8)") i, j

If the input field is

bbb2401110107

i is read using the integer i5 edit descriptor and j is read with a i8
edit descriptor. The resulting values of i and j are 24 and 1,110,107, re-
spectively.

Example:

integer :: i
integer, dimension(4), parameter :: &
     ik = (/2, 1, 0, 0/)
character(len=*), parameter :: &
     i_format = “(a, i3, a, i3.3, a, i0, a, i0.0, a)”
print i_format, “|”, (ik(i), “|”, i=1,4)

produces the line of output:

|  2|001|0| |
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9.8.6 Real Editing

The forms of the edit descriptors for real values are

fw.d
esw.d [ee ]

9.8.7 The f Edit Descriptor

If w > 0, f editing converts to or from a string of w digits with d digits
after the decimal point. d must not be greater than w. The number may
be signed. If w = 0, the value is printed using the smallest field width
possible; w may not be 0 for input.

Input. If the input field contains a decimal point, the value of d has
no effect. If there is no decimal point, a decimal point is inserted in
front of the rightmost d digits. There may be more digits in the number
than the processor can use. On input, the number may contain an e in-
dicating an exponent value.

Output. The number is an optionally signed real number with a
decimal point, rounded to d digits after the decimal point. If the num-
ber is less than one, the processor may place a zero in front of the dec-
imal point. At least one zero must be output if no other digits would
appear. If the number does not fit into the output field, the entire field
is filled with asterisks.

Example:

read (unit=12, fmt="(f10.2, f10.3)") x, y

If the input field is

bbbb6.42181234567890

the values assigned to x and y are 6.4218 and 1234567.89, respectively.
The value of d (indicating two digits after the decimal point) is ignored
for x because the input field contains a decimal point.

Example:

real :: price = 473.25
print "(a, f0.2)", "The price is $", price

produces the output

The price is $473.25

9.8.8 The es Edit Descriptor

es is the exponential form scientific edit descriptor.
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Input. The form is the same as for f editing.
Output. The output of the number is in the form of scientific nota-

tion; 1 ≤ |mantissa| < 10, except when the output value is 0.
Example:

write (unit=6, fmt="(es12.3)") b

The form of the output field is

[ ± ] y.x1x2 ... xd exp

where y is a nonzero digit and exp is a signed integer; the sign must be
present in the exponent.

Examples of output using the es edit descriptor are found in Table
9-4.

9.8.9 The en Edit Descriptor

en is the engineering form scientific edit descriptor.
Input. The form is the same as for f editing.
Output. The output of the number is in the form of engineering no-

tation; 1 ≤ |mantissa| < 1000, except when the output value is 0. The
exponent is a multiple of 3.

Example:

write (unit=6, fmt="(en12.3)") b

The form of the output field is

[ ± ] y.x1x2 ... xd exp

where y is a one, two, or three digit integer and exp is a signed integer
that is a multiple of 3; the sign must be present in the exponent.

Examples of output using the en edit descriptor are found in Table
9-5.

Table 9-4 Examples of output using the es edit descriptor

Internal value Output field using ss, es12.3

6.421  6.421E+00

-.5 -5.000E-01

.0217  2.170E-02

4721.3  4.721E+03
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9.8.10 Complex Editing

Editing of complex numbers requires two real edit descriptors, one for
the real part and one for the imaginary part. Different edit descriptors
may be used for the two parts. Data read for a complex quantity is con-
verted by the rules of conversion for assignment to complex. Other
controls and characters may be inserted between the specification for
the real and imaginary parts.

Example:

complex :: cm(2)
read (unit=5, fmt="(4es7.2)") cm(:)
write (unit=6, fmt="(2 (f7.2, a, f7.2, a))")  &
   real(cm(1)), " + ", aimag(cm(1)), "i ",  &
   real(cm(2)), " + ", aimag(cm(2)), "i "

If the input record is

bb55511bbb2146bbbb100bbbb621

the values assigned to cm(1) and cm(2) are 555.11+21.46i and 1+6.21i,
respectively, and the output record is

b555.11b+bbb21.46ibbbb1.00b+bbbb6.21ib

9.8.11 Logical Editing

The edit descriptor used for logical editing is

lw

w is the field width.
Input. The input field for a logical value consists of any number of

blanks, followed by an optional period, followed by t or f, either up-
percase or lowercase, followed by anything. Valid input fields for true
include t, True, .TRUE., .T, and thursday_afternoon, although the
last is poor practice.

Table 9-5 Examples of output using the en edit descriptor

Internal value Output field using ss, en12.3

6.421  6.421E+00

-.5 -500.000E-03

.0217  21.70E-03

4721.3  4.721E+03
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Output. The output field consists of w−1 leading blanks, followed
by T or F.

Example:

write (unit=6, fmt="(2l7)") l1, l2

If l1 and l2 are true and false, respectively, the output record will be

bbbbbbTbbbbbbF

9.8.12 Character Editing

The edit descriptor for character editing is

a [w ]

w is the field width measured in characters. If w is omitted, the length
of the data object being read in or written out is used as the field
width. Let len be the length of the data object being read or written.

Input. If w is greater than len, the rightmost len characters in the in-
put field are read. If w is less than len, the input is padded with blanks
on the right.

Output. If w is greater than len, blanks are added on the left. If w is
less than len, the leftmost w characters will appear in the output field.
Unlike numeric fields, asterisks are not written if the data does not fit
in the specified field width.

Example:

character (len=*), parameter :: &
      slogan="Save the river"
write (unit=*, fmt="(a)") slogan

produces the output record

Savebthebriver

9.8.13 Position Editing

Position edit descriptors control tabbing left or right in the record be-
fore the next list item is processed. The edit descriptors for tabbing are:

tn tab to position n
tln tab left n positions
trn tab right n positions

n must be an unsigned integer constant with no kind parameter.
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The tn edit descriptor positions the record just before character n,
so that if a character is put into or taken from the record, it will be the
nth character in the record. trn moves right n characters. tln moves
left n characters.

If, because of execution of a nonadvancing input/output statement,
the file is positioned within a record at the beginning of an input/out-
put statement, left tabbing may not position that record any farther left
than the position of the file at the start of the input/output operation.

Input. The t descriptor may position either forward or backward.
A position to the left of the current position allows input to be pro-
cessed twice.

Output. The positioning does not transmit characters and does not
by itself cause the record to be shorter or longer. Positions that are
skipped are blank filled, unless filled later in the processing. A charac-
ter may be replaced by the action of subsequent descriptors, but the
positioning descriptors do not carry out the replacement.

Examples: if x = 12.66 and y = −8654.123,

print "(f9.2, tr6, f9.3)", x, y

produces the record

bbbb12.66bbbbbb-8654.123

print "(f9.2, t7, f9.3)", x, y

produces the record

bbbb12-8654.123

9.8.14 Slash (/) Editing

The current record is ended when a slash is encountered in a format
specification. The slash edit descriptor consists of the single slash char-
acter (/).

Input. If the file is connected for sequential access, the file is posi-
tioned at the beginning of the next record. The effect is to skip the re-
mainder of the current record. For direct access, the record number is
increased by one. A record may be skipped entirely on input.

Output. If the file is connected for sequential access, the file is po-
sitioned at the beginning of a new record. For direct access, the record
number is increased by one, and this record becomes the current
record. An empty record is blank filled.

Example: if a = 1.1, b = 2.2, and c = 3.3,



326 Input and Output

print "(f5.1, /, 2f6.1)", a, b, c

produces two records

bb1.1
bbb2.2bbb3.3

9.8.15 Colon Editing

The colon edit descriptor consists of the single colon character (:).
If the list of items in the formatted read or write statement is ex-

hausted, a colon stops format processing at that point. It has no effect if
there is more data.

Example:

fmt_spec = "(3(f3.1, :, /))"
write (unit=*, fmt=fmt_spec) a, b, c

produces only three records

1.1
2.2
3.3

The slash edit descriptor causes only three records to be output be-
cause the output list is exhausted when the colon edit descriptor is pro-
cessed the third time. Without the colon edit descriptor, the output
above would be followed by a blank line.

9.8.16 Sign Editing

Sign editing applies to numeric fields only; it controls the printing of
the plus sign. It only applies to output. The sign edit descriptors are

s optional plus is processor dependent
sp optional plus must be printed
ss optional plus must not be printed

The s edit descriptor indicates that the printing of an optional plus
sign is up to the processor; it is the default. sp indicates that an option-
al plus sign must be printed. ss indicates that an optional plus sign
must not be printed. The occurrence of these descriptors applies until
another one (s, sp, ss) is encountered in the format specification.

Example: if x(1) = 1.46 and x(2) = 234.1217,

write (unit=*, fmt="(sp, 2f10.2)") x(1:2)
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produces the record

bbbbb+1.46bbb+234.12

9.8.17 List-Directed Formatting

List-directed formatting, also called default formatting, is selected by
using an asterisk (*) in place of an explicit format specification in a
read, write, or print statement. List-directed editing occurs based on
the type of each list item.

Example:

read (unit=5, fmt=*) a, b, c

Some rules and restrictions relating to list-directed formatting are:

1. List-directed formatting cannot be used with direct access or non-
advancing input/output.

2. The record consists of values and value separators.

3. If there are no list items, an input record is skipped or an output
record that is empty is written.

Values. The values allowed are

null a null value as in ,, (no value between separators)
c an unsigned literal constant without a kind parameter
r*c r repetitions of the constant c
r* r repetitions of the null value

where r is a string of digits.
Separators. The separators allowed are

, a comma, optionally preceded or followed by contiguous blanks
/ a slash, optionally preceded or followed by contiguous blanks

one or more blanks between two nonblank values

Input. Input values generally are accepted as list-directed input if
they are accepted in explicit formatting with an edit descriptor. There
are some exceptions. They are

1. The type must agree with the next item in the list.

2. Embedded blanks are not allowed, except within a character con-
stant and around the comma or parentheses of a complex constant.
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3. Complex items in the list include the parentheses for a complex
constant. They are not treated as two reals, as is done with data
edit descriptors. Blanks may occur before or after the comma. An
example is

(1.2, 5.666)

4. Logical items must not use value separators as the optional charac-
ters following the t or f.

5. Character constants must be delimited by quotes. When a character
constant is continued beyond the current record, the end of the
record must not be between any quotes that are doubled to indi-
cate a quote in the character string. Value separators may be repre-
sentable characters in the constant.

6. If len is the length of the next input list item, w is the length of a
character constant in the input, and if

len ≤ w the leftmost len characters of the constant are used
len > w the w characters of the constant are used and

the field is blank filled on the right

Null Values. A null value is encountered if

1. There is no value between separators.

2. The record begins with a value separator.

3. The r* form is used.

Rules and Restrictions:

1. An end of record does not signify a null value.

2. The null value does not change the next list item; however, the fol-
lowing value will be matched with the following list item.

3. In complex number input, the entire constant may be null, but not
one of the parts.

4. If a slash terminates the input, the rest of the list items are treated
as though a null value had been read. This applies to the remaining
items in an array.

Example:
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real x(4)
read (unit=5, fmt=*) i, x(:)

If the input record is

b6,,2.418 /

the result is that i = 6, x(1) is unchanged, and x(2) = 2.418. x(3) and
x(4) are unchanged.

Output. List-directed output uses the same conventions that are
used for list-directed input. There are a few exceptions that are noted
below for each of the intrinsic types. Blanks and commas are used as
separators except for certain character constants that may contain a
separator as part of the constant. The processor begins new records as
needed, at any point in the list of output items. A new record does not
begin in the middle of a number, except that complex numbers may be
separated between the real and the imaginary parts. Very long charac-
ter constants are the exception; they may be split across record bound-
aries. Slashes and null values are never output. Each new record begins
with a blank for printing control, except for continued delimited char-
acter constants. The processor has the option of using the repeat factor,
r*c.

Integer. The effect is as though a suitable iw edit descriptor were
used.

Real. The effect is as though an f or an es edit descriptor were
used, except that for es form output the first significant digit is just
right of the decimal point instead of to its left. The output result de-
pends on the magnitude of the number, and the processor has some
discretion in this case.

Complex. The real and imaginary parts are enclosed in parentheses
and separated by a comma (with optional blanks surrounding the com-
ma). If the length of the complex number is longer than a record, the
processor may separate the real and imaginary parts on two records.

Logical.
List-directed output prints T or F depending on the value of the

logical data object.
Character. Character constants are output as follows:

1. Character constants are not delimited by quotes.

2. Character constants are not surrounded by value separators.

3. Only one quote is output for each quote embedded in the character
constant.
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4. A blank is inserted in new records for a continued character con-
stant.



Intrinsic Procedures A
There are four classes of intrinsic procedures: inquiry functions, ele-
mental functions, transformational functions, and subroutines.

A.1 Intrinsic Functions

An intrinsic function is an inquiry function, an elemental function, or
a transformational function. An inquiry function is one whose result
depends on the properties of its principal argument, rather than the
value of this argument; in fact, the argument value may be undefined.
An elemental function is one that is specified for scalar arguments but
may be applied to array arguments, as described in Section A.2. All
other intrinsic functions are transformational functions; they almost
all have one or more array-valued arguments or an array-valued result.

The names of the intrinsic functions are given in Sections A.4 to
A.9. In most cases, functions accept arguments of more than one type
and the type of the result is the same as the type of the arguments.

A.2 Elemental Intrinsic Procedures

A.2.1 Elemental Intrinsic Function Arguments and Results

For an elemental intrinsic function, the shape of the result is the same
as the shape of the argument with the greatest rank. If the arguments
are all scalar, the result is scalar. For those elemental intrinsic functions
that have more than one argument, all arguments must be conformable
(i.e., have the same shape). In the array-valued case, the values of the
elements, if any, of the result are the same as would have been ob-
tained if the scalar-valued function had been applied separately, in any
order, to corresponding elements of each argument. Arguments called
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kind must always be specified as a scalar integer parameter. The value
of the parameter must be a processor supported kind number.

A.2.2 Elemental Intrinsic Subroutine Arguments

For an elemental intrinsic subroutine, either all actual arguments must
be scalar or all intent(out) arguments must be arrays of the same
shape, and the remaining arguments must be conformable with them.
In the case that the intent(out) arguments are arrays, the values of
the elements, if any, of the results are the same as would be obtained if
the subroutine with scalar arguments were applied separately, in any
order, to corresponding elements of each argument.

A.3 Positional Arguments or Argument Keywords

All intrinsic procedures may be invoked with either positional argu-
ments or argument keywords. The descriptions in Sections A.4 to A.10
give the keyword names and positional sequence. A keyword is re-
quired for an argument only if a preceding optional argument is omit-
ted or a preceding actual argument is specified using a keyword. For
example, a reference to cmplx may be written in the form cmplx
(real_part, complex_part, m) or in the form cmplx(y=complex_
part, kind=m, x=real_part).

Many of the argument keywords have names that are indicative of
their usage. For example,
kind Describes the kind of the result
string, string_a An arbitrary character string
back Indicates a string scan is

to be from right to left (backward)
mask A mask that may be applied to the arguments
dim A selected dimension of an array argument

A.4 Argument Presence Inquiry Function

The inquiry function present permits an inquiry to be made about the
presence of an actual argument associated with a dummy argument
that has the optional attribute. Its result is logical.
present(a) Argument presence
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A.5 Numeric, Mathematical, Character, and Logical Procedures

A.5.1 Numeric Functions

The elemental functions int, real, and cmplx perform type conver-
sions. The elemental functions aimag, conjg, aint, anint, nint, abs,
modulo, floor, ceiling, max, and min perform simple numeric opera-
tions.
abs(a) Absolute value
aimag(z) Imaginary part of a complex number
aint(a, kind) Truncation to whole number
      Optional kind
anint(a, kind) Nearest whole number
      Optional kind
ceiling(a) Least integer greater than or equal to number
cmplx(x, y, kind) Conversion to complex type
      Optional y, kind
conjg(z) Conjugate of a complex number
int(a, kind) Conversion to integer type
      Optional kind
floor(a) Greatest integer less than or equal to number
max(a1, a2, a3,...) Maximum value
      Optional a3,...
min(a1, a2, a3,...) Minimum value
      Optional a3,...
modulo(a, p) Modulo function; a-floor(a/p)*p;

if nonzero, modulo(a,p) has
the sign of p

nint(a, kind) Nearest integer
      Optional kind
real(a, kind) Conversion to real type
      Optional kind
sign(a, b) Absolute value of a with the sign of b

A.5.2 Mathematical Functions

The elemental functions sqrt, exp, log, log10, sin, cos, tan, asin,
acos, atan, atan2, sinh, cosh, and tanh evaluate mathematical func-
tions.
acos(x) Arccosine
asin(x) Arcsine
atan(x) Arctangent
atan2(y, x) Arctangent of y/x
cos(x) Cosine
cosh(x) Hyperbolic cosine
exp(x) Exponential
log(x) Natural logarithm
log10(x) Common logarithm (base 10)
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sin(x) Sine
sinh(x) Hyperbolic sine
sqrt(x) Square root
tan(x) Tangent
tanh(x) Hyperbolic tangent

A.5.3 Character Functions

The elemental functions ichar, char, index, verify, adjustl, adjustr,
scan, and len_trim perform character operations. The transformation-
al function repeat returns repeated concatenations of a character
string argument. The transformational function trim returns the argu-
ment with trailing blanks removed.
adjustl(string) Adjust left; move leading blanks to end
adjustr(string) Adjust right; move trailing blanks to beginning
char(i, kind) Character in given position
      Optional kind      in processor collating sequence
ichar(c) Position of a character

     in processor collating sequence
index(string, substring, back) Starting position of a substring
      Optional back
len_trim(string) Length without trailing blank characters
repeat(string, ncopies) Repeated concatenation
scan(string, set, back) Scan a string for any character
      Optional back       in a set of characters
trim(string) Remove trailing blank characters
verify(string, set, back) Find a character in a string
      Optional back      not in a set of characters

A.5.4 Character Inquiry Function

The inquiry function len returns the length of a character entity. The
value of the argument to this function need not be defined. It is not
necessary for a processor to evaluate the argument of this function if
the value of the function can be determined otherwise.
len(string) Length of a character entity

A.5.5 Logical Function

The elemental function logical converts between objects of type logi-
cal with different kind parameter values.
logical(l, kind) Convert between objects of type logical
      Optional kind      with different kind type parameters
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A.5.6 Kind Functions

The inquiry function kind returns the kind parameter value of an inte-
ger, real, complex, or logical entity. The transformational function
selected_real_kind returns the real kind parameter value that has at
least the decimal precision and exponent range specified by its argu-
ments. The transformational function selected_int_kind returns the
integer kind parameter value that has at least the decimal exponent
range specified by its argument.
kind(x) Kind parameter value
selected_int_kind(r) Integer kind parameter value,

     sufficient for integers with r digits
selected_real_kind(p, r) Real kind parameter value,
      Optional p, r      given decimal precision and range

A.6 Numeric Manipulation and Inquiry Functions

The numeric manipulation and inquiry functions are described in
terms of a model for the representation and behavior of numbers on a
processor. The model has parameters which are determined so as to
make the model best fit the machine on which the executable program
is executed.

A.6.1 Models for Integer and Real Data

The model set for integer i is defined by

where r is an integer exceeding one, q is a positive integer, each wk is a
nonnegative integer less than r, and s is +1 or −1. The model set for real
x is defined by

where b and p are integers exceeding one; each fk is a nonnegative inte-
ger less than b; f1  is also nonzero; s is +1 or −1; and e is an integer that
lies between some integer maximum emax and some integer minimum
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emin inclusively. For x = 0, its exponent e and digits fk are defined to be
zero. The integer parameters r and q determine the set of model inte-
gers, and the integer parameters b, p, emin, and emax determine the set
of model floating point numbers. The parameters of the integer and
real models are available for each integer and real data type imple-
mented by the processor. The parameters characterize the set of avail-
able numbers in the definition of the model. The numeric manipulation
and inquiry functions provide values related to the parameters and
other constants related to them. Examples of these functions in this sec-
tion use the models

and

A.6.2 Numeric Inquiry Functions

The inquiry functions radix, digits, minexponent, maxexponent, pre-
cision, range, huge, tiny, and epsilon return scalar values related to
the parameters of the model associated with the type and type param-
eters of the arguments. The value of the arguments to these functions
need not be defined, and pointer arguments may be disassociated.
digits(x) Number of significant digits p in the model
epsilon(x) Number that is almost negligible

compared to one
huge(x) Largest number in the model
maxexponent(x) Maximum exponent in the model; emax
minexponent(x) Minimum exponent in the model; emin
precision(x) Decimal precision
radix(x) Base of the model; b
range(x) Decimal exponent range;

floor(log10(huge(x)))
tiny(x) Smallest positive number in the model

A.6.3 Floating Point Manipulation Functions

The elemental functions exponent, scale, nearest, fraction,
set_exponent, spacing, and rrspacing return values related to the
components of the model values (A.6.1) associated with the actual val-
ues of the arguments.
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exponent(x) Exponent part e of a model number
fraction(x) Fractional part of a number
nearest(x, s) Nearest different processor number

in a given direction
rrspacing(x) Reciprocal of the relative spacing

     of model numbers near given number
scale(x, i) Multiply a real by its base to an integer power
set_exponent(x, i) Set exponent part of a number
spacing(x) Absolute spacing of model numbers

near a given number

A.7 Bit Manipulation and Inquiry Procedures

The bit manipulation procedures consist of a set of ten functions and
one subroutine. Logical operations on bits are provided by the func-
tions ior, iand, not, and ieor; shift operations are provided by the
functions ishft and ishftc; bit subfields may be referenced by the
function ibits and by the subroutine mvbits; single-bit processing is
provided by the functions btest, ibset, and ibclr.

For the purposes of these procedures, a bit is defined to be a binary
digit w located at position k of a nonnegative integer scalar object based
on a model nonnegative integer defined by

and for which wk may have the value 0 or 1. An example of a model
number compatible with the examples used in A.6.1 would have s = 32,
thereby defining a 32-bit integer.

An inquiry function bit_size is available to determine the param-
eter s of the model. The value of the argument of this function need not
be defined. It is not necessary for a processor to evaluate the argument
of this function if the value of the function can be determined other-
wise.

Effectively, this model defines an integer object to consist of s bits
in sequence numbered from right to left from 0 to s−1. This model is
valid only in the context of the use of such an object as the argument or
result of one of the bit manipulation procedures. In all other contexts,
the model defined for an integer in A.6.1 applies. In particular, where-
as the models are identical for ws−1 = 0, they do not correspond for ws−
1 = 1 and the interpretation of bits in such objects is processor depen-
dent.

j wk 2k×

k 0=
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bit_size(i) Number of bits in the model; s
btest(i, pos) Bit testing
iand(i, j) Logical and
ibclr(i, pos) Clear bit
ibits(i, pos, len) Bit extraction
ibset(i, pos) Set bit
ieor(i, j) Exclusive or
ior(i, j) Inclusive or
ishft(i, shift) Logical shift
ishftc(i, shift, size) Circular shift
      Optional size
not(i) Logical complement

A.8 Array Intrinsic Functions

The array intrinsic functions perform the following operations on ar-
rays: vector and matrix multiplication, numeric or logical computation
that reduces the rank, array structure inquiry, array construction, array
manipulation, and geometric location.

A.8.1 The Shape of Array Arguments

The transformational array intrinsic functions operate on each array ar-
gument as a whole. The shape of the corresponding actual argument
must therefore be defined; that is, the actual argument must be an ar-
ray section, an assumed-shape array, an explicit-shape array, a pointer
that is associated with a target, an allocatable array that has been allo-
cated, or an array-valued expression.

Some of the inquiry intrinsic functions accept array arguments for
which the shape need not be defined. They include the function lbound
and certain references to size and ubound.

A.8.2 Mask Arguments

Some array intrinsic functions have an optional mask argument that is
used by the function to select the elements of one or more arguments
to be operated on by the function.

The mask affects only the value of the function, and does not affect
the evaluation, prior to invoking the function, of arguments that are ar-
ray expressions.

A mask argument must be of type logical.

A.8.3 Vector and Matrix Multiplication Functions

The matrix multiplication function matmul operates on two matrices, or
on one matrix and one vector, and returns the corresponding matrix-
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matrix, matrix-vector, or vector-matrix product. The arguments to mat-
mul may be numeric (integer, real, or complex) or logical arrays. On
logical matrices and vectors, matmul performs Boolean matrix multipli-
cation (that is, multiplication is .and. and addition is .or.).

The dot product function dot_product operates on two vectors
and returns their scalar product. The vectors are of the same type (nu-
meric or logical) as for matmul. For logical vectors, dot_product re-
turns the Boolean scalar product.
dot_product(vector_a, Dot product of two rank-one arrays
           vector_b)
matmul(matrix_a, Matrix multiplication
         matrix_b)

A.8.4 Array Reduction Functions

The array reduction functions sum, product, maxval, minval, count,
any, and all perform numerical, logical, and counting operations on
arrays. They may be applied to the whole array to give a scalar result
or they may be applied over a given dimension to yield a result of rank
reduced by one. The optional dim argument selects which subscript is
reduced. By use of a logical mask that is conformable with the given
array, the computation may be confined to any subset of the array (for
example, the positive elements).
all(mask, dim) True if all values are true
      Optional dim
any(mask, dim) True if any value is true
      Optional dim
count(mask, dim) Number of true elements in an array
      Optional dim
maxval(array, dim, mask) Maximum value in an array
      Optional dim, mask
minval(array, dim, mask) Minimum value in an array
      Optional dim, mask
product(array, dim, mask) Product of array elements
      Optional dim, mask
sum(array, dim, mask) Sum of array elements
      Optional dim, mask

A.8.5 Array Inquiry Functions

The functions size, shape, lbound, and ubound return, respectively, the
size of the array, the shape, and the lower and upper bounds of the
subscripts along each dimension. The size, shape, or bounds must be
defined.

The values of the array arguments to these functions
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need not be defined.
lbound(array, dim) Lower dimension bounds of an array
      Optional dim
shape(source) Shape of an array or scalar
size(array, dim) Total number of elements in an array
      Optional dim
ubound(array, dim) Upper dimension bounds of an array
      Optional dim

A.8.6 Array Construction Functions

The functions merge, spread, pack, and unpack construct new arrays
from the elements of existing arrays. merge combines two conformable
arrays into one array by an element-wise choice based on a logical
mask. spread constructs an array from several copies of an actual ar-
gument (spread does this by adding an extra dimension, as in forming
a book from copies of one page). pack and unpack, respectively, gather
and scatter the elements of a one-dimensional array from and to posi-
tions in another array where the positions are specified by a logical
mask.
merge(tsource. Merge under mask
            fsource, mask)      Where mask is true, result is tsource,

     elsewhere result is fsource
pack(array, mask, vector) Pack an array into an array of rank one
      Optional vector      under a mask. Result size is count(mask).

     If vector is present, result is padded
     with terminal elements of vector
     to size(vector).

spread(source, dim, Replicates array by adding a dimension
             ncopies)
unpack(vector, mask, Unpack an array of rank one into an array
             field)     under a mask. Where mask is true,

     elements of field are replaced
     by elements of vector.
     result has shape of mask.

A.8.7 Array Reshape Function

reshape produces an array with the same elements as its argument,
but with a different shape.
reshape(source, shape, Reshape an array
              pad, order)
      Optional pad, order
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A.8.8 Array Manipulation Functions

The functions transpose, eoshift, and cshift manipulate arrays.
transpose performs the matrix transpose operation on a two-dimen-
sional array. The shift functions leave the shape of an array unaltered
but shift the positions of the elements parallel to a specified dimension
of the array. These shifts are either circular (cshift), in which case ele-
ments shifted off one end reappear at the other end, or end-off (eo-
shift), in which case specified boundary elements are shifted into the
vacated positions.
cshift(array, shift, dim) Circular shift
      Optional dim
eoshift(array, shift, End-off shift
              boundary, dim)
      Optional boundary, dim
transpose(matrix) Transpose of an array of rank two

A.8.9 Array Location Functions

The functions maxloc and minloc return the location (subscripts) of an
element of an array that has maximum and minimum values, respec-
tively. By use of an optional logical mask that is conformable with the
given array, the reduction may be confined to any subset of the array.
The size of the returned value is the rank of the array.
maxloc(array, mask) Location of a maximum value in an array
      Optional mask
minloc(array, mask) Location of a minimum value in an array
      Optional mask

A.9 Pointer Nullify and Association Status Inquiry Functions

The function null returns a null (disassociated) pointer. The function
associated tests whether a pointer is currently associated with any
target, with a particular target, or with the same target as another
pointer.
null(mold) A null pointer
      Optional mold
associated(pointer, target) Association status or comparison
      Optional target
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A.10 Intrinsic Subroutines

Intrinsic subroutines are supplied by the processor and have the spe-
cial definitions given in this section. An intrinsic subroutine is refer-
enced by a call statement that uses its name explicitly. The name of an
intrinsic subroutine must not be used as an actual argument.

A.10.1 Date and Time Subroutines

The subroutines date_and_time and system_clock return integer data
from the date and real-time clock. The time returned is local, but there
are facilities for finding out the difference between local time and Co-
ordinated Universal Time.

The subroutine cpu_time returns in seconds the amount of CPU
time used by the program from the beginning of execution of the pro-
gram.
date_and_time(date, time, Obtain date and time
           zone, values)      date=ʺccyymmddʺ
     Optional date, time,      time=ʺhhmmss.sssʺ
           zone, values      values=(/year, month, day, gmt_min,

          hr,min,sec,msec/)
system_clock(count, Obtain data from the system clock
           count_rate, count_max)      count_rate is in counts per second.
     Optional count, count_rate,
              count_max
cpu_time(time) Obtain processor time in seconds

A.10.2 Pseudorandom Numbers

The subroutine random_number returns a pseudorandom number
greater than or equal to 0.0 and less than 1.0 or an array of pseudoran-
dom numbers. The subroutine random_seed initializes or restarts the
pseudorandom number sequence.
random_number(harvest) Returns pseudorandom number
random_seed(size, put, get) Initializes or restarts the
     Optional size, put, get      pseudorandom number generator
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This appendix contains an informal description of the major parts of
the F programming language.

The notation used is a very informal variation of Backus-Naur form
(BNF) in which characters from the F character set are to be written as
shown. Lowercase italicized letters and words represent general cate-
gories for which specific syntactic entities must be substituted in actual
statements. The rules are not a complete and accurate syntax descrip-
tion of F, but are intended to give the general form of the important
language constructs.

Brackets [ ] indicate optional items. A “list” means one or more
items separated by commas.

A more detailed description of the F syntax can be found on the
Fortran World Wide Web site http://www.fortran.com.

program:

program program name
[ use statements ]
[ declaration statements ]
[ executable statements ]

end program program-name

public module:

module module name
use statements
public

end module module name

private module:

module module name
[ use statements
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private ]
[ access statements ]
[ declaration statements ]

[ contains
subroutines and functions ]

end module module name

subroutine:

[ prefix ] subroutine subroutine name ( [ argument list ] )
[ use statements ]
[ declaration statements ]
[ executable constructs ]

end subroutine subroutine name

function:

[ prefix ] function function name ( [ argument list ] ) &
result ( function result )

[ use statements ]
[ declaration statements ]
[ executable constructs ]

end function function name

prefix:
elemental
pure
recursive
pure recursive

use statement:

use module name [ , rename list ]
use module name , only : [ only list ]

access statement:

public :: list of procedures, operators, assignments
private :: list of procedures, operators, assignments

declaration statement:

intrinsic statement
type definition statement
type declaration statement
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intrinsic statement:

intrinsic :: intrinsic procedure names

type definition statement:

type , [ access specifier ] :: derived type name
[ private ]
component declarations

end type derived type name

type declaration statement:

type [ , attribute list ] :: initialization list

initialization:

name [ = expression ]

name => expression

type:

integer [ ( kind= kind parameter ) ]
real [ ( kind= kind parameter ) ]
complex [ ( kind= kind parameter ) ]
logical [ ( kind= kind parameter ) ]
character ( len= length parameter )
character(len=*)

type ( derived type name )

attribute:

access specifier
parameter
allocatable

dimension ( array bounds )
intent ( intent specifier )
optional
pointer
save
target

access specifier:
public
private
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intent specifier:
in
out
in out

executable construct:

if construct
if statement
do construct
case construct
where construct
forall construct
assignment statement
pointer assignment statement
allocate statement
deallocate statement
call statement
cycle statement
exit statement
return statement
stop statement
open statement
close statement
inquire statement
read statement
print statement
write statement
backspace statement
rewind statement
endfile statement

if construct:

if ( logical expression ) then 
executable statements

[ else if ( logical expression ) then 
executable statements ]
. . .

[ else
executable statements ]

end if
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do construct:

[ do construct name : ] do [ loop control ]
executable constructs

end do [ do construct name ]

loop control:

variable = start , stop [ : stride ]

case construct:

select case ( expression )
case ( case selector )

executable statements
[ case ( case selector )

executable statements ]
. . .

[ case default
executable statements ]

end select

where construct:
where ( mask expression )

where body constructs
[ elsewhere ( mask expression )

where body constructs
. . . ]

[ elsewhere
where body constructs ]

endwhere

where body construct:

assignment statement
where construct
where statement

forall construct:

forall ( forall triplet list [ , mask ] )
forall body constructs

end forall
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forall triplet:

variable = start : stop [ : stride ]

forall body construct:

assignment statement
pointer assignment statement
where construct
where statement
forall construct
forall statement

assignment statement:

variable = expression

pointer assignment statement

pointer => target

allocate statement:

allocate ( allocation list [ , stat= variable ] )

deallocate statement

deallocate ( deallocation list [ , stat= variable ] )

call statement:

call subroutine name ( actual argument list )

cycle statement:

cycle [ do construct name ]

exit statement:

exit [ do construct name ]

return statement:
return

stop statement:
stop
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open statement:

open ( open specifier list )

open specifier:

unit= value
iostat= value
file= value
status= value
access= value
form= value
recl= value
position= value
action= value

close statement:

close ( close specifier list )

close specifier:

unit= value
iostat= value
status= value

inquire statement:

inquire ( inquire specifier list )

inquire specifier:

unit= value
file= value
iostat= value
exist= value
opened= value
number= value
named= value
name= value
access= value
sequential= value
direct= value
form= value
formatted= value
unformatted= value
recl= value
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nextrec= value
position= value
action= value
read= value
write= value
readwrite= value

read statement:

read format [ , variable list ]
read ( io control specifier list ) [ variable list ]

print statement:

print format [ , expression list ]

write statement:

write ( io control specifier list ) [ expression list ]

io control specifier:

unit= value
fmt= value
rec= value
iostat= value
advance= value
size= value

backspace statement:

backspace ( position specifier list )

endfile statement:

endfile ( position specifier list )

rewind statement:

rewind ( position specifier list )

position specifier:

unit= value
iostat= value
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A
a edit descriptor 34, 180
abs function 333
abstract data type 266
access

direct 287, 301, 303
sequential 287, 294, 301

access statement 87, 232, 265
access= 309
access= specifier 305, 309
acos function 333
action= specifier 305, 309
actual argument 99
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minval function 339
model

integer 335, 337
real 335

module 85–125, 227–252
private 85
public 85

modulo function 31, 333
mvbits subroutine 127, 337

N
name 10

array 133
construct 70
length 3, 10
parameter 9
program 3
scope 105
variable 14

name= specifier 309
named constant 9
named= specifier 309
nearest function 336
nextrec= specifier 309
nint function 333
nonadvancing input/output 288, 290, 296
not function 127, 337
null function 341
null pointer 253
null string 177
number= specifier 309
numeric function 333, 335
numeric operand 12
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O
open statement 291, 304–307
opened= specifier 309
operand

numeric 12
operator

arithmetic 6
character 8
comparison 182
extending 235, 246
intrinsic 145
logical 7
precedence 27
relational 6
user defined 236, 248

optional argument 103

P
pack function 140, 340
palindrome 205
parameter 9

character 178
kind 11–14
name 9

parameter attribute 178
parent array 138
parenthesis 28
partial record 296
partition sort 158
pendulum calculation 46–50
pointer 253–280

argument 100
assignment 254–258
associated 253
association 341
attribute 134
dangling 261
disassociated 253
null 253
undefined 253
variable 253

position
edit descriptor 35
file 288, 314

position= specifier 305, 309
precedence

defined operator 237
operator 27

precision 11, 26
precision function 336
preconnection

file 291
present function 103, 332
primary 26, 208
print statement 15, 35
printing 35, 284
private attribute 219, 240, 265
private module 85
private statement 87, 232, 240, 265
probability 109–112, 172–174
procedure 85–125

argument 92, 104
elemental 230, 331
generic 227
intrinsic 331
pure 98
recursive 112–120

product function 339
program

form 21–22
name 3

program statement 3
prompt

input 19
public attribute 219, 265
public module 85
public statement 87, 232, 265
pure keyword 98
pure procedure 98

Q
quadratic equation 37–46

complex roots 43
quick sort 158
quote 3, 8, 178

R
radix function 336
random_int subroutine 109, 172
random_number subroutine 109, 172, 342
random_seed subroutine 342
range 26
range function 251, 336
read statement 17, 135, 190
read= specifier 309
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readwrite= specifier 309
real

constant 5
kind 5, 11
model 335
type 5

real function 24, 333
rec= specifier 293, 302, 303
recl= specifier 305, 309
record 282–284

data 282
endifle 284
formatted 282, 315
length 284
partial 296
unformatted 282

recursion 89, 112–120, 210, 248, 264
indirect 119
tail 114

recursive keyword 114
recursive procedure 112–120
recursive sort 159
reduction function 339
relational operator 6
repeat factor 316
repeat function 334
repeated edit descriptor 35
reshape function 136, 340
result keyword 97
result variable 97
return statement 105
rewind statement 284
rewinding 314
roundoff error 32, 57
rrspacing function 336

S
save attribute 106
scale function 336
scan function 334
scope 105–106
search

binary 152–156
efficiency 156
sequential 148

searching 148–156
section

array 138, 140
select case statement 66

selected_int_kind function 11, 26, 335
selected_real_kind function 11, 26, 96, 335
selecting 163–166
separator

comma 3
sequence

collating 180
sequential access input/output 287, 294, 301
sequential search 148
sequential= specifier 309
set_exponent function 336
shape

array 134, 140
shape function 134, 339
side effect 98
sin function 333
sinh function 333
size function 170, 338, 339
size= specifier 293
sort

partition 158
quick 158
recursive 159

sorting 89, 157–163, 271–280
spacing function 336
specifier 309

access= 305
action= 305, 309
advance= 293
direct= 309
exist= 309
file= 305, 309
fmt= 293
form= 305, 309
format 293
formatted= 309
iolength= 310
iostat= 292, 293, 296, 305, 307, 309, 314
name= 309
named= 309
nextrec= 309
number 309
opened= 309
position= 305, 309
read= 309
readwrite= 309
rec= 293, 302, 303
recl= 305, 309
sequential= 309
size= 293
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status= 305, 307
unformatted= 309
unit= 293, 307, 309, 314
unit=unit= specifier 305
write= 309

spread function 170, 340
sqrt function 333
statement

access 87, 232, 265
allocate 134, 137, 258
assignment 30
backspace 284, 314
block 51
call 90
case 66
case default 66
close 307
contains 91
continued 21
cycle 71
data transfer 293–304
deallocate 138, 259
do 69
else if 52
elsewhere 141
end do 69
end function 97
end if 52
end program 4
end subroutine 90
endfile 284
exit 71
file positioning 314
function 97
if 52
if-then 53
indentation 51
input/output 281
inquire 286, 291, 308–313
intrinsic 79
keyword 21
length 21
open 291, 304–307
pointer assignment 254, 258
print 15, 35
private 87, 232, 240, 265
program 3
public 87, 232, 265
read 17, 135, 190
return 105

rewind 284
select case 66
stop 82
subroutine 90
type 9, 219
use 88

status
allocation 138, 258

status= specifier 305, 307
step size 74
stop statement 82
storage

unreferenced 261
storage allocation

dynamic 136
stride 74, 139
string

character 3, 18, 177
null 177

structure 217
component 217, 222
constructor 223
declaration 221
recursive 217, 264

subexpression
common 42

subroutine 89, 89–95
built-in 23
cpu_time 174, 342
date_and_time 174, 342
generic 227
intrinsic 23, 342
mvbits 127, 337
random_int 109, 172
random_number 109, 172, 342
random_seed 342
system_clock 174, 342

subroutine statement 90
subscript 130–133

triplet 138
vector 139

substring 184
assignment 187

sum function 171, 339
swapping 157
system_clock subroutine 174, 342

T
tail recursion 114
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tan function 333
tanh function 333
target attribute 254
term 209
terminal point of a file 288
tiny function 336
towers of Hanoi 116
transformational function 331
transpose function 341
tree 273–280

binary 273
trim function 186, 334
trimmed length 185
triplet

subscript 138
type 4–13

character 8
complex 5
declaration 221
definition 219, 221, 239
derived 219
integer 4
intrinsic 4–13
logical 7
operation 4
real 5
statement 9
value 4

type statement 219

U
ubound function 338, 339
undefined

pointer 253
underscore 10
unformatted record 282
unformatted= specifier 309
unit 290
unit= specifier 293, 307, 309, 314
unpack function 140, 340
upper bound 139
use statement 88

only 88
user defined operator 236, 248

V
variable 14

do 73
local 93
name 14
pointer 253
result 97

vector subscript 139
verify function 194, 211, 334

W
where block 143
where construct 141
write= specifier 309
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