Fortran 95 Using F

Walter S. Brainerd
Charles H. Goldberg
Jeanne C. Adams

Library of Congress Catalog Card Number

Copyright © 1996-2005 by Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams. All rights reserved. Printed in the United States of America. Except as permitted under the United States Copyright Act of 1976, no part of this book may be reproduced or distributed in any form or by any means, or stored in a database or retrieval system without the prior written permission of the authors and the publisher.

1098765

ISBN

The Fortran Company
6025 North Wilmot Road
Tucson, Arizona 85750 USA
info@fortran.com
http://www.fortran.com

Composition by The Fortran Company

Preface

The F programming language is easy to learn and easy to use. Other programmers can understand programs written in F. F provides natural facilities for modularizing programs, creating libraries of commonly used routines, and sharing code.

F is a carefully crafted subset of the Fortran 95 programming language used extensively by professional programmers, particularly in science and engineering. It is very well suited for professional programming, especially for applications that involve numerical computing. Learning F provides a basis for "real world" applications programming; nothing needs to be unlearned.

Because F is a subset of Fortran 95, everything learned about F and all programs written in F are applicable to Fortran 95.

Fortran 95 Using F provides a general tutorial description of F, and hence also the important features of modern Fortran, with many examples and exercises. It is organized so that it may be read from beginning to end, but it also is organized so that particular topics may be studied by reading some chapters before previous ones are mastered. To a reasonable extent, all of the material about one topic is presented together, making the book suitable as a reference work, as well as a tutorial.

All of the important features of the F programming language are covered with examples, beginning with the simplest constructs. Both the style of the many example programs and the selection of topics discussed in detail guide the reader toward acquiring programming skills to produce F programs that are readable, maintainable, and efficient.

Case studies are used to illustrate the practical use of features of F and to show how complete programs are put together. There are also simple problems to enable the reader to exercise knowledge of the topics learned.

An unusual feature of the book is that the first chapter contains a complete discussion of all the basic features needed to write complete

F programs: the form of F programs, data types, simple expressions and assignment, and simple input and output. Subsequent chapters contain detailed discussions of control constructs, modules and procedures, arrays, character strings, data structures and derived types, facilities to extend the language, pointer variables, and input/output.

Another interesting feature of the book is that modules and procedures (functions and subroutines) are discussed early in the book (Chapter 3). This is because features that encourage modularized programming are central in F programming.

Unlike many simple languages suitable for learning programming, F has extensive facilities for input and output. The use of these facilities is very important in production programs, so this book contains, in Chapter 9, an extensive discussion of the excellent input/output facilities in F.

Appendix A gives a brief description of the many intrinsic procedures. Appendix B contains a complete description of the syntax of F .

All the programs have been run on an F compiler.
In the electronic version, there are links from each reference to another section of the book and links from each table of contents item and each index item to the appropriate text.

F compilers and tools for several computing platforms are available from The Fortran Company. More information about F is available on the World Wide Web http://www.fortran.com.

Walter S. Brainerd
Charles H. Goldberg
Jeanne C. Adams
2005 December

Contents

Preface iii
Chapter 1 Introduction to Programming in F 1
1.1 Programs that Calculate and Print 1
1.2 Intrinsic Data Types 4
1.3 Variables and Input 13
1.4 The Form of an F Program 21
1.5 Some Intrinsic Functions 23
1.6 Expressions and Assignment 26
1.7 Introduction to Formatting 32
1.8 Case Study: Quadratic Formula 37
1.9 Case Study: Debugging Pendulum Calculations 46
Chapter 2 Control Constructs 51
2.1 Statement Blocks 51
2.2 The if Construct 52
2.3 The case Construct 65
2.4 The do Construct 69
Chapter 3 Modules and Procedures 85
3.1 Modules 85
3.2 Procedures 89
3.3 Subroutines 89
3.4 Putting Procedures in a Module 90
3.5 Arguments 92
3.6 Functions 95
3.7 Pure Procedures and Side Effects 98
3.8 Argument Passing 99
3.9 Using a Function in a Declaration Statement 105
3.10 The return Statement 105
3.11 Scope 105
3.12 The save Attribute 106
3.13 Case Study: Numerical Integration 107
3.14 Case Study: Calculating Probabilities 109
3.15 Recursion 112
3.16 Case Study: Adaptive Numerical Integration 120
$3.17 \quad$ Bit Intrinsic Procedures 125
Chapter 4 Arrays 129
4.1 Declaring and Using Arrays in F 129
$4.2 \quad$ Searching a List 148
4.3 Sorting 157
$4.4 \quad$ Selecting 163
$4.5 \quad$ Case Study: Solving Linear Equations 166
4.6 Case Study: Calculating Probabilities 172
$4.7 \quad$ Date and Time Subroutines 174
Chapter 5 Character Data 177
5.1 Use of Character Data in F Programs 177
5.2 Text Analysis 193
5.3 Case Study: Expression Evaluation 208
Chapter 6 Structures and Derived Types 217
6.1 Structures 217
6.2 Derived Types 219
6.3 Declaring and Using Structures 221
Chapter 7 Extending F 227
7.1 Generic Procedures 227
7.2 The private and public Statements 232
7.3 Extending Assignment 232
7.4 Extending Operators 235
7.5 User-Defined Operators 236
7.6 Extending Intrinsic Functions 237
7.7 Computing with Big Integers 239
Chapter 8 Pointer Variables 253
8.1 The Use of Pointers in F 253
8.2 Case Study: Solving a Heat Transfer Problem 261
8.3 Linked Lists 263
8.4 Trees 273
Chapter 9 Input and Output 281
9.1 Records 282
9.2 Files 284
9.3 Data Transfer Statements 293
9.4 The open Statement 304
9.5 The close Statement 307
9.6 The inquire Statement 308
9.7 File Positioning Statements 314
$9.8 \quad$ Formatting 315
Appendix A Intrinsic Procedures 331
A. 1 Intrinsic Functions 331
A. 2 Elemental Intrinsic Procedures 331
A. 3 Positional Arguments or Argument Keywords 332
A. 4 Argument Presence Inquiry Function 332
A. 5 Numeric, Character, and Logical Procedures 333
A. 6 Numeric Manipulation and Inquiry Functions 335
A. 7 Bit Manipulation and Inquiry Procedures 337
A. 8 Array Intrinsic Functions 338
A. 9 Pointer Nullify and Association Status Inquiry 341
A. 10 Intrinsic Subroutines 342
Appendix B F Language Forms 343
Index 351

Introduction to Programming in F

The best way to learn a programming language is to start reading and writing programs immediately. If a computer is available, we encourage you to write and run programs modeled on the simple sample programs in this chapter. In addition to this book, you will need a short set of directions to show you how to enter and run a program at your local installation. Much of this information may be found in the Fortran Tools manual.

1.1 Programs that Calculate and Print

Since computers are very good at arithmetic and F is designed to be very good at expressing numerical computations, one reasonable thing to learn first about F is how to tell a computer to do the sort of arithmetic that otherwise might be done by hand or with the aid of a hand calculator. This section describes how to write programs to calculate and to print the answer.

1.1.1 Simple Calculations

The first example is a program that prints the result of an addition.

```
program calculation_1
    print *, 84 + 13
end program calculation_1
```

The program calculation_1 tells the computer to add the numbers 84 and 13 and then to print the sum, 97 . When the computer is told to run calculation_1, it does precisely that: it adds the two numbers and prints their sum. The execution output will look something like this.

1.1.2 Editing, Compiling, and Running a Program

Use your favorite editor on your computer system to edit a file with suffix. f95. How this is done varies from one system to another and it is assumed that you can do this. For our example, the file might be named calculation_1.f95. It is a good scheme to name the file the same as the program, but with the . f95 suffix.

To see the contents of the file at any time, you can use the editor again or type a command at the prompt, which might be more, 1ess, type, cat, or something else, depending on your system. For example, on a Linux system that uses $\$$ as the prompt:

```
$ less ca1culation_1.f95
program calculation_1
    print *, 84 + 13
end program calculation_1
```

Compiling the program means invoking a piece of software (compiler) that translates the F statements to computer instructions. This is done with the following command:

```
$ F calculation_1.f95
```

If the compilation is successful, an executable program called a.out or a.exe will be found in your directory or folder; you may confirm this by listing its contents (1s or dir, for example).

The program may now be run by typing the command a.exe, a.out, or ./a.out.
\$./a.out
97
There are more sophisticated ways to edit and run a program, such as using a graphical interface like Photran; see Fortran Tools.

1.1.3 Default Print Format

The asterisk following the keyword print tells the computer that the programmer will not be specifying the exact format or layout for the printed answer. Therefore, the F system will use a default format, also called a list-directed format (9.8.17), designed to be satisfactory in most cases. The F programming language allows some freedom in the design of default formats, so your output may differ slightly from the sample execution shown above.

1.1.4 Printing Messages

If you want the computer to print the exact typographic characters that you specify, you enclose them in quotation marks (double quotes), as illustrated by the program quotes. The quotes are not printed in the output.

```
program quotes
    print *, "84 + 13"
end program quotes
```

 \(84+13\)
 In an F program, a sequence of typographic characters enclosed in quotes is a character string. A character string may contain alphabetic characters as well as numeric characters and may contain other special characters such as punctuation marks and arithmetic symbols.

Printing both exact literal characters and a computed numeric value produces the following easy-to-read output.

```
program calculation_1_v2
    print *, "84 + 13 =", 84 + 13
end program calculation_1_v2
```

 \(84+13=97\)
 In the program calculation_1_v2 (calculation 1 version 2), there are two items in the list in the print statement, a character constant " $84+13=$ " to be printed exactly as written (but without the delimiting quotation marks) and an arithmetic expression whose value is first calculated and then printed. Although the two items may look similar, they are treated quite differently. Enclosing the character string in quotes means that it is to be transcribed character for character, including the three blank characters (spaces, in ordinary typing), while the same expression written without quotes is to be evaluated so that the sum can be printed. Commas are used to separate the items in the list of a print statement.

1.1.5 The program Statement

Each F program must begin with a program statement and must end with an end program statement. The program statement consists of the keyword program followed by a program name of the programmer's choosing. A name must start with a letter and consist of at most 31 letters, digits, and underscores; the letters may be uppercase or lowercase. Other names in F also follow this rule.

1.1.6 The end program Statement

The end program statement begins with the keywords end program. It must be followed by the name of the program. Every F program must have an end program statement as its last statement.

1.1.7 Exercises

1. Write and run a program that prints your name.
2. Write and run a program that computes the sum of the integers 1 through 9, preceded by a short message explaining what the output is.
3. What computer output might be expected when the following program is run?
```
program simple
    print *, 1, "and", 1, "equals", 1 + 1
end program simple
```


1.2 Intrinsic Data Types

The intrinsic (i.e., built-in) data types in F are integer, real, complex, logical, and character. Each data type has a set of values that may be represented in that type and operations that can be performed on those values. We already have seen examples of the use of two of these data types. " $84+13$ " (including the quotation marks) is a character string constant, and $84+13$ is an expression whose value is of type integer, involving two integer operands, 84 and 13, and the arithmetic operator + . The following subsections discuss each of the five intrinsic types and the way that constants of those types are written in F.

1.2.1 Integer Type

The integer type is used to represent values that are whole numbers. In F, integer constants are written much like they are written in ordinary usage. An integer constant is a string containing only the digits 0 to 9 , possibly followed by an underscore (_) and a named integer constant, which designates the kind parameter as described in 1.2.11. The following are examples of integer constants.

$$
230 \quad 1234567 \quad \text { 42_short } 42 \text { _long }
$$

1.2.2 Real Type

There are two forms of a real constant in F. The first is called positional form because the place value of each digit is determined by its position relative to the decimal point. The positional form of a real constant consists of an integer followed by a decimal point followed by a string of digits representing the fractional part of the value, possibly followed by an underscore and a kind parameter. Assuming that double and quad are names of integer constants that are permissible real kinds on the F system being used (1.2.11), all the following are real constants written in positional form.

13.5	0.1234567	123.45678
00.30 _double	3.0	$0.1234567 _q u a d$

A real constant written in the positional form must have at least one digit to the left of the decimal point and at least one digit to the right of the decimal point.

The exponential form of a real number consists of a real number written in positional form followed by the letter e and an optionally signed integer (without a kind parameter) and optionally followed by an underscore and kind parameter. The letter e is read as "times 10 to the power" and the integer following the e is a power of 10 to be multiplied by the number preceding the e. Exponential notation is useful for writing very large or very small numbers. For example, 23.4 e 5 represents 23.4 times 10 to the power $5,23.4 \times 10^{5}$, or $23.4 \times 100,000=$ $2,340,000$. The integer power may contain a minus or plus sign preceding it, as in the real constant $2.3 \mathrm{e}-5$, which is 2.3×10^{-5} or 2.3×0.00001 $=0.000023$. Two more examples are 1.0e9_double, which is one billion with kind parameter double, and $1.0 \mathrm{e}-3$, which is $1 / 1000$.

1.2.3 Complex Type

The F complex type is used to represent the mathematical complex numbers, which consist of two real numbers and often are written as $a+b i$. The first real number is called the real part and the second is called the imaginary part of the complex number. In F, a complex constant is written as two (possibly signed) real numbers, separated by a comma and enclosed in parentheses. If one of the parts has a kind parameter (1.2.11), the other part must have the same kind parameter; the complex constant then is that kind. Examples of complex constants are

```
(1.0, -1.0)
(-1.0, 3.1e-27)
```


(3.14_doub7e, -7.0_doub7e)

In the last example, double must be an integer parameter whose value is a kind available on the system being used.

1.2.4 Arithmetic Operators

The operators that may be used to combine two numeric values (integer, real, or complex) include $+,-, *, /$, and $* *$. Except for $* *$, these symbols have their usual mathematical meaning indicating addition, subtraction, multiplication, and division. The two asterisks indicate exponentiation; that is, the value of $2 * * 4$ is 16 , computed as 2 raised to the power 4 or 2^{4} in mathematical notation. The symbols + and - may be used as unary operators to indicate the identity and negation operations, respectively.

Integer division always produces an integer result obtained by chopping off any fractional part of the mathematical result. For example, since the mathematical result of $23 / 2$ is 11.5 , the value of the F arithmetic expression

$$
23.0 / 2.0
$$

is 11.5 , but the value of the expression

$$
23 / 2
$$

which is the quotient of two integer constants, is 11 . Similarly, the value of both the expressions

$$
-23 / 2 \quad 23 /(-2)
$$

is -11 .

1.2.5 Relational Operators

Numeric (and character) values may be compared with relational operators. The form of each relational operator is given in Table 1-1. Complex values may be compared only with the relational operators $==$ (equal) and /= (not equal). However, due to roundoff error, in most cases it is not appropriate to compare either real or complex values using either the $==$ or the /= operator. In such cases, it is better to test for approximate equality instead. For example, it is possible to check that x is approximately equal to y with the expression

$$
\operatorname{abs}(x-y)<1.0 e-5
$$

Table 1-1 The relational operators

\mathbf{F} form	Meaning
$<$	less than
$<=$	less than or equal to
$==$	equal to
$/=$	not equal to
$>=$	greater than or equal to
$>$	greater than

where $\operatorname{abs}(x-y)$ is the absolute value of the difference between x and y. The result of a relational operator is type logical (1.2.7).

1.2.6 Mixed Mode Expressions

Mathematically, the integers are a subset of the real numbers and the real numbers are a subset of the complex numbers. Thus, it makes sense to combine two numeric values, creating a mixed-mode expression, even if they are not the same F type. The two operands of a numeric operator do not have to be the same data type; when they are different, one is converted to the type of the other prior to executing the operation. If one is type integer and the other is type real, the integer is converted to a real value; if one is type integer and the other is type complex, the integer is converted to a complex value; if one is type real and the other is type complex, the real is converted to a complex value. As an example, the value of the expression

$$
23.0 / 2
$$

is 11.5 , because the integer 2 is converted to a real value and then a division of two real values is performed. If the two operands have different kind parameters, the number whose kind parameter specifies lesser precision is converted to the kind with greater precision before the operation is performed.

1.2.7 Logical Type

The F logical type is used to represent the two truth values true and false. A logical constant is either .true. or .false., possibly followed by an underscore and a kind parameter.

The operators that may be used to combine logical values are .not., .and., .or., .eqv., and .neqv. They are all binary operators
except the unary operator .not. The value resulting from the application of each logical operator is given in Table 1-2. To give one simple example, the value of
.false. .eqv. .false.
is true.
Table 1-2 Values of the logical operators

x_{1}	x_{2}	.not. x_{1}	x_{1}.or. x_{2}	x_{1}.and. x_{2}	x_{1}.eqv. x_{2}	x_{1}.neqv. x_{2}
true	true	false	true	true	true	false
true	false	false	true	false	false	true
false	true	true	true	false	false	true
false	false	true	false	false	true	false

1.2.8 Character Type

The character type is used to represent strings of characters. The form of a character constant is a sequence of any characters representable in the computer delimited by quotation marks. If a quotation mark is to occur in the character string, it is represented by two quotation marks with no intervening characters. If the character constant is not defualt kind, the kind precedes the constant (see the third example below).

```
"Joan"
"John Q. Public"
iso_10646_"Don't tread on me."
"не said, ""Don't tread on me."""
```

There is only one character operator that produces a character result: concatenation. The symbol used is // and the result of the binary operator is a string of characters consisting of those in the first string followed by those in the second string. For example, the value of "John Q." // "Public" is the string "John Q.Public". Note that there is no blank after the period, although there could have been; the value of "John Q. " // "Public" is the string "John Q. Public".

Relational operators (1.2.5) may be used to compare character values, which is done using the ASCII character collating sequence (5.1.7 and 5.1.10) for default character kinds.

1.2.9 Parameters/Named Constants

A parameter is a named constant. Each parameter must be declared in a type statement. Type statements appear between the program statement and the beginning of the executable part of the program. Type statements also are used to give names to variables (1.3.1) and indicate their data type. Each parameter declaration consists of a keyword specifying a type, followed by a comma and the keyword parameter, followed by two colons. To the right of the double colon is a list of names, each followed by an assignment and the expression giving the parameter value. The initialization assignments are separated by commas. For example,

```
rea1, parameter :: pi = 3.14159, e = 2.71828
integer, parameter :: number_of_states = 50
```

declare pi and e to be a real parameters and number_of_states to be an integer parameter with the value 50 .

The value of a parameter is fixed by its declaration and cannot change during execution of a program.

A parameter name may be used every place in an F program the corresponding constant may be used; this is why it is also called a named constant. In addition, a parameter may be used in some places where a variable may not be used. Examples are indicating the size of a static array and the values selected by a case statement.

```
program parameter_example
    integer, parameter :: &
        number_of_states = 50, &
        number_of_senators_per_state = 2, &
        number_of_senators = &
        number_of_states * number_of_senators_per_state
    print *, &
        "There are ", number_of_states, &
        " states in the United States of America."
    print *, &
        "From this, we can calculate that there are"
    print *, number_of_senators, &
        " senators in the United States senate."
```

end program parameter_example

The ampersand (\&) indicates that a statement is continued on the next line (1.4.1).

Style note: It is good programming practice to declare quantities to be parameters whenever possible. Assigning a constant value to a parameter tells the reader of the program that the value corresponding to that name will never change when the program is running. It also allows the computer to provide a diagnostic message if the programmer inadvertently tries to change its value.

Since parameters are named constants, use of a parameter name instead of the corresponding constant makes a program more readable. It is easy to forget what role an unnamed constant plays in a program.

Another important reason for using a parameter declaration is that the program can be modified very easily if the particular value represented by the parameter name needs to be changed. The programmer can then be sure that the constant will be correct whenever it is used throughout the program. For example, if Puerto Rico becomes the 51st state, the program parameter_example can be updated easily.

A rather different reason for using a parameter is that its value is known by the compiler and, therefore, can be used to indicate such things as the size of an array (4.1.3) or the kind of a real variable (1.2.11).

1.2.10 Rules for Names

number_of_states and number_of_senators are names of parameters used in the program parameter_example. The following are the rules for names of parameters as well as all other names in an F program:

1. The first character of the name must be a letter.
2. The remaining characters may be any mixture of letters, digits, or underscore characters (_).
3. There may be at most 31 characters in a name.
4. Names may contain both uppercase and lowercase letters, but a program may not contain two names that differ only in the case of some of their letters. For example, a variable could be Number_of_States, but wherever it is used in a program, it must have the " N " and " S " capitalized. The name number_of_states must not be used in the same program.
5. The last character in a name must not be an underscore.

These rules allow ordinary names like Lisa, Pame1a, and Julie to be used as names. They also allow ordinary English words like tota 1 and area and more technical-looking names like X3J3 and WG5 to be used as names. The underscore allows longer names to be more readable, as in distance_to_the_moon, vowe1_count, and number_of_ vowels_in_the_text.

All names in F , including names of programs, follow these rules.
Most names in this book are all lowercase, simply because they are a little easier to type.

1.2.11 Kind Parameters

Kind parameters provide a way to parameterize the selection of different possible machine representations for each of the intrinsic data types. If the programmer is careful, this provides a mechanism for making selection of numeric precision and range portable.

Each intrinsic data type has a parameter, called its kind parameter, associated with it. A kind parameter is intended to designate a machine representation for a particular data type. As an example, an implementation might have three real kinds, informally known as single, double, and quadruple precision.

The kind parameter is an integer. These numbers are processor dependent, so that kind parameters 1, 2, and 3 might be single, double, and quadruple precision; or on a different system, kind parameters 4, 8 , and 16 could be used for the same things. There are at least two real and complex kinds and at least one kind for the integer, logical, and character data types. Note that the value of the kind parameter is not usually the number of decimal digits of precision or range.

You need to check your manual (for example Fortran Tools) for the computer system being used to determine which kind parameters are available for each type and which kind parameters are the default for each type. Kind parameters are optional in all cases, so it is possible to always use the default kind if that is sufficient for your application.

The intrinsic functions selected_int_kind and selected_rea1_ kind may be used to select an appropriate kind for a variable or a named constant. These functions provide the means for making a program portable in cases where values need to be computed with a certain specified precision that may use single precision on one machine, but require double precision on another machine. They are described in 1.5.4.

When a kind parameter is used in a program, it must be a named integer constant (parameter). In integer, real, and logical constants, it follows an underscore character (_) at the end.

```
12345_short
1.345_very_precise
.true._enough
```

The kind parameter of the two parts of a complex constant must be the same.

The two operands of a numeric operation may have different kind parameter values. In this case, if the two operands have the same type or one is real and one complex, the result has the kind parameter of the operand with the greater precision. For example, if kind long has greater precision than kind short, the value of
1.0_short + 3.0_1ong
is 4.0 with kind parameter long. If one operand is type integer and the other is real or complex, the kind parameter of the result is that of the real or complex operand.

1.2.12 Exercises

1. Convert the following type real numbers from positional notation to exponential notation.

48.2613	$0.00241 _$ok	38499.0
0.2717	55.0	$7.000001 _q u a d$

2. Convert the following type real numbers from exponential notation to positional notation.

$$
\begin{array}{lll}
9.503 e 2 & 4.1679 e+10 _ \text {double } & 2.881 e-5 \\
-4.421 e 2 & -5.81 e-2 _n i c e & 7.000001 e 0
\end{array}
$$

3. Write a program that prints the sum $0.1+0.2+0.3+\ldots+0.9$.
4. Determine the kind number of one real kind that has precision greater than that of the default real kind on your computer system.
5. Print the value of selected_int_kind and selected_real_kind (1.5.4) for about a dozen different argument values to see which kind values are available on the computer you are using. Check your results with your compiler manual.
6. Write a program that prints the sum of the complex numbers $(0.1+0.1 i)+(0.2+0.2 i)+(0.3+0.3 i)+(0.4+0.4 i)$.
7. Write a program that prints the logical value of each of the following expressions:
```
2>3
2<3
0.1 + 0.1 == 0.2
0.5 + 0.5 /= 1.0
```

8. Write a program that computes and prints the concatenation of all of your names (e.g., first, middle, and last).

1.3 Variables and Input

One benefit of writing a computer program for doing a calculation rather than obtaining the answer using pencil and paper or a hand calculator is that when the same sort of problem arises again, the program already written can be reused. The use of variables gives the programs in this section the flexibility needed for such reuse. The programs in Section 1.1 direct the computer to perform the indicated arithmetic operations on numeric constants appearing in the print statements. The sample program add_2 finds the sum of any two integers supplied as input. The numbers to be added do not appear in the program itself. Instead, two integer variables x and y are reserved to hold the two values supplied as input. Because F statements can operate on variables as well as constants, their sum can be calculated and printed. The first sample run shows how this new program could be used to find the sum of the numbers 84 and 13, calculated by the program calculation_1 in Section 1.1.

```
program add_2
    integer :: x, y
    read *, x
    print *, "Input data x:", x
    read *, y
    print *, "Input data y:", y
    print *, "x + y =", x + y
end program add_2
```

```
Input data x: 84
Input data y: 13
x + y = 97
```

After declaring that the variables x and y will hold integer values, the program add_2 tells the computer to read a number from an input device and call it x, then to read another number and call it y, and finally to print the value of $x+y$, identified as such. Two additional print statements that echo the values of the input data complete the
program add_2. During the execution of this program, the two numbers which are the values for x and y must be supplied to the computer, or the computer cannot complete the run (1.3.2).

1.3.1 Declaration of Variables

The value of a parameter is fixed by its declaration and cannot change during execution of a program. On the other hand, if the keyword parameter is omitted, the objects being declared become variables and their values can be changed at any time. Thus,

```
integer :: count
```

declares count to be an integer variable. The value of a variable declared in this way may be changed during execution of the program.

The program add_2 uses the type declaration

```
integer :: x, y
```

that declares the type of the variables x and y.
Variable names are subject to the same rules as parameter names.
Every variable that is used in an F program must be listed in a type declaration.

Corresponding to the integer, real, complex, logical, and character constants introduced in 1.2, there are integer, real, complex, logical, and character variables. For example, if the variables q, t, and k are to be real variables in a program and the variables n and b are to be integer variables, then the following lines contain the necessary declarations.

```
rea1 :: q, t, k
integer :: n, b
```

Variables may have a particular hardware representation by putting kind= followed by a named constant in parentheses after the keyword representing the data type. For example, if more significant digits are needed than your system keeps in the default real type and the kind parameter for extra precision is 2 , the variables dpq, x, and long may have extra precision by the following declarations.

```
integer, parameter :: more_precision = 2
real (kind=more_precision) :: dpq, x, long
```

A character variable may have a kind parameter, but it must have a length. The keyword character must be followed by parentheses enclosing len= and an integer value indicating the number of characters
in the character string. If the variable name is to be a string of 20 characters, it may be declared as follows.
character (len=20) : : name
Instead of an integer value, the length must be * (meaning "assumed" or specified elsewhere) for a character parameter or a dummy argument (3.3) that is type character.

1.3.2 Supplying Input Data

The two input values 84 and 13 for the variables x and y, shown in the sample execution of the program add_2, did not appear in the computer by magic. They were typed in by the user, but not as part of the program file. Instead, an input file can be prepared, usually with the same editor used for preparing the program file. In this case the file contains the two lines

$$
84
$$

13
If, for example, the file is named add_2.in, the program can be executed on most computer systems using a command similar to the following:
\$./a.out < add_2.in

If you want to put the output in a file called add_2. out instead of displaying it on your screen, the following command should work:

```
$ ./a.out < add_2.in > add_2.out
```


1.3.3 Echo of Input Data

When reading input data from a file in F , as well as other programming languages, it is good programming practice for the user to provide an echo of the input data using print statements, so that the output contains a record of the values used in the computation. Each read statement in the program add_2 is followed by an echo of the input data just read.

Style note: It is good programming practice to echo all input data read from an input file. However, it will be impractical to follow this rule in some cases, such as when there is a large amount of input data.

1.3.4 Rerunning a Program with Different Data

The program add_2 contains echoes, whose importance is demonstrated when the program is rerun using different input data. The echoes of input data help identify which answer goes with which problem. Other important uses of input echoes will appear later. In showing another sample run of the program add_2, this time adding two different numbers, we don't repeat the program listing. The program does not change; only the input data change. This time, the data file add_2.in has the following two lines.

4

7
The execution output might look like

```
Input data x: 4
Input data y: 7
x + y = 11
```

The final print statement of add_2 refers to the variables x and y. As the execution output for the two sample runs shows, what actually is printed is the value of the character string constant " $x+y=$ " followed by the value of the expression $x+y$ at the moment the print statement is executed.

The program add_2_rea1s is obtained from the program add_2 simply by changing the keyword integer in the variable declaration to the keyword rea1, which causes the type of the variables x and y to be real. The next program add_2_rea1s can be used to add two quantities that are not necessarily whole numbers. This execution of the program also illustrates that the input data values may be negative. The input file add_2_reals.in for this sample execution contains two lines
97.6
-12.9
The program file contains the following lines:

```
program add_2_rea1s
    rea1 :: x, y
    read *, x
    print *, "Input data x:", x
    read *, y
    print *, "Input data y:", y
    print *, "x + y =", x + y
end program add_2_reals
```

and the output is as follows:

```
Input data x: 97.5999985
Input data y: -12.8999996
x + y = 84.6999969
```

Some F systems habitually print real quantities in exponential format. On such a system, the sample execution will more closely resemble the following:

```
Input data x: 0.975999985E+02
Input data y: -0.128999996E+02
x + y = 0.846999969E+02
```

If you are worried about why the printed result is not exactly 84.7, see Section 1.7.1 about roundoff error.

We assume that the reader will become familiar with how to prepare and edit program and input files and how to view output files on their local computer system.

1.3.5 Reading Several Values

The read statement may be used to obtain values for several variables at a time, as shown in the program average, that calculates the average of any four numbers. The four numbers to be averaged are supplied as data, rather than appearing as constants in the program. This permits the same program to be used to average different sets of four numbers.

```
program average
    rea1 :: a, b, c, d
    read *, a, b, c, d
    print *, "Input data a:", a
    print *," b:", b
    print *," c:", c
    print *," d:", d
    print *, "Average =", (a + b + c + d) / 4
end program average
```

The input data file in the sample execution has one line:

$$
58.560 .061 .3 \quad 57.0
$$

When we run the program average using this data file, the following output is produced.

```
Input data a: 58.5000000
    b: 60.0000000
```

```
    c: 61.2999992
    d: 57.0000000
Average = 59.2000008
```

This program does a computation more complicated than any discussed so far, but the meaning of the program should be obvious.

As shown in the sample execution, the data are supplied to the variables in the order they are listed in the read statement. Note that the four variables in the read statement are separated by commas and that there is a comma between the asterisk and the first variable in the input list. Although it is not required in F , it is often desirable to put all input data for a read statement on one line in the input file, creating a correspondence between read statements and data lines. However, the input data file
58.5
60.0
61.3
57.0
would have produced the same execution output.
Execution of each read statement normally reads data from a new line in the input file. Thus, if four separate read statements were to be used to read the variables a, b, c, and d, the four input values must be on four separate data lines in the input file.

1.3.6 Default Input Format

The asterisk in the read statement indicates that the format of the input data is left to the one who prepares the input file, except that the individual values must be separated by at least one blank character or a comma.

Style note: Whenever possible, use the default input format. It makes preparation of data much easier and less prone to error.

1.3.7 Reading and Writing Character Strings

Since computers can process character data as well as numeric information, computer languages provide for the reading and printing of character strings. The somewhat facetious program who shows how this is done in F .

```
program who
    character(1en=20) :: whats_his_name
```

```
    print *, "Do I remember whatshisname?"
    read *, whats_his_name
    print *, "Of course, I remember ", whats_his_name
end program who
    Do I remember whatshisname?
    Of course, I remember Roger Kaputnik
```

When the default input format, indicated by the asterisk, is used to read a character string, you should enclose the string in quotes, the same as a character constant used within a program. Delimiting quotes do not appear in the output when using the default output format. The input file for the execution of the program who shown above consists of one line.

"Roger Kaputnik"

1.3.8 Input Data from a Terminal

We close this section with a program meters_to_inches designed to be run on an F system in which input data is supplied for the read statements by typing the data at a computer terminal during the execution of the program. This is called interactive input. The only change we make to the F program is to add a print statement prompting the user about what data to type and remove the statement that echoes the input data. This input prompt immediately precedes the read statement. Without this input prompt, when the computer pauses waiting for the user to type the value for meters requested in the read statement, it would appear as though the execution of the program meters_to_inches failed for some unexplained reason, or that it never started. The user would not know that the computer is waiting for input.

Style note: Always precede an interactive input statement with an input prompt.

```
program meters_to_inches
! Converts length in meters to length in inches.
! The length in meters is typed
! when prompted during execution.
```

```
rea1 :: meters
rea1, parameter :: inches_per_meter = 39.37
print *, "Enter a length in meters."
read *, meters
```

```
    print *, meters, "meters =", &
    meters * inches_per_meter, "inches."
end program meters_to_inches
Enter a length in meters.
2
2.0000000 meters = 78.7399979 inches.
```

On most systems, the characters typed at the keyboard also appear on the screen.

Nonadvancing input/output allows the input to be typed on the same line as the prompt. There is an example of this in 9.3.5.

1.3.9 Exercises

1. Which of the following are valid names for F variables?

name	address	phone_\#	phoney	real
iou_	iou_2	4gotten	4_ever	_laurie

2. The program inches_to_feet is similar to the program meters_to_inches described in this section. What output is produced when inches_to_feet is run using 110 inches as the input value?
```
program inches_to_feet
        real :: inches
! There are 12 inches per foot
        rea1, parameter :: inches_per_foot = 12.0
        read *, inches
        print *, inches, "inches =", &
            inches / inches_per_foot, "feet."
end program inches_to_feet
```

3. In the program rhyme, both jack and ji11 are parameters. What does a computer print when this program is run?
```
program rhyme
    integer, parameter :: jack = 1, jil1 = 2
    print *, jack + ji11, "went up the hil1."
end program rhyme
```

4. Write a program that reads in a first name, a middle initial, and a last name as the values of three different character variables and prints out the full name.

1.4 The Form of an F Program

An F program consists of a sequence of statements; these statements are written on lines that may contain from 0 to 132 characters.

1.4.1 Continued Statements

Often an F statement fits on one line, but a statement can be continued onto more lines if the last character of the line to be continued is an ampersand (\&).

```
print *, &
    "I hope this is the right answer."
```

A statement may not have more than 40 lines.
A statement may not be broken in the middle of a keyword, a name, or a constant. Also, it is not permitted to break a line between two related keywords, such as end program. If it is necessary to break a long character string, use the concatenation operator as shown in the following example.

```
print *, &
    "This is a line that contains a really, " // &
    "really, really, long character string."
```

The important fact is that, in the absence of a continuation symbol, the end of a line marks the end of a statement.

Each F statement except the assignment statement begins with a keyword, such as print, that identifies the kind of statement it is.

1.4.2 Significant Blank Characters

Blank characters are significant in an F program. In general, they must not occur within things that normally would not be typed with blanks in English text, such as names and numbers. On the other hand, they must be used between two things that look like "words". An example is that, in the first line of a program, the keyword program and the name of the program must be separated by one or more blanks, as in the example

```
program add_2
```

Keywords and names such as print and number must contain no blank characters, except that keywords consisting of more than one English word may contain blanks between the words, as in the F statement
end do
Two or more consecutive blanks are always equivalent to one blank unless they are in a character string.

On the other hand, there are places where blank characters are not significant, but can and should be used to improve the readability of the program. For example, most of the programs in this book have blanks surrounding operator symbols, such as + and -, and have a blank after each comma in an input/output list or procedure argument list. Even more importantly, they all use preceding blanks to produce indentation that shows the structure of the program and of its component parts.

Style note: Blank characters and blank lines should be used free-
ly in an F program to make it easier to read.

1.4.3 Comments

Any occurrence of the exclamation symbol (!) other than within a character string or a comment marks the beginning of a comment. The comment is terminated by the end of the line. All comments are ignored by the F system and are used to provide the human reader information about the program.

Since comments are ignored, it is permissible to place a comment after the ampersand (\&) continuation symbol without impairing the continuation.

```
real :: x, & ! measured value
    xbar ! smoothed value
```


1.4.4 The F Character Set

An F statement is a sequence of characters. The characters of the F character set are the uppercase letters A to Z, the lowercase letters a to z, the digits 0 to 9 , the underscore _, and the special characters in Table 1-3.

The character set contains all required characters but may contain additional characters, such as the nonprintable characters tab or bell or additional printable characters, such as $\{$. These additional characters can appear in an F program only within a comment or character constant.

Two of the F characters, $\$$ and ?, have no special use, and the currency symbol need not display or print as $\$$ in all implementations; it might look like $¥$ or $£$.

Table 1-3 The F special characters

Character	Name of character	Character	Name of character
	Blank	$:$	Colon
$=$	Equals	$!$	Exclamation point
+	Plus	$"$	Quotation mark or quote
-	Minus	$\%$	Percent
*	Asterisk	$\&$	Ampersand
$/$	Slash	$;$	Semicolon
(Left parenthesis	$<$	Less than
)	Right parenthesis	$>$	Greater than
,	Comma	$?$	Question mark
.	Decimal point or period	$\$$	Currency symbol
,	Apostrophe		

1.4.5 Exercise

1. What does the following program print? Its style is not recommended.

1.5 Some Intrinsic Functions

There are many built-in or intrinsic functions in F and a few built-in or intrinsic subroutines. To use the functions, simply type the name of the function followed by the arguments to the function enclosed in parentheses. For example, $a b s(x)$ produces the absolute value of x and $\max (a, b, c)$ yields the maximum of the values of a, b, and c.

Two of the more commonly used subroutines are date_and_time and random_number. Appendix A contains a list of all the intrinsic procedures.

1.5.1 Numeric Type Conversion Functions

There are built-in functions that convert any numeric value to each of the numeric types. These functions are named int, real, and cmplx. For example, the value of int(4.7) is the integer 4 , the value of $\operatorname{real}((2.7,-4.9))$ is 2.7 , the real part of the complex number 2.7-4.9i, and the value of $\mathrm{cmp} 7 \mathrm{x}(2)$ is $2.0+0.0 i$. These functions are essential in some situations, such as when it is necessary to convert an integer to a real to avoid an integer division or when the type of a procedure actual argument must match the type of a dummy argument. For example, if a variable total holds the sum of a bunch of integer test scores and it is necessary to divide by the integer variable number_of_scores to find the average, one or both must be converted to type real. Otherwise, the result will be an integer, which is probably not what is desired. The expression

```
rea1 (tota1) / number_of_scores
```

will produce a real result with the fractional part of the average retained.

In other cases, explicit conversion is not required, but can improve the clarity of the program. For example, if i is an integer variable and r is a real variable, the assignment of the value of r to the variable i can be done with the statement

$$
i=r
$$

When this is done, any fractional part of the value of r is dropped, so that if r were 2.7 , the value of i would be 2 after execution of the assignment. This can be made clearer to the reader of the program if the statement

$$
\mathrm{i}=\mathrm{int}(r)
$$

is used instead.
Style note: In a context that requires conversion from complex to integer or real or requires conversion from real to integer, use the intrinsic type conversion functions even if they are not required.

The numeric type conversion functions also may be used to convert from one kind to another within the same data type or to specify the kind parameter of the result of conversion between data types. For example, int(x, kind=short) converts the real value x to an integer
with kind parameter short. The kind must be given as an integer parameter.

1.5.2 The logical Function

The function named logical converts from one logical kind to another. For example, if truth is type logical and packed is an integer named constant, logical (truth, packed) is the value of truth represented as a logical with kind parameter packed and logical (truth) is the value of truth represented as a logical with the default kind parameter.

1.5.3 Mathematical Functions

There are several built-in functions that perform common mathematical computations. The following is a list of some of the most useful ones. Appendix A should be consulted for a complete list with descriptions of each of the functions. Most of them do what would be expected, but the functions max and min are a little unusual in that they may be used with an arbitrary number of arguments. The mathematical functions are shown in Table 1-4.

Table 1-4 Mathematical intrinsic functions

abs	cos	min
acos	cosh	modulo
aimag	exp	sin
asin	floor	sinh
atan	log	sqrt
ceiling	log10	tan
conjg	\max	tanh

Some of these functions will be used in the case studies at the end of this chapter. Other intrinsic functions, such as those for array processing and character processing, will be discussed in relevant chapters.

1.5.4 Kind Intrinsic Functions

The kind function returns the kind parameter value of its argument; the value depends on the integers used as kind parameters on the computer being used. For example, kind (x) is the kind parameter of the variable x; it might be 1 or 4 , for example. kind(0) is the default inte-
ger kind; kind(0.0) is the default real kind; and kind(.false.) is the default logical kind.

There is an intrinsic function selected_real_kind that produces a kind value whose representation has at least a certain precision and range. For example, selected_rea1_kind(8,70) will produce a kind (if there is one) that has at least 8 decimal digits of precision and allows a range of values between -10^{70} and $+10^{70}$. This permits the programmer to select representations having required precision or range and give these processor-dependent kind values to named constants. The named constants can then be used to indicate the kind of a variable.

For the integer data type, there is an intrinsic function selected_int_kind with only one argument. For example, selected_int_kind(5) produces an integer representation allowing all integers between (but not necessarily including) -10^{5} and $+10^{5}$.

1.5.5 Exercises

1. Write a program that prints the kind of each of the constants
```
0
0.0
(0.0, 0.0)
.false.
"a"
```

These are the default kinds (and the only kind for character).
2. Using the fact that selected_real_kind and selected_int_kind return a negative value when asked to produce a kind number for a precision or range not available on the system, determine all the possible kind numbers for reals and integers on your system.

1.6 Expressions and Assignment

An F expression can be used to indicate many sorts of computations and manipulations of data values. So far we have seen simple examples of expressions as values to be printed using the print statement. We now discuss in more detail just what can appear in this list of things to be printed.

1.6.1 Primaries

The basic component of an expression is a primary. Primaries are combined with operations and grouped with parentheses to indicate how
values are to be computed. A primary is a constant, variable, function reference (3.6.2), array element (4.1.2), array section (4.1.6), structure component (6.3.1), substring (5.1.11), array constructor (4.1.4), structure constructor (6.3.2), or an expression enclosed in parentheses. Note that this is a recursive definition because the definition of an expression involves expressions in parentheses. Examples of primaries are

```
5.7e43_doub7e ! constant
number_of_bananas ! variable
abs(x) ! function value
(a + 3) ! expression enclosed in parentheses
```

Primaries can be combined using the operators discussed in 1.2 as well as with user-defined operators discussed in 7.5 to form more complicated expressions. Any expression can be enclosed in parentheses to form another primary. Examples of more complicated expressions are

```
-a + d * e + b ** c
x // y // "abcde"
(a + b) /= c
log_1 .and. log_2 .eqv. .not. log_3
a + b == c * d
```


1.6.2 The Interpretation of Expressions

When more than one operation occurs in an expression, parentheses and the precedence of the operations determines the operands to which the operations are applied. Operations with the highest precedence are applied first to the operand or operands immediately adjacent to the operator. For example, since * has higher precedence than +, in the expression $a+b * c$, the multiplication is first applied to its operands b and c; then the result of this computation is used as an operand by adding it to the value of a. If the programmer intends to add a and b and multiply the result by c, parentheses must be used as in the expression $(a+b) * c$.

When two operators have the same precedence, they are applied left-to-right, except for exponentiation, which is applied right-to-left. Thus, the value of $9-4-3$ is $5-3=2$, but the value of $2 * * 3 * * 2$ is $2^{9}=512$.

Table 1-5 shows the operations with the highest precedence at the top of the list and the ones with the lowest precedence at the bottom.

Table 1-5 Operator precedence

Operator	Precedence
User-defined unary operation	Highest
**	.
* or /	.
Unary + or -	.
Binary + or -	.
//	.
==, /=, <, <=, >, >=	-
. not.	.
. and.	-
.or.	.
. eqv. or . neqv.	.
User-defined binary operation	Lowest

1.6.3 The Evaluation of Expressions

Once it is determined by use of parentheses and precedence of operations which operations are to be performed on which operands, the computer may actually evaluate the expression by doing the computations in any order that is mathematically equivalent to the one indicated by the correct interpretation, except that it must evaluate each subexpression within parentheses before combining it with any other value. For example, the interpretation of the expression $a+b+c$ indicates that a and b are to be added and the result added to c. Once this interpretation is made, it can be determined that a mathematically equivalent result will be obtained by first adding b and c and then adding this sum to a. Thus, the computer may do the computation either way.

The purpose of allowing the computer to rearrange expressions is to optimize execution speed. Thus a compiler will usually replace $x / 2.0$ with $0.5 * x$ because multiplication is faster than division on most computers. If execution speed is not important and you don't want to worry about these matters, just set the optimization level to 0 when compiling a program.

If the programmer writes the expression $(a+b)+c$, the computer must first do the computation as required by the parentheses. Note that the expression $(a+b)+(c+d)$ can be done by first add-
ing c and d but then the computer must add a and b and add that result to the first sum obtained. To evaluate this expression, the computer must not first add band cor any other pair in which one operand is taken from $(a+b)$ and the other is taken from $(c+d)$, because doing this would violate the integrity of parentheses.

Note that integer division is an oddity in that it does not satisfy the rules of arithmetic for ordinary division. For example, (i / 2) * 2 is not equal to \mathbf{i} if \mathbf{i} is an odd integer. Thus, a computer may not make this substitution to optimize the evaluation of the expression.

Table 1-6 contains examples of expressions with allowable alternative forms that may be used by the computer in the evaluation of those expressions. a, b, and c represent arbitrary real or complex operands; i and j represent arbitrary integer operands; x, y, and z represent arbitrary operands of any numeric type; and 11, 12, and 13 represent arbitrary logical operands.

Table 1-6 Allowable alternative expressions

Expression	Allowable alternative form
$x+y$	$y+x$
x * y	y * x
$-x+y$	$y-x$
$x+y+z$	$x+(y+z)$
$x-y+z$	$x-(y-z)$
x * a / z	x * (a/z)
x * y - x * z	x * (y-z)
$\mathrm{a} / \mathrm{b} / \mathrm{c}$	a / b * c)
a / 5.0	0.2 * a
i > j	j-i<0
```11 .and. 12 .and. }1 abs(i) > -1 .or. logica1(11)```	11 .and. (12 .and. 13) .true.

Table 1-7 contains examples of expressions with forbidden alternative forms that must not be used by a computer in the evaluation of those expressions.

Table 1-7 Nonallowable alternative expressions

Expression	Nonallowable alternative form
$\mathbf{i} / 2$	$0.5 * i$
$x * i / j$	$x *(i / j)$
$(x+y)+z$	$x+(y+z)$
$i / j / a$	$i /(j * a)$
$(x+y)+z$	$x+(y+z)$
$(x * y)-(x * z)$	$x *(y-z)$
$x *(y-z)$	$x * y-x * z$

### 1.6.4 Assignment

The assignment statement is the most common way of giving a variable a value. An assignment statement consists of a variable, an equals sign (=), and an expression. The expression is evaluated and assigned to the variable. An example of an assignment statement is

$$
x=a+2 * \sin (b)
$$

Note for later that the variable on the left-hand side may be an array, an array element, an array section, a substring, or a structure component.

Complete agreement of the variable and expression type and kind is not always required. In some cases the data type or kind parameter of the expression may be converted in order to assign it to the variable. If the variable on the left-hand side is any numeric type, the expression may be any numeric type and any kind. If the variable is type character, the expression must be type character. If the variable is type logical, the expression must be type logical but may be any kind. If the variable is a derived type (6.2), that is, a user-defined type, the expression must be the same derived type.

All of these rules apply to assignment as provided by the system (intrinsic assignment); it is possible to extend the meaning of assignment to other cases as described in 7.3.

### 1.6.5 Exercises

1. What computer output might be expected when the following program is run?
```
program calculation_2
 print *, (201 + 55) * 4 - 2 * 10
end program calculation_2
```

2. The program calculation_3 uses a confusing sequence of arithmetic operations whose meaning would be clearer if written with parentheses. What computer output might be expected when it is run? Insert parentheses in the print statement in a way that does not change the value printed, but makes it easier to understand.
```
program calculation_3
 print *, 343 / 7 / 7 * 2
end program calculation_3
```

3. What computer output might be expected when calculation_4 is run?
program calculation_4
print *, 2 * (3 * (5 - 3))
end program calculation_4
4. What computer output might be expected when the program power_of_2 is run?
```
program power_of_2
 print *, 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2 * 2
end program power_of_2
```

5. Write an expression that rounds the value of the variable $x$ to the nearest tenth.
6. When is $\operatorname{int}(x / y)$ equal to $x / y$ for real values $x$ and $y$ ?
7. If $x$ and $y$ are type integer and both are positive, the value of the intrinsic function modulo ( $x, y$ ) is the remainder when $x$ is divided by y. For example, modulo $(17,5)=2$. Rewrite the following expression using the built-in function modulo. Assume $n$ is type integer with a positive value.

$$
n-(n / 100) * 100
$$

8. Write an expression using the built-in function modulo that has the value 1 when n is odd and 0 when n is even.
9. Write an expression using the built-in function modulo that is true if the value of the variable n is even and is false if n is odd.
10. Write a program to compute the quantity $e^{i \pi}$. The constant $\pi$ can be computed by the formula $4 * \operatorname{atan}(1.0)$ because $\tan (\pi / 4)=1$. The complex constant $i$ can be written $(0.0,1.0)$. The built-in function $\exp (z)$ is used for raising the mathematical constant $e$ to a power. The sample output should look like
```
The value of e to the power i*pi is
```

$\qquad$

### 1.7 Introduction to Formatting

F has extremely powerful, flexible, and easy-to-use capabilities for output formatting. This section describes the basic formatting features that enable you to produce really good looking output, if you like. If the default formatting on your F system is good enough, there is no necessity to learn formatting right away. This section appears early because some F systems do not have satisfactory default formats, especially for reals. On such systems, the techniques of this section are essential.

### 1.7.1 Roundoff

Just as $1 / 3$ cannot be represented exactly as a decimal, though 0.333333 comes very close, $1 / 10$ and $1 / 100$ cannot be represented exactly when the representation uses a number base two instead of ten. The base two or binary system of notation is used internally in most computers for storage and calculation of numeric values. As a result, when reals are converted from input represented in decimal notation to the computer's internal representation and back again during execution of a program, the original numbers may not be recovered precisely.

Perhaps you have already seen this in your own output, in the form of a tell-tale sequence of 9 s in the last decimal digits printed. For example, when adding 97.6 and -12.9 using the program add_2_reals in 1.3.4, the following output resulted.

```
Input data x: 97.5999985
Input data y: -12.8999996
x + y = 84.6999969
```

The value of the variable $x$ prints as 97.5999985 although the value supplied in the input file is 97.6 . The difference between the intended and calculated values is roundoff or roundoff error. It is normally of no consequence in calculations of measured physical quantities because it is virtually impossible to distinguish between such nearly equal values as 97.5999985 and 97.6.

Similarly, the printed value of the variable $y$ is -12.8999996 instead of -12.9 . The printed value of $\mathrm{x}+\mathrm{y}$ is 84.6999969 differing by 0.000031 from the sum of the intended values, a hint to the expert that the computer being used probably does not use decimal arithmetic for its internal calculations.

### 1.7.2 Using Formatted Output to Hide Roundoff

Minor cases of roundoff are hidden easily by rounding values before printing. For example, if the unexpected echoes of input data above are rounded to four decimal places before printing, the results will appear precisely as expected: $97.6000+(-12.9000)=84.7000$.

If the default format for reals rounds answers to fewer decimal places than are actually calculated, you will not see any trace of roundoff. These extra guard digits may actually contain roundoff, but rounding answers before printing guarantees that the user will not see small roundoff errors. We mention roundoff at this point to forewarn the beginner whose F system shows such behavior in output. Roundoff is not a malfunction of the computer's hardware, but a fact of life of finite precision arithmetic on computers. An F programmer needs to know how to hide roundoff through formatted printing and needs to know why real values that print identically may still fail a test for equality.

In the remainder of this section we introduce the simplest forms of user-specified print formatting, including the facility for rounding real values to a specified number of decimal places before printing.

### 1.7.3 Format Specifications

Extremely flexible and versatile control over the appearance of printed output is available in F if you are willing to forego the convenience of the default format. In place of the asterisk denoting the default format, write a format specification or some alternative means of locating a format specification in the program. A format specification is basically a list of edit descriptors, separated by commas and enclosed in parentheses. An example is

$$
(f 5.1, a, i 4)
$$

For each expression to be printed, one of the edit descriptors in the format specification is used to determine the form of the output. For example if $x=6.3$ is type real and $n=-26$ is type integer, then
print "(f5.1, es9.1, a, i4)", x, x, " and ", n

## $6.36 .3 \mathrm{E}+00$ and -26

This example shows four of the most frequently used edit descriptors, $f$ (floating point) and es (engineering and science) for printing of reals, a (alphanumeric) for character strings, and i (integer) for integers. The edit descriptor 55.1 means that a total of five positions are reserved for printing a real value rounded to one place after the decimal point. The decimal point occupies a position and a minus sign, if needed, occupies another position, so the largest number printable using f5.1 format is 999.9 and -99.9 is the smallest. If the number to be printed is outside these bounds, the specified field will be filled with asterisks. i4 editing reserves four positions for printing an integer. For negative numbers, the minus sign takes up one of the four positions, making i4 format suitable for integers from -999 to 9999 . The es (engineering/science) edit descriptor is used for printing reals in exponential notation. For example, the es10.3 descriptor uses 10 positions, prints the most significant digit to the left of the decimal point, and prints the fractional part rounded to three decimal places, for example $6.023 \mathrm{e}+23$ preceded by a blank character. For more details, see Section 9.8.8. The a edit descriptor reserves space for character output. The actual length of the character constant to be printed or the declared length of the character variable determine how many positions are used. It is also possible to reserve a specific number of positions for a character string. The edit descriptor a10, for example, reserves 10 positions, regardless of the data to be printed. See 9.8.12 for details.

### 1.7.4 Placement of Format Specifications

In the preceding example, the format specification is in the form of a character constant. Now the necessity of the comma after the asterisk or other format specifier in the print statement becomes apparent. It is the means of separating the format specifier from the first item in the list of expressions to be printed.

Since the format is a character expression, in the simplest case it is simply a character constant that appears in the input/output statement. For example, the following two sets of statements would produce the same output. It is assumed that $x$ is real and $n$ is integer.

```
character (len=13), parameter :: &
 layout = "(f5.1, a, i4)"
print "(f5.1, a, i4)", x, " and ", n
print layout, x, " and ", n
```


### 1.7.5 Tab and Line Feed Edit Descriptors

The slash (/) edit descriptor starts a new line in the printed output. Thus, a single print statement can produce several lines of output. For example

```
print "(a, /, a, /, a)", "These character strings", &
 "al1 appear", "on separate lines."
```

produces the three lines of output

```
These character strings
al1 appear
on separate lines.
```

The $t$ (tab) edit descriptor is used to skip to a specified position of the output line for precise control over the appearance of the output. Tabs may be either forward or backward on the current line. For example,

```
print "(t30, i5, t50, i5, t10, i5)", a, b, c
```

will print the integer values of $c$ in positions 10-14, a in positions 30-34, and $b$ in positions $50-54$. Some printing devices do not print position 1 of any output line. If you have such a printer on your system, a t2 edit descriptor will skip to position 2 to get single spacing.

### 1.7.6 Repeated Edit Descriptors

If one or more edit descriptors are to be repeated, they may be enclosed in parentheses and preceded by the positive integer representing the number of repetitions.

3(i4) is equivalent to 3 i 4 or $\mathbf{i 4}, \mathbf{i} 4, \mathbf{i} 4$
$5(/)$ is equivalent to $5 /$ or $/, /, /, /, /$
$2(\mathrm{a} 4, /, \mathrm{t} 2)$ is equivalent to $\mathrm{a} 4, /, \mathrm{t} 2, \mathrm{a} 4, /, \mathrm{t} 2$
The parentheses may be omitted if there is only one a, es, $f, \mathbf{i}$, or / edit descriptor inside the parentheses.

### 1.7.7 Examples of Formatted Output

The following examples illustrate how formatted output works. On some printers, the first character may not appear, so it is best to put a blank in the first position.

$$
\text { print "(3i2)", 2, 3, } 4
$$

## 234

```
x = 7.34688e-9
print "(a, es10.3)", " The answer is ", x
 The answer is 7.347E-09
q1 = 5.6
q2 = 5.73
q3 = 5.79
f123 = "(a, 3(/, t2, a, i1, a, f3.1))"
print f123, " Here come the answers--", &
 " q", 1, "=", q1, &
 " q", 2, "=", q2, &
 " q", 3, "=", q3
 Here come the answers--
 q1=5.6
 q2=5.7
 q3=5.8
```


### 1.7.8 Formatted Input

A format specification can be used with the read statement to indicate how the positions of the input line are to be interpreted. Formatted input is not as essential as formatted output because most natural arrangements of input data are accepted by the default read formats. However, there are two major exceptions, which sometimes make the use of input formatting desirable. First, default formats for character input usually require quotes around the input strings; character input read under an a edit descriptor does not. Second, it is a small convenience not to have to separate numbers with commas or blanks when large amounts of data are read by a program. For example, it is much harder to type 10 one-digit integers on a line of input with separating commas than without them. Rather than discuss the rules in detail for using formatted input, one example is given.

```
rea1 :: x1, x2, x3
integer :: j1, j2, j3
character(len=4) :: c
read "(a, 3 (f2.1, i1))", c, x1, j1, x2, j2, x3, j3
```

If the input line is
then executing the read statement is equivalent to executing the following assignment statements. Notice that quotes for a format input data must be omitted and that decimal points for $f$ format input data are assumed when they are omitted.

$$
\begin{aligned}
& c=" 1234 " \\
& \mathrm{x} 1=5.6 \\
& \mathrm{j} 1=7 \\
& \mathrm{x} 2=8.9 \\
& \mathrm{j} 2=0 \\
& \mathrm{x} 3=1.2 \\
& \mathrm{j} 3=3
\end{aligned}
$$

Style note: It is good programming practice to use the default read format whenever possible. Explicit input format specifications demand strict adherence to specified positions for each value in the input data. The slightest misalignment of the input data usually results in incorrect values assigned to the variables. By comparison, the default input format is usually relatively tolerant of variations in alignment and is user-friendly.

### 1.7.9 Exercises

1. If the variable $x$ has value 2.5 , what does the output for the following statement look like? Show blank positions with a " $b$ ".

$$
\text { print "(f6.3, es11.1)", x, x ** } 2
$$

2. What are the largest and smallest values that can be printed by the statement
print "(f8.3)", value
3. What does the following statement print? Use " $b$ " for blank positions.
print "(a, f9.5, a)", "!", 1.0/3.0, "!"

### 1.8 Case Study: Quadratic Formula

A quadratic equation is an equation involving the square of the unknown $x$ and no higher powers of $x$. Algorithms for solution of quadratic equations equivalent to the quadratic formula are found in Old Babylonian texts dating to 1700 b.c. It is now routinely taught in high
school algebra. In this section, we show how to write an F program to evaluate and print the roots of a quadratic equation. We also discuss improving the efficiency of the calculation by isolating common subexpressions. Sometimes there are better ways to solve a quadratic equation, particularly in cases where roundoff might be a problem (1.8.6, Exercise 2). Also the programs in this section do not handle the case when $a$, the coefficient of the $x^{2}$ term, is zero.

### 1.8.1 The Problem

The most general quadratic equation has the form

$$
a x^{2}+b x+c=0
$$

where $a, b$, and $c$ are constants and $x$ is the unknown. The quadratic formula says that the roots of the quadratic equation, that is, the values of $x$ for which the equation is true, are given by the formula

$$
x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

This means that one root is obtained by adding the square root term and the other root is obtained by subtracting the square root term.

The problem is to write a program that reads as input the three coefficients, $a, b$, and $c$, and prints as output the values of the two roots. Since there is very little input, and we wish to display the answers as they are computed, we write the program for interactive execution with input from a terminal keyboard and output to the display screen or printing element.

### 1.8.2 The Solution

Experienced programmers may regard the following pseudocode solution as obvious, as indeed it is, but the three steps of the pseudocode solution must be considered, if not necessarily written down.

```
Read the coefficients }a,b,\mathrm{ and c.
Calculate the two roots by the quadratic formula.
Print the two roots.
```

It is but a small step to the $F$ program that implements the pseudocode solution. Remember that an exclamation mark (!) begins a comment.

```
program quadratic_equation_solver
! Calculates and prints the roots
! of a quadratic equation
```

```
! Variables:
 a, b, c: coefficients
 x1, x2: roots
 rea1 :: a, b, c, x1, x2
! Read the coefficients
 print *, "Enter a, the coefficient of x ** 2"
 read *, a
 print *, "Enter b, the coefficient of x"
 read *, b
 print *, "Enter c, the constant term"
 read *, c
! Calculate the roots by the quadratic formula
 x1 = (-b + sqrt (b ** 2 - 4 * a * c)) / (2 * a)
 x2 = (-b - sqrt (b ** 2 - 4*a*c)) / (2 *a)
! Print the roots
 print *, "The roots are"
 print *, "x1 =", x1
 print *, "x2 =", x2
end program quadratic_equation_solver
```

In the input section, each read statement is preceded by an input prompt, that is, a print statement telling the user at the computer terminal what input is expected. In the calculation section, the quadratic formula illustrates the use of the intrinsic function sqrt.

### 1.8.3 Program Testing

To test the program quadratic_equation_solver, we made up several quadratic equations with known roots. Since all variables are type real, our first test case has simple real roots. The solutions of the quadratic equation

$$
x^{2}-5 x+6=0
$$

are 2 and 3 .

```
Enter a, the coefficient of x ** 2
1
Enter b, the coefficient of x
-5
Enter c, the constant term
```

```
6
The roots are
x1 = 3.0000000
x2 = 2.0000000
```

The next quadratic equation has negative and fractional roots to test whether the program will work in these cases. The solutions of the quadratic equation

$$
4 x^{2}+8 x-21=0
$$

are -3.5 and 1.5, testing both possibilities.

```
Enter a, the coefficient of x ** 2
4
Enter b, the coefficient of x
8
Enter c, the constant term
-21
The roots are
x1 = 1.5000000
x2 = -3.5000000
```

Notice that $x 1$ is always the greater of the two roots because its formula adds the square root term.

The next case tests irrational roots of the quadratic equation. The golden ratio is a ratio famous from Greek mathematics. Renaissance artists thought that the golden ratio was the most pleasing ratio for the sides of a rectangular painting or the facade of a building. The spiral shells of snails and the arrangement of seeds in a sunflower are related to it. The golden ratio also is the limit of the ratio of successive terms of the Fibonacci sequence. The two roots of the following equation are the golden ratio and the negative of its reciprocal.

```
x
 Enter a, the coefficient of x ** 2
 1
 Enter b, the coefficient of x
 -1
 Enter c, the constant term
 -1
 The roots are
 x1 = 1.6180340
 x2 = -0.6180340
```

The exact solutions are $(1+\sqrt{5}) / 2$ and $(1-\sqrt{5}) / 2$, which check with the output of the program using a hand calculator. The golden ratio has many interesting properties, including the fact that $1 / 1.6180339$ $=0.6180339$.

The quadratic equation

$$
x^{2}-6 x+9=0
$$

has only one solution, $x=3$. You might wonder what a program designed to find two roots will do with this equation.

```
Enter a, the coefficient of x ** 2
1
Enter b, the coefficient of x
-6
Enter c, the constant term
9
The roots are
x1 = 3.0000000
x2 = 3.0000000
```

Mathematicians call the solution of this quadratic equation a double root. For this equation, the quantity $b^{2}-4 a c$ is zero, so it doesn't matter whether its square root is added or subtracted in the calculation of a root. The answer is the same for both roots.

Next we try the equation

$$
x^{2}-1000001 x+1=0
$$

Running the program produces the results

```
Enter a, the coefficient of x ** 2
1
Enter b, the coefficient of x
-1000001
Enter c, the constant term
1
The roots are
x1 = 1.0000010E+06
x2 = 0.0000000E+00
```

The smaller root is not accurate because $b$ and $\sqrt{b^{2}-4 a c}$ are nearly equal. Cancellation of the significant digits occurs during the subtraction leaving an answer severely contaminated by rounding errors. A way to cope with this situation is discussed in most introductory texts on numerical computation (1.8.6, Exercise 2).

Finally, we try a test case which we know the program quadratic_ equation_solver will not handle. The quadratic equation

$$
x^{2}+1=0
$$

has no real roots. Instead, the roots are

$$
x= \pm \sqrt{-1}= \pm i
$$

$+i$ and $-i$ are complex numbers with no real part. We still try it anyway, just to see what happens.

```
Enter a, the coefficient of x ** 2
1
Enter b, the coefficient of x
0
Enter c, the constant term
1
*** Attempt to take square root of negative quantity ***
*** Execution terminated ***
```

Since $b^{2}-4 a c$ is -4 , the error message is right on the money. One way to cope with this situation is discussed in 1.8.5.

### 1.8.4 Common Subexpressions

The arithmetic expressions for calculating the roots $x 1$ and $x 2$ both involve the same subexpression, sqrt ( $b * * 2-4 * a * c$ ). As written, the program quadratic_equation_solver asks the computer to recalculate this subexpression as part of the calculation of $x 2$. We can force the computer to calculate this subexpression only once by assigning it to a new intermediate variable sub_expression, and then calculating both roots in terms of the variable sub_expression.

```
program quadratic_equation_solver_2
 Calculates and prints the roots
 of a quadratic equation
 Variables:
 a, b, c: coefficients
 sub_expression: value common to both roots
 x1, x2: roots
 rea1 :: a, b, c, x1, x2, sub_expression
! Read the coefficients
 print *, "Enter a, the coefficient of x ** 2"
```

```
 read *, a
 print *, "Enter b, the coefficient of x"
 read *, b
 print *, "Enter c, the constant term"
 read *, c
! Calculate the roots by the quadratic formula
 sub_expression = sqrt (b ** 2 - 4 * a * c)
 x1 = (-b + sub_expression) / (2 * a)
 x2 = (-b - sub_expression) / (2 * a)
! Print the roots
 print *, "The roots are"
 print *, "x1 =", x1
 print *, "x2 =", x2
end program quadratic_equation_solver_2
```

Some optimizing F compilers will recognize that the program quadratic_equation_solver, in its original form, calls for the calculation of the same subexpression twice without change of any of the variables in the subexpression. Such a compiler would produce the more efficient machine language code corresponding to the second version, quadratic_equation_solver_2, even when the programmer writes the less efficient first version.

### 1.8.5 Complex Roots of a Quadratic Equation

The quadratic formula was used in the program quadratic_equation_ solver to calculate the roots of a quadratic equation. The program worked well when the two roots were real, but it failed in the test case of a quadratic whose roots were imaginary. In that case, the quadratic formula calls for taking the square root of a negative number, a function evaluation with no real answer. In the next program, quadratic_ equation_solver_3, we use complex values to compute the correct answer whether the roots of the quadratic are real or complex.

The subexpression

$$
d=b^{2}-4 a c
$$

is called the discriminant because it discriminates between the cases of two real roots, a double real root, and two complex roots. If $d$ is positive, there is a real square root of $d$ and the quadratic formula gives two real roots, one calculated by adding the square root of $d$ and the other by subtracting it. If $d$ is zero, then so is its square root. Conse-
quently, when $d$ is zero the quadratic formula gives only one real root, $-b / 2 a$.

When $d$ is negative, on the other hand, its square root is imaginary. The complex square root of a negative number is obtained by taking the square root of its absolute value and multiplying the result by $i$, the basis of the complex number system. For example, if $d=-4$, then $\sqrt{d}=$ $2 i$. Thus when $d$ is negative, the two roots of the quadratic equation are given by the formulas

$$
x_{1}=\frac{-b}{2 a}+\frac{\sqrt{|d|}}{2 a} i
$$

and

$$
x_{2}=\frac{-b}{2 a}-\frac{\sqrt{|d|}}{2 a} i
$$

However, with the use of the complex data type, the formula for calculating the roots looks just like it does when the roots are real. The only thing that makes quadratic_equation_solver_3 look different from the real version is that the discriminant is converted to a complex value and all the remaining computations are done with complex values. The two sample executions show one case where the roots are complex and one case where they are both real.

```
program quadratic_equation_solver_3
! Calculates and prints the roots
! of a quadratic formula even if they are complex
! Variables: a, b, c = coefficients
 z1, z2 = roots
 rea1 :: a, b, c
 complex :: z1, z2
! Read the coefficients
 read *, a, b, c
 print *, "Input data a:", a
 print *," b:", b
 print *," c:", c
! Calculate the roots
 z1 = (-b + sqrt (cmplx (b**2 - 4*a*c))) / (2*a)
 z2 = (-b - sqrt (cmplx (b**2 - 4*a*c))) / (2*a)
! Print the roots
```

```
print *, "The roots are:"
print *, "z1 =", z1
print *, "z2 =", z2
end program quadratic_equation_solver_3
```

```
Input data a: 1.0000000
```

Input data a: 1.0000000
b: 0.0000000E+00
b: 0.0000000E+00
c: 1.0000000
c: 1.0000000
The roots are:
z1 = ( 0.0000000E+00, 1.0000000)
z2 = ( 0.0000000E+00, -1.0000000)
Input data a: 4.0000000
b: 8.0000000
c: -21.0000000
The roots are:
z1 = ( 1.5000000, 0.0000000E+00)
z2 = ( -3.5000000, 0.0000000E+00)

```

\subsection*{1.8.6 Exercises}
1. All of the programs in this section ignore the possibility that the value of a is zero, or is close to zero. What will happen if quadratic_equation_solver is run with input \(\mathrm{a}=0\) ? Modify the program to handle this case. If \(\mathrm{a}=0\), what happens if b is also zero? Modify the program to handle this case also. (Section 2.2 explains how to test if \(\mathrm{a}=0\).)
2. If \(x_{1}\) and \(x_{2}\) are the roots of the quadratic equation \(a x^{2}+b x+c=0\), their product is \(x_{1} x_{2}=c / a\). When \(b\) is much larger than either \(a\) or \(c\), the usual quadratic formula
\(x=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}\)
does a poor job of calculating the root with the smaller absolute value because the numerator is the difference of two nearly equal quantities \(\sqrt{b^{2}-4 a c}\) and \(b\). Such subtractions always reduce the number of significant digits in the answer by the number of leading significant digits that cancel in the subtraction. Write a program that calculates the roots of a quadratic equation using the quadratic formula, and then recalculates the smaller root in absolute value using the formula \(x_{2}=c / a x_{1}\). Compare the two sets of roots. Test the program on the following equations.
\[
\begin{aligned}
& x^{2}-10 x+1=0 \\
& x^{2}-100 x+1=0 \\
& x^{2}-1000 x+1=0 \\
& x^{2}-10000 x+1=0
\end{aligned}
\]

\subsection*{1.9 Case Study: Debugging Pendulum Calculations}

This section will explain some of the steps in making a real program work. The time it takes a pendulum to complete one swing is virtually independent of the amplitude or maximum displacement of the pendulum at the height of its swing, as long as the swing is relatively small compared with the length of the pendulum. For this reason, pendulums have long been used to keep accurate time. The problem in this section is to write a program to calculate the frequency \(f\) (the number of swings per second) of a pendulum, and its period \(T\) (the time it takes to complete one swing). The input data is the length of the pendulum in meters.

The formula for the frequency of a pendulum is
\[
f=\frac{1}{2 \pi} \sqrt{\frac{g}{L}}
\]
where \(g\) is the gravitational acceleration constant 9.80665 meters \(/ \mathrm{sec}^{2}\) for bodies falling under the influence of gravity near the surface of the earth, \(L\) is the length of the pendulum in meters, and \(\pi\) is the mathematical constant 3.14159. In addition, the formula for the period \(T\) is
\[
T=\frac{1}{f}
\]

\subsection*{1.9.1 The First Compilation}

The solution to this problem uses everything we learned in this chapter: it has variables, input data, computational formulas, and even the built-in square root function. Nevertheless, it seems to be a straightforward calculation for which an F program can be written quite easily. Here is the first attempt.
```

program pendulum
! Calculates the frequency and period
! of a pendulum of length L
! First attempt

```
```

    real :: L, f, T
    real, parameter :: pi = 3.14159,
        \(\mathrm{g}=9.80665\)
    print *, "Enter a value for \(L\) : "
    read *, L
    \(f=(1.0 / 2.0\) * pi) sqrt (g / L)
    \(\mathrm{T}=1.0 / \mathrm{f}\)
    end program pendulum

```

When this program is entered into the computer, it will not compile and run. The error messages we show below are illustrative approximations of the messages we get from actual F compilers. The quality and amount of useful information contained in error messages varies widely. We suggest comparing the error messages shown here with the messages your system produces for the same errors.
```

% F pendulum.f95
Error: pendulum_1.f95, line 8: syntax error
detected at ,@<end-of-statement>
***Invalid item in type declaration
Error: pendulum_1.f95, line 9: Implicit type for G
detected at G@=
Error: pendulum_1.f95, line 13: syntax error
detected at )@SQRT
***Malformed statement

```

Only three syntax errors isn't too bad for a first attempt. The first error message is puzzling. What syntax error? The parameter assignment pi \(=3.14159\) looks correct, echoed in the error message, and the parameter assignment \(g=9.80665\) clearly is there in the next line. The second error message is even more puzzling. g is declared right in the line flagged by the error message. The crucial clue is before us, but as in a good detective mystery, only the practiced eye can see it. Looking back at the first error message, we now see that the compiler does not consider the line \(g=9.80665\) to be a part of the real statement. Now the problem is clear. Both error messages are related, and both are caused by the same mistake. There is no continuation character (\&) at the end of the first line of the statement declaring the parameters. It should read
\[
\begin{aligned}
\text { rea1, parameter : }: ~ \mathrm{pi} & =3.14159, \& \\
\mathrm{~g} & =9.80665
\end{aligned}
\]

The compiler sees the comma, and therefore expects another parameter assignment but, in the absence of the continuation character, it finds the end-of-statement instead. Sometimes, when a compiler gets confused, it gets very confused. It would take a very clever compiler to print the error message
```

*** Error -- missing continuation character ***

```

The third error message said that the compiler was expecting something else when sqrt was found instead. The rule is that the asterisk for multiplication cannot be omitted in F in places where a multiplication sign can be omitted in ordinary algebraic notation. We correct this assignment statement to the following.
\[
f=(1.0 / 2.0 * p i) * \operatorname{sqrt}(g / L)
\]

\subsection*{1.9.2 The Second Compilation and Run}

Since all known errors have been corrected, we recompile the program. This time, there are no error messages.
```

program pendulum
! Calculates the frequency and period
! of a pendulum of length L
real :: L, f, T
real, parameter :: pi = 3.14159, \&
g = 9.80665
print *, "Enter a value for L:"
read *, L
f = (1.0 / 2.0 * pi) * sqrt(g / L)
T = 1.0 / f
print *, "The frequency of the pendulum is", \&
f, "swings/sec."
print *, "Each swing takes", T, "sec."
end program pendulum

```

The input data should be the length of the pendulum in meters. Visualizing the size of a grandfather clock, and rounding the length of its pendulum to the nearest whole meter, we will use an input length of one meter. Here is what the second run produces.
```

        Enter a value for L:
    1
The frequency of the pendulum is 4.9190345 swings/sec.

```
```

Each swing takes 0.2032919 sec.

```

The program does run to completion; it prints the answers, but they are wrong! The pendulum of a grandfather clock does not make almost five complete swings per second. One swing every two seconds is more like it, with each half of the swing producing a tick at one second intervals. Just because the computer prints an answer, it doesn't necessarily mean that the answer is right. The computer's arithmetic is almost certainly perfect, but the formula it was told to compute might be in error.

All the evidence seems to be pointing a finger at the assignment statement to calculate the frequency \(f\) :
\[
f=(1.0 / 2.0 * \mathrm{pi}) * \operatorname{sqrt}(\mathrm{~g} / \mathrm{L})
\]
or, if that statement is correct, at the statements that assign values to the variables and parameters that appear on the right in that statement. The assignment statement for f seems at first glance to be the equivalent of the algebraic formula for the frequency, so we shift our attention to the assignment of the parameters pi and \(g\) and the reading of the variable \(L\). The echo of input data shows that \(L\) is correct. The parameter statement assigning pi and \(g\) seems to be correct, so we shift our attention back to the assignment statement calculating f. The error must be in this statement. If we still don't believe that it is wrong, we could print the values of pi and g just before this statement to further narrow the focus.

Remember the rule that a sequence of multiplications and divisions is executed from left to right. Thus, the assignment statement executes as though it were written
\[
f=((1.0 / 2.0) * p i) * \operatorname{sqrt}(g / L)
\]

The correct \(F\) version of the statement is
\[
f=(1.0 /(2.0 * \mathrm{pi})) * \operatorname{sqrt}(\mathrm{~g} / \mathrm{L})
\]

\subsection*{1.9.3 The Third Compilation and Run}

This time, the answers look correct. We expected a pendulum one meter long to swing once every two seconds.
```

Enter a value for L:
1
The frequency of the pendulum is 0.4984032 swings/sec.
Each swing takes 2.0064075 sec.

```

To check it, we calculate the algebraic formulas on a hand calculator and get the same answers, and we could also try other pendulum lengths in the computer.

\subsection*{1.9.4 Post Mortem Discussion}

The authors are really not incompetent enough to make all of the errors shown in this 14-line program, at least not in one grand tour de force. However, even experienced programmers will make each of these errors, one at a time or in combination, over the course of writing several dozen longer programs. Thus, it is vital for programmers not only to know how to write programs, but also to have effective strategies for debugging programs when the inevitable bugs appear. The techniques illustrated above: compiler error messages, well-chosen test cases worked by hand, and diagnostic printed output will serve the programmer in good stead throughout a career.

\section*{Control Constructs}

The programs in Chapter 1 performed simple calculations and printed the answers, but each statement in these programs was executed exactly once. Almost any useful program has the properties that some collections of statements are executed many times, and different sequences of statements are executed depending on the values of the input data.

The F statements that control which statements are executed, together with the statements executed, are called control constructs. The three control constructs, the if construct, the case construct, and the do construct, are discussed in this chapter. The stop statement (2.4.10) also is discussed briefly. Related topics are the return statement (3.10), masked array assignment (4.1.8) and the foral1 construct (4.1.9).

\subsection*{2.1 Statement Blocks}

A collection of statements whose execution is controlled by one of the control constructs is called a block. For example, the statements between an if statement and the next matching else if statement form a block (2.2). Transferring control into a block from outside is not possible, but it is possible to leave a block with a transfer of control. Any block may contain a complete if, case, or do construct, so that these constructs may be nested to any level.

Indentation of the blocks of a construct improves the readability of a program. The subordinate placement of the controlled blocks visually reinforces the fact that their execution is conditional or controlled.

Style note: The statements of each block of a construct should be indented some consistent number of spaces more than the statements that delimit the block.

\subsection*{2.2 The if Construct}

The if construct is a simple and elegant decision construct that permits the selection of one of a number of blocks during execution of a program. The general form of an if construct is
```

if (logical expression) then
block of statements
else if (logical expression) then
block of statements
else if (logical expression) then
block of statements
else if...
else
block of statements
end if

```

The else if and else statements and the blocks following them may be omitted. The end if statement must not be omitted. Some simple examples follow.
```

if $(a==b)$ then
$\mathrm{c}=\mathrm{a}$
print *, c
end if
if (dice <= 3 .or. dice == 12) then
print *, "You lose!"
else if (dice $==7$.or. dice $==11$ ) then
print *, "You win!"
else
print *, "You have to keep rolling until you get"
print *, "either a 7 or a", dice
end if
! 30 days has September, Apri1, June, and November
if (month == 9 .or. month == 4 .or. \&
month $==6$.or. month $==11$ ) then
number_of_days = 30
! A11 the rest have 31, except February

```
```

else if (month == 1 .or. month == 3 .or. \&
month $==5$.or. month $==7$.or. \&
month $==8$.or. month $==10$.or. \&
month == 12) then
number_of_days = 31
else if (month == 2) then
if (leap_year) then
number_of_days = 29
else
number_of_days = 28
end if
else
print *, month, "is not the number of a month."
end if

```

The if-then statement is executed by evaluating the logical expression. If it is true, the block of statements following it is executed. Execution of this block completes the execution of the entire if construct. If the logical expression is false, the next matching else if, else, or end if statement following the block is executed. The execution of an else if statement is exactly the same; the difference is that an if-then statement must begin an if construct and an else if statement must not. The else and end if statements merely serve to separate blocks in an if construct; their execution has no effect.

The effect of these rules is that the logical expressions in the ifthen statement and the else if statements are tested until one is found to be true. Then the block following the statement containing that test is executed, which completes execution of the if construct. If all of the logical conditions are false, the block following the else statement is executed, if there is one.

\subsection*{2.2.1 Case Study: Escape Velocity of a Rocket}

If a rocket or other object is projected directly upward from the surface of the earth at a velocity \(v\), it will reach a maximum height \(h\) above the center of the earth given by the formula
\[
h=\frac{R_{E}}{1-v^{2} / 2 g R_{E}}
\]
where \(R_{E}\) is the radius of the earth \(\left(6.366 \times 10^{6} \mathrm{~m}\right)\) and \(g\) is the acceleration due to gravity at the surface of the earth \(\left(9.80 \mathrm{~m} / \mathrm{s}^{2}\right)\). This formula is not an unreasonable approximation, since a rocket reaches its maximum velocity within a relatively short period of time after launching,
and most of the air resistance is confined to a narrow layer near the surface of the earth.

A close examination of this formula reveals that it cannot possibly hold for all velocities. For example, if the initial velocity \(v\) is such that \(v^{2}=2 g R_{E}\), then \(1-v^{2} / 2 g R_{E}\) is zero and the maximum height \(h\) is infinite. This velocity \(v=1.117 \times 10^{4} \mathrm{~m} / \mathrm{s}\) (approximately \(7 \mathrm{mi} / \mathrm{s}\)) is called the escape velocity of the earth. Any object, either rocket or atmospheric gas molecule, attaining this vertical velocity near the surface of the earth will leave the earth's gravitational field and not return. A particle starting at the escape velocity will continue rising to arbitrarily great heights above the earth. As it does so, it will slow to practically, but not quite, zero velocity.

At initial velocities greater than the escape velocity, the particle or rocket's velocity will not drop to zero. Instead it will escape from the earth's gravitational field with a final velocity \(v_{\text {final }}\) given by the formula
\[
v_{\text {final }}=\sqrt{v^{2}-2 g R_{E}}
\]

The original formula for the maximum height \(h\) gives negative answers in these cases and should not be used. The maximum height is infinite.

\subsection*{2.2.2 The Problem}

We wish to write a F program that reads an initial velocity of a rocket or molecule (in meters per second) and prints an appropriate description of the fate of the rocket or molecule. That is, if the rocket reaches a maximum height before falling back to earth, the maximum height should be printed. On the other hand, if the rocket escapes the earth's gravitational field, the final velocity with which it escapes should be printed.

\subsection*{2.2.3 The Solution in Pseudocode}

From the preceding discussion, we see that the fate of the rocket or molecule can be determined by comparing the initial velocity to the escape velocity of the earth, or equivalently, by comparing \(v^{2}\) to \(2 g R_{E}\). If \(v^{2}\) is smaller, then a maximum height \(h\) is reached before the rocket or molecule falls back to earth. If the initial velocity is greater, then the object in question escapes with a nonzero final velocity given by the second formula. In the pseudocode solution below, the control structure is modeled exactly on the F if construct.
```

Read the initial velocity v
Echo the input data

```
```

If (v
Calculate maximum height h above center of earth
Print that the object attains maximum height h - RE
above the surface of the earth before returning
to earth
else if (v }\mp@subsup{}{}{2}==2g\mp@subsup{R}{E}{})\mathrm{ then
Print that the initial velocity is
the escape velocity
e1se
Calculate the final velocity
Print that the object escapes earth
with the calculated final velocity
end if

```

The if construct extends from the keyword if that begins the if construct to the keyword end if that ends the construct. The two lines of pseudocode between the keyword then and the keywords else if constitute a block. They are executed if and only if \(v^{2}<2 g R_{E}\). The line of pseudocode between the second keyword then and the keyword else is the first and only block controlled by an else if statement in this if construct. It is executed whenever \(v^{2}=2 g R_{E}\). Finally, the two lines of pseudocode between the keyword else and the keyword end if are the else block. They are executed in case none of the preceding if or else if conditions are true.

\subsection*{2.2.4 The F Solution}

Little remains to be done to refine the pseudocode solution to an executable F program except to choose names for the F variables and parameters that most nearly resemble the variable names in the formulas and to translate the pseudocode to F nearly line by line.
```

program escape
Accepts as input an initial velocity v
Prints maximum height attained,
if object does not escape earth
Prints final escape velocity, vfinal,
if object escapes
Parameters
g = acceleration of gravity near earth's surface
in meters / sec ** 2 (m/s**2)
RE = radius of the earth (in meters)

```
```

    real :: v, h, vfinal
    real, parameter :: g = 9.80, RE = 6.366e6
    read *, v
    print *, "Initial velocity of object =", v, "m/s"
    if (v ** 2 < 2 * g * RE) then
        h = RE / (1 - v ** 2 / (2 * g * RE))
        print *, "The object attains a height of", &
                h - RE, "m"
        print *, "above the earth's surface " // &
        "before returning to earth."
    else if (v ** 2 == 2 * g * RE) then
print *, "This velocity is the escape " // \&
"velocity of the earth."
print *, "The object just bare7y escapes " // \&
"from earth's gravity."
else
vfinal = sqrt (v ** 2 - 2 * g * RE)
print *, "The object escapes with velocity", \&
vfinal, "m/s."
end if
end program escape

```
```

Initial velocity of object = 1.0000000E+03 m/s

```
Initial velocity of object = 1.0000000E+03 m/s
The object attains a height of 5.1432500E+04 m
The object attains a height of 5.1432500E+04 m
above the earth's surface before returning to earth.
above the earth's surface before returning to earth.
Initial velocity of object = 2.0000000E+04 m/s
The object escapes with velocity 1.6589949E+04 m/s.
Initial velocity of object = 1.1170000E+04 m/s
The object attains a height of 1.6871994E+11 m
above the earth's surface before returning to earth.
```


### 2.2.5 Testing an if Construct

The goal in testing an if construct is to design test cases that exercise each alternative in the if construct. The first sample execution shows an initial velocity of $1.0 \times 10^{3} \mathrm{~m} / \mathrm{s}(1 \mathrm{~km} / \mathrm{s})$, which is well below the escape velocity of the earth. The sample execution shows that the rocket reaches a maximum height of $5.14 \times 10^{4} \mathrm{~m}(51.4 \mathrm{~km})$ before falling back to earth. Calculating the appropriate formula using a hand calculator gives the same answer.

The second sample execution shows an initial velocity of $2.0 \times 10^{4}$ $\mathrm{m} / \mathrm{s}(20 \mathrm{~km} / \mathrm{s})$, which is well above the escape velocity. As expected, the printed output shows that the rocket will escape from the earth's grav-
itational field, so the correct block in the if construct is executed. It may seem surprising at first that the final velocity on escape is such a large fraction of the initial velocity. We rechecked it using a hand calculator and got the same answer. The explanation is that an initial velocity of nearly twice the escape velocity carries with it an initial kinetic energy (energy of motion) of nearly four times the energy of the escape velocity. So it is not really surprising that nearly three-fourths of the initial kinetic energy is retained and carried away with the rocket in the form of a large final velocity.

The third sample execution is designed to test the program using the escape velocity $1.117 \times 10^{4} \mathrm{~m} / \mathrm{s}(11.17 \mathrm{~km} / \mathrm{s})$ as the initial velocity. Unfortunately, there is a little bit of roundoff in the calculations, and the middle block in the if construct is not executed. The printed answer is not bad. It says that the rocket will rise to a height of $1.69 \times 10^{11} \mathrm{~m}$ above the surface of the earth before returning. Since this height is farther than the distance to either Mars or Venus at their nearest approach to earth, for all practical purposes the program has reported that the rocket will escape.

### 2.2.6 Roundoff Error in Tests for Equality

You must expect some roundoff in any calculation using reals. The largest source of roundoff in this problem is the fact that the physical constants, the radius of the earth, and the gravitational acceleration, are given to only three or four significant digits, as is the escape velocity. Even if the physical constants were given and used to more digits, each arithmetic calculation in the computer is calculated to a fixed number of digits. If you run this program on your computer, you will probably notice that the last one or more digits of your computer's printed answers differ from the ones shown. This is to be expected. We suggest that you try initial velocities slightly larger than $1.117 \times 10^{4} \mathrm{~m} / \mathrm{s}$ in an attempt to hit the escape velocity exactly on the nose. Quite likely there is no computer-representable number on your machine to use as input to cause execution of the middle alternative in the if block. Equality tests for reals are satisfied only in special circumstances. The best you can reasonably expect is even larger maximum heights or extremely low final escaping velocities. To avoid this test for equality, test for approximate equality instead. In our case, the two values $v^{2}$ and $2 g R_{E}$ probably should be considered equal if they agree to within three significant digits because $g$ is given to only three significant digits. This test for approximate equality can be used to replace the else if statement in the program escape.

```
else if (abs((v**2 - 2*g*RE) / (2*g*RE)) < 1.0e-3) then
```


### 2.2.7 Flowchart for an if Construct

In standard flowcharting conventions, a diamond-shaped box is used to indicate a decision or fork in the flow of the program execution. A rectangular box represents processing of some sort. Using these standard conventions, the flowchart in Figure 2-1 indicates how an if construct is executed.

### 2.2.8 Case Study: Graduated Income Tax

The U.S. federal income tax is an example of a graduated or progressive tax, which means that each income level is taxed at a different rate. After all deductions, progressively higher incomes are taxed at increasing rates. A program to calculate federal income tax uses a multi-alternative if block to select the correct tax computation formula for each income level.

The resulting program illustrates the use of some of the logical operators .and., .or., and .not. To calculate a person's income tax liability, income for the year is modified by various exclusions, deductions, and adjustments to arrive at a taxable income. The problem treated in this section is that of writing a program to compute the federal income tax liability for an unmarried taxpayer based on taxable income. Table 2-1 indicates how the tax is computed.

Table 2-1 Tax table

If taxable income is				
more   than	but not more than		then income tax is	
\$0	\$17,850		15\% of taxable income	
\$17,850	\$43,150	\$2,677.50 plus	$28 \%$ of excess over	\$17,850
\$43,150	\$81,560	\$9,761.50 plus	$33 \%$ of excess over	\$43,150
\$81,560	$\ldots$	Use worksheet to figure your tax		

The input to the program is the person's taxable income, after all deductions and adjustments. The output is both the tax due on that taxable income and the person's tax bracket, that is, the rate at which the last dollar earned is taxed.


Figure 2-1 Execution flow for an if construct

The central section of the program tax_computation to solve this problem corresponds directly to the alternatives in the tax table.

```
program tax_computation
 rea1 :: income, tax
 integer :: bracket
 read *, income
 print "(a, f15.2)", "Input data income:", income
 if (income < 0) then
 print *, "Income cannot be negative."
 else if (income > 81560) then
 print *, "Tax must be figured using worksheet."
 else
 ! Find appropriate range and compute tax
 if (income==0) then
 tax = 0
 bracket = 0
 else if (income>0 .and. income<=17850) then
 tax = 0.15 * income
 bracket = 15
 else if (income>17850 .and. income<=43150) then
 tax = 2677.50 + 0.28 * (income - 17850)
 bracket = 28
 else if (income>43150 .and. income<=81560) then
 tax = 9761.50 + 0.33 * (income - 43150)
 bracket = 33
 end if
 ! End of tax computation section
 print "(a, f8.2, a, f8.2)", &
 "The tax on $", income, " is $", tax
 print "(a, i2, a)", "This income is in the ", &
 bracket, "% tax bracket."
 end if
```

end program tax_computation

Each line in the tax table corresponds to an if or else if test and a corresponding block in the tax computation if construct. If income lies in the indicated range for that if test, then the variables tax and bracket are calculated by the formula in the following block. The conditions describing the ranges for income follow the tax table exactly. They guarantee that only one range and one tax computation formula applies for each possible value of income less than or equal to $\$ 81,560$.

To be more specific, let us look at a few sample executions of tax_computation, in which the computer is supplied with different values as input for the variable income.

```
Input data income: 1000.00
The tax on $ 1000.00 is $ 150.00
This income is in the 15% tax bracket.
Input data income: 20850.00
The tax on $20850.00 is $ 3517.50
This income is in the 28% tax bracket.
Input data income: 63150.00
The tax on $63150.00 is $16361.50
This income is in the 33% tax bracket.
Input data income: 95000.00
 Tax must be figured using worksheet.
```

Consider the second run with a taxable income of $\$ 20,850$. The only condition in the tax computation section which this taxable income satisfies is
income > 17850 .and. income <= 43150
The tax is computed by the formula in the following block

$$
\operatorname{tax}=2677.50+0.28 *(\text { income }-17850)
$$

so that the tax computed is $2677.50+0.28 \times(20850-17850)=2677.50+$ $0.28 \times 3000=2677.50+840=3517.50$. The second assignment statement of this block assigns a tax bracket of 28 (percent) to the variable bracket. The remaining else if test in the if construct is skipped. Then the two print statements that complete the else block of the outer if construct are executed. Note that a complete if construct may be part of a block controlled by another if construct.

In the last of the sample executions, using a taxable income of $\$ 95,000$, the condition in the else if statement of the outer if construct is satisfied, the variables tax and bracket are not assigned values at all, and the computer prints a statement that the tax cannot be computed using the tax table.

Style note: It is good programming practice to warn the user when a situation occurs that the program is not designed to handle.

### 2.2.9 Nonexclusive if Conditions

Because the tax computation if construct in the program tax_ computation is based so closely on the tax table, the alternative if and else if conditions are mutually exclusive. Just as one and only one line of the tax table applies to each taxable income, one and only one condition in the tax computation if construct is true (up to $\$ 81,560$ ).

The test conditions in an if construct need not be mutually exclusive. F permits more than one condition to be true. However, even if several conditions are true, only the first such condition selects its block for execution. The remaining conditions are not even tested. Executing the selected block completes execution of the entire if construct.

Using this rule for breaking ties when several conditions are satisfied, we may rewrite the inner if block of the program tax computation with shorter test conditions.

```
! Find appropriate range and compute tax
 if (income == 0) then
 tax = 0
 bracket = 0
 else if (income <= 17850) then
 tax = 0.15 * income
 bracket = 15
 else if (income <= 43150) then
 tax = 2677.50 + 0.28 * (income - 17850)
 bracket = 28
 else
 tax = 9761.50 + 0.33 * (income - 43150)
 bracket = 33
 end if
! End of tax computation section
```

What is to be gained by shortening the if tests? Certainly, there is less typing to enter the program. In addition, since the if tests are simpler, they will execute more rapidly. Just how much more rapidly is not clear. Not only is the correspondence between the length of the F source program and the speed of execution of the compiled machine language program rather loose, but input and output operations tend to be very time consuming when compared to computational statements. Thus, it is possible that most of the execution time is spent in the read and print statements, and even a significant improvement in the speed of the if tests produces very little change in the total execution time.

What is lost? The most important thing that is lost is the closeness of the correspondence between the program and the tax table. The original program tax_computation obviously implements the tax table, but although the new program also would implement the tax table, this fact would not be so obvious.

Another difference is that the second if construct is slightly more fragile or less robust. This means that although it works perfectly in its present form, it is slightly more likely to fail if it is modified at a later date. For example, if the order of the alternatives in the program tax_computation is scrambled, perhaps listed in decreasing rather than in increasing order of taxable income, the tax computation if construct in the original tax_computation program still works properly, but the replacement does not. The alternatives in the replacement if construct must remain in increasing order or the if construct will fail to compute taxes properly. On balance, the slight gain in efficiency and the slightly fewer keystrokes needed do not justify the less robust program.

Style note: Don't sacrifice clarity of the program to shorten the execution time by a few nanoseconds. Not only is the program harder to get right and maintain, but with a good optimizing compiler the improvement in execution time may be smaller than anticipated or even nonexistent.

### 2.2.10 Exercises

1. Write an if construct that prints the word "vowel" if the value of the variable letter is a vowel (i.e., A, E, I, O, or U) and the word "consonant" if the value of letter is any other letter of the alphabet. Only uppercase letters can appear as values of letter.
2. Hand simulate the programs example_1 to example_4 using the values 45,75 , and 95 as input data ( 12 simulations in all). Check your answers with a computer, if possible. Caution: These simulations are tricky, but each program is syntactically correct. No indentation has been used in order not to give any hints about the structure of the if constructs. We suggest correctly indenting each program before hand simulating it.
```
program example_1
 integer :: x
 read *, x
 if (x > 50) then
 if (x > 90) then
```

```
 print *, x, " is very high."
 else
 print *, x, " is high."
 end if
 end if
end program example_1
program example_2
 integer :: x
 read *, x
 if (x > 50) then
 if (x > 90) then
 print *, x, " is very high."
 else
 end if
 print *, x, " is high."
 end if
end program examp1e_2
program example_3
 integer :: x
 read *, x
 if (x > 50) then
 if (x > 90) then
 print *, x, " is very high."
 end if
 else
 print *, x, " is high."
 end if
end program examp1e_3
program example_4
 integer :: x
 read *, x
 if (x > 50) then
 end if
 if (x > 90) then
 print *, x, " is very high."
 else
 print *, x, " is high."
 end if
end program examp1e_4
```

3. A toll bridge charges $\$ 3.00$ for passenger cars, $\$ 4.00$ for buses, $\$ 6.00$ for trucks under 10,000 pounds, and $\$ 10.00$ for trucks over 10,000 pounds. The problem is to write a program to compute the toll.

Use interactive input if it is available. The input data consists of first the letter C, B, or T for car, bus, or truck, respectively. Either uppercase or lowercase letters are permitted. If the class is $T$ (truck), then prompt the user for another character which is either "<" (meaning less than 10,000 pounds) or ">" (meaning greater than 10,000 pounds). The following are sample executions:

```
 Enter vehicle class (C, B, or T)
t
 Enter < or > to indicate weight class
<
 The toll is $6.00
 Enter vehicle class (C, B, or T)
C
 The toll is $3.00
```

4. The Enlightened Corporation is pleased when its employees enroll in college classes. It offers them an 80 percent rebate on the first $\$ 500$ of tuition, a 60 percent rebate on the second $\$ 400$, and a 40 percent rebate on the next $\$ 300$. The problem is to compute the amount of the rebate. The input data consists of one number, the amount of tuition paid by the employee. A sample execution might produce the following:
```
Input data tuition: 600
The employee's rebate is $ 460
```


### 2.3 The case Construct

The case construct is somewhat similar to the if construct in that it permits selection of one of a number of different alternative blocks of instructions, providing a streamlined syntax for an important special case of a multiway selection. The general form of a case construct is

```
select case (expression)
 case (case selector)
 block of statements
 case (case selector)
 block of statements
```

```
 [case defau7t
 block of statements]
end select
```

The value of the expression in the select case statement must be an integer or character string (of any length). The case selector in each case statement is a list of items, where each item is either a single constant or a range of the same type as the expression in the select case statement. A range is two constants separated by a colon and stands for all the values between and including the two values. The case default statement and its block are optional.

The case construct is executed by evaluating the expression in the select case statement. Then the expressions in the case statements are examined until one is found with a value or range that includes the value of the expression. The block of statements following this case statement is executed, completing execution of the entire case construct. Unlike if constructs, no more than one case statement may match the value of the expression. If no case statement matches the value of the expression and there is a case default statement, the block following the case default statement is executed.

Any of the items in the list of values in the case statement may be a range of values, indicated by the lower bound and upper bound separated by a colon (:). The case expression matches this item if the value of the expression is greater than or equal to the lower bound and less than or equal to the upper bound.

A flowchart indicating how a case construct is executed appears in 2-2.

Some simple examples follow.

```
select case (dice)
 case (2:3, 12)
 print *, "You lose!"
 case (7, 11)
 print *, "You win!"
 case default
 print *, "You have to keep rolling until you get"
 print *, "either a 7 or a ", dice
end select
select case (traffic_light)
 case ("red")
 print *, "Stop"
 case ("yellow")
 print *, "Caution"
```



Figure 2-2 Execution flow for a case construct

```
 case ("green")
 print *, "Go"
case default
 print *, "Illegal value:", traffic_light
end select
select case (month)
 ! 30 days has September, Apri1, June, and November
 case (9, 4, 6, 11)
 number_of_days = 30
 ! A11 the rest have 31, except February
```

```
 case (1, 3, 5, 7:8, 10, 12)
 number_of_days = 31
 case (2)
 if (leap_year) then
 number_of_days = 29
 else
 number_of_days = 28
 end if
 case default
 print *, month, " is not the number of a month."
end select
select case (symbol)
 case ("a":"z")
 category = "lowercase letter"
 case ("A":"Z")
 category = "uppercase 1etter"
 case ("0":"9")
 category = "digit"
 case default
 category = "other"
end select
```

Note that the computation of income tax that was done in the previous section with an if construct cannot be done with a case construct because the data type of the expression used in a select case statement may not be real.

### 2.3.1 Exercises

1. Write a case construct that prints the word "vowel" if the value of the variable letter is a vowel (i.e., A, E, I, O, or U), prints the word "consonant" if the value of letter is any other letter of the alphabet, and prints an error message if it is any other character.
2. Write a complete program that reads one character and uses the case construct to print the appropriate classification of the character.
3. A toll bridge charges $\$ 3.00$ for passenger cars, $\$ 2.00$ for buses, $\$ 6.00$ for trucks under 10,000 pounds, and $\$ 10.00$ for trucks over 10,000 pounds. The problem is to write a program to compute the toll using a case construct. Use interactive input if it is available. The input data consists of first the letter C, B, or T for car, bus, or truck, respectively. Either uppercase or lowercase letters are permitted. If
the class is T (truck), then prompt the user for another character which is either "<" (meaning less than 10,000 pounds) or " $>$ " (meaning greater than 10,000 pounds). The following are sample executions:
```
 Enter vehicle class (C, B, or T)
t
 Enter < or > to indicate weight class
<
 The toll is $6.00
 Enter vehicle class (C, B, or T)
C
 the tol1 is $3.00
```


### 2.4 The do Construct

All of the programs so far suffer from the defect that each instruction is executed at most once. At the enormous speed at which computers execute instructions, it would be difficult to keep a computer busy for very long using this type of program. By the simple expedient of having the computer execute some instructions more than once, perhaps a large number of times, it is possible to produce a computer program that takes longer to execute than to write. More important is the fact that a loop increases the difficulty of writing a program very little, while it greatly increases the amount of useful data processing and calculation done by the program.

The looping construct in F is the do construct. The general form of the do construct is

```
do [loop control]
 block of statements
end do
```

The block of statements, called the loop body or do construct body, is executed repeatedly as indicated by the loop control. Figure 2-3 is a flowchart showing the execution of a do construct.

There are two types of loop control. In one case the loop control is missing, in which case the loop is executed until some explicit instruction in the do body such as an exit statement terminates the loop. In the other type of loop control, a variable takes on a progression of values until some limit is reached. After a very brief discussion of con-


Figure 2-3 Execution flow for a do construct with an iteration count
struct names, the exit statement, and the cycle statement, we will look at examples of the different types of loop control.

### 2.4.1 Construct Names

A do construct may have a construct name on its first statement. It consists of an ordinary F name followed by a colon. The end do statement that ends the construct must be followed by the same construct name. This permits more complete checking that do constructs are nested properly and provides a means of exiting or cycling more than one level of nested loop. In the program some_powers_of_2 in Section 2.4.4, print_power is a construct name attached to the do construct.

### 2.4.2 The exit Statement

The exit statement causes termination of execution of a loop. If the keyword exit is followed by the name of a do construct, that named loop (and all loops nested within it) is exited.

### 2.4.3 The cycle Statement

The cycle statement causes termination of the execution of one iteration of a loop. In other words, the do body is terminated, the do variable (if present) is updated, and control is transferred back to the beginning of the block of statements that comprise the do body. If the keyword cycle is followed by the name of a construct, all loops nested within that named loop are exited and control is transferred back to the beginning of the block of statements that comprise the named do construct.

### 2.4.4 Loops with No Loop Control

For a do construct with no loop control, the block of statements between the do statement and the matching end do statement are executed repeatedly until an exit statement or some other statement causes it to terminate. Suppose we wish to print out all powers of two that are less than 1000. This is done with a simple do construct with no loop control and an exit statement.

```
program some_powers_of_2
 integer :: power_of_2
 power_of_2 = 1 ! The zero power of 2
 print_power: do
 print *, power_of_2
 power_of_2 = 2 * power_of_2
 if (power_of_2 >= 1000) exit print_power
 end do print_power
end program some_powers_of_2
```

As another example, suppose a file contains integers, one per line. All of the integers are nonnegative, except the last integer in the file, which is negative. The following program reads the file and computes the average of the integers, treating the first negative integer it finds as a signal that there is no more data.

```
program average
! This program finds the average of a file of
! nonnegative integers, which occur one per line
```

```
! in the input file. The first negative number
! is treated as the end of data.
 integer :: number, number_of_numbers, total
 total \(=0\)
 number_of_numbers = 0
 do
 read *, number
 if (number < 0) exit
 print *, "Input data number:", number
 total \(=\) tota1 + number
 number_of_numbers = number_of_numbers + 1
 end do
 print *, "The average of the numbers is", \&
 real(tota1) / number_of_numbers
end program average
```

To illustrate a simple use of the cycle statement, suppose a file of integers similar to the one used above is presented and the task is to count the number of odd numbers in the file prior to the first negative number in the file. The following program accomplishes this. Recall that the intrinsic function modulo gives the remainder when the first number is divided by the second number.

```
program odd_numbers
! This program counts the number of odd numbers
! in a file of nonnegative integers,
! which occur one per line in the input file.
! The first negative number is treated as end of data.
 integer :: number, number_of_odd_numbers
 number_of_odd_numbers = 0
 do
 read *, number
 print *, "Input data number:", number
 if (number < 0) then
 exit
 else if (modulo (number, 2) == 0) then
 cyc7e
 else
 number_of_odd_numbers = &
 number_of_odd_numbers + 1
 end if
```

```
 end do
 print *, "The number of odd numbers is", &
 number_of_odd_numbers
end program odd_numbers
```

These last two programs have a structure similar to that of the heart of many programs, both simple and complicated. In pseudocode, that structure is

```
do
 Attempt to read some data
 If all data have been processed, then exit
 Process the data
end do
```

For this kind of loop, a do construct with no loop control and an exit statement are just right.

### 2.4.5 Loop Control with a do Variable

Quite frequently, the successive values taken by a variable follow a simple pattern, like $1,2,3,4,5,6,7,8,9,10$, or $9,7,5,3$. Because these sequences occur so often in programming, there is a simple means of assigning successive values to a variable in F using the do construct and variable loop control. A simple example that prints the squares and cubes of the integers 1 to 20 follows:

```
do number = 1, 20
 print *, number, number**2, number**3
end do
```

The block of this do construct consists of a single print statement. The first time the print statement is executed, the do variable number has the value of 1 , and this number is printed as the first output line, followed by its square and its cube. Then the do variable number takes on the value 2 , which is printed on the next line, followed by its square and its cube. Then the do variable takes on the values $3,4,5$, up to 20 for successive repetitions of the print statement. At this point, the possible values for the do variable number specified in the do statement are exhausted and execution of the do construct terminates.

The general forms of loop control using a do variable are

$$
\text { variable }=\text { expression }, \text { expression }
$$

and

```
variable \(=\) expression, expression, expression
```

The three integer expressions specify the starting value, the stopping value, and the step size or stride between successive values of the do variable. The do statement in the do construct above used constants 1 and 20 for the starting and stopping values. When the step size expression is omitted, as it is in the do construct above, a step size of 1 is used.

A do variable must be an integer variable declared in the program or procedure (3.11) where it is used. It must not be an array element (4.2) or a component of a structure (6.3.1). It must not be a dummy argument (3.5.1). It must not have the pointer or target attribute (8.1.1).

A do variable must not be used for anything outside of the do loop, except as the variable for another do loop or the index of a fora 11 construct (4.1.9).

The value of a do variable may not be changed inside the construct.
The number of times the loop is executed (unless terminated by an exit statement, for example) is given by the formula

$$
\max \left(\left\lfloor\frac{m_{2}-m_{1}+m_{3}}{m_{3}}\right\rfloor, 0\right)
$$

where $m_{1}$ is the starting value, $m_{2}$ is the stopping value, and $m_{3}$ is the step size. $\lfloor x\rfloor$ denotes the floor function, the greatest integer less than or equal to $x$. In cases where the sequence of values starting at $m_{1}$ in steps of $m_{3}$ exactly reaches $m_{2}$, this reduces to the simpler formula

$$
1+\frac{m_{2}-m_{1}}{m_{3}}
$$

For example, the following do loop is executed $\lfloor(10-2+2) / 2)\rfloor=$ 5 times with the do variable assigned the values $2,4,6,8$, and 10 .

```
do number = 2, 10, 2
 print *, number
end do
```

If the do statement were changed to

$$
\text { do number }=2,11,2
$$

The do loop would be executed $\lfloor(11-2+2) / 2\rfloor=5$ times, as before, and the values of the do variable number would be the same: $2,4,6,8$, and 10. The do statement

```
do number = 1, upper_1imit
```

causes its do block to be executed no times if the value of the variable upper_1imit is less than or equal to zero.

### 2.4.6 Counting Backward

If the step size is negative, the do variable counts backwards. Thus, it is possible to print the complete words to the popular camp song "Nine-ty-Nine Bottles of Beer on the Wall" using a do statement with a negative step size. The program beer, which tells the computer to print the verses, is given below. In the program, a print statement with no print list is used to print a blank line between verses.

```
program beer
! Prints the words of a camp song
 integer :: n
 do n = 99, 1, -1
 print *
 print *, n, "bottles of beer on the wa11."
 print *, n, "bottles of beer."
 print *, "If one of those bottles " // &
 "should happen to fal1,"
 print *, "there’d be", n - 1, &
 "bottles of beer on the wal1."
 end do
end program beer
```

Running the program produces the following output.

```
9 9 \text { bottles of beer on the wall.}
99 bottles of beer.
If one of those bottles should happen to fall,
there'd be 98 bottles of beer on the wall.
98 bottles of beer on the wal1.
98 bottles of beer.
If one of those bottles should happen to fal1,
there'd be 97 bottles of beer on the wall.
9 7 \text { bottles of beer on the wal1.}
97 bottles of beer.
If one of those bottles should happen to fa11,
there'd be 96 bottles of beer on the wall.
```

1 bottles of beer on the wall.
1 bottles of beer.
If one of those bottles should happen to fall, there'd be 0 bottles of beer on the wall.

A short name n is chosen for the do variable to make it easier to sing the program listing. The execution output shown is abbreviated after three full verses, with the last verse also given to show how the loop ends.

### 2.4.7 Case Study: Approximating a Definite Integral

The value of a definite integral is the area of a region of the plane bounded by the three straight lines. $x=a, y=0, x=b$, and the curve $y=$ $f(x)$ as shown in Figure 2-4. The better part of a semester in any calculus sequence is spent seeking analytic solutions to the area problem, that is, expressing the area by an algebraic or trigonometric expression. At the conclusion, the calculus student acquires a modest repertoire of useful functions that can be integrated in "closed form".


Figure 2-4 Trapezoidal approximation to the area under a curve

It turns out to be easier to approximate the area of such regions numerically, if you have a computer available. Moreover, the numerical approximation method works even for functions that cannot be integrated in closed form. If we replace the curve $y=f(x)$ by a straight line with endpoints $a$ and $b$, the region in question is converted to a trapezoid, a simple four-sided figure whose area is given by the formula

$$
A=(b-a) \times \frac{f(a)+f(b)}{2}
$$

Of course, the area of this trapezoid is not exactly equal to the area of the original region with curved boundary, but the smaller the width of the trapezoid, the better the approximation.

Specifically, the problem we wish to solve is to find the area of one arch of the curve $y=\sin (x)$, that is, the area under this curve for $x$ from 0 to $\pi$ radians $\left(180^{\circ}\right)$ as shown in Figure 2-5. We will do it by writing a program to calculate trapezoidal approximations to the area, choosing a number of trapezoids sufficient to give the answer to three decimal places.


Figure 2-5 Approximating the area under the curve $y=\sin (x)$

If we call the width of each trapezoid $h$, we have the relationship

$$
h=\frac{b-a}{n}
$$

After a little algebra, the sum of the areas of the $n$ trapezoids may be expressed by the formula

$$
T_{n}=h\left(\frac{f(a)}{2}+f(a+h)+f(a+2 h)+\ldots+f(b-h)+\frac{f(b)}{2}\right)
$$

In the following program integra1, the sum is formed by first computing

$$
\left(\frac{f(a)}{2}+\frac{f(b)}{2}\right)=0.5 \times[f(a)+f(b)]
$$

Because a do variable must be an integer, we use the integer variable $\mathbf{i}$ that counts $1,2, \ldots, n-1$ and compute the expression $a+i * h$ to obtain the sequence of values

$$
a+h, a+2 h, \ldots, a+(n-1) h=b-h
$$

The program follows.

```
program integral
! Calculates a trapezoidal approximation to an area
! using n trapezoids.
! n is read from the input file.
! The region is bounded by lines x = a, y = 0, x = b,
! and the curve y = 部(x).
! a and b also are read from the input file.
 intrinsic :: sin
 real :: a, b, h, total
 integer :: i, n
 read *, n
 print *, "Input data n:", n
 read *, a, b
 print *, "Input data a:", a
 print *, " b:", b
 h = (b - a) / n
! Calculate the total f(a)/2+f(a+h)+...+f(b-h)+f(b)/2
! Do the first and last terms first
 tota1 = 0.5 * (sin(a) + sin(b))
 do i = 1, n - 1
 tota1 = tota1 + sin(a + i * h)
 end do
 print *, "Trapezoidal approximation to the area =", &
 h * total
end program integral
Input data n: 100
Input data a: 0.0000000E+00
```

```
 b: 3.1415901
Trapezoida1 approximation to the area = 1.9998353
Input data n: 1000
Input data a: 0.0000000E+00
 b: 3.1415901
Trapezoida1 approximation to the area = 1.9999995
```

Since these two answers differ by only one in the fourth decimal place, we may conclude that the approximation using 100 trapezoids is sufficiently accurate for our purposes, and that the approximation using 1000 trapezoids is accurate to more than four decimal places. (The alert reader may have noticed that the 6th and 7th decimal places in the echo of the input variable $b$ are not the correct digits of $\pi$.) There is no need to rerun the program using more trapezoids to meet the limits of accuracy specified in the problem statement. The answer is 1.9999995 rounded to three decimal places to get 2.000. The input data for $b$ was given using five decimal places as 3.14159 and the last two places echoed represent roundoff.

### 2.4.8 The intrinsic statement

The intrinsic statement consists of the keyword intrinsic followed by a double colon (: :) and followed by a list of intrinsic procedure names. It can be used to indicate the use of any intrinsic procedure for documentation, but is required only when extending an intrinsic (7.6).

### 2.4.9 Exercises

1. Hand simulate the execution of the following statements, keeping track of the value of $n$ and prod after the execution of each statement.
```
integer :: n, prod
prod = 1
do n = 2, 4
 prod = prod * n
end do
```

2. What output is produced by the following program?
```
program exercise
 intrinsic :: modulo
 integer :: m
 do m = 1, 20
 if (modulo(m, 2) /= 0) then
```

```
 print *, m
 end if
 end do
end program exercise
```

3. What is the value of the variable total at the conclusion of each of the following loops?
```
integer :: n, tota1
total \(=0\)
do \(\mathrm{n}=1\), 10
 tota1 = tota1 +1
end do
total \(=0\)
do \(\mathrm{n}=1\), 5
 total \(=\) total \(+n * n\)
end do
total \(=0\)
do \(\mathrm{n}=1,14,2\)
 total \(=\) total \(+\mathrm{n} * \mathrm{n}\)
end do
total \(=0\)
do \(\mathrm{n}=5,1,-1\)
 total \(=\) total \(+n\)
end do
```

4. An integer is a perfect square if it is the square of another integer. For example, 25 is a perfect square because it is $5 \times 5$. Write a program to selectively print those numbers less than 100 that are not perfect squares. Sample output for this program should look like the following.
5. Read integers from the input file until the value zero is read. Then print the number in the file just before the first zero value. Sample input data might be
```
3
7
2
1 0
0
9
4
0
5
```

Sample output for this input data is

```
Input data: buffer 3
Input data: buffer 7
Input data: buffer 2
Input data: buffer 10
Input data: buffer 0
The last number before the first zero is 10
```

6. Write a program that prints the smallest power of 3 that exceeds 5000.
7. In 1970, the population of New Jersey was $7,168,192$ and it was increasing at the rate of $18 \%$ per decade. The area of New Jersey is 7521 square miles. On the basis of the $18 \%$ growth rate continuing indefinitely into the future, predict the population of New Jersey every decade from 1980 on. Stop the predictions when the average number of square feet per person is less than 100. Print out all estimates. Execution of the program should produce something like the following.

year	population	sq $\mathrm{ft} /$ person
1980	8458466.	24789.6
1990	9980990.	21007.3
.	.	.
.	.	.
.	.	.

For partial confirmation of the validity of the prediction model, look up the 1980, 1990, and 2000 census data for New Jersey and compare the actual data with your program's predictions.
8. The mathematical expression

$$
\left(1+\frac{1}{n}\right)^{n}
$$

produces better and better approximations to the famous mathematical constant $e=2.718281828459045 \ldots$ as $n$ gets large. However, the computed result of this expression may be disappointingly inaccurate if the selected real kind does not permit many significant digits of $1 / n$ to be retained in the sum $1+1 / n$. Write a program to calculate the expression

$$
\left(1+\frac{1}{n}\right)^{n}
$$

for $n$ taking on successive powers of two: $1,2,4,8,16, \ldots$ and successive powers of three: $1,3,9,27,81, \ldots$. Run this program using each of the real kinds available on your computer.

### 2.4.10 The stop Statement

The stop statement causes execution of a program to stop. With the use of modern control constructs, a program usually should stop by coming to the end of the program. However, there are some occasions where the stop statement is very convenient to use. For example, when print statements are inserted for debugging, it is often desirable to stop the program after a few such statements are executed or after the first few iterations of a loop are executed. Also, when severe errors are detected in the middle of a procedure that is being executed, it is much easier to execute a stop statement than exit out through what may be many layers of nested subroutine calls or function references.

```
read *, income
if (income < 0) then
 print *, "Error: income is less than zero."
 stop
end if
```


### 2.4.11 The go to and continue Statements

The if, case, and do constructs are sufficient to build almost any program. However, there are some rare occasions that seem to require a direct branch to a different part of the program. This can be done with
the go to statement, which can transfer control to a continue statement.

The form of the go to statement is
go to label
where label is a string of one to five decimal digits, at least one of which must be nonzero. When the statement is executed, control is passed to the continue statement with that label. The continue statement with the label must be after the go to statement; in other words, branching backward in a program is not permitted.

The continue statement has the form
label continue
and its only function is to serve as the destination of a go to statement. Branching from outside a construct (if, case, do, where, or fora11) to a continue statement inside the construct is not permitted.

One situation in which it is convenient to use a go to statement is when a serious error condition occurs inside a fairly complex construct, such as nested do loops. Another is when you want to execute some code upon exit from a loop, but only if a certain condition has occurred inside the loop. We illustrate the use of these two statements with a snippet of code that does just this.

```
do i = 1, list_size
 if (list(i) == search_key) then
 location = i
 go to 10
 end if
end do
print *, "Search key", search_key, "not found"
stop
10 continue
print *, "Search key", search_key, &
 "found at location", location
```

This code can be written without using a go to statement, but it might not be as easy to understand as the program segment above.

## Modules and Procedures

Large programs are extremely difficult to debug and maintain unless they are split into independent modules. Even relatively short programs are greatly improved when their component parts are refined as procedures. Modules provide a place to put data declarations so that they can be used and shared by programs. Modules also provide the place to put an F procedure, which is either a function or a subroutine, and to put definitions of user-defined types; these are basic building blocks of a program and are usually used by more than one part of a program.

Modules are especially useful when building a "package" or "library" of data and procedures that may be accessible to many different programs.

### 3.1 Modules

A module is a program unit that is not executed directly, but contains data specifications and procedures that may be utilized by other program units via the use statement.

There are two sorts of modules, the private module and the public module. A public module is used to collect the information in other modules and make them available as a single module; these are useful when building large collections of programs. A public module consists of just use statements and the public statement; it contains no declarations or procedures. An example is

```
module p
 use m1
 use m2
 use m3
 pub1ic
end module p
```

The general form of a private module is:

```
module name
 [use statements
 private]
 declaration statement
 access statements
contains
 subroutines and functions
end module name
```

The private statement must appear in the module if there are any use statements, and must not appear otherwise.

Most of the modules illustrated in this book are private modules, which are described in the remainder of this section.

### 3.1.1 Writing and Using Modules

To begin with a very simple example, one use of a module is to include the definition of constants that might be useful in programs. The module math_modu7e contains the values of $\pi, e$, and $\gamma$; of course, it could contain many more useful constants. Note that these constants have default kind, regardless of the number of decimal digits that appear.

```
module math_module
 rea1, pub1ic, parameter :: pi = \&
 3.1415926535897932384626433832795028841972
real, pub1ic, parameter :: e = \&
 2.7182818284590452353602874713526624977572
real, pub1ic, parameter :: gamma = \&
 0.5772156649015328606065120900824024310422
end module math_module
```

Any program that needs these constants can simply use the module.

```
program circle
```

    use math_module
    rea1 :: radius = 2.2, area
    area $=$ pi * radius ** 2
print *, area
end program circle

It is also possible to declare variables in a module. The module declarations_module declares logical variables flag_1 and flag_2, which could then be used in any program that uses the module.

```
module declarations_module
 logica1, pub1ic :: f1ag_1, flag_2
end module declarations_module
program using_modules
 use declarations_module
 logical, parameter :: f = .false.
 flag_1 = f
 flag_2 = .not. f
```

end program using_modules

Most implementations require that a module be compiled before any program that uses the module is compiled. Thus, if the module and program above are placed in the same source file, the module must come before the program. Also, the use statement is required, even if both module and program are in the same file.

### 3.1.2 Public and Private Access

An access statement consists of either private or public followed by a colon and a list of the names of procedures in the module. Each module procedure must be listed in either a public or private access statement. The procedures listed in a private statement can be called only from within the module; the procedures listed in a public statement can be used in any other module, procedure, or program that uses the module.

In addition, each parameter, variable, and type (6) in a module must have either the public or private attribute in its declaration. As will be illustrated by examples in Chapter 7, it is possible for the programmer of a module to use the access statements to restrict the variables and procedures in the module that are accessible outside the module. This is done to "hide" implementation details in the module and is accomplished by declaring things private.

### 3.1.3 The use Statement

The simple form of the use statement is just the keyword use followed by a module to be used, as illustrated by the previous example. A use statement may appear in a program, subroutine, function, another module, or a dummy procedure interface.

However, with the use statement, there are two ways to affect the way that names in a module are accessed by another program unit. The first is that the names used in the module may be changed in the program unit using the module. This may be necessary because the program is using two or more modules that contain declarations of the same name. Or it simply may be desirable to change the name to suit the taste or needs of the programmer of the program unit.

For example, in a subroutine using module math_module, the programmer may decide that the name e is too short to allow a clear understanding of its purpose. This can be fixed by renaming the variable $e$ to the longer name logarithm_base with the use statement.

```
use math_module, logarithm_base => e
```

Any number of rename clauses may appear in the use statement.
The second way to affect the names accessed in a module is to have an only clause in the use statement. In the program circle in 3.1.1, only the constant $\pi$ is needed. It is possible to prevent other names in the module from conflicting with names in the program; this can be accomplished with the use statement.

```
use math_module, on7y : pi
```

If, in addition, it were desirable to use and rename the parameter e to logarithm_base, this could be done with the statement:

```
use math_module, only : pi, logarithm_base => e
```

There can be many names, with or without renaming, in a list after the colon. A use statement can refer to only only one module, but there can be more than one use statement in a program for a module.

```
use m, on7y : x
use m, only : y
```


### 3.2 Procedures

There are two kinds of procedures: functions and subroutines. A function looks much like an F program, except that it begins with the keyword function instead of the keyword program. Once written, a function is used just like the built-in functions discussed in 1.5 to compute a value that may be used in any expression. A subroutine also looks like an F program or a function, except that the first line begins with the keyword subroutine. A subroutine may be used to perform any computation and is invoked by executing a cal1 statement.

All procedures are placed in a module.
Functions and subroutines whose first statements contain the keyword recursive are permitted to call themselves directly or indirectly; recursion (3.15) is used to write clear and simple programs for what might otherwise be difficult programming tasks.

Functions and subroutines whose first statements contain the keyword elemental allow the programmer to more simply write a procedure that handles an array of values on an element-by-element basis (7.1.2).

The keyword pure (3.7) on a function or subroutine statement indicates that the procedure has no side effects. All functions must be pure with or without the keyword, but it is required in some cases anyway.

Style note: Self-contained subtasks should be written as procedures.

### 3.3 Subroutines

Suppose the task at hand is to read in three real numbers and print them in ascending order. The main steps needed to accomplish this task are: (1) read in the numbers, (2) sort them, and (3) print them. The program sort_3 does this.

```
program sort_3
 ca11 read_the_numbers()
 cal1 sort_the_numbers()
 cal1 print_the_numbers()
```

end program sort_3

It seems obvious (if the names are chosen well) that it performs the three steps described above needed to solve the problem. However, if
you try to compile this into an executable program, you will be told that the three procedures are missing. We must write statements that directly reflect those three steps and put the details elsewhere.

### 3.3.1 The call Statement

The cal1 statement is used to indicate that the computation represented by a subroutine is to be performed. The keyword call is followed by the name of the subroutine and by a list of arguments (3.5) in parentheses. The parentheses are required even if there are no arguments. The program sort_3 contains three cal1 statements.

### 3.3.2 Writing a Subroutine

A subroutine is very similar to a program except that the first statement is a subroutine statement that begins with the keyword subroutine and ends with a list of arguments in parentheses. The parentheses are required even if there are no arguments. The last statement of a subroutine is the end subroutine statement, which contains the name of the subroutine.

The subroutine read_the_numbers consists of the subroutine statement, the statements that read and echo the numbers, and the end subroutine statement that terminates the subroutine.

```
subroutine read_the_numbers ()
 read *, n1, n2, n3
 print *, "Input data n1:", n1
 print *, " n2:", n2
 print *, " n3:", n3
end subroutine read_the_numbers
```

It is not necessary to declare the variables $n 1, n 2$, and $n 3$ because they will be declared elsewhere.

The other two subroutines are constructed similarly (see below).

### 3.4 Putting Procedures in a Module

We now show how the program to sort three numbers can be organized using a module to contain the subroutines. The module also will contain the declaration of the three private variables $n 1, n 2$, and $n 3$ because they are used by the procedures in the module. The module sort_3_module also contains the three subroutines after a contains statement. A subroutine swap is needed by sort_the_numbers; it also is placed in the module and is declared to be private, because it is not
needed outside the module. An alternative method would be to put swap in a different module.

Procedures appear just before the last end statement of the module containing them and they are preceded by a contains statement, which consists of simply the keyword contains.

```
modu7e sort_3_module
```

```
 rea1, private :: n1, n2, n3
 real :: temp
```

    pub1ic :: read_the_numbers, \&
        sort_the_numbers, \&
        print_the_numbers
    private :: swap
    contains
subroutine read_the_numbers()
read *, n1, n2, n3
print *, "Input data n1:", n1
print *, " n2:", n2
print *, " n3:", n3
end subroutine read_the_numbers
subroutine sort_the_numbers()
if ( $n 1>n 2$ ) then
temp $=\mathrm{n} 1$
$\mathrm{n} 1=\mathrm{n} 2$
n2 = temp
end if
if (n1 > n3) then
temp $=\mathrm{n} 1$
$\mathrm{n} 1=\mathrm{n} 3$
n3 = temp
end if
if (n2 > n3) then
temp $=n 2$
$\mathrm{n} 2=\mathrm{n} 3$
n3 $=$ temp
end if
end subroutine sort_the_numbers
subroutine print_the_numbers()
print *, "The numbers, in ascending order, are:"

```
 print *, n1, n2, n3
end subroutine print_the_numbers
end module sort_3_module
```

The following program uses the module to sort three numbers. The statement

```
use sort_3_module
```

indicates that there are procedures or data in a module called sort_3_module that are needed by the program. Indeed, the computations will each be done with subroutines that are in the module.

```
program sort_3
 use sort_3_module
 ca11 read_the_numbers()
 ca11 sort_the_numbers()
 ca11 print_the_numbers()
```

end program sort_3

Running the program produces

```
Input data n1: 2.2000000
 n2: 7.6999998
 n3: 5.5000000
The numbers, in ascending order, are:
 2.2000000 5.5000000 7.6999998
```


### 3.5 Arguments

Something worth noticing is that there are three lines that occur three times in the subroutine sort_the_numbers, all doing the same kind of operation, namely, swapping the values of two variables if they are in the wrong order. This illustrates the second good reason to use a procedure: to write some statements once and use them many times, either within the same program or in different programs. In this case, the computation that is performed three times is represented the first time by the three F statements:

```
temp = n1
```

$\mathrm{n} 1=\mathrm{n} 2$
n2 = temp

However, each time this swapping operation occurs in the subroutine, different named variables are involved. This is no obstacle if a subroutine with arguments is used as illustrated by the subroutine named swap.

```
subroutine swap(a, b)
 rea1, intent(in out) :: a, b
 real :: temp
 temp = a
 a = b
 b = temp
end subroutine swap
```

To call this subroutine, values are sent to it by placing them in parentheses after the name of the subroutine in the call statement. Thus, to swap the values of $n 1$ and $n 2$, use the statement

```
ca11 swap(n1, n2)
```

n 1 and n2 are called arguments. Argument passing applies to both subroutines and functions and so is described in 3.8.

The subroutine sort_the_numbers can now use swap.

```
subroutine sort_the_numbers()
 if (n1 > n2) then
 ca11 swap(n1, n2)
 end if
 if (n1 > n3) then
 ca11 swap(n1, n3)
 end if
 if (n2 > n3) then
 ca11 swap(n2, n3)
 end if
end subroutine sort_the_numbers
```


### 3.5.1 Dummy Arguments and Local Variables

There are two new variables $a$ and $b$ in the subroutine swap that serve as place holders for the two numbers to be swapped. These are dummy arguments and must be declared in the subroutine even if they have the same name as a variable declared in the containing module.

The variable temp is used only in the subroutine swap. By declaring temp to be type real within the subroutine swap, we make this variable local to the subroutine, so that its value will not be confused with any
value outside the subroutine. The declaration of temp can be removed from the subroutine sort_the_numbers.

### 3.5.2 Argument Intent

In F you must indicate the intent of use of each dummy argument of a subroutine or function unless it is a pointer (8) or dummy procedure (3.8.8). The intent may be in, which means that the dummy argument cannot be changed within the procedure; it may be out, which means that the actual argument must not be used until given a value in the procedure and usually is used to pass a value back to the calling program; or it may be in out, which means that the dummy argument is expected both to receive an initial value from and return a value to the corresponding actual argument. Thus, for dummy arguments with intent out or in out, the corresponding actual argument must be a variable.

The intent is an attribute given to an argument when it is declared within the procedure. All arguments to a function (except pointers and procedures), must have intent in.

The intent attribute is provided to make the program more easily understood by a human reader and to allow the compiler to catch errors when the programmer violates the stated intent.

### 3.5.3 Exercises

1. Write a module named swap_module that contains only the subroutine swap.
2. Remove swap from the module sort_3_module and rename it sort_module.
3. Write and test a public module sort_3_module that uses swap_ module and sort_module.
4. Write a subroutine sort_4_numbers that arranges the four integer variables i1, i2, i3, and i4 into ascending order. Test the subroutine by putting it in a program that reads four numbers, calls the subroutine, and prints the sorted values.
5. Write a subroutine that reads in values for a loan principal amount $p$, an annual interest rate $r_{\text {annual, }}$ and the number of months $m$ in which the loan is to be paid off. The monthly payment is given by the formula

$$
\text { pay }=\frac{r \times p(1+r)^{m}}{(1+r)^{m}-1}
$$

where the monthly interest rate $r=r_{\text {annual }} / 12$. The subroutine should print out a monthly schedule of the interest, principal paid, and remaining balance. Test the subroutine with a program that calls it with $p=\$ 106,500, r_{\text {annual }}=7.25 \%$, and $m=240$ months.

### 3.6 Functions

If the purpose of a procedure is to compute one value (which may be a compound value consisting of a whole array or structure) and the procedure has no side effects (3.7), a function is the sort of procedure to use. The value of a function is computed when the name of the function, together with its arguments, is placed anywhere in an expression.

To illustrate a simple use of a function, suppose the task is to print out a table of values of the function

$$
f(x)=\left(1+\frac{1}{x}\right)^{x}
$$

for values of $x$ equal to $1,10,100, \ldots, 10^{10}$. A program to do this is

```
module f_module
 integer, parameter, pub1ic :: largest_power = 10
 public :: f
contains
function f(x) result(f_result)
 rea1, intent(in) :: x
 real :: f_result
 integer, parameter :: kind_needed = &
 selected_real_kind(largest_power + 1)
 f_result = (1 + 1 / rea1(x, kind_needed)) ** x
end function f
end module f_module
program function_values
```

```
use f_module
```

use f_module
rea1 :: x
rea1 :: x
integer :: i

```
integer :: i
```

```
 do i = 0, largest_power
 x = 10.0 ** i
 print "(f15.1, f15.5)", x, f(x)
 end do
end program function_values
\begin{tabular}{rr}
1.0 & 2.00000 \\
10.0 & 2.59374 \\
100.0 & 2.70481 \\
1000.0 & 2.71692 \\
10000.0 & 2.71815 \\
100000.0 & 2.71827 \\
1000000.0 & 2.71828 \\
10000000.0 & 2.71828 \\
100000000.0 & 2.71828 \\
1000000000.0 & 2.71828 \\
10000000000.0 & 2.71828
\end{tabular}
```

In this program the evaluation of the function occurs once for each execution of the do construct, but the expression that evaluates the function occurs only once. In this case, a function is used to put the details of evaluating the function in another place, making the program a little easier to read. When this is done, there is also the advantage that if a similar table of values is needed, but for a different function, the main program does not need to be changed; only the function needs to be changed.

This function illustrates an interesting use of the selected_rea1_ kind intrinsic function. In the function, the intermediate result $1+1 / x$ must be computed to get the desired answers. For $x=10^{10}$, this value is 1.0000000001 , which has 11 significant digits, so a kind of real must be used that will hold this many digits. If a real kind with fewer significant digits is used, the expression $1+1 / x$ may evaluate as 1.00000 , yielding an incorrect value for f_result. Both the largest power of $x$ used and the kind needed to compute the function for this largest power are provided as parameters (named constants).

The type conversion

```
rea1(x, kind_needed)
```

converts the already real value $x$ to a real kind of the required precision, and the rules for mixed mode arithmetic guarantee that at least this precision is used throughout the calculation. kind_needed must be a parameter.

### 3.6.1 Writing a Function

A function is almost like a subroutine except that its first statement uses the keyword function. Like a subroutine, it may have arguments that are written in parentheses in the function statement. This is followed by the keyword result and the name of the result variable. The last statement of a function is the end function statement, which contains the name of the function.

A difference between a subroutine and a function is that a function must provide a value that is returned as the value of the function. This is done by assigning a value to a result variable during execution of the function. This result variable is indicated by placing its name in parentheses at the end of the function statement following the keyword result. The result variable is declared within the function and is used just like any other local variable, but the value of this variable is the one that is returned as the value of the function to the program using the function. Intent is not declared for the result variable-its appearance in the result clause effectively makes its intent out. The function $f$ computes the values required in our example and uses the result variable f_resu7t to hold the result.

### 3.6.2 Invoking a Function

A programmer-defined function is called by writing its name, followed by its arguments, in any expression in the same manner that a built-in function (1.5) is invoked.

### 3.6.3 Exercises

1. Write a function median_of_3 that selects the median of its three integer arguments. If all three numbers are different, the median is the number that is neither the smallest nor the largest. If two or more of the three numbers are equal, the median is one of the equal numbers.
2. Write a function average_of_4 that computes the average of four real numbers.
3. Write a function cone_volume ( $r, h$ ) that returns the volume of a cone. The formula for the volume of a cone is $V=\pi \mathrm{r}^{2} h / 3$, where $r$ is the radius of the base and $h$ is its height.
4. Write a function round $(x, n)$ whose value is the real value $x$ rounded to the nearest multiple of $10^{n}$. For example, round
( $463.2783,-2$ ) should be 463.28 , which has been rounded to the nearest hundredth.

### 3.7 Pure Procedures and Side Effects

When a procedure is executed, a side effect is a change in the status of the program that is something other than just computing a value to return to the calling procedure. Examples are changing a variable declared in a program or module above the contains statement or reading data from a file. When the following F language rules are followed, most side effects will not occur. Some of the rules involve features described later.

The programmer may indicate that a procedure has no side effects by putting the keyword pure in the function or subroutine statement. All functions must be pure with or without the keyword, except that one not declared pure explicitly may contain print statements.

1. All dummy arguments in a function (except pointers and procedures, which never have an intent attribute) must have intent in.
2. A local variable must not have the save attribute or be initialized.
3. Any subroutine that is called, including a defined assignment (7.3) must be pure.
4. There is no input/output statement, except for an internal read or write statement (9.3.6).
5. The use statement (3.1.3) permits a function to import names from a module without placing them in the dummy argument list. The following additional rules are necessary to prevent side effects with such variables. Any variable that is accessed from a module by a use statement or has intent in must not appear as any of the following:
a. the variable on the left of an assignment statement
b. as an input item in an internal read statement
c. a character string used as the file in an internal write statement
d. the variable assigned a value as an iostat specifier in an input/output statement using an internal file
e. either the pointer or the target in a pointer assignment statement
f. the right side of an assignment statement, if the left side is of derived type with a pointer component
g. the object to be allocated or deallocated or the status variable in either an allocate or deallocate statement

A procedure that is invoked in any of the following circumstances must be pure; that is, the procedure heading must contain the keyword pure or the keyword elemental.

1. a function referenced in a fora 11 statement (4.1.9)
2. a function referenced in a specification statement (4.1.12)
3. a procedure that is passed as an actual argument to a pure procedure (3.8.8)
4. a procedure referenced in a pure procedure, including those referenced by any function, a defined operator (7.4), or defined assignment (7.3)

### 3.8 Argument Passing

One of the important properties of both functions and subroutines is that information may be passed to the procedure when it is called and information may be returned from the procedure to the calling program when the procedure execution ends. This information passing is accomplished with procedure arguments and, in the case of a function, the function result. A correspondence is set up between actual arguments in the calling program and dummy arguments in the procedure. The corresponding arguments need not have the same name, and the correspondence is temporary, lasting only for the duration of the procedure call.

### 3.8.1 Agreement of Arguments

In this subsection, we try to emphasize general principles, but for the sake of having all the important rules in one place, we list exceptions needed to implement these language features along with forward references to the sections where they are discussed.

Except for dummy arguments declared as optional (3.8.7), the number of actual and dummy arguments must be the same. Each actu-
al argument corresponds to a dummy argument. The default correspondence is the first actual argument with the first dummy argument, the second with the second, etc. However, keyword-identified arguments (3.8.6) can be used to override the default, and provide clear, or-der-independent specification of the correspondence between actual and dummy arguments.

The data type and kind parameter of each actual argument must match that of the corresponding dummy argument.

Additionally, if the dummy argument is a pointer (8), the actual argument must be a pointer.

If the subroutine or function is generic (7.1), there must be exactly one specific procedure with that generic name for which all the above rules of agreement of actual and dummy arguments are satisfied (however, keyword actual arguments also can be used to determine which procedure is specified). For given actual arguments, F selects that specific procedure for which there is agreement of actual and dummy arguments.

### 3.8.2 Passing Arguments to Dummy Arguments with Intent out

If an actual argument is passed to a dummy argument that has intent out or intent in out, it must be a variable (which includes an array name, an array element, an array substring, a structure component, or a substring) so that it makes sense to give it a value. Any reference to the corresponding dummy argument in the subroutine causes the computer to behave as if the reference were to the corresponding actual argument supplied by the calling program. Statements in the subroutine causing changes to such a dummy argument cause the same changes to the corresponding actual argument. A dummy argument in a function must not be intent out or intent in out.

### 3.8.3 Passing Arguments to Dummy Arguments with Intent in

An actual argument that is a constant (either literal or named) or an expression more complicated than a variable must correspond to a dummy argument with intent in. The dummy argument then must not have its value changed during execution of the procedure. There is no way to pass a value back to the calling program using such an argument. Modifying the value of an argument in a function is not possible; all dummy arguments must have intent in.

### 3.8.4 An Example of Passing Variables

Let us look again at the subroutine swap discussed earlier and how it is used in the program sort_3 in 3.4. In the subroutine statement, the subroutine name swap is followed by a list ( $a, b$ ) of variables enclosed in parentheses. The variables $a$ and $b$ in that list are the dummy arguments for the subroutine swap. They have intent in out.

Suppose that in executing the first read statement of the subroutine read_the_numbers, the computer reads and assigns to the variable n 1 the value 3.14, assigns to the variable n 2 the value 2.718 , and assigns to the variable $n 3$ the value 1.414 . Since 3.14 , the value of $n 1$, is greater than 2.718, the value of n2, the computer executes the call statement

```
ca11 swap(n1, n2)
```

The effect of this cal1 statement is as if it were replaced by the following statements.

```
! Copy-in phase
a = n1
b = n2
temp = a
a = b
b = temp
```

! Copy-out phase
$\mathrm{n} 1=\mathrm{a}$
$\mathrm{n} 2=\mathrm{b}$

In this example, the dummy arguments $a$ and $b$ both have intent in out. For a procedure with arguments with intent out, the copy-in phase may be skipped and for a procedure with arguments with intent in, the copy-out phase may be skipped.

### 3.8.5 An Example of Passing Expressions

Suppose a function is to be written that computes the following sum of certain terms of an arithmetic progression:

$$
\sum_{i=m}^{n}(s+d \times i)
$$

The arguments to this function are $m, n, s$ (the starting value), and $d$, the difference between terms. A function to do this computation is contained in the program series

```
program series
integer, parameter :: n = 100
print *, series_sum(n+300, 2*n+500, 100.0, 0.1)
contains
function series_sum(m, n, s, d) &
 result(series_sum_result)
integer, intent(in) :: m, n
real, intent(in) :: s, d
rea1 :: series_sum_result
integer :: i
series_sum_result = 0
do j = m, n
 series_sum_result = series_sum_result + s + i * d
end do
```

end function series_sum
end program series
which produces the answer 46655.0. All four actual arguments in the call of series_sum are constants and therefore may be passed to the intent in arguments of the function series_sum.

### 3.8.6 Keyword Arguments

With the use of keyword arguments, it is not necessary to put the arguments in the correct order, but it is necessary to know the names of the dummy arguments. The same computation may be made using the statement

```
print *, \&
 series_sum(\(\mathrm{d}=0.1, \mathrm{~m}=400\), \(\mathrm{n}=700\), \(\mathrm{s}=100.0\))
```

It is even possible to call the function using keywords for some arguments and not for others. In this case, the rule is that all actual arguments prior to the first keyword argument must match the corresponding dummy argument correctly and once a keyword argument is used, the remaining arguments must use keywords. Thus, the following is legal:

```
print *, series_sum(400, 700, d=0.1, s=100.0)
```


### 3.8.7 Optional Arguments

In our example computation of an arithmetic series, a common occurrence would be that the value of $m$ is 0 . It is possible to indicate that certain arguments to a procedure are optional arguments in the sense that they do not have to be present when the procedure is called. An optional argument must be declared to be such within the procedure; usually, there would be some statements within the procedure to test the presence of the optional argument on a particular call and perhaps do something different if it is not there. In our example, if the function series_sum is called without the argument $m$, the value zero is used. To do this, the intrinsic function present (A.4) is used to test whether an argument has been supplied for the dummy argument $m$, and if an actual argument is not present, the lower bound for the sum is set to zero. To handle both cases with the same do loop, a different variable, temp_m, is used to hold the lower bound. One reason a different variable is used is that a dummy argument corresponding to an actual argument that is not present must not be given a value within the procedure. The other reason is that all function arguments are intent $i n$, and so cannot be changed anyway.

```
function series_sum(m, n, s, d) &
 result(series_sum_result)
 integer, optional, intent(in) :: m
 integer, intent(in) :: n
 real, intent(in) :: s, d
 real :: series_sum_result
integer :: i, temp_m
if (present(m)) then
 temp_m = m
else
 temp_m = 0
end if
series_sum_result = 0
do i = temp_m, n
 series_sum_result = series_sum_result + s + i * d
end do
```

end function series_sum

This new version of the function can now be called with any of the following statements, all of which compute the same sum:

```
print *, series_sum(0, 700, 100.0, 0.1)
print *, series_sum(0, 700, d=0.1, s=100.0)
print *, series_sum(n=700, d=0.1, s=100.0)
print *, series_sum(d=0.1, s=100.0, n=700)
print *, series_sum(m=0, n=700, d=0.1, s=100.0)
```


### 3.8.8 Procedures as Arguments

An actual argument and the corresponding dummy argument may be a procedure. The actual argument itself may be a dummy procedure. An intrinsic procedure may not be passed as an actual argument.

In a function or subroutine that has a procedure as a dummy argument, the dummy argument must be "declared", much as every other dummy argument is declared. However, to "declare" a procedure, quite a bit of information must be provided. An interface block is used for this purpose. An interface block basically consists of the procedure itself with all of the executable code and declarations of local variables removed, leaving all of the information about its arguments and the result returned if it is a function.

In 3.13, the numerical integration routine has a dummy argument that is the function to be integrated. In this case, the function has one real argument and the result is real. Thus, the interface block for this dummy argument is

```
interface
function f(x) result(f_result)
 real, intent(in) :: x
 real :: f_result
end function f
end interface
```

In this case, the interface block contains almost the whole function because there is only one executable statement in the function. In general, of course, the executable part of a function may be fairly lengthy and the interface block will be much smaller than the whole function.

### 3.8.9 Exercises

1. Write a program that tests cone_volume (Exercise 3 of 3.6.3) using keywords to call the function with arguments in an inverted order.
2. Rewrite the function cone_volume (Exercise 3 of 3.6.3) to make the radius an optional argument with a default value of 1 if it is not present. Test the revised function by using it both with the argument present and with the argument missing.

### 3.9 Using a Function in a Declaration Statement

Some intrinsic functions are not allowed in declarations-for example, in the specification of the size of an array. However, in some circumstances, it is possible to invoke a user-defined function, which may, in turn, call any intrinsic function. There are more details and an example in 4.1.12.

### 3.10 The return Statement

The return statement causes execution of a procedure to terminate with control given back to the calling procedure. With the use of modern control constructs, a procedure usually should terminate by coming to the end of the procedure. However, there are situations in which it is better to use a return statement than introduce a complicated set of nested if constructs. Most of the programs in this book are too simple to require use of the return statement.

### 3.11 Scope

The scope of a name is the set of lines in an F program where that name may be used and refer to the same parameter, variable, procedure, or type. In general, the scope of a parameter or variable declared in a program or module above the contains statement extends throughout that program from the program or module statement to the corresponding end statement, including any contained procedures, except those in which the name is used to declare some other object in the procedure.

A name declared in a procedure has scope extending only from the beginning to the end of that procedure, not to any other procedure.

Names declared with the public attribute above the contains statement in a module have larger scope. This scope includes all modules and programs that use the module and do not exclude the name with an only clause. These ideas are illustrated by the following module segment.

```
module m
 public :: s
 integer, private :: a, b
contains
```

```
subroutine s()
 rea1 :: b
 print *, a, b
```

The values of a and b are printed in the subroutine. a is the integer variable declared in the module; its scope includes the subroutine because it is not redeclared. However, it is a real value that is printed for $b$, which is the $b$ declared in the subroutine $s$. The scope of the integer $b$ declared in the module does not include the subroutine $s$. That is, there are two variables with the name $b$, an integer variable $b$, whose scope is the module and does not include the subroutines, and a real variable $b$, whose scope consists of the subroutine s only.

The name of a procedure, its number and type of arguments, their names for use only in keyword actual arguments, as well as the type of its result variable if it is a function, are considered as declared in the containing module, and its scope extends throughout the module. Therefore, a procedure can be called by any procedure in the module and, if it is public, any procedure in a program or another procedure that uses the module.

### 3.12 The save Attribute

Unless something special is done by the programmer, the value of a variable that is local to a procedure is not saved between calls to the procedure. Suppose it is desirable to have a variable in a subroutine that counts the number of times the subroutine is called; this might be useful for debugging, for example.

```
subroutine s()
 integer, save :: cal1_count = 0
 ca11_count = ca11_count + 1
 print *, "This is execution #", cal1_count, &
 "of subroutine s."
!
end subroutine s
```

In this case, the value of the local variable count is saved between calls of the subroutine because it is declared with the save attribute.

If a variable is given an initial value in a subroutine or function, it must also be given the save attribute.

### 3.13 Case Study: Numerical Integration

In 2.4.7, we wrote a program integral to approximate the definite integral

$$
\int_{a}^{b} f(x) d x
$$

by dividing the interval from $a$ to $b$ into $n$ equal pieces, approximating the curve with straight lines, and computing the sum of the areas of the $n$ trapezoids with the formula

$$
T_{n}=h\left(\frac{f(a)}{2}+f(a+h)+f(a+2 h)+\ldots+f(b-h)+\frac{f(b)}{2}\right)
$$

In the program integral, the values for $a, b$, and $n$ were read as input data. Now that we have procedures, a better approach is to write a function integral with arguments $\mathrm{a}, \mathrm{b}$, and n . The other problem with the program integral is that the name of the function to be integrated (sin, in the example), was "hard-wired" into the source code and could not be changed without rewriting and recompiling the program. Since it is possible to pass a procedure as an argument, we can make the name of the function an additional argument $f$ to our function integral.

However, if we want to test the program on the trigonometric sine function as in Chapter 2, it is necessary to write a function whose only purpose is to call the intrinsic sin function. This is necessary because passing an intrinsic function as an argument is not allowed. This function sine is put in its own module sine_module. The executable statements of the function integral use the dummy function argument $f$ in place of the particular function sin, resulting in the following program integrate.

```
modu7e integrate_modu7e
 public :: integral
contains
```

```
function integral(f, a, b, n) result(integral_result)
! Calculates a trapezoidal approximation to an area
! using n trapezoids.
! The region is bounded by lines x = a, y = 0, x = b,
```

```
! and the curve y = f(x).
 interface
 function f(x) result(f_result)
 real, intent(in) :: x
 rea1 :: f_result
 end function f
 end interface
 real, intent(in) :: a, b
 integer, intent(in) :: n
 rea1 :: integra1_result
 real :: h, total
 integer :: i
 h = (b - a) / n
! Calculate the sum f(a)/2+f(a+h)+...+f(b-h)+f(b)/2
! Do the first and last terms first
 tota1 = 0.5 * (f(a) + f(b))
 do i = 1, n - 1
 tota1 = total + f(a + i * h)
end do
integral_result = h * total
end function integra1
end module integrate_module
module sine_module
 public :: sine
contains
function sine(x) result(sine_result)
 intrinsic :: sin
 real, intent(in) :: x
 real :: sine_result
 sine_result = sin(x)
end function sine
end module sine_module
```

```
program integrate
 use integrate_module
 use sine_module
 print *, integral(sine, \(a=0.0, b=3.14159, \mathrm{n}=100\))
 end program integrate
```

Here is the result of running the program, which computes the integral of the trigonometric sine function from 0 to $\pi$.
1.9998353

### 3.14 Case Study: Calculating Probabilities

Consider the problem of calculating the probability that a throw of two dice will yield a 7 or an 11 . One way to solve this problem is to have a computer simulate many rolls of the dice and count how many times the result is 7 or 11 . The probability of throwing 7 or 11 is then the number of successful throws divided by the total number of times the throw of the dice was simulated.

### 3.14.1 The Built-In Subroutine random_number

The heart of a probabilistic simulation program is a procedure that generates pseudorandom numbers. In F, such a procedure is built in; it is a subroutine named random_number. The subroutine places uniformly distributed real numbers greater than or equal to 0 and less than 1 in the actual argument. The argument may be a single real variable or a real array. In this section, we will use random_number to generate one value at a time; in 4.6.1, we will use the same subroutine with an array as the argument to generate a whole array of random numbers with one subroutine call.

### 3.14.2 Computing the Probability of a $\mathbf{7}$ or 11

The program to estimate the probability of rolling 7 or 11 with two dice is built on a subroutine random_int, which in turn is based on the intrinsic subroutine random_number. To simulate the roll of one die, we need a subroutine that returns an integer from 1 to 6 . The subroutine random_int has three arguments, random_result, low, and high. The
first is used to store the result, which is, with approximately equal probability, any integer that is greater than or equal to low, the second argument, and that is less than or equal to high, the third argument. For example, the statement

```
cal1 random_int(digit, 0, 9)
```

assigns to digit one of the 10 one-digit integers $0,1,2, \ldots, 9$. random_int is written as a subroutine, rather than a function for two reasons:

1. It calls the subroutine random_number, which has the side effect of modifying the "seed" of the random generator; hence random_int itself has side effects. A function must never have a side effect.
2. If it were a function, it would be tempting to set the value of the variable dice with the statement

$$
\text { dice }=\text { random_int }(1,6)+\text { random_int }(1,6)
$$

An optimizing compiler might change this into the statement

$$
\text { dice }=2 \text { * random_int }(1,6)
$$

and each roll of the dice would produce an even number!
The program seven_11 simulates the event of rolling the dice 1000 times and computes a pretty good approximation to the true answer, which is $6 / 36+2 / 36=22.22 \%$.

```
module random_int_module
 public :: random_int
contains
subroutine random_int(random_result, low, high)
 integer, intent(out) :: random_result
 integer, intent(in) :: low, high
 rea1 :: uniform_random_value
 ca11 random_number(uniform_random_value)
 random_result = &
 int((high - low + 1) * uniform_random_value + low)
```

end subroutine random_int

```
end module random_int_module
program seven_11
 use random_int_module
 integer, parameter :: number_of_rol1s = 1000
 integer :: die_1, die_2, dice, i, wins
 wins \(=0\)
 do \(\mathbf{i}=1\), number_of_rolls
 cal1 random_int(die_1, 1, 6)
 cal1 random_int(die_2, 1, 6)
 dice = die_1 + die_2
 if ((dice == 7) .or. (dice == 11)) then
 wins = wins + 1
 end if
end do
print "(a, f6.2)", \&
 "The percentage of rolls that are 7 or 11 is", \&
 100.0 * real(wins) / real (number_of_ro11s)
end program seven_11
```

Here is the result of one execution of the program.
The percentage of rolls that are 7 or 11 is 22.40

### 3.14.3 Exercises

1. Write a program that determines by simulation the percentage of times the sum of two rolled dice will be 2,3 , or 12 . You might want to use a case construct (2.3).
2. Two dice are rolled until a 4 or 7 comes up. Write a simulation program to determine the percentage of times a 4 will be rolled before a 7 is rolled. What was the largest sequence of rolls before the issue was decided?
3. Write a simulation program to determine the percentage of times exactly 5 coins will be heads and 5 will be tails, if 10 fair coins are tossed simultaneously.
4. Use the subroutine random_int to create a program that deals a five-card poker hand. Remember that the same card cannot occur twice in a hand. Use a character valued function face_value( $n$ ) that returns "Ace" for 1, "2" for 2, ..., "10" for 10, "Jack" for 11, "Queen" for 12, and "King" for 13, and another character-valued function suit(m) for the suit.
5. Modify the subroutine random_int so that the arguments low and high are optional. If low is not present, use the value 1. If high is not present, use the value low +1 . Test the subroutine with many different calls in which the optional arguments are omitted, arguments are called with keywords, and the arguments are in different orders.

### 3.15 Recursion

Recursion may be thought of as a mechanism to handle flow of control in a program, but its implementation requires dynamic storage allocation. Each time a recursive function or subroutine is called, there must be space for new copies of the variables that are local to the procedure. There is no way to tell at compile time how many times the routine will call itself, hence there is no way to determine the amount of storage needed to store copies of the variables local to a recursive procedure.

The use of recursion is a very powerful tool for constructing programs that otherwise can be quite complex, particularly if the process being modeled is described recursively. However, depending on the implementation available, recursion can require a substantial amount of runtime overhead. Thus, the use of recursion illustrates the classic trade off between time spent in constructing and maintaining a program and execution time. In some cases, a process described recursively can be transformed into an iterative process in a very straightforward manner; in other cases, it is very hard and the resulting procedure is very difficult to follow. It is in these cases that recursion is such a valuable tool. We will illustrate some examples that fall into each category. A recursive version of the numerical integration program is discussed in 3.16.

### 3.15.1 The Factorial Function

First, let's look at the mathematical definition of the factorial function $n$ ! defined for nonnegative integers. It is a simple example that will illustrate many of the important ideas relating to recursion.

$$
\begin{aligned}
& 0!=1 \\
& n!=n \times(n-1)!\quad \text { for } n>0
\end{aligned}
$$

To use this definition to calculate 4 !, apply the second line of the definition with $n=4$ to get $4!=4 \times 3$ !. To finish the calculation we need the value of 3 !, which can be determined by using the second line of the definition again. $3!=3 \times 2$ !, so that $4!=4 \times 3 \times 2$ !. Using the second line of the definition two more times yields $2!=2 \times 1!$ and $1!=1 \times 0$ !. Finally, the first line of the definition can be applied to compute $0!=1$. Plugging all these values back in produces the computation

$$
4!=4 \times 3 \times 2 \times 1 \times 1=24
$$

From this, it is pretty obvious that an equivalent definition for $n!$ is

$$
n!=n \times(n-1) \times(n-2) \times \ldots \times 3 \times 2 \times 1
$$

for integers greater than zero. So this is an example for which it should be quite easy to write an iterative program as well as a recursive one, but to illustrate the recursive technique, let's first look at the recursive version. It should be easy to understand because it follows the recursive definition very closely.

```
module factorial_module
 public :: factoria1
contains
recursive function factorial(n) &
 result(factorial_result)
 integer, intent(in) :: n
 integer :: factorial_result
 if (n <= 0) then
 factoria1_result = 1
 else
 factorial_result = n * factorial(n - 1)
 end if
```

```
end function factorial
end module factoria1_modu7e
```

The function is called using its name in an expression as shown by the simple program that computes 12 !.

```
program test_factoria1
use factorial_module
print*, "12! =", factoria1(12)
end program test_factorial
```

$12!=479001600$

For a recursive function or subroutine, the keyword recursive must be placed on the procedure heading line. This version of the function returns a result of 1 for a negative value of $n$ for which the mathematical factorial function $n$ ! is undefined. Another alternative is to treat a negative argument as an error, but returning 1 keeps the example simple.

This program illustrates something often called tail recursion, which means that the only recursive call occurs as the very last step in the computation of the procedure. It is always easy to turn a process involving only tail recursion into an iterative process. Here is the iterative version of the factorial function.

```
function factorial(n) result(factoria1_result)
 integer, intent(in) :: n
 integer :: factorial_result
integer :: i
factorial_result = 1
do i = 2, n
 factorial_result = i * factorial_result
end do
```

end function factorial

Note that the do loop will be executed zero times for any value of $n$ that is less than 2 , so that the value of 1 will be returned in these cases.

### 3.15.2 The Fibonacci Sequence

This next example illustrates not only the use of recursion when an iterative program would do as well, but a case in which a decision to implement a program based on a recursive definition yields an algorithm that has very poor running time, even if recursive function calls had no overhead.

The Fibonacci sequence $1,1,2,3,5,8,13,21,34, \ldots$, arises in such diverse applications as the number of petals in a daisy, the maximum steps it takes to recognize a sequence of characters, and the most pleasing proportions for a rectangle, the "golden section" of Renaissance artists and mathematicians. It is defined by the relations

$$
\begin{aligned}
& f(1)=1 \\
& f(2)=1 \\
& f(n)=f(n-1)+f(n-2) \quad \text { for } n>2
\end{aligned}
$$

Starting with the third term, each Fibonacci number is the sum of the two previous Fibonacci numbers. Naive incorporation of the recurrence relation in a recursive function program is very easy, but produces an execution time disaster for all but the smallest values of $n$.

```
recursive function fibonacci(n) &
 result(fibonacci_result)
 integer, intent(in) :: n
 integer :: fibonacci_result
 if (n <= 2) then
 fibonacci_result = 1
 else
 fibonacci_result = fibonacci(n - 1) + &
 fibonacci(n - 2)
 end if
```

end function fibonacci

If the function is used to calculate $f(7)$, for example, the recursive calls request computation of $f(6)$ and $f(5)$. Then the computation of $f(6)$ again calls for the computation of $f(5)$ as well as $f(4)$. Thus, values of $f$ are computed over and over with the same argument. In fact, the number of recursive function calls resulting from a single call to fibonacci ( n ) exceeds the answer, which is approximately $0.447 \times 1.618^{n}$. The execution time of this function is called exponential because it depends on a number greater than 1 raised to the nth power.

To make this computation much more efficient, values of $f$ must be saved and reused when needed, rather than being recomputed. The next function to compute the Fibonacci sequence is iterative rather than recursive. It uses the variables f_i and f_i_minus_1 to hold the two most recently computed values of $f$ and is iterative rather than recursive.

```
function fibonacci(n) &
 result(fibonacci_result)
 integer, intent(in) :: n
 integer :: fibonacci_result
 integer :: f_i, save_f_i, i, f_i_minus_1
if (n <= 2) then
 fibonacci_result = 1
else
 f_i_minus_1 = 1
 f_i = 1
 do i = 3, n
 save_f_i = f_i
 f_i = f_i + f_i_minus_1
 f_i_minus_1 = save_f_i
 end do
 fibonacci_result = f_i
end if
```

end function fibonacci

Although it may not be obvious at first glance why one must save the value of $f_{-} i$ in a variable save_f_i and only later copy it to f_i_minus_1, this function is by far more time and space efficient than the previous version. The speed increase is so dramatic that it is worth having a couple of lines of code that are not completely obvious.

### 3.15.3 The Towers of Hanoi

According to legend, there is a temple in Hanoi that contains a ritual apparatus consisting of 3 posts and 64 gold disks of graduated size that fit on the posts. When the temple was built, all 64 gold disks were placed on the first post with the largest on the bottom and the smallest on the top, as shown schematically in Figure 3-1. It is the sole occupation of the priests of the temple to move all the gold disks systematically until all 64 gold disks are on the third post, at which time the world will come to an end.


Figure 3-1 The towers of Hanoi
There are only two rules that must be followed:

1. Disks must be moved from post to post one at a time.
2. A larger disk may never rest on top of a smaller disk on the same post.

A smaller version of this apparatus with only eight disks made of plastic is sold as a recreational puzzle. The sequence of moves necessary to solve the simpler puzzle is not obvious and often takes hours to figure out. We propose to write a simple recursive procedure hanoi that prints complete directions for moving any number of disks from one post to another.

The recursive procedure hanoi is based on the following top-down analysis of the problem. Suppose $n$ disks are to be moved from a starting post to a final post. Because the largest of these $n$ disks can never rest on a smaller disk, at the time the largest disk is moved, all $n-1$ smaller disks must be stacked on the free middle post as shown in Figure 3-2.


Figure 3-2 Locations of the disks when the largest disk is to be moved
For the number of disks $n>1$, the algorithm has 3 steps.

1. Legally move the top $n-1$ disks from the starting post to the free post.
2. Move the largest disk from the starting post to the final post.
3. Legally move the $n-1$ disks from the free post to the final post.

The middle step involves printing a single move instruction. The first and third steps represent simpler instances of the same problem-simpler in this case because fewer disks must be moved. Therefore, the first and third steps may be handled by recursive procedure calls. In case $n=0$, there are no instructions to be printed, and this provides a nonrecursive path through the procedure for the simplest case. The F subroutine hanoi, its test program test_hanoi, and a sample execution output for four disks are shown. It is not easy to write an iterative version of this program.

```
module hanoi_module
 public :: hanoi
contains
recursive subroutine hanoi(number_of_disks, &
 starting_post, goal_post)
 integer, intent(in) :: &
 number_of_disks, starting_post, goa1_post
 integer :: free_post
 ! al1_posts is the sum of the post values 1+2+3
 ! so that the free post can be determined
 ! by subtracting the starting_post and the
 ! goal_post from this sum.
 integer, parameter :: al1_posts = 6
if (number_of_disks > 0) then
 free_post = &
 al1_posts - starting_post - goal_post
 call hanoi(number_of_disks - 1, &
 starting_post, free_post)
 print *, "Move disk", number_of_disks, &
 "from post", starting_post, &
 "to post", goal_post
 ca11 hanoi(number_of_disks - 1, &
 free_post, goal_post)
```

```
 end if
end subroutine hanoi
end module hanoi_module
program test_hanoi
 use hanoi_module
 integer :: number_of_disks
 read *, number_of_disks
 print *, "Input data number_of_disks:", &
 number_of_disks
 print *
 ca11 hanoi(number_of_disks, 1, 3)
end program test_hanoi
Input data number_of_disks: 4
Move disk 1 from post 1 to post 2
Move disk 2 from post 1 to post 3
Move disk 1 from post 2 to post 3
Move disk }3\mathrm{ from post 1 to post 2
Move disk 1 from post 3 to post 1
Move disk 2 from post 3 to post 2
Move disk 1 from post 1 to post 2
Move disk 4 from post 1 to post 3
Move disk 1 from post 2 to post 3
Move disk 2 from post 2 to post 1
Move disk 1 from post 3 to post 1
Move disk 3 from post 2 to post 3
Move disk 1 from post 1 to post 2
Move disk 2 from post 1 to post 3
Move disk 1 from post 2 to post 3
```


### 3.15.4 Indirect Recursion

It is possible for procedures a and b to be indirectly recursive in the sense that a calls $b$ and $b$ calls $a$. An example of this kind of recursion occurs in the function term in 5.3 .

### 3.15.5 Exercises

1. Write a recursive function $b c(n, k)$ to compute the binomial coefficient $\binom{n}{k}, 0 \leq k \leq n$, using the relations

$$
\begin{aligned}
& \binom{n}{0}=1 \\
& \binom{n}{n}=1 \\
& \binom{n}{k}=\binom{n-1}{k-1}+\binom{n-1}{k} \quad \text { for } 0<k<n
\end{aligned}
$$

2. Write an efficient program to compute the binomial coefficient $\binom{n}{k}$.
3. The following recurrence defines $f(n)$ for all nonnegative integer values of $n$.

$$
\begin{aligned}
& f(0)=0 \\
& f(1)=f(2)=1 \\
& f(n)=2 f(n-1)+f(n-2)-2 f(n-3) \quad \text { for } n>2
\end{aligned}
$$

Write a function f to compute $f(n), n \geq 0$. Also have your program verify that for $0 \leq n \leq 1000, f(n)=\left[(-1)^{n+1}+2^{n}\right] / 3$.
4. For positive integers $a$ and $b$, the greatest common divisor of $a$ and $b$ satisfies the following recurrence relationship:

$$
\begin{aligned}
& \operatorname{gcd}(a, b)=b \quad \text { if } a \bmod b=0 \\
& \operatorname{gcd}(a, b)=\operatorname{gcd}(b, \mathrm{a} \bmod b) \quad \text { if } a \bmod b \neq 0
\end{aligned}
$$

Write a recursive function $\operatorname{gcd}(a, b)$ using these recurrences. Test the program by finding $\operatorname{gcd}(24,36), \operatorname{gcd}(16,13), \operatorname{gcd}(17,119)$, and $\operatorname{gcd}(177,228)$.

### 3.16 Case Study: Adaptive Numerical Integration

To illustrate a very effective use of recursion to solve a problem of central importance in numerical computing, let us return to the program integrate from 3.13 that computes an approximation to a definite integral

$$
\int_{a}^{b} f(x) d x
$$

that represents the area bounded by the lines $x=a, x=b, y=0$, and the curve $y=f(x)$, by a sum of the areas of $n$ trapezoids, each of width $h$. The program used a function integral that takes arguments that are a function, the lower and upper limits of integration, and an integer that indicates the number of intervals to be used to form the approximating sum. The example in 3.13 computes

$$
\text { integral(sine, } a=0.0, b=3.14159, n=100 \text { ) }
$$

passing the function sine to be integrated as the first argument to the function integral.

Now suppose we want to integrate a function such as

$$
f(x)=e^{-x^{2}}
$$

Instead of using the previous version of the function integra1, a slightly more sophisticated recursive function is used because decreasing the width of each trapezoid may not be the most efficient way to improve the accuracy of a trapezoidal approximation. In regions where the curve $y=f(x)$ is relatively straight, trapezoids approximate the area closely, and further reductions in the width of the trapezoids produces little further reduction in the error, which is already small. In regions where the curve $y=f(x)$ bends sharply, on the other hand, the area under the curve is approximated less well by trapezoids, and it would pay to concentrate the extra work of computing the areas of thinner trapezoids in such regions.

Another advantage of the function integral in this section is that it takes as input argument the maximum permitted error in the answer, rather than the number of subdivisions, whose relationship to the error in the answer is hard to predict in general.

The recursive function integral written in this section uses an adaptive trapezoidal method of approximating the area under a curve, requesting extra calculations through a recursive call only in those regions where the approximation by trapezoids is not yet sufficiently accurate.

Mathematicians tell us that the error $E(h)$ in approximating the area of the almost rectangular region with top boundary $y=f(x)$ by the area of one trapezoid is approximately $-1 / 12 f^{\prime \prime}(c) h^{3}$, where $h$ is the width of the trapezoid, and $c$ is some $x$ value in the interval, whose exact location may not be known, but which matters little because for reasonable functions $f^{\prime}(x)$ varies little over a small interval of width $h$. The dependence of $E(h)$ on $h^{3}$ shows why the error drops rapidly as $h$ decreases, and the dependence of $E(h)$ on $f^{\prime}(c)$ shows why the error is smaller
when $f^{\prime \prime}(x)$ is smaller, at places such as near inflection points (where the tangent line crosses the curve) where $f^{\prime}(x)=0$. If the same region is approximated by the sum of the areas of two trapezoids, each of width $h / 2$, the error in each of them is approximately $-1 / 12 f^{\prime}\left(c_{1}\right)(h / 2)^{3}$, or $1 / 8 E(h)$, if we assume $f^{\prime}(x)$ changes little over such a small interval so that $f^{\prime}(c) \sim f^{\prime}\left(c_{1}\right)$. Since there are two trapezoids, the total error $E(h / 2)$ is approximately $E(h) / 4$. If $T(h)$ and $T(h / 2)$ are the two trapezoidal approximations and $I$ is the exact integral, we have approximately

$$
\begin{aligned}
T(h / 2)= & (I-E(h / 2))-(I-E(h)) \\
& =-E(h / 2)+E(h) \\
& =-E(h / 2)+4 E(h / 2) \\
& =3 E(h / 2)
\end{aligned}
$$

This formula provides a way to check whether the trapezoidal approximations are better than a specified error tolerance. Since

$$
|E(h / 2)|=\frac{1}{3}|T(h / 2)-T(h)|
$$

approximately, the two-trapezoid approximation is sufficiently accurate if

$$
\frac{1}{3}|T(h / 2)-T(h)|<\text { tolerance }
$$

If not, then the error tolerance is split in two, and the adaptive trapezoidal function integral is called again to approximate the area of each half of the region to within half of the original error tolerance. Thus, only regions where the approximation error is still large are further subdivided.

```
module integra1_modu7e
 pub1ic :: integra1
contains
recursive function integral(f, a, b, tolerance) &
 result(integral_result)
 intrinsic :: abs
 interface
 function f(x) result(f_result)
 real, intent(in) :: x
```

```
 real :: f_result
 end function f
end interface
real, intent(in) :: a, b, tolerance
rea1 :: integral_result
real :: h, mid
real :: one_trapezoid_area, two_trapezoid_area
real :: 1eft_area, right_area
```

$\mathrm{h}=\mathrm{b}-\mathrm{a}$
$\operatorname{mid}=(a+b) / 2$
one_trapezoid_area $=h *(f(a)+f(b)) / 2.0$
two_trapezoid_area $=h / 2 *(f(a)+f(m i d)) / 2.0+\&$
$h / 2 *(f(m i d)+f(b)) / 2.0$
if (abs(one_trapezoid_area - two_trapezoid_area) \&
< 3.0 * tolerance) then
integral_result = two_trapezoid_area
else
1eft_area $=$ integral(f, a, mid, tolerance / 2)
right_area $=$ integral (f, mid, b, tolerance / 2)
integral_result = 1eft_area + right_area
end if
end function integral
end module integral_module
To test the function integra1, we write a small test program and a function subprogram $f$. The test program will evaluate

$$
\int_{-4}^{4} e^{-x^{2}} d x
$$

to an accuracy of 0.01 . The curve $y=e^{-x^{2}}$ is an unnormalized error distribution function, used extensively in probability and statistics. Its integral is $\sqrt{\pi}$ (approximately 1.772454). It is assumed that function_ module contains a function f that evaluates $f(x)=e^{-x}$.
program integrate

```
use function_module
use integral_module
use math_module, on7y : pi
rea1 :: x_min, x_max
real :: answer
```

```
x_min = -4.0
x_max = 4.0
answer = integra1(f, x_min, x_max, 0.01)
print "(a, f11.6)", &
 "The integral is approximately ", &
 answer
print "(a, f11.6)", &
 "The exact answer is ", &
 sqrt(pi)
end program integrate
```

The integral is approximately 1.777074
The exact answer is 1.772454

Because the modules integral_modu7e and math_module both might be useful in contexts other than with this simple test program, it makes sense to keep them separate. When parts of a program are kept in separate files, the process of compiling and running the program could be a little more complicated, although how this is done depends on the system being used. In any case, it is important to ensure that the current version of each piece of the program is the one that is used. Many systems have programs, such as make, that help with this task.


Figure 3-3 Approximating trapezoids used to calculate the integral of $e^{-x^{2}}$
Comparing the adaptive trapezoidal approximation to the exact answer, we see that the difference is approximately 0.0046 , which is less than the specified error tolerance 0.01 . Figure $3-3$ shows the ap-
proximating trapezoids used between $x=-2$ and $x=+2$ to obtain the answer; trapezoids not shown have boundary points at $x=-4,-3,-2,2,3$, and 4. Notice that more trapezoids are required to keep within the error tolerance in the highly curved regions near the maximum of the function and where it first approaches zero than are required in the relatively straight regions near the two inflection points where the curve switches from concave upward to concave downward.

### 3.16.1 Exercises

1. Determine the number of trapezoids needed to evaluate

$$
\int_{-4}^{4} e^{-x^{2}} d x
$$

to an accuracy of 0.01 using the nonadaptive integration function discussed in 3.13.
2. Determine the approximate value of

$$
\int_{0}^{2 \pi}\left(e^{x}-\sin 2 x\right) d x
$$

using both the adaptive integration method of this section and the nonadaptive integration method discussed in 3.13. The area under the curve $y=f(x)$ between $x=a-h$ and $x=a+h$ may be approximated by the area under a parabola passing through the three points ( $a-$ $h, f(a-h)),(a, f(a))$, and $(a+h, f(a+h))$. The approximation, called Simpson's approximation, is given by the formula

$$
\int_{a-h}^{a+h} f(x) d x=\frac{h}{3}[f(a-h)+4 f(a)+f(a+h)]
$$

with error $-1 / 90 f^{\prime \prime \prime}(c) h^{5}$ for some $c$ in the interval of integration.
Use these facts to write a recursive adaptive Simpson's approximation function patterned on the adaptive trapezoidal approximation function integral in this section. Compare the number of recursive function calls for your adaptive Simpson's approximation function with the number required to achieve the same accuracy with the adaptive trapezoidal rule.

### 3.17 Bit Intrinsic Procedures

Sometimes it is convenient to be able to manipulate the individual bits of an F integer value. One example might involve using the bits of a large array of integers to represent the states of the components of an
electronic circuit. The following example uses only two integer values to store and manipulate bits just to see how things work.

The bits of integer value are numbered right to left starting with bit 0 on the right; the integer is assumed to be stored using a binary representation. The first executable statement of the program starts with integer value 0 , whose bits are all 0 , and sets bit 3 to 1 using the intrinsic function bset. Then bit two is also set by immediately calling bset again and the result is saved as the value of b1100. Since the decimal equivalent of binary 1100, which has bits 3 and 2 set, is 12 , the result of this assignment is the same as setting the variable b1100 to 12. Similarly, bits 3 and 1 of b1010 are set, resulting in b1010 having the value 10.

This is all verified by printing b1100 as an integer and using the intrinsic function btest to check which of the bits $3,2,1$, and 0 of b1100 and b1010 are set. Similar print statements are used to show the values of ior and iand applied to these two values.

```
program bits
```

```
integer :: b1100, b1010
character(len=*), parameter :: &
 form = "(a15, 412)"
integer :: k
b1100 = ibset(ibset(0,3),2)
b1010 = ibset(ibset(0,3),1)
print *, "The integer value of b1100 is", b1100
print *
print form, "b1100", &
 (btest(b1100, k), k = 3, 0, -1)
print form, "b1010", &
 (btest(b1010, k), k = 3, 0, -1)
print form, "Logical or", &
 (btest(ior(b1100,b1010), k), k = 3, 0, -1)
print form, "Logical and", &
 (btest(iand(b1100,b1010), k), k = 3, 0, -1)
end program bits
```

Running this program produces output that illustrates how logical or and logical and are computed.

The integer value of b1100 is 12

> b1100 T T T F F b1010 T Log T Logical or T Lo T and

The other bit intrinsic procedures are ibclr, which sets a bit to 0 , ieor, which computes exclusive or, ishft and ishftc which perform end-off and circular shifts, not, which complements the bits of its argument, and the mvbits subroutine, which copies bits from one integer to another.

### 3.17.1 Exercise

1. Write a function number_of_bits(n) that counts the number of bits in an integer argument $n$ that are 1 . Test the function by printing its values for $n=-16,-15, . .,-2,-1,0,1,2, \ldots, 16$. Also print the values of the function for huge( $n$ ) and -huge( $n$ ).

128 Modules and Procedures

## Arrays

In ordinary usage, a list is a sequence of values, usually all representing data of the same kind, or otherwise related to one another. A list of students registered for a particular course and a list of all students enrolled at a college are examples.

In F, a collection of values of the same type is called an array. We will also refer to a one-dimensional array as a "list". Frequently, the same operation or sequence of operations is performed on every element in an array. On a computer that performs one statement at a time, it makes sense to write such programs by specifying what happens to a typical element of the array and enclosing these statements in a sufficient number of do constructs (loops) to make them apply to every element. F also has powerful operations and intrinsic functions that operate on whole arrays or sections of an array. Programs written using these array operations are often clearer and are more easily optimized by F compilers. Especially on computers with parallel or array processing capabilities, such programs are more likely to take advantage of the special hardware to increase execution speed.

### 4.1 Declaring and Using Arrays in F

We introduce the use of arrays with an example involving credit card numbers.

### 4.1.1 A Credit Card Checking Application

As an example of a problem that deals with a list, suppose that a company maintains a computerized list of credit cards that have been reported lost or stolen or that are greatly in arrears in payments. The company needs a program to determine quickly whether a given credit card, presented by a customer wishing to charge a purchase, is on this list of credit cards that can no longer be honored.

Suppose that a company has a list of 8262 credit cards reported lost or stolen, as illustrated in Table 4-1.

Table 4-1 Lost credit cards

Account number of 1st lost credit card	2718281
Account number of 2nd lost credit card	7389056
Account number of 3rd lost credit card	1098612
Account number of 4th lost credit card	5459815
Account number of 5th lost credit card	1484131
.	.
.	.
Account number of 8262 nd lost credit card	1383596

Since all of the 8262 numbers in the list must be retained simultaneously in the computer's main memory for efficient searching, and since a simple (scalar) variable can hold only one value at a time, each number must be assigned as the value of a variable with a different name so that the computer can be instructed to compare each account number of a lost or stolen card against the account number of the card offered in payment for goods and services.

### 4.1.2 Subscripts

It is possible to use variables with the 8262 names

```
1ost_card_1
1ost_card_2
1ost_card_3
 .
.
.
1ost_card_8262
```

to hold the 8262 values. Unfortunately, the F language does not recognize the intended relationship between these variable names, so the search program cannot be written simply. The F solution is to declare a single object name lost_card that consists of many individual integer values. The entire collection of values may be referenced by its name

1ost_card and individual card numbers in the list may be referenced by the following names:

```
lost_card(1)
1ost_card(2)
1ost_card(3)
 .
1ost_card(8262)
```

This seemingly minor modification of otherwise perfectly acceptable variable names opens up a new dimension of programming capabilities. All the programs in this chapter, and a large number of the programs in succeeding chapters, use arrays.

The numbers in parentheses that specify the location of an item within a list (or array) are subscripts, a term borrowed from mathematics. Although mathematical subscripts are usually written below the line (hence the name), such a form of typography is impossible on most computer input devices. A substitute notation, enclosing the subscript in parentheses or brackets, is adopted in most computer languages. It is customary to read the expression $x(3)$ as " $x$ sub 3 ", just as if it were written $x_{3}$.

The advantage of this method of naming the quantities over using the variable names 1ost_card_1, lost_card_2, ..., 1ost_card_8262 springs from the following programming language capability: The subscript of an array variable may itself be a variable, or an even more complicated expression.

The consequences of this simple statement are much more profound than would appear at first sight.

For a start in describing the uses of a subscript that is itself a variable, the two statements

```
i = 1
print *, lost_card(i)
```

produce exactly the same output as the single statement

```
print *, lost_card(1)
```

namely, 2718281, the account number of the first lost credit card on the list. The entire list of account numbers of lost credit cards can be printed by the subroutine print_lost_cards.

```
subroutine print_lost_cards(lost_card)
 integer, dimension(:), intent(in) :: lost_card
 integer :: i
 do i = 1, 8262
 print *, lost_card(i)
end do
```

end subroutine print_lost_cards

As an example of an array feature in F, the collection of card numbers as a whole can be referenced by its name and so the do construct can be replaced by the one statement

```
print *, lost_card
```

The replacement just made actually creates a different output. The difference is that using the do loop to execute a print statement 8262 times causes each card number to be printed on a separate line. The new version indicates that as many as possible of the card numbers should be printed on one line, which might not produce acceptable output. Adding a simple format for the print statement instead of using the default produces a more desirable result, printing four card numbers per line.
print "(4i8)", lost_card

This is a little better, but another problem is that the number of lost and stolen cards varies daily. The subroutine will not be very useful if it makes the assumption that there are exactly 8262 cards to be printed each time. The declaration of an array-valued dummy argument indicates the number of subscripts, but does not fix the size of the dummy array.

```
integer, dimension(:), intent(in) :: lost_card
```

The colon indicates that the size of the array lost_card is to be assumed from the array that is the actual argument given when the subroutine is called. Also, this passed-on size can be used to print the entire list of cards using the intrinsic function size.

```
do i = 1, size(lost_card)
 print *, lost_card(i)
end do
```

The result would be a general subroutine for printing a list of integers.

### 4.1.3 Array Declarations

The name of an array must obey the same rules as an ordinary variable name. Each array must be declared in the declaration section of program, module, or procedure. A name is declared to be an array by putting the dimension attribute in a type statement followed by a range of subscripts, enclosed in parentheses. For example,

```
real, dimension(1:9) :: x, y
logical, dimension(-99:99) :: yes_no
```

declares that $x$ and $y$ are lists of 9 real values and that yes_no is a list of 199 logical values. These declarations imply that a subscript for x or $y$ must be an integer expression with a value from 1 to 9 and that a subscript for yes_no must be an integer expression whose value is from -99 to +99 .

In a function or subroutine, the range of a dummy argument consists of just the colon, possibly preceded by a lower bound, and the subscript range is determined by the corresponding actual argument passed to the procedure. This sort of dummy argument is called an as-sumed-shape array. If no lower bound is given, the subscript range is from 1 to the size of the array, in each dimension.

```
subroutine s(d)
 integer, dimension(:, :, 0:), intent(in) :: d
```

In this case, the subscripts on the dummy array d range from 1 to size ( $d, 1$ ) for the first subscript, from 1 to $\operatorname{size}(d, 2)$ for the second, and from 0 to size $(d, 3)-1$ for the third.

A list of character strings may be declared in a form like the following:

```
character(1en=8), dimension(0:17) :: char_1ist
```

In this example, the variable char_7ist is a list of 18 character strings, each of length 8 .

If char_1ist were a dummy argument, its length must be "*" and its subscripts must be ":", so its declaration would be

```
character(len=*), dimension(:), &
 intent(in out) :: char_list
```

The shape of an array is a list of the number of elements in each dimension. A $9 \times 7$ array has shape (9,7); the array char_7ist declared above has shape (18); and the array declared by

```
integer, dimension(9, 0:99, -99:99) :: iii
```

has shape $(9,100,199)$. When only one number is given in a dimension declaration in place of a subscript range, it is used as the upper subscript bound and the lower bound is 1 .

The shape of a scalar is a list with no elements in it. The shape of a scalar or array can be computed using the shape intrinsic function.

The declaration of a local array also may use values of other dummy arguments or values in its host (program or module) to establish extents and hence the shape of the array; such arrays are called automatic arrays. For example, the statements

```
subroutine s2(dummy_list, n, dummy_array)
 real, dimension(:) :: dummy_list
 real, dimension(size(dummy_1ist)) :: loca1_1ist
rea1, dimension(n, n) :: dummy_array, loca1_array
real, dimension(2*n+1) :: longer_local_list
```

declare that the size of dummy_1ist is to be the same as the size of the corresponding actual argument, that the array local_1ist is to be the same size as dummy_1ist, and that dummy_array and loca1_array are both to be two-dimensional arrays with $\mathrm{n} \times \mathrm{n}$ elements. The last declaration shows that some arithmetic on other dummy arguments is permitted in calculating array bounds; these expressions may include references to certain intrinsic functions, such as size and user-defined functions, in some circumstances (4.1.12).

If an array is declared outside a procedure, it must either be declared with constant fixed bounds or be declared to be allocatable or pointer and be given bounds by the execution of an allocate statement (4.1.5) or a pointer assignment (8.1.1). In the first case, our lost and stolen card program might contain the declaration

```
integer, dimension(8262) :: lost_card
```

This is not satisfactory if the number of lost cards changes frequently. In this situation, one solution is to declare the array to have a sufficiently large upper bound so that there will always be sufficient space to hold the card numbers. Because the upper bound is fixed, there must be a variable whose value is the actual number of cards lost. Assuming that the list of lost credit cards is stored in a file connected to
the standard input unit (unit=*), the following program fragment reads, counts, and prints the complete list of lost card numbers. The read statement has an iostat keyword argument whose value is set to zero if no error occurs and is set to a negative number if there is an attempt to read beyond the last data item in the file. In the program read_cards, the longer form of the read statement is required by the use of iostat (9.2.8).

```
program read_cards
integer, dimension(20000) :: lost_card
integer :: number_of_lost_cards, i, iostat_var
do i = 1, 20000
 read (unit=*, fmt=*, iostat=iostat_var) lost_card(i)
 if (iostat_var < 0) then
 number_of_1ost_cards = i - 1
 exit
 end if
end do
print "(4i8)", lost_card(1:number_of_lost_cards)
end program read_cards
```

Although the array 1ost_card is declared to have room for 20,000 entries, the print statement limits output to only those lost card numbers that actually were read from the file by specifying a range of subscripts 1: number_of_lost_cards (see 4.1.6 for details about this notation).

### 4.1.4 Array Constructors

Rather than assign array values one by one, it is convenient to give an array a set of values using an array constructor. An array constructor is a sequence of scalar values defined along one dimension only. An array constructor is a list of values, separated by commas and delimited by the pair of two-character symbols " (/" and "/)". There are three possible forms for the array constructor values:

1. A scalar expression as in

$$
x(1: 4)=(/ 1.2,3.5,1.1,1.5 /)
$$

2. An array expression as in

$$
x(1: 4)=(/ a(i, 1: 2), a(i+1,2: 3) /)
$$

3. An implied do loop as in

$$
x(1: 4)=(/(\operatorname{sqrt}(\operatorname{rea}(i)), i=1,4) /)
$$

If there are no values specified in an array constructor, the resulting array is zero sized. The values of the components must have the same type and type parameters (kind and length). The rank of an array constructor is always one; however, the reshape intrinsic function can be used to define rank-two to rank-seven arrays from the array constructor values. For example,
reshape $\left(\begin{array}{ll}(/ 1,2,3,4,5,6 /),(/ 2,3 /)) \\ \text { is the } 2 \times 3 \text { array } & {\left[\begin{array}{lll}1 & 3 & 5 \\ 2 & 4 & 6\end{array}\right]}\end{array}, \quad l\right.$
An implied do list is a list of expressions, followed by something that is like an iterative control in a do statement. The whole thing is contained in parentheses. It represents a list of values obtained by writing each member of the list once for each value of the do variable replaced by a value. For example, the implied do list in the array constructor above

```
(sqrt(rea1(i)), i=1,4)
```

is the same as the list

```
sqrt(real(1)), sqrt(real(2)),
sqrt(real(3)), sqrt(real(4))
```

A do variable must be an integer variable declared in the program or procedure where it is used. It must not be an array element. or a component of a structure (6). It must not be a dummy argument. It must not have the pointer or target attribute (8.1). An implied do also can be used in an input/output list (9.3.3).

### 4.1.5 Dynamic Arrays

Dynamic storage allocation means that storage may be allocated or deallocated for variables during execution of the program. With dynamic storage allocation, the program can wait until it knows during execution exactly what size array is needed and then allocate only that much space. Memory also can be deallocated dynamically, so that the storage used for a large array early in the program can be reused for other large arrays later in the program after the values in the first array are no longer needed.

For example, instead of relying on an end-of-file condition when reading in the list of lost cards, it is possible to keep the numbers stored in a file with the number of lost cards as the first value in the file, such as

8262
2718281
7389056
1098612
5459815
1484131
.

1383596
The program can then read the first number, allocate the correct amount of space for the array, and read the lost card numbers.

```
integer, dimension(:), allocatable :: lost_card
integer :: number_of_lost_cards
integer :: allocation_status
! The first number in the file is
! the number of lost card numbers in the
! rest of the file.
read *, number_of_lost_cards
allocate (lost_card(number_of_lost_cards), &
 stat=allocation_status)
if (allocation_status > 0) then
 print *, "Allocation error"
 stop
end if
! Read the numbers of the lost cards
read "(i7)", lost_card
```

In the declaration of the array lost_card, the colon is used to indicate the rank (number of dimensions) of the array, but the bound is not pinned down until the allocate statement is executed. The allocatable attribute indicates that the array is to be allocated dynamically. Because the programmer doesn't know how many lost cards there will be, there is no way to tell the compiler that information. During execu-
tion, the system must be able to create an array of any reasonable size after reading from the input data file the value of the variable number_of_1ost_cards.

If there is an allocation error (insufficient memory, for example), the variable allocation_status is set to a positive value, which may be tested by the programmer.

The component of a derived type (6.2) and a function result (3.6.1) may be allocatable.

The deallocate statement may be used to free the allocated storage. Arrays declared allocatable in a procedure are deallocated when execution of the procedure is completed, if the array is allocated.

### 4.1.6 Array Sections

In the following statement, used in the program read_cards, a section of the array lost_card is printed.

```
print "(4i8)", lost_card(1:number_of_lost_cards)
```

On many occasions such as the one above, only a portion of the elements of an array is needed for a computation. It is possible to refer to a selected portion of an array, called an array section. A parent array is an aggregate of array elements, from which a section may be selected.

In the following example

```
rea1, dimension(10) :: a
a(2:5) = 1.0
```

the parent array a has 10 elements. The array section consists of elements $a(2), a(3), a(4)$, and $a(5)$. The section is an array itself and the value 1.0 is assigned to all four of the elements in $\mathrm{a}(2: 5)$.

In addition to the ordinary subscript that can select a subobject of an array, there are two other mechanisms for selecting certain elements along a particular dimension of an array. One is a subscript triplet, and the other is a vector subscript.

The syntactic form of a subscript triplet is

```
[expression] : [expression] [: expression]
```

where each set of brackets encloses an optional item and each expression must produce a scalar integer value. The first expression gives a lower bound, the second an upper bound, and the third a stride. If the lower bound is omitted, the lower bound that was declared or allocated is used. (Note that an assumed-shape dummy array is treated as if it
were declared with lower bound 1 unless a lower bound is given explicitly.) If the upper bound is omitted, the upper bound that was declared or allocated is used. If the declared bounds are :, the number of elements in each dimension is the size in that dimension. The stride is the increment between the elements in the section referenced by the triplet notation. If omitted, it is assumed to be one. For example, if $v$ is a one-dimensional array (list) of ten numbers

$$
v(0: 4)
$$

represents elements $v(0), v(1), v(2), v(3)$, and $v(4)$ and

$$
v(3: 7: 2)
$$

represents elements $v(3), v(5)$, and $v(7)$.
Each expression in the subscript triplet must be scalar. The values of any of the expressions in triplet notation may be negative. The stride must not be zero. If the stride is positive, the section is from the first subscript up to the second in steps of the stride. If the stride is negative, the section is from the first subscript down to the second, decrementing by the stride.

Another way of selecting a section of an array is to use a vector subscript. A vector subscript is an integer array expression of rank one. For example, if $\mathrm{i} v$ is a list of three integers, 3,7 , and 2 , and x is a list of 9 real numbers $1.1,2.2, \ldots, 9.9$, the value of $x(i v)$ is the list of three numbers 3.3, 7.7, and 2.2 -the third, seventh, and second elements of $x$.

Ordinary subscripts, triplets, and vector subscripts may be mixed in selecting an array section from a parent array. An array section may be empty.

Consider a more complicated example. If b were declared in a type statement as

```
rea1, dimension(10, 10, 5) :: b
```

then $b(1: 4: 3,6: 8: 2,3)$ is a section of $b$, consisting of four elements:

$$
\begin{array}{ll}
b(1,6,3) & b(1,8,3) \\
b(4,6,3) & b(4,8,3)
\end{array}
$$

The stride along the first dimension is 3 ; therefore, the notation references the first subscripts 1 and 4 . The stride in the second dimension is 2 , so the second subscript varies by 2 and takes on values 6 and 8 . In the third dimension of $b$, there is no triplet notation, so the third sub-
script is 3 for all elements of the section. The section would be one that has a shape of $(2,2)$, that is, it is two dimensional, with extents 2 and 2.

To give an example using both triplet notation and a vector subscript suppose again that $b$ is declared as above:

```
rea1, dimension(10, 10, 5) :: b
```

then $b(8: 9,5,(/ 4,5,4 /))$ is a $2 \times 3$ array consisting of the six values

```
b(8, 5, 4) b(8, 5, 5) b(8, 5, 4)
b(9, 5, 4) b(9, 5, 5) b(9, 5, 4)
```

If $v s$ is a list of three integers, and $v s=(/ 4,5,4 /)$, the expression $b(8: 9,5, v s)$ would have the same value as $b(8: 9,5,(/ 4,5,4 /))$. The expression $b(8: 9,5, v s)$ cannot occur on the left side of an assignment because of the duplication of elements of $b$.

The pack and unpack intrinsic functions (A.8.6) may be useful in similar situations. As one simple example, the following program prints the positive elements of the array: 3,7 , and 4 .

```
program print_pack
integer, dimension(6) :: x = (/3, -7, 0, 7, -2, 4/)
print *, pack(x, mask = (x > 0))
end program print_pack
```


### 4.1.7 Array Assignment

Array assignment assigns values to a collection of array elements. A simple example is

```
rea1, dimension(100, 100) :: a
a = 0
```

Array assignment is permitted under two circumstances: when the array expression on the right has exactly the same shape as the array on the left, and when the expression on the right is a scalar. The term for this is that the expression on the right of the equals is conformable to the variable on the left. Note that, for example, if a is a $9 \times 9$ array, the section $a(2: 4,5: 8)$ is the same shape as $a(3: 5,1: 4)$, so the assignment

$$
a(2: 4,5: 8)=a(3: 5,1: 4)
$$

is valid, but the assignment

$$
a(1: 4,1: 3)=a(1: 3,1: 4)
$$

is not valid because. even though there are 12 elements in the array on each side of the assignment, the left side has shape $(4,3)$ and the right side has shape $(3,4)$.

When a scalar is assigned to an array, the value of the scalar is assigned to every element of the array. Thus, for example, the statement

$$
m(k+1: n, k)=0
$$

sets the elements $m(k+1, k), m(k+2, k), \ldots, m(n, k)$ to zero.

### 4.1.8 The where Construct

The where construct may be used to assign values to only those elements of an array where a logical condition is true; thus, it is often called a masked array assignment. For example, the following statements set the elements of $b$ and $c$ to zero in those positions where the corresponding element of $a$ is negative. The other elements of $b$ and $c$ are unchanged. $a, b$, and $c$ must be arrays of the same shape.

```
where \((a<0)\)
 \(\mathrm{b}=0\)
 \(c=0\)
end where
```

The logical condition in parentheses is an array of logical values conformable to each array in the assignment statement. In the example above, comparison of an array of values with a scalar produces the array of logical values.

The where construct permits any number of array assignments to be done under control of the same logical array. el sewhere statements within a where construct permit array assignments to be done where the logical expression is false and to indicate other conditions to affect additional statements. A where construct may contain nested where constructs.

The following statements assign to the array a the quotient of the corresponding elements of $b$ and $c$ in those cases where the element of $c$ is not zero. In the positions where the element of $c$ is zero, the corresponding element of $a$ is set to zero and the zero elements of $c$ are set to 1 .

```
where (c /= 0) ! c/=0 is a logical array.
 a = b / c ! a and b must conform to c.
```

```
e1sewhere
 a = 0 ! The elements of a are set to 0
 where they have not been set to b/c.
 c = 1 ! The 0 elements of c are set to 1.
end where
```

The following program contains statements to set the array of integers key to $-1,0$, or 1 , depending on whether the corresponding element of the real array a is negative, zero, or positive, respectively. To see that the statements work correctly, the array a is filled with random numbers using the random_number subroutine. The values below the diagonal are negative; those above the diagonal are positive; and the diagonal is set to 0 .

```
program elsewhere_example
integer, parameter :: n=9
integer, dimension(n,n) :: key
integer :: i, j
rea1, dimension(n,n) :: a
ca11 random_number(a)
do i=1, n
 do j = 1, n
 if (i > j) then
 ! Put negative numbers below the diagonal
 a(i,j) = -a(i,j) - 2.0
 else if (i < j) then
 ! Put positive numbers above the diagonal
 a(i,j) = a(i,j) + 2.0
 else
 ! Put zeros on the diagonal
 a(i,j) = 0.0
 end if
 end do
end do
where (a > 0)
 key = 1
elsewhere (a < 0)
 key = -1
e1sewhere
 key = 0
end where
```

```
print "(9f5.1)", (a(i,:),i=1,9)
print *
print "(9i5)", (key(i,:),i=1,9)
end program elsewhere_example
```

Here is the result of one execution of the program.

0.0	2.6	2.8	2.3	2.1	2.5	2.3	2.5	2.3
-3.0	0.0	2.6	2.9	2.4	2.4	2.8	2.6	2.9
-2.3	-2.8	0.0	3.0	2.2	2.4	2.4	3.0	2.3
-2.9	-2.3	-2.2	0.0	2.7	2.6	2.6	2.9	2.9
-2.6	-2.2	-2.8	-2.3	0.0	2.1	2.5	2.5	2.5
-2.1	-2.9	-2.5	-2.3	-2.1	0.0	2.7	2.8	2.3
-2.3	-2.6	-2.9	-2.6	-2.9	-2.9	0.0	2.8	2.5
-2.8	-2.8	-3.0	-2.7	-2.9	-2.2	-2.9	0.0	2.7
-2.4	-2.1	-2.2	-2.1	-2.8	-2.8	-2.1	-2.6	0.0
0	1	1	1	1	1	1	1	1
-1	0	1	1	1	1	1	1	1
-1	-1	0	1	1	1	1	1	1
-1	-1	-1	0	1	1	1	1	1
-1	-1	-1	-1	0	1	1	1	1
-1	-1	-1	-1	-1	0	1	1	1
-1	-1	-1	-1	-1	-1	0	1	1
-1	-1	-1	-1	-1	-1	-1	0	1
-1	-1	-1	-1	-1	-1	-1	-1	0

Within a where construct, only array assignments, nested where constructs, and where statements are permitted. The shape of all arrays in the assignment statements must conform to the shape of the logical expression following the keyword where. The assignments are executed in the order they are written-first those in the where block, then those in the elsewhere block.

### 4.1.9 The fora11 Construct

The forall construct is much like a parallel array assignment, but it allows cases not permitted by array assignment where the arrays must be conformable. Here is an example.

```
program for_a11
integer :: i
integer, dimension(4) :: a, b
```

```
 a(4) = 9
 b(4) = 9
 fora11 (i = 1:3)
 a(i) = i
 b(i) = a(i+1)
 end foral1
 print *, a
 print *, b
end program for_a11
```

The output from this program is
1239
2399
The first thing to notice is that the assignments to the elements of a cannot be done with an array assignment. The second thing is that although the fora 11 construct looks a lot like a do construct, a significant difference is that in the fora 11 construct all of the assignments to the elements of a are completed before any assignments to elements of b. If this were not the case, there would be an attempt to assign values to $b$ from elements of $a$ that have no value. For example, if after assigning 1 to a(1), the assignment

$$
b(1)=a(2)
$$

were executed, a(2) would not have the value 2 that it has after assigning values to the first three elements of a.

It is possible to have two or more index control variables in one foral1 statement and it is possible to have a condition that may even involve the indices, something not possible with a where construct. This is illustrated by the following fora 11 construct that puts values on and above the diagonal of the array c.

```
program for_a112
 integer :: i, j
integer, dimension(3, 3) :: c = 0
foral1 (i = 1:3, j = 1:3, i<=j)
 c(i, j) = i + j
end foral1
```

```
 print "(3i5)", (c(i, :), i=1,3)
end program for_a112
 2 3 4
 0 4 5
 0 0 6
```

A fora11 construct may contain only assignment statements, where constructs, and nested fora 11 constructs.

### 4.1.10 Intrinsic Operators

All intrinsic operators and many intrinsic functions may be applied to arrays, operating independently on each element of the array. For example, the expression abs (a(k:n,k)) results in a one-dimensional array of $n-k$ +1 nonnegative real values. A binary operation, such as *, may be applied only to two arrays of the same shape or an array and a scalar. It multiplies corresponding elements of the two arrays or multiplies the elements of the array by the scalar. The assignment statement

$$
a(k, k: n+1)=a(k, k: n+1) / \text { pivot }
$$

divides each element of $a(k, k: n+1)$ by the real scalar value pivot. In essence, a scalar value may be considered an array of the appropriate size and shape with all its entries equal to the value of the scalar.

### 4.1.11 Element Renumbering in Expressions

An important point to remember about array expressions is that the elements in an expression may not have the same subscripts as the elements in the arrays that make up the expression. They are renumbered with 1 as the lower bound in each dimension. Thus, it is legal to add $y(0: 7)+z(-7: 0)$, which results in an array whose eight values are considered to have subscripts $1,2,3, \ldots, 8$.

The renumbering must be taken into account when referring back to the original array. Suppose $v$ is a one-dimensional integer array that is given an initial value with the declaration

$$
\begin{gathered}
\text { integer, dimension }(0: 6), \text { parameter }:: ~ \& ~ \\
v=(/ 3,7,0,-2,2,6,-1 /)
\end{gathered}
$$

The intrinsic function max 7 oc returns a list of integers giving the position (subscript) of the largest element of an array. maxloc(v) is (/ $2 /$ ) because position 2 of the list $v$ contains the largest number, 7 , even though it is
$v(1)$ that has the value 7. Also, max $\operatorname{loc}(v(2: 6))$ is the list (/ $4 /$ ) because the largest entry, 6 , occurs in the fourth position in the section $v(2: 6)$.

There is also an intrinsic function, min1oc, whose value is the list of subscripts of a smallest element of an array. For example, if a = $\left[\begin{array}{ccc}1 & 8 & 0 \\ 5 & -1 & 7 \\ 3 & -2 & 9\end{array}\right]$, smallest element of the array.

### 4.1.12 Using a Function in a Declaration Statement

Some intrinsic functions are not allowed in declarations-for example, in the specification of the size of an array. However, it is possible to invoke a user-defined function, which may, in turn, call any intrinsic function. Suppose, when an array a is passed as an argument to the subroutine ss , a working array of size approximately equal to the logarithm of the size of a is needed within the subroutine. As illustrated by the following program, this can be done by defining a pure function 11 to compute the size of the work array.
module m

```
 pub1ic :: 11
```

contains

```
pure function 11(n) result(r1)
 integer, intent(in) :: n
 integer :: rl
 rl = ceiling(log(real(n)))
end function 11
```

end modu7e m
program p

```
use m
integer, dimension(1000) :: a = 1
cal1 ss(a)
```

contains
subroutine ss(d)

```
 integer, dimension(:), intent(in) :: d
integer, dimension(11(size(d))) :: td
td = d(1:size(td))
print *, size(d), size(td)
end subroutine ss
```

end program $p$
The main restriction is that the function (11 in this case) must be declared pure explicitly (3.7).

### 4.1.13 Exercises

1. Write a statement that declares values to be an array of 100 real values with subscripts ranging from -100 to -1 .
2. Use an array constructor to assign the squares of the first 100 positive integers to a list of integers named squares. For example, squares (5) $=25$.
3. If a chess or checkers board is declared by
character (1en=1), dimension(8, 8) :: board
the statement
board = "R"
assigns the color red to all 64 positions. Write a statement or statements that assigns " B " to the 32 black positions. Assume that board $(1,1)$ is to be red so that the board is as shown.

R	B	R	B	R	B	R	B
B	R	B	R	B	R	B	R
R	B	R	B	R	B	R	B
B	R	B	R	B	R	B	R
R	B	R	B	R	B	R	B
B	R	B	R	B	R	B	R
R	B	R	B	R	B	R	B
B	R	B	R	B	R	B	R

4. Suppose list is a one-dimensional array that contains $n<$ max_size real numbers in ascending order. Write a subroutine insert(1ist, $n$, max_size, new_entry) that adds the number new_entry to the list in the appropriate place to keep the entire list sorted. Hint: write a subroutine shift that shifts the upper $k$ elements one position higher in the array. See also the intrinsic functions cshift and eoshift.
5. Write a function that finds the angle between two three-dimensional real vectors. If $v=\left(v_{1}, v_{2}, v_{3}\right)$, the magnitude of $v$ is $|v|=\sqrt{v \cdot v}$ where $v \cdot v$ is the vector dot product of $v$ with itself. The cosine of the angle between $v$ and $w$ is given by

$$
\cos \theta=\frac{v \cdot w}{|v||w|}
$$

The built-in function acos (arccosine) may be used to find an angle with a given cosine.

### 4.2 Searching a List

The previous section describes the appropriate terminology and some of the F rules concerning arrays and subscripts. This section makes a start toward illustrating the power of arrays as they are used in meaningful programs. The application throughout this section is that of checking a given credit card account number against a list of account numbers of lost or stolen cards. Increasingly more efficient programs are presented here and compared.

### 4.2.1 The Problem: Credit Card Checking

When a customer presents a credit card in payment for goods or services, it is desirable to determine quickly whether it can be accepted or whether it previously has been reported lost or stolen or canceled for any other reason. The subroutines in this section perform this task. See 4.1.3 and 4.1.5 for ways to read the list lost_card.

### 4.2.2 Sequential Search through an Unordered List

The first and simplest strategy for checking a given credit card is simply to search from beginning to end through the list of canceled credit cards, card by card, either until the given account number is found in the list, or until the end of the list is reached without finding that account number. In the subroutine search_1, this strategy, called a sequential search, is accomplished by a do construct with exit that scans
the list until the given account number is found in the list or all of the numbers have been examined.

Style note: It is good programming practice to make the searching part of the program a separate subroutine.

Other versions of the credit card program in this section will be obtained by modifying this subroutine.

The two ways of exiting from the search loop both pass control to the end subroutine statement. However, they have a different effect on the dummy argument found. When the credit card being checked is not in the list, the search loop is executed until the list is exhausted. This normal completion of the do construct allows control to fall through to the end subroutine statement with the value of found still false. When the card being checked is found in the list, the logical variable found is set to true before exiting the do construct. The calling program can test the actual argument passed to the dummy variable found to decide whether the card number was found in the list. The intrinsic function size used in this subroutine returns an integer value that is the number of elements in the array lost_card.

```
subroutine search_1(lost_card, card_number, found)
 integer, dimension(:), intent(in) :: lost_card
 integer, intent(in) :: card_number
 logical, intent(out) :: found
 integer :: i
 found = .false.
 do i = 1, size(lost_card)
 if (card_number == lost_card(i)) then
 found = .true.
 exit
 end if
 end do
```

end subroutine search_1

This subroutine makes a nice example for illustrating how individual elements of an array can be manipulated; but in F, it is often better to think of operations for processing the array as a whole. In fact, using the built-in array functions, it is possible to do the search in one line.

$$
\text { found }=\text { any(lost_card(1:size(lost_card))==card_number) }
$$

The comparison

```
lost_card(1:size(lost_card)) == card_number
```

creates a list of logical values with true in any position where the value of card_number matches a number in the list lost_card. The intrinsic function any is true if any of the elements in a list of logical values is true; it is false otherwise. The intrinsic function any may be thought of as an extension of the binary operator .or. to arrays.

The basic strategy of the program search_1 is to check a credit card account number supplied as input against each account number, in turn, in the list of canceled or lost cards, either until a match is found or until the list is exhausted. These alternatives are not equally likely. Most credit cards offered in payment for purchases or services represent the authorized use of active, valid accounts. Thus, by far the most usual execution of the subroutine search_1 is that the entire list is searched without finding the card number provided.

The number of comparisons a program must make before accepting a credit card is some measure of the efficiency of that program. For example, when searching for an acceptable credit card in a list of 10,000 canceled credit cards, the subroutine search_1 usually makes 10,000 comparisons. On a traditional computer, the elapsed computer time for the search depends on the time it takes to make one comparison and to prepare to make the next comparison. However, on a computer with vector or parallel hardware, many comparisons may be done simultaneously and the intrinsic functions, probably written by the implementor to take advantage of this special hardware, might provide very efficient searching.

If the search must be performed on a traditional computer by making one comparison at a time, the search can be made more efficient by maintaining the list in order of increasing card number. As soon as one canceled card number examined in the search is too large, all subsequent ones will also be too large, so the search can be abandoned early. The subroutine search_2 presumes that the list is in increasing order.

```
subroutine search_2(1ost_card, card_number, found)
integer, dimension(:), intent(in) :: lost_card
integer, intent(in) :: card_number
logical, intent(out) :: found
integer :: i
found = .false.
do i = 1, size(lost_card)
 if (card_number <= lost_card(i)) then
```

```
 found = (card_number == lost_card(i))
 exit
 end if
 end do
```

end subroutine search_2

Before accepting a presented account number, search_1 always must search the entire list, but search_2 stops as soon as it reaches a number in the list of canceled account numbers that is larger than or equal to the presented number.

Roughly speaking, the average number of comparisons needed for an acceptance by search_2 is about half the list size, plus one additional comparison to determine whether the last entry examined was exactly the account number of the credit card being checked. For a list of 10,000 canceled cards, it would take an average of 5001 comparisons, significantly better than the 10,000 for search_1.

To a limited extent, this increased efficiency in the checking program is counterbalanced by some additional computer time needed to maintain the list of canceled credit cards in increasing order. However, the list is likely to be searched much more often than it is modified, so almost any increase in the efficiency of the checking program results, in practice, in an increase in the efficiency of the entire operation.

### 4.2.3 Program Notes

The sequential search loop in the subroutine search_2 is not quite as straightforward as it seems at first glance. When the presented card card_number is compared against an entry lost_card(i), three things can happen:

1. card_number is too high, in which case the search continues.
2. They match, in which case the presented card card_number has been found.
3. card_number is too low, in which case further search is futile.

The three possibilities are not equally likely. Case 1 can occur as many as 10,000 times in one search. Cases 2 and 3 can only happen once per search. It is important to test first for the most frequently occurring case. Otherwise, there will be two tests per iteration, slowing the search loop appreciably. This subroutine tests for the first case, and then, if it is false, determines whether case 2 or case 3 applies. The following if construct also does the tests in this same optimal order; but
if the order of testing alternatives is changed, twice as many tests are done.

```
found = .false.
do i = 1, size(lost_card)
 if (card_number > 1ost_card(i)) then
 cycle
 else if (card_number == lost_card(i)) then
 found = .true.
 exit
 else
 exit
 end if
end do
```


### 4.2.4 Binary Search

Sequential search is a brute force technique. It works well for short lists but is very inefficient for large ones. A somewhat different strategy, divide and conquer, is employed in a binary search. Half of the list can be eliminated in one comparison by testing the middle element. Then half the remaining elements are eliminated by another test. This continues until there is only one element left; then this element is examined to see if it is the one being sought. The list must be ordered for binary search. Note that a binary search is similar to what you do when looking up a telephone number in a phone book.

Table $4-2$ shows how a binary search is used to try to find the number 2415495 in a list of 16 numbers. The numbers are given in increasing order in the first column. The presented number 2415495 is not in the list, but this fact plays no role in the search procedure until the very last step.

As a first step in binary searching, the list is divided in half. An asterisk follows the eighth number in column 1 because it is the last entry in the first half of the list. Since the given number 2415495 is less than (or equal to) the eighth entry 2980957, the second half of the list can be eliminated from further consideration. Column 2 shows only the first half of the original list (entries 1 through 8) retained as the segment still actively being searched.

The procedure is repeated. An asterisk follows the fourth entry in column 2 because it is the last entry in the first half of the segment of the list still actively being searched. Since the given number 2415495 is greater than the fourth number 1627547, this time it is the first half of the active segment that is eliminated and the second half (entries 5

Table 4-2 A binary search that fails

Before any	After one	After two	After three	After four	Given
comparisons	comparison	comparisons	comparisons	comparisons	number


1096633	1096633					
1202604	1202604					
1484131	1484131					
1627547	$1627547^{*}$					
2008553	2008553	2008553				
2202646	2202646	$2202646^{*}$				
2718281	2718281	2718281	$2718281^{*}$	2718281		
$2980957^{*}$	2980957	2980957	2980957			

3269017
4034287
4424133
5459815
5987414
7389056
8103083
8886110

[^0]through 8 of the original list) that is retained. This is shown in column 3 of Table 4-2.

In the next stage, the second remaining number 2202646, which was the sixth entry in the original list, is marked with an asterisk because it is the last entry of the first half of the segment still being searched. Since this number is exceeded by the given number 2415945, the second half of the segment in column 3 (entries 7 and 8) is retained as the active segment in column 4. The seventh entry of the original list, the number 2718281, is the last entry of the first half of the remaining list of two entries and thus is marked with an asterisk in column 4 to indicate its role as a comparison entry. Since the given number

2415495 is less than this, the other entry (the eighth original entry) is discarded, and column 5 shows that after four comparisons, only the seventh entry 2718281 remains as a candidate.

Since only one entry remains, a test for equality is made between the given number 2415495 and the one remaining entry 2718281. They are not equal. Thus, the given number is not in the list. Note that the previous comparisons of these two numbers were merely to determine whether the given number was less than or equal to the seventh entry. Table 4-3 shows how the binary search works for the number 7389056, which is found in the list of 16 numbers. As before, the first column lists the original numbers with an asterisk following the last number of the first half of the list, the eighth entry. The number 7389056 is greater than the eighth entry, so the second half of the list (entries 9 to 16) is retained in column 2. A comparison of the given number 7389056 with the last entry of the first half of the segment remaining in column 2 , the twelfth original entry 5459815, eliminates entries 9 through 12.

Table 4-3 A binary search that is successful

Before any comparisons	After one comparison	After two comparisons	After three comparisons	After four comparisons	Given number
1096633					
1202604					
1484131					
1627547					
2008553					
2202646					
2718281					
2980957*					
3269017	3269017				
4034287	4034287				
4424133	4424133				
5459815	5459815*				
5987414	5987414	5987414	5987414*		
7389056	7389056	7389056*	7389056	$7389056=$	7389056

Table 4-3 A binary search that is successful

Before any   comparisons	After one   comparison	After two   comparisons	After three   comparisons	After four   comparisons	Given   number
8103083	8103083	8103083			
8886110	8886110	8886110			

* An asterisk denotes the comparison entry at each stage, which is the last entry of the first half of the segment still under active consideration.

A comparison with the fourteenth entry, marked with an asterisk in column 3, eliminates the fifteenth and sixteenth entries. One more comparison of the given number 7389056 against the thirteenth entry, marked with an asterisk in column 4, eliminates that entry and leaves only the fourteenth entry 7389056. The final test for equality of the given number and the only remaining candidate in the list yields success, and it can be reported that the given number is the fourteenth entry in the list.

For the purpose of explanation, it is most convenient to use a list size that is an exact power of 2 , that is, $2,4,8,16,32, \ldots$. This avoids fractions when the size of the list segment still under consideration is halved repeatedly. However, this is not essential; the use of integer division by 2 in the subroutine binary_search permits it to search a list of any length.

```
subroutine binary_search(lost_card, card_number, found)
 integer, dimension(:), intent(in) :: lost_card
 integer, intent(in) :: card_number
 logical, intent(out) :: found
 integer :: first, half, last, only
first = 1
1ast = size(lost_card)
do
 if (first == last) exit
 half = (first + last) / 2
 if (card_number <= lost_card(half)) then
 ! Discard second half
 last = half
 else
 ! Discard first half
 first = half + 1
 end if
```

```
 end do
 ! The only remaining subscript to check is first
 ! (which is the same as last)
on7y = first
found = (card_number == lost_card(on1y))
end subroutine binary_search
```

When the part of the list still under consideration has been reduced to a single element by repeated bisection, the first element left is the last and only element left and the do construct is exited to test it.

### 4.2.5 Efficiency of a Binary Search

As before, we can get a reasonable indication of the efficiency of a search method by seeing how many times the given account number is compared against account numbers in the list of lost or stolen cards in the most usual event that the card number is not in the list.

The number of comparisons required in the binary search can be counted easily. With one data comparison, a list of items to be searched can be cut in half. When the list is reduced to one element, a final comparison determines whether that candidate is the credit card being searched for or not. Thus, with $n+1$ comparisons, it is possible to search $2^{n}$ items. Turning it around the other way, $n$ items may be searched using $\log _{2} n+1$ comparisons. Thus, for example, 15 comparisons suffice for binary searching all lists of length up to $16,384\left(=2^{14}\right)$. This is considerably better than the 8192 comparisons needed for a sequential search! However, keep in mind that on a computer with intrinsic parallelism, it may be better to use the intrinsic functions and hope that the implementation takes advantage of the parallelism to do many comparisons simultaneously. Even if it does, whether or not it is faster than the binary search depends on the size of the list and the amount of parallelism in the system.

### 4.2.6 Exercises

1. What changes need to be made to the subroutine binary_search to search a list of integers with kind long (1.2.11)?
2. How could the subroutine search_2 be improved if you wanted to start at the end of the list when searching for a "large" number?

### 4.3 Sorting

Frequently it is necessary to sort a list of numbers or character strings. For example, the list lost_card in the previous section must be sorted for the binary search to work. One of the simplest ways to do this is to compare every number in the list with every other number in the list and swap them if they are out of order. As with the previous examples in this chapter, the sorting is done with a subroutine so that it can be put in a module and be used by many programs.

```
subroutine sort_1(list)
 real, dimension(:), intent(in out) :: list
 integer :: i, j
 do i = 1, size(list) - 1
 do j = i + 1, size(1ist)
 if (list(i) > list(j)) &
 cal1 swap(list(i), list(j))
 end do
 end do
```

end subroutine sort_1

The subroutine swap of 3.5 that exchanges the values of two variables is assumed to be available, perhaps in a module. This is a very simple algorithm for sorting, but it is very inefficient and should not be used to sort more than a few hundred items.

A second approach to sorting a list is to find the smallest number in the list and put it in the first position, then find the smallest number in the remainder of the list and put it in the second position, etc. The built-in function minloc can be used effectively for this sort.

For an array a of rank $n$, that is, with $n$ subscripts, the value of $\operatorname{minloc}(a)$ is a one-dimensional array whose entries are the $n$ subscript positions of a smallest element of a. As described in 4.1.11, if the lower bound in a particular dimension is 1 , the subscript position and the subscript value are the same. If not, the actual subscript can be found by adding the declared lower bound -1 to the subscript position. In the subroutine sort_2, the subscript of 1ist(i:) containing a minimal element is min_loc(1)+i-1, where min_1oc is an array with one element used temporarily to store the value of minloc(1ist(i:)).

```
subroutine sort_2(1ist)
```

```
real, dimension(:), intent(inout) :: list
integer :: i
integer, dimension(1) :: min_loc
do i = 1, size(list) - 1
 min_loc = minloc(list(i:))
 call swap(list(i), list(i + min_loc(1) - 1))
end do
```

end subroutine sort_2

This subroutine appears to be just about as inefficient as sort_1, because execution of the minloc function involves searching through the elements of list (i:) to find the smallest one. Indeed, it may be just as inefficient; however, if it is executed on a system with parallelism, the minloc function may be faster than a sequential search.

### 4.3.1 Quick Sort

One of the best sorting algorithms is called "quick sort" or "partition sort". Whereas sort_1 needs to make approximately $n^{2} / 2$ comparisons to sort $n$ numbers, the quick sort needs approximately $n \log _{2} n$ comparisons. To get an idea of the amount of improvement, for $n=1000$ items, sort_1 would require approximately 500,000 comparisons and the quick sort would require approximately 10,000 comparisons, a ratio of 50 to 1 ; for $\mathrm{n}=1,000,000$ items, sort_1 would require approximately $500,000,000,000$ comparisons and the quick sort would require approximately 100,000,000 comparisons, a ratio of 5000 to 1.

As might be expected, the quick sort is a bit more complicated. It is a divide-and-conquer algorithm like binary search. To sort a list of numbers, an arbitrary number (such as the first, last, or middle one) is chosen from the list. All the remaining numbers in turn are compared with the chosen number; the ones smaller are collected in a "smaller" set and the ones larger are collected in a "larger" set. The whole list is sorted by sorting the "smaller" set, following them with all numbers equal to the chosen number, and following them with the sorted list of "larger" numbers. Note that sorting the "smaller" and "larger" lists involves using the quick sort routine recursively (3.15).

```
recursive subroutine quick_sort(list)
real, dimension(:), intent(in out) :: list
real, dimension(:), allocatable :: smaller, larger
integer :: i, &
 number_sma11er, number_equa1, number_1arger
```

```
rea1 :: chosen
if (size(list) > 1) then
 allocate (smaller(size(1ist)))
 allocate (larger(size(list)))
 chosen = list(1)
 number_smaller = 0
 number_equal = 1
 number_larger = 0
 do i = 2, size(list)
 if (list(i) < chosen) then
 number_sma11er = number_sma11er + 1
 smal1er(number_smal1er) = 1ist(i)
 else if (list(i) == chosen) then
 number_equa1 = number_equa1 + 1
 else
 number_1arger = number_1arger + 1
 larger(number_larger) = list(i)
 end if
 end do
 ca11 quick_sort(sma11er(1:number_sma11er))
 1ist(1:number_sma11er) = &
 sma11er(1: number_sma11er)
 1ist(number_sma11er+1: &
 number_sma11er+number_equa1) = chosen
 ca11 quick_sort(1arger(1:number_1arger))
 1ist(number_sma11er+number_equa1+1:) = &
 larger(1:number_larger)
 deallocate (smaller, larger)
end if
```

end subroutine quick_sort

Although the subroutine quick_sort follows the description fairly closely and sorts with order $n \log _{2} n$ comparisons, it wastes a lot of space in each subroutine call creating new smaller and larger lists. However, by clever management of the available space (in fact, each element is replicated up to $\log _{2} n$ times, creating a total memory use of $n \log _{2} n$ reals), the entire list can be sorted without using any arrays except the original argument list itself. In the following version of the quick sort, the "smaller" numbers are collected together by placing them at the beginning of the list and the "larger" numbers are collected together by placing them at the end of the list. Also, every effort is
made to eliminate unnecessary moving or swapping of elements in the list. To do serious sorting, this version should be used.

The details of the quick-sorting algorithm are still quite tricky and must be clarified further before an efficient and bug-free subroutine can be written. First, while it is possible to maintain two lists in a single one-dimensional array - the list smaller that grows up from the bottom of the array 1ist and the list larger that grows down from the top of the array list-it is difficult to manage three lists in one array. Thus, the conditions for the sublists sma11er and larger are relaxed to allow entries equal to the test element chosen to qualify for either of these sublists. Since these elements are the largest elements in the sublist sma11er, and the smallest elements in the sublist larger, they are reunited in the middle of the array list when both sublists are sorted in place.

Second, since there are (essentially) no extra storage spaces for list elements, the only way to remove an unsuitably large element from the left (i.e., sma11er) part of the list is to swap it with an unsuitably small element from the right (i.e., larger) part of the list. Each pass through the main loop of the subroutine quick_sort consists of a search for an unsuitably large element on the left, a search for an unsuitably small element on the right, and a swap.

If the input list is in completely random order, it doesn't matter which element of the list is chosen as the test element. We use the middle element of the input list for two reasons: (1) one of the more likely nonrandom orders of a list is that the list is already sorted; choosing the middle element as test element provides much better splits than the first or last in this case; (2) if the test element is the middle element, both the search in the left list for a "large" element and the search in the right list for a "small" element are guaranteed not to run off the ends of the list, because the middle element will stop both searches. A test for invalid subscripts can be eliminated from these two inner loops if the test element is the middle element.

The only argument to the subroutine quick_sort is the list of numbers to be sorted. Recall that within the subroutine, regardless of the lower and upper bound of the actual argument, the dummy argument has lower bound 1 and upper bound $n=\operatorname{size}(1 i s t)$.

```
recursive subroutine quick_sort(list)
real, dimension(:), intent(in out) :: list
integer :: i, j, n
real :: chosen, temp
```

```
integer, parameter :: max_simple_sort_size = 6
```

n = size(list)
if (n <= max_simple_sort_size) then
! Use interchange sort for smal1 1ists
call interchange_sort(1ist)
else
! Use partition ("quick") sort
chosen = 1ist(n/2)
i $=0$
$j=n+1$
do
! Scan list from left end
! until element >= chosen is found
do
i $=\mathbf{i}+1$
if (list(i) >= chosen) exit
end do
! Scan list from right end
! until element <= chosen is found
do
$j=j-1$
if (list(j) <= chosen) exit
end do
if (i < j) then
! Swap two out of place elements
temp = list(i)
list(i) $=1 i s t(j)$
list(j) $=$ temp
else if (i == j) then
i $=$ i +1
exit
else
exit
end if
end do
if (1 < j) call quick_sort(list(:j))
if (i < n) call quick_sort(list(i:))
end if ! test for small array
end subroutine quick_sort
subroutine interchange_sort(1ist)

```
real, dimension(:), intent(in out) :: list
integer : : i, j
real :: temp
do \(\mathbf{i}=1, \operatorname{size}(1 i s t)-1\)
 do \(j=\mathbf{i}+1\), size(1ist)
 if (list(i) > list(j)) then
 temp = list(i)
 1ist(i) = 1ist(j)
 list(j) = temp
 end if
 end do
end do
```

end subroutine interchange_sort

### 4.3.2 Sorting Small Lists

The subroutine quick_sort has been made more efficient by the addition of the following statements that test if the quantity of numbers to be sorted is small and call an interchange sort if it is.

```
if (n <= max_simple_sort_size) then
 ! Use interchange sort for smal1 lists
 ca11 interchange_sort(list)
```

Why be concerned about this? Quick sort rarely is used to sort such small lists, and even if it is, it is only relative efficiency that suffers: the absolute time required to quick sort a small list is very small. The answer is that although the user might not call quick_sort often to sort a very small list, because it is a divide-and-conquer technique, the quicksort algorithm subdivides the list again and again until finally it calls itself recursively many times to sort very small lists. Thus, small inefficiencies in the quick sorting of small lists contribute many times over to form large inefficiencies in the quick sorting of large lists.

The solution is simple: for lists below a certain minimum size, interchange_sort is used. The subroutine quick_sort sorts all lists of size up to max_simple_sort_size using the compact and simple sorting algorithm of the subroutine sort_1 for such lists. For larger lists, it uses the quick sort algorithm. Some experimenting with randomly generated large lists and different values of max_simple_sort_size indicates that for this simple sorting algorithm and this implementation of the quick-sort algorithm, max_simple_sort_size = 6 is probably a good choice. Your mileage may vary (see Exercise 3).

### 4.3.3 Exercises

1. Modify the subroutine quick_sort so that a public variable named swap_count records the number of times two values are swapped. This provides a crude measure of the complexity of the sorting algorithm. Experiment with the program by generating 1000 numbers using the built-in subroutine random_number discussed in 3.14.1. Also collect data about actual running time using the builtin subroutine cpu_time.
2. Execute quick_sort with randomly generated lists of numbers of various sizes of $n$ between 16 and 32,768 to see if the number of values swapped is proportional to $n \log _{2} n$.
3. Vary the parameter max_simple_sort_size and test quick_sort using randomly generated lists of size $n=1000$. What value of max_simple_sort_size produces the fewest swaps? Don't forget to count the swaps in interchange_sort. Does this value of max_simple_sort_size also produce the shortest actual running time? If time permits, see if the results change when $n$ is increased to 10,000 .

### 4.4 Selecting

A common problem is to find the median of a list of numbers, that is, the one that would be in the middle of the list if the list were in order. One way to do this is to sort the list and look at the element in the middle, but this is quite inefficient. The best sorting algorithms require $n \log _{2} n$ steps to sort $n$ numbers, whereas the median of $n$ numbers can be found in $n$ steps.

The trick is one that is often applicable to recursive procedures: solve a slightly more general problem instead. In this case the more general problem to solve is to find the number that would be in position $k, 1 \leq k \leq n$, if a list of $n$ numbers were in order. Then to find the median, simply find the number in position $k=n / 2$.

A good algorithm to select the $k$ th element is similar to the quicksort algorithm. Arbitrarily pick one of the numbers in the list. As with the quick sort, separate the numbers into three collections: the numbers smaller than the chosen number, the numbers equal to the chosen number, and the numbers larger than the chosen number. Suppose the size of each of these collections is $s, e$, and $l$, respectively. If $k \leq s$, the number we are looking for is in the collection of smaller numbers, and,
in fact, is the $k$ th number in that collection in order; this number can be found by applying the same selection algorithm recursively to the list of smaller numbers. If $s \leq k \leq s+e$, then the number chosen is the one we are looking for and the search is complete. If $s+e<k$, the number we are looking for is in the collection of larger numbers; it is, in fact, the one in position $k-s-e$ in that list in order, so it can be found by recursively calling the selection procedure.

Here is the F program; the selected element is returned as the value of the variable element and the logical variable error indicates if a position outside the bounds of the list is requested. The procedure quick_select is written as a subroutine instead of a function because it returns two values.

```
recursive subroutine quick_select &
 (list, k, element, error)
 real, dimension(:), intent(in) :: list
 integer, intent(in) :: k
 real, intent(out) :: element
 logical, intent(out) :: error
 real, dimension(:), allocatable :: smaller, larger
integer :: i, n, &
 number_sma11er, number_equa1, number_1arger
rea1 :: chosen
n = size(list)
if (n <= 1) then
 error = .not. (n == 1 .and. k == 1)
 if (error) then
 element = 0.0 ! A value must be assigned
 ! because element is intent(out)
 else
 element = 1ist(1)
 end if
else
 allocate (smaller(n), larger(n))
 chosen = list(1)
 number_sma11er = 0
 number_equal = 1
 number_larger = 0
 do i = 2, n
 if (list(i) < chosen) then
 number_smal1er = number_smal1er + 1
 smaller(number_smaller) = list(i)
 else if (list(i) == chosen) then
```

```
 number_equa1 = number_equa1 + 1
 else
 number_larger = number_1arger + 1
 larger(number_larger) = list(i)
 end if
 end do
 if (k <= number_smaller) then
 ca11 quick_select &
 (sma11er(1:number_sma11er), &
 k, element, error)
 else if (k <= number_smaller + number_equal) then
 element = chosen
 error = .false.
 else
 call quick_select &
 (larger(1:number_1arger), &
 k - number_sma1ler - number_equa1, &
 element, error)
 end if
 deallocate (smaller, larger)
end if
end subroutine quick_select
```


### 4.4.1 Exercises

1. Modify the subroutine quick_select so that a variable named compare_count records the number of times two values are compared. This provides a crude measure of the complexity of the selection algorithm. Experiment with the program by generating 10,000 numbers using the built-in subroutine random_number discussed in 3.14.1. Also collect data about actual running time using the built-in subroutine cpu_time.
2. Execute quick_select with randomly generated lists of numbers of various sizes $n$ to see if the number of values compared is proportional to $n$.
3. Rewrite quick_select to reduce the amount of temporary storage used, using the second version of quick_sort in 4.3.1 as a model.
4. Instead of using list (1) as the value of chosen in the subroutine quick_select, use list(k). Repeat the timing experiments to see
if this makes any difference. Try the experiments using both versions with a list that is already sorted.

### 4.5 Case Study: Solving Linear Equations

The operations of searching, sorting, and selecting discussed in the previous sections involve, by their nature, mostly operations on a single element of a list, one at a time. In many situations, particularly in numerical computations, whole arrays or sections of arrays can be processed at once. To explore an example of this type, we look at the problem of solving $n$ simultaneous equations of the form

$$
\begin{aligned}
& a_{11} x_{1}+a_{12} x_{2}+\ldots+a_{1 n} x_{n}=b_{1} \\
& a_{22} x_{2}+a_{22} x_{2}+\ldots+a_{2 n} x_{n}=b_{2} \\
& \ldots \\
& a_{n 1} x_{n}+a_{n 2} x_{2}+\ldots+a_{n n} x_{n}=b_{n}
\end{aligned}
$$

In matrix notation, this system of equations would be written as

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
& & \ldots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\cdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\ldots \\
b_{n}
\end{array}\right]
$$

Solving the equations is done by performing combinations of the following operations, none of which changes the values of the solutions. The three operations are (1) interchanging equations (which amounts to interchanging rows in the matrix of coefficients), (2) multiplying an equation (i.e., row) by a constant, and (3) adding one equation (i.e., row) to another equation. The operations of interchanging columns in the matrix of coefficients (which amounts to renaming variables) and multiplying a column by a constant (which amounts to re-scaling the values of the variable represented by that column) are sometimes used in solving simultaneous linear equations, but are not used in the solution presented below.

These equations will be solved by a process called Gaussian elimination. Combinations of these operations are performed until the equations are in a form where all coefficients below the diagonal of the
coefficient matrix are zero and all coefficients on the main diagonal are one; this constitutes the first phase of Gaussian elimination. In broad outline, what happens in this phase is that the first equation is solved for the first variable $x_{1}$ (i.e., its coefficient is made 1), and then appropriate multiples of the first equation are subtracted from each of the remaining equations to eliminate the variable $x_{1}$ from equations 2 to $n$. Then the second equation is solved for $x_{2}$, and multiples of it are subtracted from the remaining equations to eliminate $x_{2}$ also from equations 3 to $n$. Eventually, all the variables $x_{1}, x_{2}, \ldots, x_{n-1}$ are eliminated from the $n$th equation, which can now be solved for $x_{n}$. At the end of the first phase, the set of equations takes the form

$$
\begin{aligned}
x_{1}+c_{12} x_{2}+c_{13} x_{3}+\ldots+c_{1 n-1} x_{n-1}+c_{1 n} x_{n} & =d_{1} \\
x_{2}+c_{23} x_{3}+\ldots+c_{2 n-1} x_{n-1}+c_{2 n} x_{n} & =d_{2} \\
x_{3}+\ldots+c_{3 n-1} x_{n-1}+c_{3 n} x_{n} & =d_{3} \\
\ldots & =\ldots \\
x_{n-1}+c_{n-1 n} x_{n} & =d_{n-1} \\
x_{n} & =d_{n}
\end{aligned}
$$

The second phase of Gaussian elimination is called back substitution. The last equation is already solved for $x_{n}=d_{n}$. The answer for $x_{n}$ is substituted into the next to last equation, which contains only variables $x_{n-1}$ and $x_{n}$ after the first phase, so it can be solved for $x_{n-1}$. Then the answers for both $x_{n}$ and $x_{n-1}$ are substituted into the previous equation to solve for $x_{n-2}$, and so forth until all the variables $x_{n}, x_{n-1}, \ldots, x_{n-2}$ are substituted into the first equation to solve for $x_{1}$.

An equivalent form of the back-substitution phase, which is used sometimes, is to subtract appropriate multiples of the $n$th equation from all previous equations to eliminate $x_{n}$ from equations 1 to $n-1$. Then multiples of equation $n-1$ are subtracted from equations 1 to $n-2$ to eliminate $x_{n-1}$ from these equations. The process continues upward through the equations until each equation has only one variable, or equivalently, until every entry in the matrix of coefficients above the diagonal is zero. The equations now have the form

$$
\begin{aligned}
& x_{1}=e_{1} \\
& x_{2}=e_{2} \\
& \ldots=\ldots \\
& x_{n}=e_{n}
\end{aligned}
$$

which is solved for all of its variables. In the program solve_1inear_ equations, we use the first method, substituting directly without changing the triangular matrix of coefficients to this completely diagonalized form.

If all goes well, the process of solving the system of linear equations is no more complicated than what we just described; however, a general solution must foresee and provide for all possibilities, even the possibility that the set of equations is inconsistent and has no solution.

The first potential problem is that when we try to solve the first equation for the first variable $x_{1}$, we might find that the first equation does not involve $x_{1}$ (i.e., $a_{11}=0$ ). If some other equation involves $x_{1}$, that is, if some $a_{k 1} \leq 0$, then we can swap the first and $k$ th equations (to make $a_{11} \leq 0$ after the swap) so that we can solve the new first equation for $x_{1}$ and proceed. On the other hand, if no equation involves $x_{1}$, then the system of equations does not uniquely determine $x_{1}$ and we must report this as an undetermined system of equations.

A similar problem might occur when we try to solve the $k$ th equation for $x_{k}$. If the coefficient $a_{k k}$ is zero at this point in the computation, then we must seek a later equation, say the $m$ th, for which $a_{m k} \leq 0$, and swap it with the $k$ th equation before proceeding. If all remaining coefficients in the $k$ th column are zero, then $x_{k}$ is not uniquely determined.

Conventional wisdom, which we follow in this program, says that even if $a_{k k}$ is nonzero, it is still better to swap the $k$ th equation with that later equation for which the absolute value $\left|a_{m k}\right|$ is largest. Part of the reason is that roundoff error in calculations with the real coefficients often results in a coefficient that should be zero being calculated as a small nonzero value, but almost never results in it being calculated as a large nonzero value. Swapping $a_{k k}$ with $a_{m k}$, the coefficient with the largest magnitude, greatly reduces the risk of dividing by a coefficient $a_{k k}$ that should have been calculated as zero.

The program solve_linear_equations makes heavy use of array operations and intrinsics to achieve compactness (and to illustrate the use of the operations and intrinsics). If these operations are not second nature, some statements in solve_linear_equations may require some puzzling out, perhaps by writing equivalent do constructs.
subroutine solve_linear_equations(a, x, b, error)

```
real, dimension(:, :), intent(in) :: a
real, dimension(:), intent(out) :: x
real, dimension(:), intent(in) :: b
logical, intent(out) :: error
real, dimension(:, :), allocatable :: m
integer, dimension(1) :: max_loc
real, dimension(:), allocatable :: temp_row
integer :: n, k
error = size(a, dim=1) /= size(b) .or. &
 size(a, dim=2) /= size(b)
if (error) then
 x = 0.0
 return
end if
n = size(b)
allocate (m(n, n+1), temp_row(n+1))
m(1:n, 1:n) = a
m(1:n, n+1) = b
! Triangularization phase
triang_loop: do k = 1, n
 max_1oc = maxloc(abs(m(k:n, k)))
 temp_row(k:n+1) = m(k, k:n+1)
 m(k, k:n+1) = m(k-1+max_loc(1), k:n+1)
 m(k-1+max_loc(1), k:n+1) = temp_row(k:n+1)
 if (m(k, k) == 0) then
 error = .true.
 exit triang_loop
 else
 m(k, k:n+1) = m(k, k:n+1) / m(k, k)
 m(k+1:n, k+1:n+1) = m(k+1:n, k+1:n+1) - &
 spread(m(k, k+1:n+1), 1, n-k) * &
 spread(m(k+1:n, k), 2, n-k+1)
 end if
```

end do triang_1oop
! Back substitution phase
if (error) then

```
 \(x=0.0\)
 else
 do \(k=n, 1,-1\)
 \(x(k)=m(k, n+1)-\quad \&\)
 \(\operatorname{sum}(m(k, k+1: n) * x(k+1: n))\)
 end do
 end if
 deallocate (m, temp_row)
end subroutine solve_linear_equations
```

The array $m$ is created in the subroutine solve_linear_ equations because the constant terms are subject to the same operations as the coefficients of the variables during the calculations of Gaussian elimination. It consists of the array a of coefficients enlarged by one column into which is placed the list of constants $b$. This is accomplished using the statements

```
real, dimension(:, :), allocatable :: m
n = size(b)
allocate (m(n, n + 1))
m(1:n, 1:n) = a
m(1:n, n+1) = b
```

Several array intrinsic functions are used in the subroutine solve_ linear_equations. The size function is used to find the number of equations and variables, which is the size of the list $b$. The function spread takes an array and increases its dimension (i.e., number of subscripts) by one by duplicating entries along a chosen dimension. Suppose that $m$ is the $3 \times 4$ array

$$
\left[\begin{array}{llll}
11 & 12 & 13 & 14 \\
21 & 22 & 23 & 24 \\
31 & 32 & 33 & 34
\end{array}\right]
$$

then $m(1,2: 4)$ is the one-dimensional array
$\left[\begin{array}{lll}12 & 13 & 14\end{array}\right]$
and spread $(m(1,2: 4)$, $\operatorname{dim}=1$, count $=2)$ is the two-dimensional array

$$
\left[\begin{array}{lll}
12 & 13 & 14 \\
12 & 13 & 14
\end{array}\right]
$$

which consists of two copies of $m(1,2: 4)$ spread downward, that is, entries that differ only in the first subscript are duplicates. Similarly, $\operatorname{spread}(m(2: 3,1)$, $\operatorname{dim}=2$, count $=3)$ is the array

$$
\left[\begin{array}{lll}
21 & 21 & 21 \\
31 & 31 & 31
\end{array}\right]
$$

consisting of three copies of $m(2: 3,1)$ spread to the right, with duplicate entries that differ only in the second subscript. Since these two arrays are the same size and shape, they may be multiplied; the value of $\operatorname{spread}(m(1,2: 4), 1,2) * \operatorname{spread}(m(2: 3,1), 2,3)$ is the array

$$
\left[\begin{array}{lll}
12 \times 21 & 13 \times 21 & 14 \times 21 \\
12 \times 31 & 13 \times 31 & 14 \times 31
\end{array}\right]
$$

Thus, the resulting value of $m$ after executing the statement

$$
\begin{aligned}
m(2: 3,2: 4)=m(2: 3,2: 4)- & \& \\
& \operatorname{spread}(m(1,2: 4), 1,2) * \& \\
& \operatorname{spread}(m(2: 3,1), 2,3)
\end{aligned}
$$

is

$$
\left[\begin{array}{cccc}
11 & 12 & 13 & 14 \\
21 & 22-12 \times 21 & 23-13 \times 21 & 24-14 \times 21 \\
31 & 32-12 \times 31 & 33-13 \times 31 & 34-14 \times 31
\end{array}\right]
$$

It is not necessary to set $m(1,2: 3)$ to 0 to complete this step in the triangularization because these elements are never looked at again.

The intrinsic function sum finds the sum of all the elements of an array. If $a$ is a one-dimensional array, then the statement

$$
s=\operatorname{sum}(a)
$$

gives the same result (subject to rounding errors) as the statements

```
s = 0
do i = 1bound(a), ubound(a)
```

```
 s = s + a(i)
end do
```

For higher-dimensional arrays, a nested do loop is needed for each dimension of the array to achieve the effect of the built-in function sum. Besides the added simplicity and clarity of using the expression sum (a) in place of nested loops, it is much easier for compilers to recognize that sum(a) applies the same operation to the entire array and therefore might be a suitable expression for parallel execution if the hardware permits. The do loop versions explicitly ask for the calculations to be done in a specific order and thus may not benefit from optimization.

Many other functions that operate on arrays are described briefly in Appendix $\mathbf{A}$.

### 4.6 Case Study: Calculating Probabilities

In 3.14.2, we considered the problem of calculating the probability that a throw of two dice will yield a 7 or an 11. The resulting program used the built-in subroutine random_number to generate a random number between 0 and 1 . We now provide a slightly different solution using the same procedure random_number, but with an array as the first argument.

### 4.6.1 Generating an Array of Random Numbers

When the argument to the built-in subroutine random_number is a real array, the array is filled with a collection of real numbers each greater than or equal to 0 and less than 1 . In general, the numbers are not all the same, although, by chance, some pairs of them might be equal.

Also, in this section, we will rewrite the subroutine random_int to return an array of integers from low to high. The subroutine random_int calls the built-in subroutine random_number, but now with an array as the argument. Note that the computational part of the subroutine is identical to the scalar version presented in 3.14.2.

```
subroutine random_int(result, low, high)
integer, dimension(:), intent(out) :: result
integer, intent(in) :: low, high
real, dimension(:), allocatable :: &
 uniform_random_value
```

allocate (uniform_random_value(size(result)))
ca11 random_number(uniform_random_value)

```
result = &
int((high - low + 1) * uniform_random_value + low)
deallocate (uniform_random_value)
end subroutine random_int
```

Using the techniques discussed in 7.1, it is possible to make the subroutine random_int a generic subroutine, so that when it is called with a scalar first argument, it returns a single scalar value, and when it is called with an array first argument, it returns an array of pseudorandom integer values. An easier way to handle arrays is to make the subroutine random_int elemental as described in 7.1.2.

### 4.6.2 Computing the Probability of a 7 or 11 Using Arrays

Using the array version of the subroutine random_int, the program to estimate the probability of rolling 7 or 11 with two dice is a bit shorter than the scalar version. We leave it to the reader to ponder whether it is easier or more difficult to understand than the scalar version.

```
program seven_11
 integer, parameter :: number_of_rol1s = 1000
 integer, dimension (number_of_rolls) :: &
 dice, die_1, die_2
integer :: wins
ca11 random_int (die_1, 1, 6)
cal1 random_int (die_2, 1, 6)
dice = die_1 + die_2
wins = count ((dice == 7) .or. (dice == 11))
print "(a, f6.2)", &
"The percentage of rolls that are 7 or 11 is", &
100.0 * real (wins) / real (number_of_rol1s)
contains
subroutine random_int . . .
end program seven_11
```

The built-in function count returns the number of true values in any logical array; in this case the value in the array is true if the corresponding value in the array dice is 7 or 11 . This version of the pro-
gram seven_11 should produce an answer similar to the one produced by the scalar version.

### 4.6.3 Exercises

1. Use random_int to write a program that determines by simulation the percentage of times the sum of two rolled dice will be 2,3 , or 12.
2. Two dice are rolled until a 4 or 7 comes up. Use random_int to write a simulation program to determine the percentage of times a 4 will be rolled before a 7 is rolled.
3. Use random_int to write a simulation program to determine the percentage of times exactly 5 coins will be heads and 5 will be tails, if 10 fair coins are tossed simultaneously.
4. Is it reasonable to use the array version of random_int with an array argument to create a program that deals a five-card poker hand? Remember that the same card cannot occur twice in a hand.

### 4.7 Date and Time Subroutines

There are three subroutines useful for getting information about the data and time: date_and_time, system_clock, and cpu_time. system_clock returns information about the computer's internal clock.

### 4.7.1 Timing a Program

The following program illustrates a simple use of date_and_time to get the current date and cpu_time to compare the timings of two ways to do a matrix multiplication. One way uses do loops and the other uses the intrinsic function matmul. The timing is done by calling cpu_time before and after the code to be timed. The time spent executing the code is then the difference between the two values returned, given in seconds.

```
program time_matrix_multiply
 ! Compare times of the matmul
 ! intrinsic vs. DO loops
integer, parameter :: n = 1000
real, dimension(n, n) :: a, b, c1, c2
character(1en=8) :: date
```

```
real :: start_time, stop_time
integer :: i, j, k
character(len=*), parameter :: &
 form = "(t2, a, f0.3, a)"
! Get date to print on report
ca11 date_and_time(date=date)
print *, "Timing report dated: " // &
 date(1:4) // "-" // date(5:6) // "-" // date(7:8)
ca11 random_number(a)
ca11 random_number(b)
ca11 cpu_time(start_time)
c1 = 0
do k = 1, n
 do j = 1, n
 do i = 1, n
 c1(i, j) = c1(i, j) + a(i, k) * b(k, j)
 end do
 end do
end do
cal1 cpu_time(stop_time)
print *
print form, "Time of DO loop version is: ", &
 stop_time - start_time, " seconds."
ca11 cpu_time(start_time)
c2 = matmul (a,b)
ca11 cpu_time(stop_time)
print *
print form, "Time of matmul version is: ", &
 stop_time - start_time, " seconds."
print *
if (any(abs(c1-c2) > 1.0e-4)) then
 print *, &
 "There are significantly different values."
else
 print *, "They are approximately the same."
end if
end program time_matrix_multiply
```


## 176

Arrays

Here is one sample result of executing the program. Try this on your computer to see how your results differ.

Timing report dated: 2005-11-02
Time of DO loop version is: 5.641 seconds.
Time of matmul version is: 2.641 seconds.

They are approximately the same.

### 4.7.2 Exercise

1. Write a program to time the generation of one million random numbers, first one at a time with one million calls to the intrinsic subroutine random_number, then with one call passing the whole array.

## Character Data

## 5

In a computer program, a piece of written text is called a character string. Character strings have been used throughout this book to retain messages and identify information printed out but not processed in any other way. This chapter reviews this simple use of character strings and presents computer programs in which the character strings themselves are the center of interest.

### 5.1 Use of Character Data in F Programs

### 5.1.1 Character String Declarations

A character string variable in an F program is declared to be type character. Each object of type character has a length, which is the number of characters that the string has. For example, the declaration

```
character(len=7) :: string_7
```

declares the variable string_7 to be a character string of length 7 .
Character dummy arguments and character parameters must have their length designated as an asterisk, indicating that their length will be determined by the corresponding actual argument or constant.

It is possible for a character string to have length zero. It is not particularly useful to declare a variable to have length zero because such a variable could only assume one value, called the null string. However, the null string can arise as a result of a computation, and a variable could be declared to be length zero in a program generated by another computer program.

The characters in a character string are numbered 1 to $n$, where $n$ is the length of the string.

It is possible to have an array of character strings, all of the same length. The following declares string_array to be a $5 \times 9 \times 7$ array of character strings of length 20.

```
character(len=20), dimension(5, 9, 7) :: string_array
```


### 5.1.2 Character Parameters

A character constant may be given a name using the parameter attribute. As a simple example, the program hello prints a character parameter or named character constant, instead of a literal character constant.

```
program hello
 character(len=*), parameter :: &
 message = "He11o, I am a computer."
 print *, message
end program hello
```

Running the program produces
Hello, I am a computer.

Note that the name of the character parameter must be declared, just like a character variable, but the length must be an asterisk indicating that the length is to be determined from the value of the string.

### 5.1.3 Character Constants

Recall that a character constant is enclosed in quotation marks (double quotes). This makes it possible for the computer to tell the difference between the character constant "yes" and the variable yes, or between the character constant " 14 " and the integer constant 14.

### 5.1.4 Assigning Values to Character Variables

A variable that has been declared to be a character string may be assigned a value that is a character string. A simple example is provided by the following program that assigns a string to a character variable used in a print statement instead of executing alternative print statements containing different messages.

```
program test_sign
 rea7 :: number
 character(1en=8) :: number_sign
 read *, number
 if (number > 0) then
 number_sign = "positive"
 else if (number == 0) then
 number_sign = "zero"
```

```
 else
 number_sign = "negative"
 end if
 print *, number, "is ", number_sign
end program test_sign
```

A sample output:

$$
-2.3000000 \text { is negative }
$$

### 5.1.5 Length of a Character String

The length of a character string is the number of characters in the string. The length of an F character string is fixed and is never negative. Each blank occurring in the string is counted in its length. The built-in function 1 en gives the length of a character string. Thus,

```
1en("love") is 4
1en("Good morning.") is 13
1en(" ") is 1
1en(" ") is 4
1en("bg7*5 ad") is 8
```

As with other functions, the argument of the function 1 en may be a variable or more general expression, as well as a constant.

During execution of a program, a character string variable always has its declared length. However, the length of a character string assigned to a character variable may be different from the length declared for that variable. For example, if the input number is zero in the program test_sign, the four-character constant "zero" is assigned to the eight-character variable sign. This assignment is legal. Four blanks are added to the end of the string zero to make its length 8 , the declared length of the variable sign. Thus, the new value of the variable sign is "zero ".

On the other hand, if the character string to be assigned to a variable is longer than the declared length of the variable, characters are truncated from the right end of the string prior to assignment. For example, if the string name has a declared length of 3, the assignment statement

```
name = "Jonathan"
```

results in the string "Jon" being assigned to name.

In a subprogram, the length of a character dummy argument must be given as an asterisk (*), which means that the length of the corresponding actual argument is to be used. Such a dummy argument is said to have assumed length. For example,

```
subroutine process(c)
character(len=*), intent(in) :: c
```

The length of a local character string may depend on values related to the dummy arguments; such strings are called automatic, as they are very similar to automatic arrays (4.1.5).

For example, a temporary local string can be declared to hold the value of an argument passed in.

```
subroutine ss(c)
 character(len=*), intent(in) :: c
 character(len=1en(c)) :: temp_c
 temp_c = c
```

The intrinsic function 1en provides information that is otherwise unobtainable in the case where a character string, such as the variable c above, is a dummy argument with its length given by an asterisk. The programmer knows the length of all other character strings from their declarations.

### 5.1.6 Input of Character Strings

When character strings are supplied as input data for a read statement with the default format (*), the string should be enclosed in quotes, just like a character constant. When using an a format, however, surrounding quotes must be omitted; any quotes among the characters read are considered to be part of the character constant.

### 5.1.7 Character Collating Sequences

The F programming language uses the standard 128-character ASCII character set. The acronym ASCII stands for "American Standard Code for Information Interchange"; however, essentially the same code is also the international standard ISO 646:1983.

The intrinsic ordering for characters, called the collating sequence, is determined by this standard. Table 5-1 shows a selection of printable characters in the ASCII collating sequence. One character is considered "less than" another character if it precedes the other character in the collating sequence.

Table 5-1 The collating sequence for printable ASCII characters

$$
\begin{aligned}
& \text { blank! " \# \$ \% \& ' ( ) * + , - . / } \\
& 0123456789 \text { : ; < = > ? @ }
\end{aligned}
$$

```
A BCDEFGHIJKLMNOPQRSTUVWXYZ[\]^ _`
abcdefghijklmnopqrstuvwxyz{l}~
```


### 5.1.8 The Built-In Functions ichar and char

The built-in function ichar produces an integer representing the ASCII code of the character given as argument. For example, ichar("A") is 65.

The function char returns the character with a given code. For example, char (65) gives the ASCII character in position 65, which is " A ".

### 5.1.9 A Testing Technique for Character Output

The program explore_character_set will allow you to explore the ASCII collating sequence one character at a time. You type the character code and the computer prints the character with that code. It should be run interactively.

```
program explore_character_set
! Prints the character with given character code
! in the defau7t kind
 integer :: code
 print *, "Type a character code"
 read *, code
 print "(i5, 3a)", code, ">", char(code), "<"
end program explore_character_set
 Type a character code
6 5
 65>A<
```

The blank character is a perfectly valid character (ASCII code 32). To better see the value of char, the value is printed surrounded by the printable characters > and $<$. A blank character will then conspicuously occupy the print or display position between its delimiters.

You must expect some surprises when you run the program explore_character_set. Most of the characters from 0 to 31 do not print. Some, like the line feed, char(10) in ASCII, direct the printer to perform some action rather than print a character. The delimiters > and < will help you figure out what action was taken.

Table 5-2 summarizes executions of the program explore_ character_set. It is the output of a program similar to explore_ character_set that uses loops to show the printable ASCII characters and their corresponding codes, eight per line of output. Codes 0 through 31 and code 127 represent special control characters such as the "bell" character, backspace, and newline. Code 32 represents the blank character.

Table 5-2 The printable ASCII characters

32	33	!	34	"	35	\#	36	\$	37	\%	38	\&	39	‘
40 (	41	)	42	*	43	+	44	,	45	-	46		47	/
480	49	1	50	2	51	3	52	4	53	5	54	6	55	7
568	57	9	58	:	59	;	60	<	61	$=$	62	>	63	?
64 @	65	A	66	B	67	C	68	D	69	E	70	F	71	G
72 H	73	I	74	J	75	K	76	L	77	M	78	N	79	0
80 P	81	Q	82	R	83	S	84	T	85	U	86	V	87	W
88 X	89	$Y$	90	Z	91	[	92	$\backslash$	93	]	94	$\wedge$	95	
96	97	a	98	b	99	c	100	d	101	e	102	$f$	103	g
104 h	105	i	106	j	107	k	108	1	109	m	110	n	111	$\bigcirc$
112 p	113	q	114	$r$	115	S	116	t	117	u	118	v	119	w
120 x	121	$y$	122	z	123	\{	124	\|	125	\}	126	$\sim$		

### 5.1.10 Comparison of Character Strings

In F the comparison operators

$$
<,<=,==, /=,>,>=
$$

may be used to compare character values according to the ASCII collating sequence.

The ordering of strings is an extension of the ordinary lexicographic (i.e., dictionary) ordering of words, but uses the processor codes to order characters other than letters. If the first character of one character
string precedes the first character of the second string in the collating sequence, then we say the first character string is less than the second. If the first characters are equal, the second characters are used to decide which character string is smaller. If the second characters match also, the third characters are used to decide, and so on. The character string with the smaller character in the first position where the two strings differ is considered the smaller character string. When character strings of different lengths are compared, the shorter one is treated as if it were padded with enough blanks at the end to make it the same length as the longer one. For example,

```
"app1e" < "bug" < "cacophony" < "doldrums"
"earache" < "elephant" < "empathy" < "equine"
"ph1egmatic" < "phonograph" < "photosynthetic"
"dipole" < "duplicate" == "duplicate " < "dynamic"
```

In the first line of expressions, decisions are made on the basis of the first letter of the strings. In the second line, since each string has first letter " e ", decisions are made on the basis of the relative collating position of the second letters. In the third set of comparisons, third or fourth letters differ.

From these examples, it is clear that the natural order of character strings corresponds exactly to ordinary alphabetic order when the character strings are words written either entirely in lowercase or entirely in uppercase letters.

String ordering does not take meaning into account. For example, although
"1" < "2" > "3" > "4"
as expected, it is also true that
"four" < "one" < "three" < "two"
and, worse yet
"12" < "2"

String ordering also is sensitive to upper and lower case. The two character strings
"word" "WORD"
are not equal.

### 5.1.11 Substrings

Many character-processing applications require breaking down a string into individual characters or subsequences of characters. Examples are decomposing a word into letters or a sentence into words. The key idea in such a decomposition is a substring.

A substring of a character string is any consecutive sequence of characters in the string. For example, "J", "ne D", and "Doe" are substrings of the character string "Jane Doe", but "JDoe" is not a substring. Every character string is regarded as a substring of itself. The string of length zero (the null string) is a substring of every string; it occurs between every pair of characters and at both the beginning and end of the string. The following table indicates all the substrings of the character string "then".

```
Length 0: " " (the null string)
Length 1: "t" "h" "e" "n"
Length 2: "th" "he" "en"
Length 3: "the" "hen"
Length 4: "then"
```


### 5.1.12 Referencing Substrings

There is a convenient way to refer to any contiguous subsequence of characters of a character string. This is done by writing after any character variable or array element two integer expressions that give the positions of the first and last characters in the substring. These two expressions are separated by a colon and enclosed in parentheses. The positions are numbered from 1 to $n$, where $n$ is the length of the string. An example is string ( $\mathrm{k}: \mathrm{m}$ ), where the values of $k$ and $m$ are positive integers less than or equal to the length of string and $k \leq m$. If $k>m$, the result is the null string. For example if $\mathrm{c}=$ "crunch",

$$
\begin{aligned}
& c(2: 4) \text { is run } \\
& c(1: 6) \text { is crunch } \\
& c(3: 2) \text { is the null string } \\
& c(2: 7) \text { is illegal } \\
& c(5: 5) \text { is } c
\end{aligned}
$$

The last example illustrates how to refer to a single character of a string. The program single_7etters tells the computer to print, one at a time, the characters of a string supplied as input.

```
program single_letters
! Print individually the letters of an input string
 integer :: k
 character(len=10) :: string
 read "(a)", string
 print *, "Input data string: ", string
 do k = 1, len(string)
 print *, "|", string(k : k), "|"
 end do
 print *, "====="
end program single_letters
Input data string: SHAZAM
|s|
|H|
|A|
|Z|
|A|
|M|
| |
| |
| |
| |
```


### 5.1.13 Trimmed Length of a String

It is a nuisance that the length of a character variable is always the same regardless of its value. A definition of length that is suitable for many applications is the length of the substring that includes all characters up to and including the last nonblank character, but excluding terminal blanks. Using substrings, it is possible to write a function my_len_trim (trimmed length) that computes this value.

```
function my_len_trim(string) result(len_trim_result)
character(len=*), intent(in) :: string
integer :: len_trim_result
integer :: k
1en_trim_result = 0
```

Character Data

```
 do k = len(string), 1, -1
 ! or until nonblank found
 if (string(k:k) /= " ") then
 1en_trim_result = k
 exit
 end if
end do
end function my_len_trim
```

Actually, the function 1en_trim is a built-in function that computes exactly the same result as my_7en_trim given above. In addition, there is a built-in function trim, whose value is the given character string with all trailing blanks removed. The value of trim(string) is the same as string(1:1en_trim(string)) and is used in the sample program plural in 5.1.16.

The program substrings_of_1ength_2 prints all substrings of length two of any character string supplied as input. The upper bound len_trim(string) - 1 on the do variable $k$ is the starting point of the last substring of length two that doesn't contain a trailing blank.

```
program substrings_of_1ength_2
 character(len=20) :: string
 integer :: k
 read "(a)", string
 print *, "Input data string: ", string
 do k = 1, len_trim(string) - 1
 print *, string(k:k+1)
 end do
 print *, "====="
end program substrings_of_1ength_2
 Input data string: High their!
 Hi
 ig
 gh
 h
 t
 th
 he
 ei
 ir
 r!
 =====
```

By adapting the method of the program substrings_of_1ength_2, we could write a program to print out all the substrings of any given length. Using a double loop, we could write a program that lists all substrings of all possible lengths. Tasks like these are provided as exercises at the end of this section.

### 5.1.14 Reassigning the Value of a Substring

It is possible to reassign the value of a substring without affecting the rest of the string. For instance, the three lines

```
name = "John X. Public"
initial = "Q"
name(6:6) = initia1
```

tell the computer to change the value of the variable name from "John X. Public" to "John Q. Public". Similarly the three lines

```
name = "John Xavier Public"
new_middle_name = "Quincy"
name(6:11) = new_middle_name
```

direct the computer to change the value of the variable name from "John Xavier Public" to "John Quincy Public".

In reassigning the value of a substring as in the above two examples, it is necessary that the length of the new substring value exactly equal the length of the old substring value. The following example shows how to use a loop to make room for a longer replacement substring. It is assumed that the declared length of name is at least 17 characters.

```
name = "John Paul Public"
! Move last name and blank one position to the right
do letter = 16, 10, -1
 name(1etter+1:1etter+1) = &
 name(1etter:1etter)
end do
! Insert middle name
name(6:10) = "Peter"
```

Note that it would not be correct to have the do variable count forward from 10 to 16 . That loop would first move the blank in position 10 to position 11, which is what is desired. However, for the second iteration of the loop, the value of 1etter would be 11 and the blank just placed in position 11 would be moved to position 12. Next, the blank in
position 12 would be moved to position 13. The total effect of the loop would be to put blanks in positions 11 through 17.

It is possible to replace the do block that moves the last name one position to the right with the single statement

```
name(11:17) = name(10:16)
```


### 5.1.15 Finding the Position of One String in Another

There are numerous reasons for wanting to know if one string is contained as a substring in another. We might want to know if a particular letter is in a word or if a certain word is in a sentence. The built-in function index tells even more than that; it tells where to find the first instance of one character string as a substring of another. For example,
index("monkey", "on")
is 2 because the substring "on" begins at the second letter of the string "monkey" and

```
index("monkey", "key")
```

is 4 because the substring "key" begins at the fourth letter of "monkey".

If the string supplied as the second argument occurs more than once as a substring of the string supplied as the first argument, the function value is the location of the beginning of the leftmost occurrence, so that
index("banana", "ana")
is 2 even though characters 4 to 6 of "banana" also are "ana". If the second argument is not a substring of the first argument, rather than calling it an error and halting, a function value of zero is used as a signal. For example,

```
index("monkey", "off")
```

is 0 . A program that calls the function index can test for the signal value zero if desired.

The function index is a built-in function in F; but to provide a better understanding of how the function works, a programmer-defined version of the function called my_index follows. The intrinsic function index has an optional third argument back not implemented in this version. In the intrinsic version, when back is true, the search is for the
rightmost occurrence of the substring. For example, index ("banana", "ana", .true.) is 4, but index("banana", "ana", .false.) is 2.

```
function my_index(text, string) result(index_result)
 Searches for string as a substring of text.
 If found, index is the position of the first
 character of the leftmost occurrence of string
 in text. If not found, index = 0
 character(len=*), intent(in) :: text, string
 integer :: index_result
 integer :: left_end, right_end
 index_result = 0
 do left_end = 1, len(text) - len(string) + 1
 right_end = 1eft_end + 1en(string) - 1
 if (text(left_end:right_end) == string) then
 index_result = left_end
 exit
 end if
 end do
end function my_index
```


### 5.1.16 Concatenation

The only built-in operation that can be performed on strings that produces a string result is concatenation. The concatenation of two strings is formed simply by placing one string after the other. The symbol for concatenation is two slashes (//). The concatenation operator in F is less useful than it might be because strings are all fixed length. The program plural attempts to form the plural of given words by the method of putting the letter " $s$ " at the end. Obviously, this program is not very useful as it stands, but it does illustrate the use of the concatenation operator.

## program plura1

```
character(len=18) :: word
integer :: ios
do ! unti1 out of words
 read (unit=*, fmt="(a)", iostat=ios) word
 if (ios < 0) then ! end of file
 exit
 end if
```

```
 print *, "Input data word: ", trim(word)
 print *, " Plural of word: ", trim(word) // "s"
 end do
end program plura1
 Input data word: program
 Plural of word: programs
Input data word: programmer
 Plural of word: programmers
Input data word: matrix
 Plural of word: matrixs
Input data word: computer
 Plural of word: computers
Input data word: horses
 Plural of word: horsess
```

The read statement in the program plural needs both a format specification and an option iostat (input/output status) that sets the integer variable ios to a negative value when attempting to read beyond the end of the file. Thus, the long form (9.3.2) is required. However, we still want to use the default input unit, so we can write

```
read (unit=*, fmt="(a)", iostat=ios) word
```

The default input format is not used because we do not want to type quotes around the input string.

### 5.1.17 Exercises

1. What is the value of each of the following expressions?
```
1en ("5 feet")
1en ("alphabet")
1en ("abcdefghijk1mnopqrstuvwxyz")
1en ("42")
```

2. List all the substrings of length 3 of the string "alphabet".
3. Write a program that reads a character string of maximum length 50 and prints all substrings of length 3. If you can't think of anything better, use as input data
"These are the times that try our souls."

The output from this sample input should be
run substrings_3
The
hes
ese
-
-
uls
1s.
4. Write a program that reads a character string of maximum length 10 and prints all of its substrings.
5. Write a program that sorts a list of at most 200 character strings. Each character string is at most 50 characters long and occupies the leftmost positions of one line in the input file. Use the end-of-file test to terminate reading of input data. You may be surprised at what happens if you accidentally type a blank in the leftmost column of one of the lines in the input file. Then again, after you think about it, you might not be.
6. A computer system maintains a list of valid passwords. Write a program that accepts an 8-character password and checks it against its list of valid passwords. The program should print "ok" if the password is in the list and "Try again" if it is not. Give the user two additional tries, replying with successively nastier messages each time the user fails to give the correct password. Hint: Keep a list of responses as well as a list of passwords. A sample execution might produce the following output:

```
 Welcome to the super special simulated system
 Enter your password:
bug free
 Try again
 Enter your password:
silicon
 Are you sure you have a password?
 Enter your password:
i love f
 ok
```

7. Read a character string of maximum length 50 as input and print it in reverse order. Ignore trailing blanks. You must use a charactervalued function reverse(string). If the input is
```
until
```

the output should be

```
run test_reverse
Input data string: until
litnu
```

8. Nicely displayed headings add impact to a document. Write a program to take a character string as input and print it surrounded by a border of exclamation marks. Again, ignore trailing blanks in the input. Leave one blank before the first character and after the last character in the display. If the input is

Payro11 Report
the output should be

```
Input data title: Payroll Report
```

!!!!!!!!!!!!!!!!!!
! Payro11 Report !
!!!!!!!!!!!!!!!!!!
9. Write a logical-valued function f_name that determines whether or not its character string argument is a legal $F$ name.
10. Write a function char_to_int that accepts a character string and returns a vector of integers, one for each character in the string. The integer value should be 1 through 26 , reflecting the position in the alphabet if the character is either an uppercase or lowercase letter; the value should be zero, otherwise. For example, char_to_int("e") = (/5/) and char_to_int("a-z") = (/1, 0, 26/).
11. Write a function int_to_binary that converts an integer to a character string that is the binary representation of the integer. Adjust the 1 s and 0 s in the right-hand portion of the string and pad the remainder of the string with blanks. The string should contain no insignificant zeros, except that the integer 0 should produce the string consisting of all blanks and one character " 0 ". If the integer is negative, the first nonblank character should be a minus sign; if it is positive, the first nonblank character should be"1". Declare the function result to have length 5 . If the declared length is not long enough to contain the result, it should consist of all asterisks.

```
int_to_binary(5) is bb101
int_to_binary(0) is bbbb0
int_to_binary(-4) is b-100
int_to_binary(77) is *****
```

You must write the function in such a way that changing the length of the function result to 16 requires no additional changes in the function.
12. Modify the function my_index given in 5.1.15 to have an optional third argument back, making it identical to the intrinsic function index. When back is true, the search proceeds backward from right to left.

### 5.2 Text Analysis

There are numerous reasons for examining text in minute detail, word by word and letter by letter. One of the reasons is to determine the authorship of an historical or literary work. Such quantities as the average length of a word or the frequency of usage of certain letters can be important clues. Computers have been useful in studying text from this viewpoint.

### 5.2.1 Blanking Out Punctuation

We start with some routines that perform simple text manipulation processes. The subroutine blank_punct (blank out punctuation) uses the substring value reassignment facility and the intrinsic function index. Keep in mind that a function value zero means the function index has determined that the second supplied argument is not a substring of the first supplied argument. The subroutine blank_punct regards any character besides a letter or a blank as a "punctuation mark" to be blanked out.

The program test_bp (test blank out punctuation) is intended to show how the subroutine blank_punct works.

```
modu7e blank_modu7e
public :: blank_punct
contains
subroutine blank_punct (text)
! Blank out punctuation
! Retain only letters and blanks
 character(len=*), intent(in out) :: text
 character(len=*), parameter :: letter_or_b = &
```

```
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" // &
 "abcdefghijk1mnopqrstuvwxyz "
 integer :: i
 ! Replace any character that is not a blank
 ! or letter with a blank
 do i = 1, len_trim(text)
 if (index(letter_or_b, text(i:i)) == 0) then
 text(i:i) = " "
 end if
 end do
end subroutine blank_punct
end module blank_module
program test_bp
 use blank_module
 character(len=100) :: text
 text = "Suppress5$,superfluous*/3punctuation."
 ca11 blank_punct(text)
 print *, text
end program test_bp
```

The result is

```
Suppress superfluous punctuation
```

A slightly different version of the subroutine blank_punct uses the verify built-in function. The verify function scans the first argument, checking that each character in the string is also in the string that is the second argument. If each character in the first argument is also in the second, the value of the function is 0 . Otherwise, the value of the function is the character position of the leftmost character in the first argument that is not in the second argument. For example the value of verify("banana", "nab") is 0 and the value of verify("banana", "ab") is 3, the position in "banana" of the first letter that is neither "a" nor " b ".

```
subroutine blank_punct(text)
! blank out punctuation
! retain only letters and blanks
```

```
character(len=*), intent(in out) :: text
character(len=*), parameter :: letter_or_b = &
```

```
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" // &
 "abcdefghijk7mnopqrstuvwxyz "
integer :: i
! Replace any character that is not a blank
! or letter with a blank
do
 i = verify(text, letter_or_b)
 if (i == 0) exit
 text(i:i) = " "
 end do
end subroutine blank_punct
```

The subroutine blank_punct needs a character string of length 53 that does not fit conveniently on one line. The concatenation operator is used to break the line.

### 5.2.2 Excising a Character from a String

When a character of a string is blanked out, as by the subroutine blank_punct, that character is replaced by a blank and the length of the character string remains unchanged. When a character is excised from a string, not only is the character removed, but also all of the characters to the right of the excised character are moved one position to the left. Thus, when a character is excised from a string, the trimmed length (that is, not including trailing blanks) of the string is decreased by at least one. Of course, the declared total length of the string cannot change in F and so a blank is added as the rightmost character. The character in position c of name can be excised by the statement

$$
\text { name }(c:)=\operatorname{name}(c+1:)
$$

A blank is added because name ( $\mathrm{c}+1$ :) is one character shorter than name(c:).

The subroutine compress_bb (compress double blanks) removes all double blanks from a string except those that occur at the right end. It is called by a program words that lists all the words in a string; the program words is discussed in the next subsection.

```
subroutine compress_bb (text)
! Removes double blanks, except at right end
 character(len=*), intent(in out) :: text
 integer :: i
 do
 i = index(trim(text), " ")
```

```
 if (i == 0) exit
 text(i:) = text(i+1:)
 end do
end subroutine compress_bb
```


### 5.2.3 Efficiency of compress_bb

In most cases, efficiency of the code does not matter. But there are some programs (weather prediction, for example) that require the most efficient programs we can write. Also, since this little subroutine might be used by other programs, we should make some attempt to make it perform well.

The subroutine compress_bb is not efficient because each time a double blank is found, all the characters to the right are moved one position to the left. Thus the characters near the end of the string may be moved many times. It would be better to move each character once to its final position if possible.

Here are informal instructions to accomplish this. Implementing it in $F$ is left as an exercise.

```
Set the logical variable final_is_blank to false
Set the integer variable final to 0
Do original = 1 to length of text
 If final_is_blank is false or &
 original character of text is not blank
 Increment final by 1
 Copy original character to final character
 Set final_is_blank equal to &
 (final character of text is blank)
 end if
end do
```


### 5.2.4 Listing All the Words

We now turn our attention to the problem of listing all the words in a text. For this purpose, the program words regards a substring as a word if and only if it consists entirely of letters and both the character immediately before it (if any) and the character immediately after it (if any) are not letters. The program does not consult a dictionary to see whether the word has been approved by a lexicographer.

```
program words
```

```
use words_module
character(len=200) :: text
integer :: end_of_word
```

```
read "(a)", text
print *, "Input data text: ", trim(text)
! Blanking out the punctuation,
! compressing the multiple blanks,
! and ensuring that the first character is a letter
! are pre-editing tasks to simplify the job.
cal1 blank_punct(text)
ca11 compress_bb(text)
text = adjustl(text)
! Print al1 the words.
if (len_trim(text) == len(text)) then
 ! The text is all one long word.
 print *, text
else
 ! Each word is followed by exactly one blank.
 do ! until all words are printed
 if (len_trim(text) == 0) exit
 end_of_word = index(text, " ") - 1
 print *, text(1:end_of_word)
 ! Discard word just printed
 text = text(end_of_word+2:)
 end do
end if
```

end program words

```
Input data text: Then, due to il1ness*, he resigned.
Then
due
to
il1ness
he
resigned
```

If the string supplied as input to the program words contains no letters, the pre-editing provides a string of all blanks to the do loop that prints all the words. The do loop exits correctly on the first iteration without printing any words because the trimmed length is zero. In the usual case, however, a word starts at position 1 of text and stops immediately before the first blank. The computer prints the word and dis-
cards it and the blank immediately following it, so that the next word to be printed begins at location 1 of the resulting character string.

Even after the subroutines blank_punct and compress_bb are called, it is possible that the first character of the string is a blank. Application of the built-in function adjustl shifts the string to the left to eliminate any leading blanks, filling in the end of the string with a blank for each position shifted.

### 5.2.5 Average Word Length

To compute the average length of words in a given text, it is necessary to determine both the total number of letters in each word and the total number of words. The most direct way that comes to mind is used by the program avg_word_1en_1 (average word length, version 1).

```
program avg_word_1en_1
 Initialize word count and letter count to zero
 Read text
 Start scan at leftmost character of the text
 Do until end of text is reached
 Locate the beginning and end of a word
 If no more words then exit the loop
 Increase the letter count
 by the number of letters in the word
 Increase the word count by 1
 Print "average word length = ",
 letter count / word count
end program avg_word_1en_1
```

After reading in the text, the computer starts to look for the first word at the extreme left. Blanks, commas, and other nonletters are passed over to find the beginning of a word. Then letters are counted until the first nonletter is reached, such as a blank or punctuation mark, which signals the end of the word. These steps are repeated for each word in the text. Each time it locates a word, the computer increases the letter count by its length and the word count by one.

The refinement of avg_word_1en_1 is straightforward. It uses the intrinsic function scan that works like verify, except that it looks for the first occurrence of any character from a set of given characters, in this case the alphabetic characters.

```
program avg_word_len_1
! Calculate the average word length of input text
 character(len=200) :: text
```

```
integer :: word_begin, word_end
integer :: word_count, letter_count
character(len=*), parameter :: alphabet = &
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" // &
 "abcdefghijk1mnopqrstuvwxyz"
1etter_count = 0
word_count = 0
read "(a)", text
print *, "Input data text: ", trim(text)
do ! until no more words
 word_begin = scan(text, alphabet)
 if (word_begin == 0) exit
 text = text(word_begin:)
 word_end = verify(text, alphabet) - 1
 if (word_end == -1) word_end = len(text)
 letter_count = letter_count + word_end
 word_count = word_count + 1
 text = text(word_end+2:)
end do
print *, "Average word 1ength =", &
 rea1(letter_count) / word_count
```

end program avg_word_1en_1
Input data text: Never mind the whys and wherefores.
Average word length $=4.8333335$
Input data text: I computed the average word length.
Average word length $=4.8333335$

The sample execution output of the program avg_word_1en_1 might suggest that to use average word length as a test for authorship, one should have a fairly large sample of text.

### 5.2.6 Modification for a Large Quantity of Text

If the amount of text is very large, the computer might not have enough memory to hold it all at one time. Also, in some F systems, there is a maximum length for character strings. For these reasons, it may be desirable to modify the program avg_word_len_1 so that it reads the text one line at a time, rather than all at once. The program avg_word_7en_2 incorporates such a modification. Much of the main
program avg_word_1en_1 is put into the subroutine one_1ine (process one line).
module word_1ength_2_modu7e

```
 public :: one_1ine
```

character(len=*), parameter, private : : alphabet = \&
"ABCDEFGHIJKLMNOPQRSTUVWXYZ" // \&
"abcdefghijklmnopqrstuvwxyz"
character(1en=200), public :: text
integer, public :: word_count, letter_count
contains
subroutine one_1ine()
! Accumulate statistics on one line of input text.
integer :: word_begin, word_end
do ! until no more words
word_begin = scan(text, alphabet)
if (word_begin == 0) exit
text = text(word_begin:)
word_end = verify(text, alphabet) - 1
if (word_end $==-1$ ) then
word_end $=1$ en(text)
end if
1etter_count = 1etter_count + word_end
word_count = word_count + 1
text $=$ text(word_end+2:)
end do
end subroutine one_1ine
end module word_1ength_2_modu7e
program avg_word_1en_2
! Calculate the average word length of input text.
! Text may have many lines, terminated by end of file.
use word_1ength_2_module
integer : : ios
1etter_count = 0
word_count = 0

```
do ! until no more lines of text
 read (unit=*, fmt="(a)", iostat=ios) text
 if (ios < O) exit
 print *, "Input data text: ", trim(text)
 cal1 one_line()
end do
print *, "Average word length =", &
 real(letter_count) / word_count
```

end program avg_word_1en_2

```
Input data text: One of the more important uses
Input data text: of the character manipulation
Input data text: capability of computers is
Input data text: in the analysis of text.
Average word length = 4.8947368
```


### 5.2.7 Frequency of Occurrence of Letters

There are two basic ways to count the number of occurrences of each letter of the alphabet in a given text. Both ways use 27 counters, one for each letter of the alphabet and one to count all the other characters.

One way to tabulate letter frequencies in a line of text is first to scan it for all occurrences of the letter " a ", then to scan it for all occurrences of the letter " b ", and so on through the alphabet. This requires 26 scans of the whole line. This method is embodied in the pseudocode program letter_count_1.

```
program letter_count_1
 Initialize
 do
 Read line of text
 If no more text, exit loop
 do letter = "a", "z"
 Scan line of text, counting occurrences
 of that letter (either uppercase
 or lowercase)
 Calculate the number of nonletters and
 increment nonletter total
 end do
 end do
 Print the counts
end program 1etter_count_1
```

The second way to count letter frequencies in a line of text is to begin with the first symbol of the text, to decide which of the 27 counters to increment, to continue with the second letter of the line of text, to see which counter to increment this time, and so on through the text. This second way is implemented by the pseudocode program 1etter_count_2.

```
program letter_count_2
 Initialize
 do
 Read a line of text
 If no more text, exit loop
 Do for each character in the line of text
 If the character is a letter then
 Increment the count for that letter
 else
 Increment the nonletter count
 end if
 end do
 end do
 Print the counts
end program letter_count_2
```

By the method of the program 1etter_count_1, the text must be scanned completely for each letter of the alphabet. By the method of the program letter_count_2, the text is scanned just once. Thus, the second program executes considerably faster than the first one and so only the program letter_count_2 is supplied below.

In F, the subscripts of the array of counters cannot be "a", " b ", etc. A subscript must be type integer. Therefore, subscripts 1 through 26 are used to count the number of occurrences of each letter of the alphabet and subscript 0 is used to count the characters that are not letters.

```
module letter_count_2_module
public :: count_letters, print_counts
 Variables:
 tally(0) = count of nonletters
 tally(1) - tally(26) = counts of A/a - Z/z
 character(len=*), parameter, private :: alphabet = &
 "ABCDEFGHIJKLMNOPQRSTUVWXYZ" // &
 "abcdefghijk1mnopqrstuvwxyz"
 character(len=200), public :: text
```

integer, dimension(0:26), public :: tally
contains
subroutine count_letters()
! Count letters in one line of text
integer :: i, letter
do $\mathbf{i}=1$, len_trim(text)
letter = index(alphabet, text(i:i))
if (letter > 26) letter = letter - 26
tally(letter) $=$ tally(1etter) +1
end do
end subroutine count_1etters
subroutine print_counts()
! Print the frequency counts
integer : : letter
print *
print "(2a10)", "Letter", "Frequency"
do 1etter = 1, 26
print "(a10, i10)", \&
alphabet(1etter:1etter), tally(1etter)
end do
print "(a10, i10)", "Other", tally(0)
end subroutine print_counts
end module 1etter_count_2_module
program 1etter_count_2
! Count frequency of occurrence in a text
! of each letter of the alphabet
use 1etter_count_2_module
integer : : ios
tally $=0$ ! Set entire array to zero
do ! until no more lines in file read (unit=*, fmt="(a)", iostat=ios) text if (ios < O) exit print *, "Input data text: ", trim(text) cal1 count_1etters()

```
 end do
 ca11 print_counts()
end program letter_count_2
 Input data text: One of the important text analysis
Input data text: techniques (to determine authorship)
Input data text: is to make a frequency count of
Input data text: letters in the text.
Letter Frequency
 A 6
 B 0
 C 3
 D 1
 E 15
 F 3
 G 0
 H 5
 I 7
 J 0
 K 1
 L 2
 M 3
 N 8
 O 8
 P 2
 Q 2
 R 5
 S 6
 T 16
 U 4
 V 0
 W 0
 X 2
 Y 2
 Z 0
Other 20
```

This is a good example to illustrate how and where different variables and parameters are declared. The variable count is a public variable in the module because it is used in the program letter_count_2. The parameter alphabet and the variable text are private because they are not needed in the program letter_count_2, but are above the contains statement because they are used in both of the module pro-
cedures. The remaining variables are declared within the subroutines because they are needed in only one subroutine.

### 5.2.8 Palindromes

Another aspect of text analysis is searching for patterns. Perhaps the text repeats itself every so often, or perhaps the lengths of the words form an interesting sequence of numbers. One pattern for which we search here is called a "palindrome", which means that the text reads the same from right to left as from left to right. The word "radar" is a palindrome, for example. Liberal palindromers customarily relax the rules so that punctuation, spacing, and capitalization are ignored. To liberal palindromers, the names "Eve", "Hannah", and "Otto" are all palindromes, as is the sentence
"Able was I ere I saw Elba."
something Napoleon might have said, except that he preferred speaking French.

The program palindrome satisfies the most conservative palindromers. As the two sample runs show, it accepts the string

## "NAT SAW I WAS TAN"

as a palindrome, but it rejects the string
"MADAM I'M ADAM"
It is straightforward to modify the program palindrome to apply a more liberal test for palindromes; simply preprocess the text as in the program words in 5.2.4. The subroutine blank_punct converts all nonletters to blanks, the subroutine compress_bb can be modified to excise all blanks, and a subroutine fold_cases can be written to change all lowercase letters to uppercase.

```
module c_or_blank_module
public :: c_or_blank
contains
function c_or_blank(c) result(c_or_blank_result)
! Tests if c is blank
! Returns "blank" if it is
! Returns c otherwise
 character(len=*), intent(in) :: c
```

```
 character(len=5) :: c_or_blank_result
 if (c == " ") then
 c_or_blank_result = "b1ank"
 else
 c_or_blank_result = c
 end if
end function c_or_blank
end module c_or_blank_module
program palindrome
! Tests for a palindrome
 use c_or_blank_module
 character(len=200) :: text
 integer :: 1, left, right
 logica1 :: match
 read "(a)", text
 print *, "Input data text: ", trim(text)
 right = len_trim (text)
 match = .true.
 do 1 = 1, right / 2
 if (text(1:1) /= text(right:right)) then
 1eft = 1
 match = .false.
 exit
 else
 right = right - 1
 end if
 end do
 if (match) then
 print *, "Palindrome"
 else
 print *, "Not a palindrome"
 print*, "Character",left,"from the left is ",&
 c_or_blank(text(left:1eft))
 print*, "Character",left,"from the right is ",&
 c_or_blank(text(right:right))
 end if
end program palindrome
```

```
Input data text: NAT SAW I WAS TAN
Palindrome
Input data text: MADAM I'M ADAM
Not a palindrome
Character 5 from the left is M
Character 5 from the right is blank
```


### 5.2.9 Exercises

1. Write the more efficient version of compress_bb described in 5.2.3.
2. Mark Twain wrote in "The Awful German Language" (in A Tramp Abroad) that he heard a California student in Heidelberg say, in one of his calmest moods, that he would rather decline two drinks than one German adjective. Write a program to help out this California student. The input data consists of a German adjective, for example, gut

The output might be

```
Input data adj: gut
der gute Mann die gute Frau das gute Kind
des guten Mannes der guten Frau des guten Kindes
dem guten Mann der guten Frau dem guten Kind
den guten Mann die gute Frau das gute kind
```

3. (a) Write a program to move all blanks that occur in an input string to the end of the string. (b) Modify the program so that blanks within matched pairs of quotes are not removed. If the input data is

$$
\text { do } \mathbf{i}=1,10,2
$$

the output should be

$$
\begin{aligned}
& \text { Input data source: do } i=1,10,2 \\
& \text { doi=1,10,2 }
\end{aligned}
$$

4. Calculate the ratio of letters in the first half of the alphabet to letters in the second half of the alphabet in an input text.
5. An alliteration is a sequence of words all starting with the same letter. Write a program alliteration that counts the most consecu-
tive words in an input text starting with the letter "P" or "p". For the sample input data
```
In his popular paperback, "Party Pastimes People
Prefer", prominent polo player Paul Perkins
presents pleasing palindromes.
```

the output should be
14

### 5.3 Case Study: Expression Evaluation

In 3.15.4 it was mentioned that it is possible for recursive procedures to call each other. This is illustrated in this section with an example that also gives a little insight into how computer programs are processed, producing the answers that we expect to see when a program is run.

In this book, the syntax or form of F statements is given by a very informal description. The following definitions use a more formal notation to describe a small part of F, namely, a class of arithmetic expressions involving only nonnegative integer constants, addition (+), multiplication (*), and parentheses. A more complete description of this notation can be found in Appendix B.

The first thing to do is describe what a number is.

number	is digit   or
	digit number

This says that a number is either a single digit or a digit followed by another (shorter) number. It is a recursive definition because the definition of number involves number as part of the second option. As with any recursive definition or program, there must be a way to terminate the recursion; in this case, a number must eventually be just a digit, the first choice for number. A digit is a single character $0,1, \ldots$, or 9 . This is a situation in which the recursion is not very essential and a number can be described more simply as a sequence of one or more digits, but this provides a very simple example of the definitions of other syntactic objects that are a little more complicated.

The fundamental building block of an expression is called a primary. Primaries are the basic components out of which expressions are built; they are treated as operands and combined using arithmetic operators. In our case it is either a number or any other expression enclosed in parentheses.
primary is number or (expression)

The next rule indicates how to build expressions using just primaries and multiplication to form what are called terms. A term is a sequence of primaries separated by the multiplication symbol (*). It can also be described recursively with the rule
term is primary or primary * term

This description says that a term is either a primary by itself or a primary followed by the multiplication symbol and another (simpler) term. Examples of terms are

## 64

111*2222
$397 * 43 *(2899 * 64352)$
In the last case one of the primaries is (2899*64352), which is an example of an expression enclosed in parentheses.

The description of an expression is similar to that of a term. An expression is a sequence of terms separated by the plus (+) operator and can be described recursively in our notation by

```
expression is term
 or term + expression
```

Examples of expressions are all of the example terms given in the previous list and the following as well.
$111+2222$
$111+2222 * 33$
$(111+2222) * 33$
The last two are seen to be expressions in slightly different ways. For $111+2222 * 33,111$ is a term and $2222 * 33$ is an expression, because it is a term consisting of two primaries separated by *. However, $(111+2222) * 33$ consists of an expression in parentheses followed by * and the number 33. This illustrates that the syntax rules indicate how the expression is to be broken down into components, which, in turn, indicates how the value of the expression will be computed.

It is now possible to see how intertwined these definitions are. We started with the definition of a primary that involved an expression.

But the definition of expression involves the definition of term, which involves the definition of primary!

It is possible to construct a program that determines if a string of characters is a legal expression as defined above. This program can be implemented using the recursive definitions directly or it can take advantage of the tail recursion in the definitions of number, term, and expression in order to be a little more efficient. However, it is not as easy to see how to handle the second alternative in the definition of primary without a recursive call to determine if it is an expression in parentheses.

It is interesting that it is possible to write a program that is not much more complicated than one that just tests the legality of an expression, but that computes the value of any legal expression. Giving the rules that determine the value of each expression specifies the semantics or meaning of the expression. It is easy to transform the rules given above into rules that compute the value of any expression.

A primary is either a number or an expression in parentheses; the value of a primary is either the value of the number or the value of the expression in parentheses. This sounds so simple that it may seem like it doesn't even say anything, but it does give the value of any primary in terms of its components. By the way, we will assume that the value of a number is "obvious", although it is not hard to define the value of a number in terms of its digits.

The description of the value of a term and an expression are very similar. If a term is a primary, its value is the value of the primary, which is defined in the previous paragraph. If it is primary * term, its value is the product of the value of the primary and the term. Similarly, the value of expression is either the value of a term or the sum of the values of a term and another expression.

We can now begin to write some of the functions that will return the value of the various kinds of expressions. Blanks are not permitted or are removed by preprocessing. Taking them in the same order as before, primary is a function that computes the value of a primary. We agree to return the value -1 if the string is not a legal primary. This works because only nonnegative integer constants are allowed and there is no subtraction operator.

```
recursive function primary(string) &
 result(primary_result)
 character(len=*), intent(in) :: string
 integer :: primary_result
 integer :: 1s
```

```
! See if it is a number
primary_result = number(string)
1s = 1en(string)
! If not, see if it is an expression in parens
if (primary_result < 0 .and. 1s > 0) then
 if (string(1:1) == "(" .and. &
 string(1s:1s) == ")") then
 primary_result = &
 expression(string(2:1s-1))
 end if
end if
```

end function primary
The first executable statement evaluates the primary as if it were a number. If it is a number, the value is not -1 and its value is also the value of the primary. If the value is -1 , the other option is that the primary is an expression enclosed in parentheses. The first and last characters are checked-if they are left and right parentheses, respectively, the expression between is evaluated and is used as the value of the primary.

To check that a string is a number, which must be a string of one or more digits, the verify function is used. It returns 0 if all the characters are digits. Also, if the length of the string is greater than zero, an internal read statement (9.3.6) is used to convert the string of digits to an integer value.

```
function number(string) result(number_result)
 character(len=*), intent(in) :: string
 integer :: number_result
 ! Check that it is one or more digits
if (len(string) > 0 .and. &
 verify(string, "0123456789") == 0) then
 read (unit=string, fmt=*) number_result
else
 number_result = -1
end if
```

end function number
The function term that returns the value of a string if it is a term and -1 otherwise first checks to see if the string is a primary. If it is, the
value of the primary is the value of the term. If it is not a primary, it must be a primary followed by * followed by another term.

```
recursive function term(string) result(term_result)
 character(len=*), intent(in) :: string
 integer :: term_result
integer :: op
 ! Check if it is a primary
term_result = primary(string)
if (term_result < 0) then
 ! If not a primary,
 ! find the first * outside parens
 op = position(string, "*")
 if (op > 0) then
 term_result = &
 combine(primary(string (:op-1)), &
 term(string (op+1:)), "*")
 end if
end if
end function term
```

We have made the function a bit more efficient by realizing that a primary cannot contain a multiplication sign unless it is inside parentheses. So we look for the leftmost multiplication sign that is not enclosed in parentheses. This is done by scanning the string, counting a left parenthesis as +1 and a right parenthesis as -1 and finding the first * at a place where the count is zero (and hence the parentheses to the left are balanced). The function position does this and returns 0 if it doesn't find such a multiplication symbol.

```
function position(string, op_symbol) &
 result(position_result)
 character(len=*), intent(in) :: string, op_symbol
 integer :: position_result
integer :: p, paren_count
position_result = 0
paren_count = 0
do p = 1, len(string)
 if (string(p:p) == "(") then
 paren_count = paren_count + 1
```

```
 else if (string(p:p) == ")") then
 paren_count = paren_count - 1
 else if (string(p:p) == op_symbol .and. \&
 paren_count == 0) then
 position_result = p
 exit
 end if
end do
end function position
```

It is interesting to note that a case construct cannot be used to select which operation to perform because the items in parentheses in each case statement must be constants; an item cannot be the character string that is the dummy argument operator.

If position is positive, the function term treats the characters to the left of the * as a primary and the characters to the right as another term, getting their values and multiplying them together if neither is -1 . The function combine is used to multiply two values together, except that it returns -1 if either argument is -1 . It is also used to add two values, so it takes a third argument that indicates which operation to perform.

```
function combine(x, y, op_symbo1) \&
 result(combine_result)
integer, intent(in) :: x, y
character(1en=*), intent(in) :: op_symbol
integer : : combine_result
if (\(x<0\).or. \(y<0\)) then
 combine_result = -1
e1se
 select case (op_symbo1)
 case ("+")
 combine_result \(=x+y\)
 case ("*")
 combine_result \(=x * y\)
 case default
 combine_result = -1
 end select
end if
```

end function combine

The function expression is very similar to term. The names of the functions called are changed, and the operator passed to combine is + instead of *.

All of these functions are put in a module.

```
module expression_module
public :: expression, term, primary, number, &
 position, combine
contains
recursive function expression (string) . . .
recursive function term (string) . . .
recursive function primary (string) . . .
function number (string) . . .
function position (string, op_symbol) . . .
function combine (x, y, op_symbol) . . .
end module expression_module
program expression_evaluation
 use expression_module
 character(len=100) :: line
 integer :: status, value
 do
 read (unit=*, fmt="(a)", iostat=status) line
 if (status < 0) exit
 print *
 print *, "Input data line: ", trim(line)
 value = expression(trim(line))
 print *, "The value of the expression is: ", value
 end do
```

end program expression_evaluation
Input data line: (443+29)(38+754)
The value of the expression is: -1

```
Input data line: 89+23*4
The value of the expression is: 181
Input data line: (((((((555)))))))
The value of the expression is: 555
Input data line: 64+23*(5388+39)*(54*22+3302*2)
The value of the expression is: 972605296
```


### 5.3.1 Exercises

1. Give a recursive definition of the value of a number that uses the value of a digit.
2. Extend the expression_evaluation program to allow negative constants, subtraction, and division.

## Structures and Derived Types

F arrays allow data to be grouped, but only if all items have the same data type. It is often useful to use a structure, which is a compound object consisting of values that may be of different data types. Derived types are used to define the form of structures. It is possible to define new operations on defined types, creating abstract data types. Derived types and their operations are defined in a module, making them globally available to many programs.

An interesting kind of structure is a recursive data structure, which can be built and manipulated using pointers. Examples of these structures in the form of linked lists and trees are found in Chapter 8.

### 6.1 Structures

A structure is a collection of values, not necessarily of the same type. The objects that make up a structure are called its components. The components of a structure are identified by F names, whereas the elements of an array are identified by numerical subscripts.

A good example of the use of a structure might be provided by a simple text editor, such as the one supplied with many Basic programming language systems. Each line in a Basic program consists of a line number and one or more statements. When the editor is running, the program being edited could be represented in the editing program as two arrays, one to hold line numbers and one to hold the text of each line. Perhaps a better way to do this is to have a single object called line consisting of two components, an integer line_number and a character string statement. The entire Basic program would then be an array of these structures, one for each line.

The components of a structure may be arrays or other structures. The elements of an array may be a structure. The elements of an array may not be arrays, but this functionality can be achieved with an array
whose elements are structures whose only component is an array or by a higher dimensional (rank) array.

To give a slightly more complicated example, suppose we wish to store in our computer the contents of our little black book that contains names, addresses, phone numbers, and perhaps some remarks about each person in the book. In this case, each entry in the book can be treated as a structure containing four components: name, address, phone number, and remarks. The diagram in Figure 6-1 represents the organization of this information.


Figure 6-1 Diagram of the structure person.
The name of the structure is person, and it has four components: name, address, phone, and remarks. Sometimes one or more components might be broken down into lower-level components. For instance, if the owner of the black book wanted to contact every acquaintance in a particular city, it would be helpful to have the component address itself be a structure with components number, street, city, state, and postal zip_code. With this organization of the data, it would be possible to have a computer program scan the entries for city and state without having to look at the street address or zip code. For similar reasons, it might be convenient to subdivide each telephone number into a three-digit area code and a seven-digit local number, assuming all of the numbers are in North America. This more refined data organization is represented schematically by the structure in Figure 6-2.


Figure 6-2 A refined structure person.

### 6.2 Derived Types

As was discussed in 1.2, there are five intrinsic F data types: integer, real, complex, logical, and character. A programmer may define a new data type, called a derived type. In F, a derived type can be used only to define a structure. Conversely, a structure can occur in a program only as a value of some derived type.

A type definition begins with the keyword type, followed by either the private or public accessibility attribute, followed by two colons (::) and the name of the type being defined. The components of the type are given in the form of ordinary type declarations. The type
definition ends with the keywords end type, followed by the name of the type being defined.

All type definitions are put above the contains statement in a module. In other words, a type definition must not appear in a main program or a procedure.

Let's start first with the Basic editor example, for which each line of the program consists of a line number and some text. A definition of a type that would be useful in this example is

```
type, public :: line
 integer :: line_number
 character(len=1ine_1ength) :: text
end type line
```

where line_length is an integer parameter (named constant).
Let us next return to the example of the little black book. To define the type phone_type in that example, area_code and number are each declared to be integer components:

```
type, public :: phone_type
 integer :: area_code, number
end type phone_type
```

The definition of the type address_type is a little more complicated because some of the components are character strings and some are integers:

```
type, public :: address_type
 integer :: number
 character(len=30) :: street, city
 character(len=2) :: state
 integer :: zip_code
end type address_type
```

Now that the types address_type and phone_type have been defined, it is possible to define a type suitable for one entry in the black book. Note that the names address_type and phone_type were used for the names of the types, so that the names address and phone could be used for the components of the type person_type.

```
type, public :: person_type
 character(len=40) :: name
 type(address_type) :: address
 type(phone_type) :: phone
 character(1en=100) :: remarks
end type person_type
```


### 6.2.1 Exercises

1. Design a data structure suitable for information on a college student to be used by the college registrar. Write the type definitions needed for this data structure.
2. Assuming that airlines accept reservations for flights up to one year in advance, design a data structure suitable for storing information associated with each reservation. Write the type definitions needed for this data structure.
3. Design a data structure suitable to hold information on each flight to be made by an airline during the next year. Write the type definitions needed for this data structure.
4. Design a data structure suitable for a bank to keep the information on a checking account. Write the type definitions needed for this data structure.

### 6.3 Declaring and Using Structures

Given the type definition for 1ine in 6.2 that can be used to hold a line number and one line of a Basic program, a variable new_line that could be used to represent one line of the program can then be declared by

```
type(line) :: new_line
```

As shown in this example, a variable is declared to be a derived type with a declaration that is similar to the declaration of a variable of intrinsic type, except that the name of the intrinsic type is replaced by the keyword type and the name of the type in parentheses. Note that in a type definition, the name of the type is not enclosed in parentheses, but in a type declaration, the name of the type is enclosed in parentheses.

The entire program to be edited could be represented by a single variable declared to be an array of values of type line:

```
type(line), dimension(max_lines) :: basic_program
```

With this declaration, some parts of the editor are a little easier to write and read because any operations that must be done to both a line number and the text can be expressed as a single operation on a line. For
example, if two arrays were used, the print statement of a subroutine 1ist_program might have been written

```
print "(i5, tr1, a)", line_number(n), text(n)
```

It can now be written

```
print "(i5, tr1, a)", basic_program(n)
```

where the tr (tab right) edit descriptor (9.8.13) indicates a number of print positions to skip.

To use the type declarations for the address book, joan can be declared to be type person_type with the statement

```
type(person_type) :: joan
```

and the little black book can be declared to be an array of type person_type:

```
type(person_type), dimension(1000) :: black_book
```

Of course, any program or module that is to contain a derived type declaration must use the module containing the derived type definition (or be in the module or program containing the definition).

### 6.3.1 Referencing Structure Components

A component of a structure is referenced by writing the name of the structure followed by a percent sign (\%) and then the name of the component. Suppose joan is an F variable declared to be type person_type as shown above. Then Joan's address is referenced by the expression
joan \% address
Style note: Blanks are permitted, but not required, around the percent sign in a structure component reference. We usually use the blanks because it improves readability.

The object joan \% address is itself a structure. If it is desired to refer to one of the components of this structure, another percent symbol is used. For example, the state Joan lives in is
joan \% address \% state
and her area code is

```
joan % phone % area_code
```

To see how structures can be used in a program, suppose the contents of the little black book are stored as the value of the variable black_book declared above, and suppose we want a subroutine that will print out the names of all persons who live in a given postal zip code. The subroutine simply goes through the entire contents of the black book, one entry at a time, and prints out the name of any person with the appropriate zip code.

Style note: If you use F names followed by the suffix _type to name derived types, the same name without the suffix is available for variables and structure components of that type. For example, the component name can be type name_type and address can be address_type. This convention is used frequently in this book, but not always.

### 6.3.2 Structure Constructors

Each derived-type definition creates a structure constructor, whose name is the same as that of the derived type. For example, if you define a type named boa, you have a boa constructor. This constructor may be used much like a function to create a structure of the named type. The arguments are values to be placed in the individual components of the structure. For example, using the type phone_type in 6.2 , an area code and telephone number may be assigned with the statement

```
joan % phone = phone_type(505, 2750800)
```

It is not necessary that the function arguments be constants. If john also is type person_type and john \% address has been given a value, the variable joan of type person_type can be assigned a value with the statement

```
joan = person_type ("Joan Doe", john % address, &
 phone_type (505, fax_number - 1), &
 "Same address as husband John")
```


### 6.3.3 Default Initialization

There is no way in F to indicate that (for example) every integer variable should be initialized to zero. Something like this can be done with derived types, however. Default initialization indicates that certain components of a derived type are to be set to a specified value each time an object of that type is created by a declaration or allocation. In the following example, the $x$ and $y$ components of structures of type point are always initialized to 1.1 and 2.2 , respectively.

```
program default_initialization
 type :: point
 rea1 :: x = 1.1, y = 2.2
end type point
type(point) :: p
print *, p % x, p % y
end program default_initialization
```

The first executable statement of this program prints the two components of p . Except for a variable of derived type that is initialized or default initialized, this is not legal because it would not have a predictable value.

There is another example of default initialization in the tree sort program in 8.4.

### 6.3.4 Exercises

1. Write a program that builds a small database of friends' addresses and phone numbers by using the type definitions and declarations in this chapter. The program should prompt the user for information about each entry, keep the entries in an array, and write the whole database to a file when the program is terminated. The following statements from Chapter 9 should be of interest:
```
open (unit=9, file="pfile", &
 status="replace", action="write")
write (unit=9, fmt="(...)") &
 black_book(entry_number)
close (unit=9, status="keep")
```

The open statement establishes that any operations using input/output unit 9 will refer to the file named "pfile". "replace" indicates that a new file is to be built, replacing any existing file with the same name. "keep" indicates that the file is to be kept when the program that builds the database stops.
2. Write a program that finds entries in the database created in Exercise 1 based on information provided by the user of the program. The statement

$$
\begin{gathered}
\text { open (unit=9, file="pfile", status="old", \& } \\
\text { position="rewind", action="read") }
\end{gathered}
$$

can be used to connect unit 9 to file "pfile" created by the program in the previous exercise. "old" indicates that the file is already there; "rewind" says to position the file at its beginning; and "read" indicates that the file will only be read and nothing will be written to it.

## Extending F

## 7

In $F$, the programmer may create generic procedures, define new operators, and extend the definition of intrinsic functions, existing operators, and assignment. This allows the user to define a very special environment for each application.

### 7.1 Generic Procedures

Many intrinsic procedures are generic in that they allow arguments of different types. For example, the intrinsic function abs will take an integer, real, or complex argument. The programmer also can write generic procedures.

In 3.5 there is a subroutine that exchanges the values of any two real variables. It would be nice to have a similar routine that swapped integer values, but the normal rules of argument matching presented in 3.8.1 indicate that the types of the dummy and actual arguments must match. This is true, but it is possible to have one procedure name swap stand for several swapping routines, each with different names. The correct routine is picked for execution based on the types of the arguments, just as for generic intrinsic functions.

Here is the swap subroutine from 3.5, but with its name changed to swap_reals.

```
subroutine swap_reals(a, b)
 real, intent(in out) : : a, b
 real :: temp
 temp \(=\mathrm{a}\)
 \(\mathrm{a}=\mathrm{b}\)
 b = temp
 end subroutine swap_reals
```

It is easy to construct a similar subroutine swap_integers.

```
subroutine swap_integers(a, b)
 integer, intent(in out) :: a, b
 integer : : temp
 temp = a
 \(\mathrm{a}=\mathrm{b}\)
 b = temp
end subroutine swap_integers
```

The way to make them both callable by the generic name swap is to place the name swap in an interface statement and list the module procedures that can be called when the arguments match appropriately. The result is an interface block that has a different form from the one used to declare a dummy procedure in 3.8.8.

```
public :: swap
private :: swap_reals, swap_integers
interface swap
 module procedure swap_reals, swap_integers
end interface
```

When the interface block and the two subroutines are placed in a module, a program that uses the module can call swap with either two integer arguments or two real arguments. Here is the module and a program that tests the generic procedure swap.

```
module swap_module
 public :: swap
 private :: swap_reals, swap_integers
 interface swap
 module procedure swap_reals, swap_integers
 end interface
contains
subroutine swap_reals(a, b)
 real, intent(in out) :: a, b
 rea1 :: temp
 temp = a
 a = b
 b = temp
end subroutine swap_reals
```

```
subroutine swap_integers(a, b)
 integer, intent(in out) :: a, b
 integer :: temp
 temp = a
 \(\mathrm{a}=\mathrm{b}\)
 b = temp
end subroutine swap_integers
end module swap_module
program test_swap
 use swap_module
 real :: x, y
 integer :: i, j
 \(x=1.1\)
 \(y=2.2\)
 i \(=1\)
 j \(=2\)
 cal1 \(\operatorname{swap}(x, y)\)
 print *, x, y
 cal1 \(\operatorname{swap}(i, j)\)
 print *, i, j
end program test_swap
```

Running this program produces

```
 2.2000000 1.1000000
2 1
```


### 7.1.1 Exercises

1. Extend the generic subroutine swap to handle arrays of integers.
2. Extend the generic subroutine swap to handle character strings.
3. Extend the generic subroutine swap to handle real values with precision greater than that of the default.
4. The program seven_11 in 3.14 .2 calls the function random_int, which produces one pseudorandom real value. The program
seven_11 in 4.6 .2 calls the function random_int, which produces an array of pseudorandom real values. Write a module that makes random_int generic in the sense that it can be called to either produce a single value or an array of values, depending on its arguments.

### 7.1.2 Elemental Procedures

One way to extend the generic subroutine swap, as requested by Exercise 1 of the previous section, is to write another module procedure and add it to the list of module procedures implementing the generic subroutine swap. A far easier solution is to make the subroutine swap_ integers elemental.

An elemental procedure is one written with scalar (nonarray) dummy arguments, but which can be called with array actual arguments. When this is done, the computation in the procedure is performed element-by-element on each element of the array (or arrays) as if the invocation of the procedure were in a loop, executed once for each element of an array.

Here is how the swap generic subroutine swap can be made to apply to integer arrays and how it could be called to swap two arrays.

```
module swap_module
 pub1ic :: swap
 private :: swap_reals, swap_integers
 interface swap
 module procedure swap_reals, swap_integers
 end interface
contains
elemental subroutine swap_reals(a, b)
 real, intent(in out) :: a, b
 rea1 :: temp
 temp = a
 a = b
 b = temp
end subroutine swap_reals
elemental subroutine swap_integers(a, b)
 integer, intent(in out) :: a, b
 integer :: temp
```

```
 temp = a
 \(\mathrm{a}=\mathrm{b}\)
 b = temp
end subroutine swap_integers
end module swap_module
program test_swap_arrays
 use swap_module
 integer, dimension(3) :: i = (/1, 2, 3/), \&
 \(j=(/ 7,8,9 /)\)
 cal1 \(\operatorname{swap}(i, j)\)
 print *, i
 print *, j
end program test_swap_arrays
789
123
```

Here are some rules for elemental procedures:

1. All of the dummy arguments must be scalar.
2. With a couple of unusual exceptions, the actual arguments must all be conformable.
3. An elemental procedure may not be recursive.
4. No dummy argument may be a pointer (8) and the result may not be a pointer.
5. No dummy argument may be a procedure.
6. Each elemental procedure also is pure.

Here is another example of an elemental function.

```
program test_elementa1_function
 character(len=*), parameter :: &
 format = "(3f7.2)"
print format, f(1.1)
print format, f((/1.1, 2.2, 3.3/))
```

```
contains
 elemental function \(f(x)\) result (rf)
 real, intent(in) :: x
 real :: rf
 \(r f=x * * 2+3\)
 end function \(f\)
end program test_elemental_function
 4.21
 \(4.21 \quad 7.84 \quad 13.89\)
```


### 7.2 The private and pub7ic Statements

In Chapter 3, modules were used mostly to contain declarations and procedures that are intended to be used by other programs. Therefore, most of the parameters, variables, and procedures were declared to be public. In this chapter, it is frequently desirable to prevent parts of the module from being accessible to other programs. Thus, many of the modules in this chapter will use the private statement and private attribute to indicate procedures, operators, assignments, types, parameters, and variables that are to be inaccessible outside the module. On the other hand, any of these things that are to be accessible will be declared to be public.

The public and private statements are used with a list of procedures, operators, and assignments. Types, parameters, and variables are given the public or private attribute in their declarations.

Only procedures, operators, and assignments defined in the module containing the private or pub1ic statement may be listed in the statement. This includes operators and assignments that are extended in the module, even if they have been accessed by use association. This rule prevents passing entities through a private module unless they have been extended in the module.

### 7.3 Extending Assignment

When an assignment statement is executed, sometimes the data type of the expression on the right-hand side of the assignment symbol (=) is
converted to the type of the variable on the left-hand side. For example, if $\mathbf{i}$ is integer and $r$ is real, the assignment

$$
r=i
$$

causes the integer value of $\mathbf{i}$ to be converted to type real for assignment to r. Suppose we would like to extend this feature so that a logical value can be assigned to an integer with a false value being converted to zero and a true value converted to one when the assignment

$$
\mathrm{i}=1 \mathrm{og}
$$

is written with 10 g logical type and $i$ integer type. To do this, a subroutine that does the assignment must be written and an interface block must be given that indicates which subroutine does the assignment with conversion. Both of these things must be placed in a module. The subroutine that will do the conversion follows.

```
subroutine integer_gets_logical(i, logical_expression)
 integer, intent(out) :: i
 logical, intent(in) :: logical_expression
 if (logical_expression) then
 i = 1
e1se
 \(i=0\)
end if
end subroutine integer_gets_1ogica1
```

The interface block indicates that assignment is extended by the subroutine integer_gets_logical. The public statement indicates that the extended assignment is available when the module is used, and the private statement indicates that the procedure integer_ gets_logical is not accessible outside the module.

```
public :: assignment(=)
private :: integer_gets_logical
interface assignment(=)
 module procedure integer_gets_logical
end interface
```

Here is the complete module to accomplish this task with a program that tests it.

```
module int_logical_module
 public :: assignment(=)
 private :: integer_gets_1ogica1
 interface assignment(=)
 module procedure integer_gets_logical
 end interface
contains
subroutine integer_gets_logica1(i, 1)
 integer, intent(out) :: i
 logical, intent(in) :: 1
 if (1) then
 i = 1
 else
 i = 0
 end if
end subroutine integer_gets_logica1
end module int_logical_module
program test_int_logical
 use int_logical_module
 integer :: i, j
 i = .false.
 print *, i
 j = (5 < 7) .and. (sin(0.3) < 1.0)
 print *, j
end program test_int_logical

A subroutine that serves to define an assignment must have exactly two arguments; the first must be intent out or in out and the second intent in.

\subsection*{7.3.1 Exercise}
1. Write a module with a procedure and an interface block that extends assignment to allow assigning an integer to a logical variable. The logical variable should be set to true if the integer is 1 and set to false otherwise. Test the procedure with a program that uses the module.

\subsection*{7.4 Extending Operators}

Suppose we now want to be able to use + in place of .or., * in place of . and., and - in place of .not. to manipulate logical values. This can be done by extending these operators, which already work with numeric operands. Functions must be written and the names of the functions placed in an interface block in a module. The interface statement contains the keyword operator in this case. Here is a complete module and program to implement and test the extension of + to logical operands.
```

module logical_plus_module
pub1ic :: operator(+)
private :: log_plus_log
interface operator(+)
module procedure log_plus_1og
end interface
contains
function log_plus_log(x, y) \&
result(log_plus_log_result)
logical, intent(in) :: x, y
logica1 :: log_plus_log_result
log_plus_log_result = x .or. y
end function log_plus_1og

```
```

end module logical_plus_module
program test_logical_plus
use logica1_plus_module
print *, .false. + .false.
print *, .true. + .true.
print *, (2.2 > 5.5) + (3.3 > 1.1)
print *, (2.2 > 5.5) .or. (3.3 > 1.1)
end program test_logical_plus
F
T
T
T

```

Note that the parentheses in the expression in the third print statement are necessary because + has a higher precedence than \(>\). They are not necessary in the fourth print statement because .or. has lower precedence than \(>\).

A function used to extend an operator must have one or two arguments (depending on the operator being extended), both of which must be intent in.

\subsection*{7.4.1 Exercise}
1. Write a module that extends the \(==\) and \(/=\) operators to allow comparison of both scalar logical values and arrays of logical values. Note that the built-in operators .eqv. and .neqv. are used for this purpose.

\subsection*{7.5 User-Defined Operators}

In addition to extending the meaning of the F built-in operators, it is possible to make up new names for operators. If we were to add the operation of testing if an integer is prime, there is probably not a good unary built-in operator that would be suitable to extend to this use. Any name consisting of from 1 to 31 letters preceded and followed by a period may be used, except that the operator name cannot be either of the logical constants .true. or .false. or the operators .and., .or., or .not. For historical reasons, it also must not be any of the Fortran operators .7t., .le., .eq., .ne., .gt., or .ge. For example,
we might pick .prime. for the name of the operator that returns true or false depending on whether its operand is a prime integer. Defining a new operator is similar to extending an existing one; its name is used in an interface statement and the function, which must have one or two intent in arguments, is named in a module procedure statement.
```

interface operator (.prime.)
module procedure prime
end interface operator (.prime.)

```

This operator could now be used just like any built-in unary operator, as illustrated by the following if statement:
```

if (.prime. b .and. b > 100) print *, b

```

The precedence of a defined binary operator is always lower than all other operators, and the precedence of a defined unary operator is always higher than all other operators. Therefore, in the example above, .prime. is evaluated before .and.

\subsection*{7.5.1 Exercise}
1. Implement and test the operator .prime. described in this section.

\subsection*{7.6 Extending Intrinsic Functions}

Many programmers are surprised that the sqrt function may be used with a real or complex argument, but not with an integer argument. One possible reason is that there might be some controversy about whether the result should be an integer or real value. For example, should sqrt(5) be 2.236068 , a type real approximation to the square root, or 2 , the largest integer less than the real square root? The integer square root is sometimes useful; one example is in determining the upper bound on factors of an integer \(i\). It is not hard to compute either value with the expressions sqrt(real(i)) and int(sqrt(real(i))) for any integer \(i\), but it would be nice to just write sqrt (\(i\)). We will extend the sqrt function to take an integer argument and return an integer value. This is done by writing an interface block and the function to do the computation. Here is the interface, the function, and a brief testing program. In the program, the 0.5 is used to avoid any problems with roundoff.

Putting the keyword elemental on the function statement creates an array version for each of the ranks. It is called with a one-dimensional array in the program test_integer_sqrt.

Unlike with operators, it is possible to change the meaning of an intrinsic function definition for one type of argument without affecting the availability of that intrinsic for other types. For example, it is possible to change the definition of the cosine function cos for double precision arguments, but not affect the intrinsic definition for complex.
```

module integer_sqrt_module
intrinsic :: sqrt
public :: sqrt
private :: sqrt_int
interface sqrt
module procedure sqrt_int
end interface
contains
elemental function sqrt_int(i) \&
result(sqrt_int_result)
integer, intent(in) :: i
integer :: sqrt_int_result
sqrt_int_result = int(sqrt(real(i) + 0.5))
end function sqrt_int
end module integer_sqrt_module
program test_integer_sqrt
use integer_sqrt_module
integer :: k
integer, dimension(20) :: \&
n = (/ (k, k = 1, 20) /)
print "(20i3)", n, sqrt(n)
end program test_integer_sqrt
1 2 3 3 4 5 5 6 6 7 8 8 9 10 11 12 13 14 15 16 17 18 19 20
1

```

An intrinsic function must be listed in an intrinsic statement in a module containing a description of an extension.

A better way to compute the square root of an integer is with an iterative technique called "Newton-Raphson". This is illustrated in the module to compute with big integers discussed later in this chapter.

\subsection*{7.6.1 Exercises}
1. Extend the intrinsic subroutine random_number so that it has the functionality of random_int in the previous exercise when called with arguments that are type integer. Allow both scalar and array arguments.
2. Modify the extended intrinsic subroutine random_number of the previous exercise so that the arguments low and high are optional as was done for random_int in Exercise 5 of 3.14.3.

\subsection*{7.7 Computing with Big Integers}

Suppose we are interested in adding, multiplying, and dividing very large integers, possibly with hundreds of digits. This kind of capability is needed to factor large integers, a task very important in cryptography and secure communications. The F intrinsic integer type has a limit on the size of numbers it can represent; the largest integer can be determined on any \(F\) system as the value of the intrinsic function huge (0). A typical limit is \(2^{31}-1\), which is \(2,147,483,647\). This problem can be solved by creating a new data type, called big_integer, deciding which operations are needed, and writing procedures that will perform the operations on values of this type. All of this will be placed in a module called big_integers so that it can be used by many programs.

\subsection*{7.7.1 The Type Definition for Big Integers}

The first task is to decide how these large integers will be represented. Although a linked list of digits is a possibility, it seems more straightforward to use an array of ordinary F integers. The only remaining thing to decide is how much of a big integer to put into each element of the array. One possibility would be to put as large a number into each element as possible. To make it easier to conceptualize with simple examples, we will store one decimal digit in each element. However, because the abstract data type paradigm is followed, changing the representation
so that larger integers are stored in each array element can be implemented easily without changing the programs using the big_integer module.

The following type definition does the job. It uses a parameter nr_of_digits that has arbitrarily been set to 100; this allows decimal numbers with up to 100 digits to be represented using this scheme. The parameter nr_of_digits has the private attribute, which means it cannot be accessed outside the module.
```

integer, parameter, private :: nr_of_digits = 100
type, public :: big_integer
private
integer, dimension(0:nr_of_digits) :: digit
end type big_integer

```

The array digit has 101 elements. digit(0) holds the units digit; digit (1) holds the tens digit; digit(2) holds the hundreds digit; and so on. The extra element in the array is used to check for overflow-if any value other than zero gets put into the largest element, that will be considered to exceed the largest big_integer value and, after we have extended the intrinsic function huge, the value is set to the largest possible big integer.

The private statement indicates that we don't want anybody that uses the module to be able to access the component digit of a variable of type big_integer; we will provide all of the operations necessary to compute with such values. The private statement is discussed in 3.1.2.

The next thing to do is to define some operations for big integers. The first necessary operations assign values to a big integer and print the value of a big integer. Let's take care of the printing first.

The following subroutine prints the value of a big integer. It takes advantage of the fact that each element of the array digit is a single decimal digit. This subroutine print_big is inside the module big_integers and so has access to all the data and procedures in the module.
```

subroutine print_big(b)
type(big_integer), intent(in) :: b
integer :: n, first_significant_digit
character(len=10) :: format
! Find first significant digit
first_significant_digit = 0 ! In case b = 0
do n = nr_of_digits, 1, -1
if (b%digit(n) /= 0) then

```
```

        first_significant_digit = n
        exit
        end if
    end do

```
! Set format = "(<first_significant_digit+1>i1)"
write (unit=format, fmt="(a, i6, a)") \&
 "(", first_significant_digit + 1, "i1)"
write (unit=*, fmt=format, advance="no") \&
 b\%digit(first_significant_digit:0:-1)
end subroutine print_big
The basic strategy is to print the digits in \(i 1\) format, but first the leftmost nonzero digit must be located, both to compute the multiplier in the format specification and to avoid printing long strings of leading zeros. This way, there is also no problem if the parameter nr_of_ digits is changed.

Another interesting feature is that we use a formatted write to a character variable in order to convert an integer subscript to character form for inclusion in an edit descriptor. In effect, we calculate the appropriate print format on the fly. The write statement that produces the value of the big integer uses advance="no" so that it could be printed on the same line with other output, such as an identifying message. This feature is discussed in 9.2.6.

In order to test this subroutine, we need to have a way to assign values to a big integer. One possibility is to write a procedure that will assign an ordinary F integer to a big integer, but this will limit the size of the integer that can be assigned. A second possibility is to write the integer as a character string consisting of only digits 0-9 (we are not allowing negative numbers). This is done by the subroutine big_gets_ char (b, c) that assigns the integer represented by the character string \(c\) to the big integer \(b\). If c contains a character other than one of the digits, the subroutine returns huge_big(b) (produced in the next section), the largest possible big integer, as an error signal. This is also the value returned for \(b\) if the character string \(c\) is too long.
```

subroutine big_gets_char(b, c)
type(big_integer), intent(out) :: b
character(len=*), intent(in) :: c
integer :: n, i
if (len(c) > nr_of_digits) then

```
```

    b = huge_big(b)
    return
    end if
b\%digit = 0
$\mathrm{n}=0$
do $\mathbf{i}=1 \mathrm{en}(\mathrm{c}), 1,-1$
b\%digit(n) = index("0123456789", c(i:i)) - 1
if (b\%digit(n) == -1) then
b = huge_big(b)
return
end if
$\mathrm{n}=\mathrm{n}+1$
end do
end subroutine big_gets_char

```

\subsection*{7.7.2 The Function huge_big}

Here is the function huge_big that returns the largest value of type big_integer. It has an argument of type big_integer because we will use it to extend the intrinsic function huge.
```

pure function huge_big(b) result(huge_big_result)
type(big_integer), intent(in) :: b
type(big_integer) :: huge_big_result
huge_big_result\%digit(:nr_of_digits-1) = 9
huge_big_resu7t\%digit(nr_of_digits) $=0$

```
end function huge_big

The function must be pure because we later need to call it from a pure subroutine.

\subsection*{7.7.3 Putting the Procedures in a Module}

Now that we have enough operations defined on big integers to at least try something meaningful, we next need to package them all in a module. The module that we have created so far follows:
```

module big_integers_module
public :: big_gets_char
public :: print_big
public :: huge_big

```
```

integer, parameter, private :: nr_of_digits = 100
type, public :: big_integer
private
integer, dimension(0:nr_of_digits) :: digit
end type big_integer

```
contains
subroutine print_big(b)
```

type(big_integer), intent(in) :: b
integer :: n, first_significant_digit
character(len=10) :: format

```
! Find first significant digit
first_significant_digit \(=0\) ! In case b \(=0\)
do n = nr_of_digits, 1, -1
 if (b\%digit(n) /= 0) then
 first_significant_digit \(=n\)
 exit
 end if
end do
! Set format = "(<first_significant_digit+1>i1)"
write (unit=format, fmt="(a, i6, a)") \&
 "(", first_significant_digit + 1, "i1)"
write (unit=*, fmt=format, advance="no") \&
 b\%digit(first_significant_digit:0:-1)
end subroutine print_big
subroutine big_gets_char(b, c)
```

type(big_integer), intent(out) :: b
character(len=*), intent(in) :: c
integer :: n, i
if (len(c) > nr_of_digits) then
b = huge_big(b)
return
end if
b%digit = 0
n = 0
do i = len(c), 1, -1

```
```

    b%digit(n) = index("0123456789", c(i:i)) - 1
    if (b%digit(n) == -1) then
        b = huge_big(b)
        return
    end if
    n=n + 1
    end do
end subroutine big_gets_char
pure function huge_big(b) result(huge_big_result)
type(big_integer), intent(in) :: b
type(big_integer) :: huge_big_result
huge_big_result%digit(0:nr_of_digits - 1) = 9
huge_big_result%digit(nr_of_digits) = 0
end function huge_big
end module big_integers_module

```

With the module available, we can write a simple program to test the assignment and printing routines for big integers.
```

program test_big_1
use big_integers_module
type(big_integer) :: b1
ca11 big_gets_char(b1, "71234567890987654321")
cal1 print_big(b1)
print *
ca11 big_gets_char(b1, "")
cal1 print_big(b1)
print *
ca11 big_gets_char(b1, "123456789+987654321")
cal1 print_big(b1)
print *
end program test_big_1
71234567890987654321
0

```

\subsection*{7.7.4 Assigning Big Integers}

The name for the subroutine big_gets_char was picked because it converts a character string to a big integer. But this is just like intrinsic assignment that converts an integer to a real value when necessary. Indeed, it is possible to use the assignment statement to do the conversion from character to type big integer. It is done by extending assignment as described in 7.3. While we are at it, we can use the function huge_big to extend the intrinsic function huge.
```

public :: assignment (=)
private :: big_gets_char
interface assignment (=)
module procedure big_gets_char
end interface
intrinsic :: huge
public :: huge
private :: huge_big
interface huge
module procedure huge_big
end interface

```

Now any user of the module can use the assignment statement instead of calling a subroutine, which makes the program a lot easier to understand. Also, huge can be called with an argument of type big_integer.
```

program test_big_2
use big_integers_module
type(big_integer) :: b1
b1 = "71234567890987654321"
cal1 print_big(b1)
print *
b1 = ""
cal1 print_big(b1)
print *
b1 = "123456789+987654321"
cal1 print_big(b1)
print *
end program test_big_2

```

The result of running this version is identical to the previous output.
With conversion from character strings to big integers using the assignment statement, there is no need to have the subroutine big_gets_ char available. It is declared private. Similarly huge_big is declared private.

\subsection*{7.7.5 Adding Big Integers}

Now that we can assign to a big integer variable and print its value, it would be nice to be able to perform some computations with big integers. Addition can be done with a function that adds just like we do with pencil and paper, adding two digits at a time and keeping track of any carry, starting with the rightmost digits. The function big_plus_ big does this.
```

pure function big_plus_big(x, y) \&
result(big_plus_big_result)
type(big_integer), intent(in) :: x, y
type(big_integer) :: big_plus_big_result
integer :: carry, temp_sum, n
carry = 0
do $n=0$, nr_of_digits
temp_sum = \&
x\%digit(n) + y\%digit(n) + carry
big_plus_big_result\%digit(n) = \&
modulo(temp_sum, 10)
carry = temp_sum / 10
end do
if (big_plus_big_result\%digit(nr_of_digits) /= 0 \&
.or. carry $/=0$ ) then
big_plus_big_result = huge(big_plus_big_result)
end if

```
end function big_plus_big

In mathematics, the symbols + and - are used to add and subtract integers. It is nice to do the same with big integers, and it is possible to do so by extending the generic properties of the operations already built into F. Note that + already can be used to add two integers, two real values, or one of each. The intrinsic operator + also can be used to add two arrays of the same shape. In that sense, addition is already generic. We now extend the meaning of this operation to our own newly
defined type, big_integer. This is done with another interface block, this time with the keyword operator, followed by the operator being extended. The + operator is public, but the function big_plus_big is private. The function is explicitly pure because it will be called from a pure subroutine.
```

public :: operator (+)
interface operator (+)
module procedure big_plus_big
end interface
private :: big_plus_big

```

The use of the plus operator to add two big integers is tested by the program test_big_3.
```

program test_big_3
use big_integers_module
type(big_integer) :: b1, b2
b1 = "1234567890987654321"
b2 = "9876543210123456789"
ca11 print_big(b1 + b2)

```
end program test_big_3

The output is
11111111101111111110
Using only the procedures written so far, it is not possible to use the expression \(\mathrm{b}+\mathrm{i}\) in a program where b is a big integer and i is an ordinary integer. To do that, we must write another function and add its name to the list of functions in the interface block for the plus operator. Similarly, it would be necessary to write a third function to handle the case \(i+b\), because the arguments are in the reverse order of the function that implements \(b+i\). Even if that is not done, the number 999 could be added to \(b\) using the statements
```

temp_big_integer = "999"
b = b + temp_big_integer

```

Similar interface blocks and functions can be written to make the other operations utilize symbols, such as - and *. The precedence of the extended operators when used to compute with big integers is the same as when they are used to add ordinary integers. This holds true
for all built-in operators that are extended. The following program tests the extended multiplication operator (the function is not shown). By looking at the last digit of the answer, it is possible to see that the multiplication is done before the addition.
```

program test_big_5
use big_integers_module
type(big_integer) :: a, b, c
a = "1"
b = "9999999999999999999"
c = "9999999999999999999"
cal1 print_big(a + b * c)

```
end program test_big_5

99999999999999999980000000000000000002

\subsection*{7.7.6 New Operators for Big Integers}

In addition to extending the meaning of the F built-in operators, it is possible to make up new names for operators. For example we could define a new operator .prime., whose operand is a big integer and whose value is true if the big integer is a prime and is false otherwise. Its name is used in an interface statement and the function.
```

public :: operator (.prime.)
interface operator (.prime.)
module procedure prime
end interface operator (.prime.)

```

This operator could now be used just like any built in unary operator, as illustrated by the following if statement:
```

if (.prime. b) call print_big(b)

```

\subsection*{7.7.7 Raising a Big Integer to an Integer Power}

Exponentiation, like the factorial function, has both an iterative definition and a recursive definition. They are
\[
x^{n}=x \times x \times \ldots x \quad n \text { times }
\]
and
\[
x^{0}=1
\]
\[
x^{n}=x \times x^{n-1} \text { for } n>1
\]

Since F has an exponentiation operator \(* *\) for integer and real numbers, it is not necessary to write a procedure to do that. However, it may be necessary to write an exponentiation procedure for a new data type, such as our big integers. We suppose that the multiply operator (*) has been extended to form the product of two big integers. The task is to write a procedure for the module that will raise a big integer to a power that is an ordinary nonnegative integer. This time, the simple iterative procedure is presented first.
```

function big_power_int(b, i) \&
result(big_power_int_result)
type(big_integer), intent(in) :: b
integer, intent(in) :: i
type(big_integer) :: big_power_int_result
integer :: n
big_power_int_result = "1"
do n = 1, i
big_power_int_result = big_power_int_result * b
end do

```
end function big_power_int

It would be straightforward to use the recursive factorial function as a model and construct a recursive version of the exponentiation function; but this is another example of tail recursion, and there is no real advantage to the recursive version. However, think about how you would calculate \(x^{18}\) on a calculator that does not have exponentiation as a built-in operator. The clever way is to compute \(x^{2}\) by squaring \(x, x^{4}\) by squaring \(x^{2}, x^{8}\) by squaring \(x^{4}, x^{16}\) by squaring \(x^{8}\), and finally \(x^{18}\) by multiplying the results obtained for \(x^{16}\) and \(x^{2}\). This involves a lot fewer multiplications than doing the computation the hard way by multiplying \(x\) by itself 18 times. To utilize this scheme to construct a program is fairly tricky. It involves computing all the appropriate powers \(x^{2}, x^{4}, x^{8}, \ldots\), then multiplying together the powers that have a 1 in the appropriate position in the binary representation of \(n\). For example, since \(18=10010_{2}\), powers that need to be multiplied are 16 and 2.

It happens that there is a recursive way of doing this that is quite easy to program. It relies on the fact that \(x^{n}\) can be defined with the following less obvious recursive definition below. The trick that leads to the more efficient recursive exponentiation function is to think of the
problem "top-down" instead of "bottom-up". That is, solve the problem of computing \(x^{18}\) by computing \(x^{9}\) and squaring the result. Computing \(x^{9}\) is almost as simple: square \(x^{4}\) and multiply the result by \(x\). Eventually, this leads to the problem of computing \(x^{0}\), which is 1 . The recursive definition we are looking for is
\[
\begin{aligned}
& x^{0}=1 \\
& x^{n}=\left(\begin{array}{c}
\left(x^{\lfloor n / 2\rfloor}\right)^{2} \\
\left(x^{\lfloor n / 2\rfloor}\right)^{2} \times x
\end{array}\right.
\end{aligned}
\]
where the first line of the second equation is used for n positive and even and the second when \(n\) is positive and odd and where \(L\rfloor\) is the floor function, which for positive integers is the largest integer less than or equal to its argument. This definition can be used to construct a big_power_int function that is more efficient than the iterative version.
```

recursive function big_power_int(b, i) \&
result(big_power_int_result)
type(big_integer), intent(in) :: b
integer, intent(in) :: i
type(big_integer) :: big_power_int_result
type(big_integer) :: temp_big
if (i <= 0) then
big_power_int_result = "1"
else
temp_big = big_power_int(b, i / 2)
if (modulo $(i, 2)==0)$ then
big_power_int_result = temp_big * temp_big
else
big_power_int_result = temp_big * temp_big * b
end if
end if

```
end function big_power_int

\subsection*{7.7.8 Exercises}
1. Extend the equality operator (==) and the "less than" (\(<\)) operator to compare two big integers.
2. Extend the equality operator (==) to compare a big integer with a character string consisting of digits. Hint: use extended assignment to assign the character string to a temporary big integer, then use the extended equality operator from Exercise 1 to do the comparison.
3. Extend the multiplication operator (*) to two big integers.
4. Use the result of the previous exercise to compute \(100!=100 \times 99 \times\) \(\ldots \times 2 \times 1\). It may be necessary to increase the value of the parameter \(n r\) _of_digits.
5. Extend the subtraction operator (-) so that it performs "positive" subtraction. If the difference is negative, the result should be 0 .
6. The representation of big integers used in this section is very inefficient because only one decimal digit is stored in each F integer array element. It is possible to store a number as large as possible, but not so large that when two are multiplied, there is no overflow. This largest value can be determined portably on any system with the statements
```

integer, parameter :: \&
d = (range(0) - 1) / 2, \&
base = 10 ** d
! Base of number system is 10 ** d,
! so that each "digit" is 0 to 10**d - 1

```

On a typical system that uses 32 bits to store an integer, with one bit used for the sign, the value of the intrinsic inquiry function range (0) is 9 because \(10^{9}<2^{31}<10^{10}\). To ensure that there is no chance of overflow in multiplication, this number is decreased by one before dividing by 2 to determine the number of decimal digits \(d\) that can be stored in one array element digit of a big integer. In our example, this would set \(d\) to 4 . The value of base is then \(10 * * d\), or \(10^{4}=10,000\). With this scheme, instead of storing a number from 0 to 9 in one integer array element, it is possible to store a number from 0 to base - 1 , which is 9,999 in the example. In effect, the big number system uses base 10,000 instead of base 10 (decimal).

Determine the value of range (0) on your system.
7. Modify the type definition for big_integer module so that a number from 0 to base -1 is stored in each element of the array. The
number of elements in the array should be computed from the parameter nr_of_digits.
8. Determine the largest number that can be represented as the value of a big integer using the type definition in the previous exercise.
9. Modify the procedure big_gets_char to use the more efficient representation of big integers.
10. Modify the procedure print_big to use the more efficient representation of big integers. In the format, i1 should be replaced by id. \(d\), where \(d\) is the number of decimal digits stored in each array element (9.8.5).
11. Modify the subroutine big_plus_big using the new type definition for big_integer. It is very similar to the one developed in this section, except that the base is now not 10 , but base.
12. Extend the operator * to multiply a big integer by an ordinary integer.
13. Extend huge using the new representation. Write a test program that prints huge (b).
14. Approximately \(n\) multiplications are required to compute \(x^{n}\) by the iterative version of the function big_power_int. Estimate the number of multiplications needed to compute \(x^{n}\) by the recursive version.
15. Project: Write a module to do computation with rational numbers. The rational numbers should be represented as a structure with two integers, the numerator and the denominator. Provide assignment, some input/output, and some of the usual arithmetic operators. Addition and subtraction are harder than multiplication and division, and equality is nontrivial if the rational numbers are not reduced to lowest terms.
16. Modify the module in the previous exercise to use big integers for the numerator and denominator.
17. Project: Write a module to manipulate big decimal numbers such as
\[
28447305830139375750302.3742912561209239123636292
\]
using the big_integer module as a model.

\section*{Pointer Variables}

In F, a pointer variable or simply a pointer is best thought of as a "free-floating" name that may be associated dynamically with or "aliased to" some data object. The data object already may have one or more other names or it may be an unnamed object.

Syntactically, a pointer is just any sort of variable that has been given the pointer attribute in a declaration. A variable with the pointer attribute may be used just like any ordinary variable, but it may be used in some additional ways as well. To understand how F pointers work, it is almost always better to think of them simply as aliases. Another possibility is to think of the pointers as "descriptors", sufficient to describe a row of a matrix, for example.

This chapter illustrates general uses for objects with the pointer attribute.

\subsection*{8.1 The Use of Pointers in F}

Each pointer in an F program is in one of the three following states:
- It may be undefined, which is the condition of each pointer at the beginning of a program, unless it has been initialized.
- It may be null, which means that it is not the alias of any data object.
- It may be associated, which means that it is the alias of some target data object.

The terms "disassociated" and "not associated" are used when a pointer is in state 1 or 2 . However, the associated intrinsic inquiry function discussed later (8.1.5) distinguishes between states 2 and 3 only; its arguments must not be undefined.

\subsection*{8.1.1 The Pointer Assignment Statement}

To start with a very simple example, suppose \(p\) is a real variable with the pointer attribute, perhaps given with the declaration
```

real, pointer :: p

```

Suppose \(r\) is also a real variable. Then it is possible to make \(p\) an alias of \(r\) by the pointer assignment statement
\[
p=r
\]

For those that like to think of pointers, rather than aliases, this statement causes \(p\) to point to \(r\). Any variable aliased or "pointed to" by a pointer must be given the target attribute when declared, and the target must have the same type, kind, and rank as the pointer. However, it is not necessary that the variable have a defined value. For our example above, these requirements are met by the presence of the following declaration:
```

real, target :: r

```

A variable with the pointer attribute may be an object more complicated than a simple variable. It may be an array or structure, for example. The following declares \(v\) to be a pointer to a one-dimensional array of reals:
```

real, dimension(:), pointer :: v

```

With \(v\) so declared, it may be used to alias any one-dimensional array of reals, including a row or column of some two-dimensional array of reals. For example,
v => real_array (4, :)
makes \(v\) an alias of the fourth row of the array real_array. Of course, real_array must have the target attribute for this to be legal.
```

real, dimension(100, 100), target :: rea1_array

```

Once a variable with the pointer attribute is an alias for some data object, that is, it is pointing to something, it may be used in the same way that any other variable may be used. For the example above using v,
print *, v
has exactly the same effect as
print *, rea1_array (4, :)
and the assignment statement
\[
v=0
\]
has the effect of setting all of the elements of the fourth row of the array real_array to 0 .

A different version of the pointer assignment statement occurs when the right side also is a pointer. This is illustrated by the following example, in which p1 and p2 are both real variables with the pointer attribute and \(r\) is a real variable with the target attribute.
```

real, target :: r
rea1, pointer :: p1, p2
r = 4.7
p1 => r
p2 => p1
r=7.4
print *, p2

```

After execution of the first assignment statement, \(r\) is a name that refers to the value 4.7:

The first pointer assignment causes \(p 1\) to be an alias for \(r\), so that the value of the variable \(p 1\) is 4.7. The value 4.7 now has two names, \(r\) and p 1 , by which it may be referenced.

The next pointer assignment
p2 => p1
causes \(p 2\) to be an alias for the same thing that p 1 is an alias for, so the value of the variable p 2 is also 4.7. The value 4.7 now has three names or aliases, \(\mathrm{r}, \mathrm{p} 1\), and p 2 .

Changing the value of \(r\) to 7.4 causes the value of both \(p 1\) and \(p 2\) also to change to 7.4 because they are both aliases of \(r\). Thus, the next print statement
```

print *, p2

```
prints the value 7.4.
The pointer assignment statement
p => q
is legal whatever the status of \(q\). If \(q\) is undefined, \(p\) is undefined; if it is null, p is nullified; and if it is aliased to or associated with a target, p becomes associated with the same target. Note that if \(q\) is associated with some target, say \(t\), it is not necessary that \(t\) have a defined value.

\subsection*{8.1.2 The Difference between Pointer and Ordinary Assignment}

We can now illustrate the difference between pointer assignment, which transfers the status of one pointer to another, and ordinary assignment involving pointers. In an ordinary assignment in which pointers occur, the pointers must be viewed simply as aliases for their targets. Consider the following statements:
```

rea1, pointer :: p1, p2
real, target :: r1, r2
r1 = 1.1
r2 = 2.2
p1 => r1
p2 => r2

```

This produces the following situation:

Now suppose the ordinary assignment statement
\[
\mathrm{p} 2=\mathrm{p} 1
\]
is executed. This statement has exactly the same effect as the statement
\[
r 2=r 1
\]
because p 2 is an alias for r 2 and p 1 is an alias for r 1 . The situation is now:

because the value 1.1 has been copied from r1 to \(r 2\). The values of \(p 1\), \(p 2, r 1\), and \(r 2\) are all 1.1. Subsequent changes to \(r 1\) or \(p 1\) will have no effect on the value of \(r 2\).

If, on the other hand, the pointer assignment statement
p2 => p1
were executed instead, this statement would produce the situation

In this case, too, the values of \(\mathrm{p} 1, \mathrm{p} 2\), and r 1 are 1.1 , but the value of r 2 remains 2.2. Subsequent changes to p 1 or r 1 do change the value of p 2 . They do not change the value of \(r 2\).

If the target of \(p 1\) is changed to \(r 2\) by the pointer assignment statement
p1 => r2
the target r 1 and value 1.1 of p 2 do not change, producing the following situation:

The pointer p 2 remains an alias for r 1 ; it does not remain associated with p1.

\subsection*{8.1.3 The allocate and deallocate Statements}

With the allocate statement, it is possible to create space for a value and cause a pointer variable to refer to that space. The space has no name other than the pointer mentioned in the allocate statement. For example,
```

allocate (p1)

```
creates space for one real number and makes p 1 an alias for that space. No real value is stored in the space by the allocate statement, so it is necessary to assign a value to p 1 before it can be used, just as with any other real variable.

As in the allocate statement for allocatable arrays, it is possible to test if the allocation is successful. This might be done with the statement
```

allocate (p1, stat=allocation_status)

```


The statement
\[
\text { p1 = } 7.7
\]
sets up the following situation.

Before a value is assigned to p1, it must either be associated with an unnamed target by an allocate statement or be aliased with a target by a pointer assignment statement.

The deallocate statement throws away the space pointed to by its argument and makes its argument null (state 2). For example,
```

deallocate (p1)

```
disassociates p1 from any target and nullifies it.

After p 1 is deallocated, it must not be referenced in any situation that requires a value; however it may be used, for example, on the right side of a pointer assignment statement. If other pointer variables were aliases for p 1 , they, too, no longer reference a value; however, they are not nullified automatically.

\subsection*{8.1.4 The nu11 Intrinsic Function}

At the beginning of a program, a pointer variable (just as all other variables) is not defined, unless it is initialized. A pointer variable must not be referenced to produce a value when it is not defined, but it is sometimes desirable to have a pointer variable be in the state of not pointing to anything, which might signify the last item in a linked list, for example. This occurs when it is set to the value of the null intrinsic function, which creates a condition that may be tested and assigned to other pointers by pointer assignment (=>). A pointer is nullified with a pointer assignment such as
p1 => nul1 ()

If the target of p 1 and p 2 are the same, nullifying p 1 does not nullify p 2 . On the other hand, if p 1 is null, then executing the pointer assignment
p2 => p1
causes p 2 to be null also.
A null pointer is not associated with any target or other pointer.

\subsection*{8.1.5 The associated Intrinsic Function}

The associated intrinsic function may be used to determine if a pointer variable is pointing to, or is an alias for, another object. To use this function, the pointer variable must be defined; that is, it must either be the alias of some data object or be null. The associated function indicates which of these two cases is true; thus it provides the means of testing if a pointer is null.

The associated function may have a second argument. If the second argument is a target, the value of the function indicates whether the first argument is an alias of the second argument. If the second argument is a pointer, it must be defined; in this case, the value of the function is true if both pointers are null or if they are both aliases of the same target. For example, the expression
```

associated(p1, r)

```
indicates whether or not p 1 is an alias of r , and the expression
```

associated(p1, p2)

```
indicates whether p 1 and p 2 are both aliases of the same thing or they are both null.

If two pointers are aliases of different parts of the same array, they are not considered to be associated. For example, the following program will print the value false.
```

program test_associated
rea1, target, dimension(4) :: a
real, pointer, dimension(:) :: p, q
a = (/ 1, 2, 3, 4 /)
p => a(1:3)
q => a(2:4)
print *, associated(p, q)
end program test_associated

```

\subsection*{8.1.6 Dangling Pointers and Unreferenced Storage}

There are two situations that the F programmer must avoid. The first is a dangling pointer. This situation arises when a pointer variable is an alias for some object that gets deallocated by an action that does not involve the pointer directly. For example, if p1 and p2 are aliases for the same object, and the statement
```

deallocate (p2)

```
is executed, it is obvious that p 2 is now disassociated, but the status of p1 appears to be unaffected, even though the object to which it was pointing has disappeared. A reference to p 1 is now illegal and will produce unpredictable results. It is the responsibility of the programmer to keep track of the number of pointer variables referencing a particular object and to nullify each of the pointers whenever one of them is deallocated.

A related problem of unreferenced storage can occur when a pointer variable that is an alias of an object is nullified or set to alias something else without a deallocation. If there is no other alias for this value, it is still stored in memory somewhere, but there is no way to refer to it. This is not important if it happens to a few simple values, but if it happens many times to large arrays, the efficient management of storage could be hampered severely. In this case, it is also the responsibility of the programmer to ensure that objects are deallocated before all aliases of the object are modified. F systems are not required to have runtime "garbage collection" to recover the unreferenced storage, but some do.

\subsection*{8.2 Case Study: Solving a Heat Transfer Problem}

To see a simple example where a pointers are really just aliases, consider the problem of determining the temperature at each point of a square plate when a heat source is applied to two edges and the heat has had time to be distributed throughout the plate.

For our purposes, we will assume that the plate consists of a 10 x 10 array of points. A constant source of heat with value 1.0 is applied to the left edge (column 1) of the plate and heat values \(1.0,0.9,0.8, \ldots\), \(0.2,0.1\) are applied to the points at the top of the plate. We assume that the temperature in the plate assumes a steady state when the temperature at each internal point is the average of the temperatures of the four points neighboring the point - the points to the north, east, west,
and south. Thus, the program does an iterative calculation: at each step the temperature at each internal point is replaced by the average of the four surrounding points. This can be done as an array operation:
\[
\text { temp }=(n+e+s+w) / 4.0
\]

The role of the pointers in this program is simply to give a short name to some of the sections of the two-dimensional array named plate. This makes it easier to understand that the main computational step is averaging the points to the north, east, south, and west.

Note also the use of parameters tolerance and plate_format in the program.
```

! A simple solution to the heat transfer problem
using arrays and pointers
program heat
real, dimension(10,10), target :: plate
real, dimension(8,8) :: temp
real, pointer, dimension(:,:) :: n, e, s, w, inside
real, parameter :: tolerance = 1.0e-4
character(len=*), parameter :: \&
plate_format = "(10f5.2)"
real :: diff
integer :: i,j, niter
! Set up initial conditions
plate = 0
plate(1:10,1) = 1.0 ! boundary values
plate(1,1:10) = (/ ( 0.1*j, j = 10, 1, -1 ) /)
! Point to parts of the plate
inside => plate(2:9,2:9)
n => plate(1:8,2:9)
s => plate(3:10,2:9)
e => plate(2:9,1:8)
w => plate(2:9,3:10)
! Iterate
niter = 0
do
temp = (n + e + s + w)/4.0
diff = maxval(abs(temp-inside))
niter = niter + 1

```
```

    inside = temp
    print *, niter, diff
    if (diff < tolerance) then
        exit
        endif
    end do
do i = 1, 10
print plate_format, plate(1:10,i)
enddo
end program heat

```

Here are the results produced by the last print statement after the computation has converged.
\begin{tabular}{llllllllll}
1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 & 1.00 \\
0.90 & 0.89 & 0.88 & 0.87 & 0.85 & 0.82 & 0.77 & 0.69 & 0.49 & 0.00 \\
0.80 & 0.78 & 0.76 & 0.74 & 0.71 & 0.66 & 0.59 & 0.48 & 0.29 & 0.00 \\
0.70 & 0.67 & 0.65 & 0.62 & 0.58 & 0.52 & 0.45 & 0.34 & 0.19 & 0.00 \\
0.60 & 0.57 & 0.54 & 0.50 & 0.46 & 0.41 & 0.34 & 0.25 & 0.13 & 0.00 \\
0.50 & 0.47 & 0.43 & 0.40 & 0.36 & 0.31 & 0.25 & 0.18 & 0.10 & 0.00 \\
0.40 & 0.36 & 0.33 & 0.30 & 0.26 & 0.23 & 0.18 & 0.13 & 0.07 & 0.00 \\
0.30 & 0.26 & 0.23 & 0.20 & 0.18 & 0.15 & 0.12 & 0.08 & 0.04 & 0.00 \\
0.20 & 0.14 & 0.12 & 0.10 & 0.09 & 0.07 & 0.06 & 0.04 & 0.02 & 0.00 \\
0.10 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00 & 0.00
\end{tabular}

\subsection*{8.3 Linked Lists}

Linked lists have many uses in a wide variety of application areas; one example in science and engineering is the use of a linked list to represent a queue in a simulation program. Lists of values can be implemented in F in more than one way. Perhaps the most obvious way is to use an array. Another is to use pointers and data structures to create a linked list. The choice should depend on which operations are going to be performed on the list and the relative frequency of those operations. If the only requirement is to add and delete numbers at one end of the list, as is done if the list is treated as a stack, then an array is an easy and efficient way to represent the list. If items must be inserted and deleted often at arbitrary points within the list, then a linked list is nice; with an array, many elements would have to be moved to insert or delete an element in the middle of the list. Another issue is whether storage is to be allocated all at once, using an array, or element by element in a linked list implementation. The implementation of linked lists us-
ing pointers also uses recursion effectively, but iteration also could be used.

A linked list of numbers (or any other objects) can be thought of schematically as a bunch of boxes, often called nodes, each containing a number and pointer to the box containing the first number in the rest of the list. Suppose, for example, the list contains the numbers 14,62 , and 83. In the lists discussed in this section, the numbers always will appear in numeric order, as they do in this example. Figure 8-1 contains a pictorial representation of the list.

Figure 8-1 A linked list of integers
We will illustrate the F techniques for manipulating linked lists by constructing a module to manipulate linked lists in which the nodes contain integers and the lists are sorted with the smallest number at the head of the list. The procedures of the module sorted_integer_ lists_module use recursion. The recursion is usually tail recursion, so, in one sense, not much is gained. However, it turns out that much of the detailed manipulation of pointers is eliminated and the recursive versions do not need such things as a dummy node at the head of the list or "trailing pointers", which are necessary in the nonrecursive implementations of linked lists. This makes the routines a lot easier to write, understand, and maintain, but perhaps a little less efficient to execute on systems that have a high overhead for procedure calls.

\subsection*{8.3.1 Recursive List Processing}

The approach to writing recursive routines to process a list is to view the list itself as a recursive data structure. That is, a list of integers is either empty or it is an integer followed by a list of integers. This sug-
gests that to process a list of numbers, process the first number in the list and then process the rest of the list with the same routine, quitting when the list is empty.

To view the list as a recursive data structure as described above, the object of type node should consist of a value and another object, rest_of_list, of type list. An object of type list is a structure consisting of one component that is the pointer to a node. The overall structure of the module and the type definitions for the module are
```

module sorted_integer_lists_module
pub1ic :: insert, empty, delete, print_list
type, pub1ic :: 1ist
private
type(node), pointer :: first => nul1()
end type list
type, private :: node
integer :: value
type(list) :: rest_of_list
end type node

```
contains
end module sorted_integer_1ists_module

The public statement lists the module procedures that will be available to any program using the module sorted_integer_1 ists_ module. The public attribute on the definition of the type list indicates that the type will also be available to programs that use the module.

The private statement in the definition of the type 1ist indicates that although the type list is available to any program that uses the module, the user will not be able to access the internal structure of type 1ist. The component first is default initialized to null, which means that each time an object of type 1ist is declared or allocated, the component first is null.

The user is able to declare variables to be type list and process lists with the public module procedures insert, empty, delete, and print_list. The private attribute on the type node indicates that it is
not available to users of the module; it is available only within the module.

\subsection*{8.3.2 Abstract Data Types}

The purpose is to provide the user of the module with an abstract data type, that is, with the name of the list type and all necessary procedures to manipulate these lists. If it is desirable to change the implementation, we can be sure that no program has accessed the lists in any way except those provided by the public procedures in this module.

It is important to be able to declare which details of a module are private to the module and therefore hidden from all external users of the module, and which are public.

Now we must decide what operations are needed. We will supply a function empty (any_list) that returns the logical value indicating whether or not the list any_1ist is empty; a subroutine insert (any_list, number) that inserts number into list any_list; a subroutine delete(any_1ist, number, found) that deletes one occurrence of number from a list any_list, if it is there, and indicates if it is found; and a subroutine print_1ist(any_1ist) that prints the numbers in the list in order. Some of these are pretty simple and could be done easily without a procedure, but the purpose is to include all necessary operations in the module sorted_integer_lists_module and be able to change the implementation.

\subsection*{8.3.3 Inserting a Number}

Let's next do the subroutine that inserts a number into a list. The recursive version is deceptively simple. First, two special cases must be considered: If the list 1 is empty, a first node must be created and the number placed in its value field. Then the rest_of_1ist field is made empty because there are no other elements in the list. The F statements to do this are
```

allocate (1%first)
1%first%value = number

```

It is not necessary to assign a value to 1\%first\%rest_of_1ist\%first because it is default initialized to null.

The second special case is insertion before the first element of the sorted list. This is appropriate when the number to be inserted is smaller than the first element (and therefore also smaller than all other elements, because the list is sorted). Again, a new first node is created and the number placed in its value field. However, this time the rest_of_
list field of this new first node is set equal to the original list before the insertion because all other numbers in the list follow this new number. The F statements to do this are
```

temp_1ist = 1
allocate(1%first)
1%first%value = number
1%first%rest_of_1ist = temp_list

```

A temporary variable of type list is necessary to prevent losing the reference to the list when a new first node is allocated. Notice that ordinary assignment (=) is used for variables of type list because they are not pointers but structures containing pointer components.

These are the nonrecursive base cases of the recursive subroutine insert. The only other remaining case is when the number to be inserted is greater than or equal to the first element of the list. However, in this case, the insertion can be completed by a recursive call to insert the number in the rest of the list. The complete subroutine insert follows.
```

recursive subroutine insert(1, number)
type(list), intent(in out) :: 1
integer, intent(in) :: number
type(list) :: temp_list
if (empty(1)) then
allocate (1%first)
1%first%value = number
else if (number < 1%first%value) then
! insert at the front of the list 1
temp_list = 1
allocate(1%first)
1%first%value = number
1%first%rest_of_1ist = temp_list
else
ca11 insert(1%first%rest_of_1ist, number)
end if
end subroutine insert

```

As is typical with recursive algorithms, the program listing appears simpler than the execution. To help understand why the recursive subroutine insert works, we simulate its execution to insert the number 62 in a sorted list containing 14 and 83 . The list supplied to
the dummy argument 1 at the top level call to insert is shown in Figure 8-2.

Figure 8-2 Top level call to insertion subroutine
The first item in the list is not less than 62, so a second level call to insert is made to insert 62 into the rest of the list as shown in Figure 8-3.

Figure 8-3 Second level call to insertion subroutine
This time the new number 62 is less than the first element 83 of the list referenced by dummy argument 1 , so the nonrecursive alternative to insert before the first element is selected. Figure \(8-4\) shows the situation after the allocate statement.

Figure \(8-5\) shows the situation after the structure assignment statement that links the new node to the rest of the list starting with the number 83 .

\subsection*{8.3.4 Determining if a List is Empty}

The function that determines if a list is empty is straightforward. Recall that a pointer is not associated if it is null.

Figure 8-4 Allocating a new node for a linked list

Figure 8-5 The linked list after the new number is inserted
```

function empty(1) result(empty_result)
type(list), intent(in) :: 1
logica1 :: empty_result
empty_result = .not. associated(1%first)
end function empty

```

\subsection*{8.3.5 Deleting a Number}

The subroutine to delete a number from a list, if it is there, is quite similar to the subroutine to insert. There are two special nonrecursive cases. If the
list 1 is empty, the number cannot be deleted from it, so found is set to false. If the number is the first number in the list 1, deleting it may be accomplished by making 1 start with its second element (if any) using the statement
```

1 = 1%first%rest_of_1ist

```

Also, it is a good idea to deallocate the space for the deleted node. The statements
```

temp_1ist = 1
deallocate (temp_1ist)

```
accomplish this. The first of these must be done before 1 is reassigned, and the second afterward.

In case the list 1 is not empty, but the desired number is not its first element, the number is deleted by a recursive call to delete it from the rest of 1 . The full subroutine de1ete follows.
```

recursive subroutine delete(1, number, found)
type(list), intent(in out) :: 1
integer, intent(in) :: number
logical, intent(out) :: found
type(1ist) :: temp_1ist
if (empty(1)) then
found = .false.
else if (1\%first\%value == number) then
! Delete node pointed to by 1\%first
temp_1ist = 1
1 = 1\%first\%rest_of_1ist
deallocate(temp_1ist\%first)
found $=$.true.
else
cal1 delete(1\%first\%rest_of_1ist, number, found)
end if
end subroutine delete

```

For example, if the number 62 is to be deleted from a list with elements 14,62 , and 83 , the first call has \(1 \%\) first pointing to the node containing 14. Because this is not the desired number, a second recursive call is made with 1\%first pointing to the node containing 62, as shown in Figure 8-6. This node is deleted by making the rest_of_1ist field of the node containing 14 (which is the actual argument corre-
sponding to the dummy argument 1) point to the node containing 83 and deallocating the node containing 62 .

Figure 8-6 The second (recursive) call to the deletion routine
The last subroutine needed to complete the module is one that prints the numbers in the list in order. This just involves recursively traversing the list as in the subroutines insert and delete.
```

recursive subroutine print_list(1)
type(list), intent(in) :: 1
if (associated(7%first)) then
print *, 1%first%value
cal1 print_list(7%first%rest_of_list)
end if
end subroutine print_list

```

Although this is just an instance of tail recursion, the procedure is quite a bit simpler than any iterative version.

\subsection*{8.3.6 Sorting with a Linked List}

With the integer list module just created, it is possible to write a simple but inefficient sorting program. The program works by reading in a file of numbers and inserting each number into a list as it is read. When all the numbers have been put into the list, it is printed, producing all the numbers in order.
```

program 1ist_sort
use sorted_integer_1ists_module
type(1ist) :: 1
integer :: number, ios
do
read (unit=*, fmt=*, iostat=ios) number
! A negative value for ios indicates end of file
if (ios < 0) exit
cal1 insert(1, number)
end do
cal1 print_1ist(1)
end program list_sort

```

Style note: A very important point to note is that even when the procedures in the module sorted_integer_lists_module are rewritten to use iteration instead of recursion, or even if arrays are used to represent the lists, creating yet another list module, a program such as list_sort that uses one of these modules does not have to be changed at all (unless the name of the module is changed). This illustrates one of the real benefits of using modules. However, although the source code for the program is unchanged, whenever a module changes, any program that uses the module must be recompiled.

\subsection*{8.3.7 Exercise}
1. Create a different version of the sorted_integer_1ists_module with all of the same public types and procedures. However, this version should implement a list with a dynamic array, rather than a linked list.
2. Use first the linked list version and then the array version of the programs to manipulate lists of integers to construct a program that sorts integers. Experiment with each program, sorting different quantities of randomly generated integers to determine an approximate formula for the complexity of the program. Is the execution time (or some other measure of complexity, such as the number of statements executed) proportional to \(n \log _{2} n\) ? Is it proportional to \(n^{2}\) ?

\subsection*{8.4 Trees}

One of the big disadvantages of using a linked list to sort numbers is that the resulting program has poor expected running time. In fact, for the program list_sort, the expected running time is proportional to \(n^{2}\), where \(n\) is the number of numbers to be sorted. A much more efficient sorting program can be constructed if a slightly more complicated data structure, the binary tree, is used. The resulting program, tree_sort, has an expected running time proportional to \(n \log _{2} n\) instead of \(n^{2}\).

It is quite difficult to write nonrecursive programs to process trees, so we will think of trees as recursive structures right from the start. Using this approach, a binary tree of integers is either empty or is an integer, followed by two binary trees of integers, called the left subtree and right subtree.

\subsection*{8.4.1 Sorting with Trees}

To sort numbers with a tree, we will construct a special kind of ordered binary tree with the property that the number at the "top" or "root" node of the tree is greater than all the numbers in its left subtree and less than or equal to all the numbers in its right subtree. This partitioning of the tree into a left subtree containing smaller numbers and a right subtree containing larger numbers is exactly analogous to the partitioning of a list into smaller and larger sublists that makes quicksort (4.3.1) an efficient algorithm. This property will hold not only for the most accessible node at the "top" of the tree (paradoxically called the "root" of the tree), but for all nodes of the tree. To illustrate this kind of tree, suppose a file of integers contains the numbers 265, 113, \(467,264,907\), and 265 in the order given. To build an ordered binary tree containing these numbers, first start with an empty tree. Then read in the first number 265 and place it in a node at the root of the tree, as shown in Figure 8-7.

Figure 8-7 The root of a tree

The blank boxes in the lower part of a node are understood to represent null pointers.

When the next number is read, it is compared with the first. If it is less than the first number, it is placed as a node in the left subtree; if it is greater than or equal to the first number, it is placed in the right subtree. In our example, \(113<265\), so a node containing 113 is created and the left subtree pointer of the node containing 265 is set to point to it, as shown in Figure 8-8.

Figure 8-8 Adding the number 113 to the tree
The next number is 467, and it is placed in the right subtree of 265 because it is larger than 265. The result is shown in Figure 8-9.

Figure 8-9 Adding the number 467 to the tree

The next number is 264 , so it is placed in the left subtree of 265 . To place it properly within the left subtree, it is compared with 113, the occupant of the top of the left subtree. Since \(264>113\), it is placed in the right subtree of the one with 113 at the top to obtain the tree shown in Figure 8-10.

Figure 8-10 Adding the number 907 to the tree
The next number 907 is larger than 265 , so it is compared with 467 and put in the right subtree of the node containing 467, as shown in Figure 8-11.

The final number 265 is equal to the number in the root node. An insertion position is therefore sought in the right subtree of the root. Since \(265<467\), it is put to the left of 467, as shown in Figure 8-12. Notice that the two nodes containing the number 265 are not even adjacent, nor is the node containing the number 264 adjacent to either node with key 265. This doesn't matter. When the tree is printed, they will come out in the right order.

\subsection*{8.4.2 Type Declarations for Trees}

The declaration for the node of a tree is similar to the declaration for the node of a linked list, except that the node must contain two pointers, one to the left subtree and one to the right subtree. As with lists,

Figure 8-11 Adding the number 907 to the tree

Figure 8-12 The final ordered binary tree
we could have tree be a derived data type, which implies it must be a structure with one component, a pointer to the node of a tree. But just to be different, let's not have tree be a derived type. The extra syntax needed to select the pointer component using the \% symbol clutters up the program enough that we will simply declare things that would be trees to be pointers to a node, the root node of the tree. Thus, the only declaration needed is
```

type, public :: node
integer :: value
type(node), pointer :: left => nul1(), \&
right => nul1()
end type node

```

\subsection*{8.4.3 The insert Subroutine}

The subroutine that inserts a new number into the tree is a straightforward implementation of the following informal recipe: if the tree is empty, make the new entry the only node of the tree; if the tree is not empty and the number to be inserted is less than the number at the root, insert the number in the left subtree; otherwise, insert the number in the right subtree.
```

recursive subroutine insert(t, number)
type(node), pointer :: t ! A tree
integer, intent(in) :: number
! If (sub)tree is empty, put number at root
if (.not. associated( $t$ )) then
allocate ( t )
t\%value = number
! Otherwise, insert into correct subtree
else if (number < t\%value) then
cal1 insert(t\%1eft, number)
else
cal1 insert(t\%right, number)
end if
end subroutine insert

```

Notice that the pointer components of the type node are default initialized to null, which means that each time a node is created by either a declaration or an allocation, those pointers are set to null. Thus, there is no need for a pointer assignment to nullify them.

\subsection*{8.4.4 Printing the Tree in Order}

The recipe for printing the nodes of the tree follows from the way the tree has been built. It is simply to print in order the values in the left subtree of the root, print the value at the root node, then print in order the values in the right subtree. This subroutine is shown in the following complete module and program that sort a file of integers by reading them all in, constructing an ordered binary tree, and then printing out the values in the tree in order.
```

module tree_module
pub1ic :: insert, print_tree
type, pub1ic :: node
integer :: value
type(node), pointer :: left => nul1(), \&
right => nul1()
end type node
contains
recursive subroutine insert(t, number)
type(node), pointer :: t ! A tree
integer, intent(in) :: number
! If (sub)tree is empty, put number at root
if (.not. associated(t)) then
allocate (t)
t%value = number
! Otherwise, insert into correct subtree
else if (number < t%value) then
ca11 insert(t%left, number)
else
ca11 insert(t%right, number)
end if
end subroutine insert
recursive subroutine print_tree(t)
! Print tree in infix order
type(node), pointer :: t ! A tree

```
```

    if (associated(t)) then
        cal1 print_tree(t % left)
        print *, t%value
        call print_tree(t % right)
    end if
end subroutine print_tree
end module tree_module
program tree_sort
! Sorts a file of integers by building a
! tree, sorted in infix order.
! This sort has expected behavior n log n,
! but worst case (input is sorted) n ** 2.
use tree_module
! Start with an empty tree
type (node), pointer :: t => null()
integer :: number, ios
do
read (unit=*, fmt=*, iostat=ios) number
if (ios < O) exit
ca11 insert(t, number) ! Put next number in tree
end do
! Print nodes of tree in infix order
call print_tree(t)
end program tree_sort

```

\subsection*{8.4.5 Exercises}
1. Experiment with the program tree_sort, sorting different quantities of randomly generated integers to determine an approximate formula for the complexity of the program. It should be proportional to \(n \log _{2} n\).
2. Draw a tree that would be constructed by the program tree_sort given an input file with the same numbers as in 8.3.1, but in the order \(113,264,265,265,467,907\). What happens to the efficiency of
inserting new nodes into this tree compared to the tree given in Figure 8-12?
3. Run the tree sort program in this section with two different input files, one consisting of 20,000 random numbers and the other consisting of the same numbers already sorted. Write the results to a file, rather than printing them.

\section*{Input and Output}

The facilities needed to do simple input and output tasks were described in Chapter 1, and many examples of these statements were discussed throughout the other chapters. Sometimes it is necessary to use the more sophisticated input/output features of F , which are probably superior to those found in any other high level language. This chapter describes in some detail these features, including direct access input/output, nonadvancing input/output, unformatted input/output, the use of internal files, file connection statements, the inquire statement, file positioning statements, and formatting.

The input/output statements are
```

read
print
write
open
close
inquire
backspace
endfile
rewind

```

The read, write, and print statements are the ones that do the actual data transfer; the open and close statements deal with the connection between an input/output unit and a file; the inquire statement provides the means to find out things about a file or unit; and the backspace, endfile, and rewind statements affect the position of the file.

Because this chapter is needed only for the more sophisticated kinds of input and output, it is organized a little bit differently from other chapters. The first part contains a discussion of some fundamental ideas needed for a thorough understanding of how F input/output works. The next part of the chapter contains a description and examples of the special kinds of data transfer statements. Then there is a dis-
cussion of the open, close, inquire, backspace, rewind, and endfile statements. The final part contains a more detailed description of formatting than that provided in 1.7.

Input and output operations deal with collections of data called files. The data are organized into records, which may correspond to lines on a computer terminal, lines on a printout, or parts of a disk file. The descriptions of records and files in this chapter are to be considered abstractions and do not necessarily represent the way data is stored physically on any particular device. For example, an F program may produce a file of answers. This file might be printed, and the only remaining physical representation of the file would be the ink on the paper. Or it might be written onto magnetic tape and remain there for a few years, eventually to be erased when the tape is used to store other information.

The general properties of records are discussed first.

\subsection*{9.1 Records}

There are two kinds of records, data records and endfile records. A data record is a sequence of values. Thus, a data record may be represented schematically as a collection of small boxes, each containing a value, as shown in Figure 9-1.

Figure 9-1 Schematic representation of the values in a record
The values in a data record may be represented in one of two ways: formatted or unformatted. If the values are characters readable by a person, each character is one value and the data is formatted. For example, the statement
```

write (unit=*, fmt="(i1, a, i2)") 6, ",", 11

```
would produce a record containing the four character values " 6 " "," " 1 " and " 1 ". In this case, the record might be represented schematically as Figure 9-2.

Unformatted data consist of values usually represented just as they are stored in computer memory. For example, if integers are stored using an eight-bit binary representation, execution of the statement
\begin{tabular}{|l|l|l|l|}
\hline 6 &, & 1 & 1 \\
\hline
\end{tabular}

Figure 9-2 A formatted record with four character values
```

write (unit=9) 6, 11

```
might produce an unformatted record that looks like Figure 9-3.
\begin{tabular}{|l|l|}
\hline 00000110 & 00001011 \\
\hline
\end{tabular}

Figure 9-3 An unformatted record with two integer values

\subsection*{9.1.1 Formatted Records}

A formatted record is one that contains only formatted data. A formatted record may be created by a person typing at a terminal or by an F program that converts values stored internally into character strings that form readable representations of those values. When formatted data is read into the computer, the characters must be converted to the computer's internal representation of values, which is often a binary representation. Even character values may be converted from one character representation in the record to another internal representation. The length of a formatted record is the number of characters in it; the length may be zero.

\subsection*{9.1.2 Unformatted Records}

An unformatted record is one that contains only unformatted data. Unformatted records usually are created by running an F program, although, with the knowledge of how to form the bit patterns correctly, they could be created by other means. Unformatted data often require less space on an external device. Also, it is usually faster to read and write unformatted data because no conversion is required. However, it is not as suitable for reading by humans, and usually it is not suitable for transferring data from one computer to another because the internal representation of values is machine dependent. The length of an unformatted data record depends on the number of values in it, but is
measured in some processor-dependent units such as machine words; the length may be zero. The length of an unformatted record that will be produced by a particular output list may be determined by the inquire statement (9.6).

\subsection*{9.1.3 Endfile Records}

The other kind of record is the endfile record, which, at least conceptually, has no values and has no length. There can be at most one endfile record in a file and it must be the last record of a file. It is used to mark the end of a file.

An endfile record may be written explicitly by the programmer using the endfile statement. An endfile record also is written implicitly when the last data transfer statement involving the file was an output statement, the file has not been repositioned, and
1. a backspace statement is executed,
2. a rewind statement is executed, or
3. the file is closed.

\subsection*{9.1.4 Record Length}

In some files, the lengths of the records are fixed in advance of data being put in the file; in others, it depends on how data is written to the file. For external formatted advancing sequential output (9.3.4), a record ends whenever a slash (/) edit descriptor is encountered and at the conclusion of each input/output operation (write or print).

\subsection*{9.1.5 Printing of Formatted Records}

Sometimes output records are sent to a device that interprets the first character of the record as a control character. Thus, it is usually a good idea to leave the first character of each output record blank. List-directed output formatting \((*)\) does this.

\subsection*{9.2 Files}

A file is a collection of records. A file may be represented schematically with each box representing a record, as shown in Figure 9-4.

The records of a file must be either all formatted or all unformatted, except that the file may contain an endfile record as the last record. A file may have a name, but the length of the names and the characters that may be used in the names depend on the system being used. The

Figure 9-4 Schematic representation of records in a file
set of names that are allowed often is determined by the operating system as well as the F compiler.

A distinction is made between files that are located on an external device, such as a disk, and files in memory accessible to the program. The two kinds of files are
1. External files
2. Internal files

The use of the files is illustrated schematically in Figure 9-5.
Computer memory

Figure 9-5 Internal and external files

\subsection*{9.2.1 External Files}

An external file usually is stored on a peripheral device, such as a tape, a disk, or a computer terminal. For each external file, there is a set of
allowed access methods, a set of allowed forms (formatted or unformatted), a set of allowed actions, and a set of allowed record lengths. How these characteristics are established is dependent on the computer system you are using, but usually they are determined by a combination of requests by the user of the file and actions by the operating system.

\subsection*{9.2.2 Internal Files}

Internal files are stored in memory as values of character variables. The character values may be created using all the usual means of assigning character values or they may be created with an output statement using the variable as an internal file. If the variable is a scalar, the file has just one record; if the variable is an array, the file has one record for each element of the array. The length of the record is the number of characters declared or assumed for the character variable. Only formatted sequential access is permitted on internal files. For example, if char_array is an array of two character strings declared by
character(1en=7), dimension(2) :: char_array
the statement
\[
\begin{aligned}
& \text { write (unit=char_array, fmt="(f7.5, /, f7.5)") \& } \\
& \text { 10/3.0, 10/6.0 }
\end{aligned}
\]
produces the same effect as the assignment statements
```

char_array(1) = "3.33333"
char_array(2) = "1.66667"

```

\subsection*{9.2.3 Existence of Files}

Certain files are known to the processor and are available to an executing program; these files are said to exist at that time. For example, a file may not exist because it is not anywhere on the disks accessible to a system. A file may not exist for a particular program because the user of the program is not authorized to access the file. F programs usually are not permitted to access special system files, such as the operating system or the compiler, in order to protect them from user modification. The inquire statement may be used to determine whether or not a file exists.

In addition to files that are made available to programs by the processor for input, output, and other special purposes, programs may create files needed during and after program execution. When the pro-
gram creates a file, it is said to exist, even if no data has been written into it. A file no longer exists after it has been deleted. Any of the input/output statements may refer to files that exist for the program at that point during execution. Some of the input/output statements (inquire, open, close, write, print, rewind, and endfile) can refer to files that do not exist. For example, a write statement can create a file that does not exist and put data into that file. An internal file always exists.

\subsection*{9.2.4 File Access Methods}

There are two access methods for external files:

\section*{1. Sequential access}

\section*{2. Direct access}

Sequential access to the records in the file begins with the first record of the file and proceeds sequentially to the second record, and then to the next record, record by record. The records are accessed in the order that they appear in the file, as indicated in Figure 9-6. It is not possible to begin at some particular record within the file without reading from the current record down to that record in sequential order.

Figure 9-6 Sequential access
When a file is being accessed sequentially, the records are read and written sequentially. For example, if the records are written in any arbitrary order using direct access and then read using sequential access, the records are read beginning with record number one of the file, regardless of when it was written.

When a file is accessed directly, the records are selected by record number. Using this identification, the records may be read or written in any order. For example, it is possible to write record number 47 first, then write record number 13. In a new file, this produces a file repre-
sented by Figure 9-7. Either record may be read without first accessing the other.
\begin{tabular}{|c|}
\hline record 13 \\
\(\square\) record 47 \\
\hline
\end{tabular}

Figure 9-7 A file written using direct access
The following rules apply when accessing a file directly:
1. If a file is to be accessed directly, all of the records must be the same length.
2. It is not possible to delete a record using direct access.
3. Nonadvancing input/output is prohibited.
4. An internal file must not be accessed directly.

Each file has a set of permissible access methods, which usually means that it may be accessed either sequentially or directly. However, it is possible that a file may be accessed by either method. The file access method used to read or write the file must be one of the allowed access methods for the file; it is established when the file is connected to a unit (9.2.7). The same file may be accessed sequentially by a program, then disconnected and later accessed directly by the same program, if both types of access are permitted for the file.

\subsection*{9.2.5 File Position}

Each file being processed by a program has a position. During the course of program execution, records are read or written, causing the position of the file to change. Also, there are F statements that cause the position of a file to change; an example is the backspace statement.

The initial point is the point just before the first record. The terminal point is the point just after the last record. These positions are illustrated by Figure 9-8. If the file is empty, the initial point and the terminal point are the same.

A file may be positioned between records. In the example pictured in Figure 9-9, the file is positioned between records 2 and 3. In this case, record 2 is the preceding record and record 3 is the next record. Of course, if a file is positioned at its initial point, there is no preceding record, and there is no next record if it is positioned at its terminal point.

Figure 9-8 Initial and terminal points of a file

Figure 9-9 A file positioned between records
There may be a current record during execution of an input/output statement or after completion of a nonadvancing input/output statement as shown in Figure 9-10, where record 2 is the current record.

Figure 9-10 A file positioned within a current record

When there is a current record, the file is positioned at the initial point of the record, between values in a record, or at the terminal point of the record as illustrated in Figure 9-11.

Figure 9-11 Positions within a record of a file
An internal file is always positioned at the beginning of a record just prior to data transfer.

\subsection*{9.2.6 Advancing and Nonadvancing I/O}

Advancing input/output is record oriented. Completion of an input/output operation always positions the file at the end of a record. Nonadvancing input/output is character oriented. After reading and writing, the file position may be between characters within a record.

Nonadvancing input/output is restricted to use with external sequential formatted files and may not be used with list-directed formatting.

\subsection*{9.2.7 Units and File Connection}

Input/output statements refer to a particular file by specifying its unit. For example, the read and write statements do not refer to a file directly, but refer to a unit number, which must be connected to a file. The unit number for an external file is a nonnegative integer. The name of an internal file also is called a unit; it is a character variable. In the following examples, 5 and char_string are units.
```

read (unit=5) a
write (unit=char_string, fmt="(i3)") k

```

Some rules and restrictions for units are:
1. The unit * specifies a processor determined unit number. On input, it is the same unit number that the processor would use if a read statement appeared without the unit number. On output, it is the same unit number that the processor would use if a print state-
ment appeared without the unit number. The unit specified by an asterisk may be used only for formatted sequential access.
2. File positioning, file connection, and inquiry must use external files.
3. A unit number identifies one and only one unit in an F program. That is, a unit number is global to an entire program; a particular file may be connected to unit 9 in one procedure and referred to through unit 9 in another procedure.

Only certain unit numbers may be used on a particular computing system. The unit numbers that may be used are said to exist. Some unit numbers on some processors are always used for data input (for example, unit 5), others are always used for output (for example, unit 6). Input/output statements must refer to units that exist, except for those that close a file or inquire about a unit. The inquire statement may be used to determine whether or not a unit exists.

To transfer data to or from an external file, the file must be connected to a unit. Once the connection is made, most input/output statements use the unit number instead of using the name of the file directly. An internal file always is connected to the unit that is the name of the character variable. There are two ways to establish connection between a unit and an external file:
1. Execution of an open statement in the executing program
2. Preconnection by the operating system

Only one file may be connected to a unit at any given time. If the unit is disconnected after its first use on a file, it may be reconnected later to another file or it may be reconnected later to the same file. A file that is not connected to a unit may not be used in any statement except the open, close, or inquire statements. Some units may be preconnected to files for each F program by the operating system, without any action necessary by the program. For example, on many systems, units 5 and 6 are always preconnected to the default input and default output files, respectively. Preconnection of units also may be done by the operating system when requested by the user in the operating system command language. In either of these cases, the user program does not require an open statement to connect the file; it is preconnected.

\subsection*{9.2.8 Error, End-of-File, and End-of-Record Conditions}

During execution of input/output statements, error conditions can occur. Error conditions may be checked by using the iostat= specifier on many input/output statements. Each error condition will result in some positive value for the iostat variable, but the values used will depend on the computer system being used. Examples of errors are attempting to open a file that does not exist or attempting to read input consisting of letters when the input variable is type integer. When such an error occurs, the value of the iostat variable may be tested and alternative paths selected.

If a read statement attempts to read an endfile record, the iostat variable will be set to some negative value. It will also be set to a negative value when reading beyond the end of a record with a nonadvancing read statement. These conditions cannot both occur at the same time.

If there is both an error condition and either an end-of-file or end-of-record condition, the iostat variable will be set to a positive value to indicate that an error has occurred.

The program count_1ines counts the number of lines in a file and illustrates the use of iostat to determine when the end of the file is encountered. The sample run shows what happens when the input to the program is the program itself.
```

The input file is:
program count_lines
character(len=100) :: line
integer :: tally, status
ta11y = 0
print *, "The input file is:"
print * ! a blank line
do
read (unit=*, fmt="(a)", iostat=status) line
if (status < 0) exit
write (unit=*, fmt="(t6, a)") trim(line)
tally = tally + 1
end do
print *
print *, "The file contains", tally, "lines."

```
end program count_1ines
The file contains 19 lines.
The intrinsic function trim removes trailing blank characters on the output lines.

\subsection*{9.3 Data Transfer Statements}

The data transfer statements are the read, write, and print statements. In previous chapters we have seen examples of various kinds of data transfer statements. The general forms for the data transfer statements are as follows. Optional parts of a statement appear in square brackets.
```

read (io-control-spec-list) [ input-item-list ]
read format [ , input-item-list ]
write (io-control-spec-list) [ output-item-list ]
print format [, output-item-list ]

```

Some examples of data transfer statements are
```

read (unit=9, iostat=is) x
write (unit=16, rec=14) y
read "(f10.2)", z
print *, zt

```

\subsection*{9.3.1 The Format Specifier}

The format specifier (format in the syntax for the print statement and the short form of the read statement) may be a character expression indicating explicit formatting or an asterisk (*) indicating list-directed or default formatting.

\subsection*{9.3.2 The Control Information List}

The input/output control specification list must contain a unit specifier of the form
\[
\text { unit }=\text { io-unit }
\]
and may contain at most one each of the following optional items:
```

$\mathrm{fmt}=$ format
rec= scalar-int-expr
iostat= scalar-default-int-variable

```
```

advance= scalar-char-expr
size= scalar-default-int-variable

```

The input/output unit must be a nonnegative integer expression indicating an external unit connected to a file, an asterisk indicating a pro-cessor-dependent external unit, or a character variable of default type indicating an internal unit.

The allowed forms of a format are the same within a control information list as they are in the print statement and the short form of the read statement.

There are lots of additional rules about which combinations of these items may occur; some of these rules will be covered in the discussion of various types of data transfer statements in the following sections.

\subsection*{9.3.3 The Input/Output List}

The input/output list consists basically of variables in a read statement and expressions in a write or print statement. An implied-do loop also may appear in an input/output list.
```

print "(19, f9.2)", (i, x(i), i = 1, n)

```

\subsection*{9.3.4 External Formatted Advancing Sequential Access I/O}

The title of this section is a mouthful, but this is the kind of input/output that has been illustrated throughout the book. For formatted input and output, the file consists of characters. These characters are converted into representations suitable for storing in computer memory during input and converted from an internal representation to characters on output. When a file is accessed sequentially, records are processed in the order in which they appear in the file. Advancing input/output means that the file is positioned after the end of the last record read or written when the input/output is finished.

Templates that may be used to construct explicitly formatted sequential access data statements are
```

read (unit= unit-number \&
, fmt= format \&
[, iostat= scalar-default-int-variable ] \&
[, advance= scalar-char-expr ] \&
) [ input-list]
read format [ , input-list ]

```
```

write ( unit=unit-number \&
, $\mathrm{fmt}=$ format \&
[, iostat= scalar-default-int-variable ] \&
[, advance= scalar-char-expr ] \&
) [ output-list ]
print format [, output-list]

```

The format may be a character expression whose value is a format specification, or an asterisk indicating list-directed default formatting. For advancing input/output, the expression in the advance= specifier must evaluate to yes, if it is present; nonadvancing input/output is discussed in Section 9.3.5. The advance= specifier must not be present if the format is an asterisk designating list-directed formatting.

Examples of formatted reading are
```

read (unit=15, fmt=fmt_100) a, b, c(1:40)
read (unit=9, fmt="(2f20.5)", iostat=iend) x, y
read (unit=*, fmt="(5e20.0)", advance="yes") y(1:kk)
read *, x, y
read "(2f20.5)", x, y
read *

```

Examples of formatted writing are
```

write (unit=9, fmt=fmt_103, iostat=is) a, b, c, s
write (unit=7, fmt=*) x
write (unit=*, fmt="(f10.5)") x
print "(a, es14.6)", " y = ", y
print *, "y = ", y
print *

```

When an advancing sequential access input/output statement is executed, reading or writing of data begins with the next character in the file. If the previous input/output statement was a nonadvancing statement, the next character transferred may be in the middle of a record, even if the statement being executed is an advancing statement. The difference between the two is that an advancing input/output statement always leaves the file positioned at the end of the record when the data transfer is completed.

The iostat specifier may be used to check for an end-of-file or an error condition.

\subsection*{9.3.5 Nonadvancing Data Transfer}

Like advancing input/output, the file is read or written beginning with the next character; however, nonadvancing input/output leaves the file positioned after the last character read or written, rather than skipping to the end of the record. Nonadvancing input/output is sometimes called partial record input/output. It may be used only with explicitly formatted external files connected for sequential access. It may not be used with list-directed input/output.

Templates that may be used to construct nonadvancing input/output statements are
```

read (unit= unit-number \&
, fmt= format \&
, advance=scalar-char-expr \&
[, size= scalar-default-int-variable] \&
[, iostat= scalar-default-int-variable ] \&
) [ input-list]
write ( unit= unit-number \&
, fmt= format \&
, advance= scalar-char-expr \&
[, iostat= scalar-default-int-variable ] \&
) [ output-list]

```

The scalar character expression in the advance= specifier must evaluate to no for nonadvancing input/output. The format is a character expression whose value is a format specification; it must not be an asterisk designating list-directed formatting.

The size= variable is assigned the number of characters read on input. It does not count trailing blanks.

Examples of nonadvancing data transfer statements are
```

advancing = "no"
read (unit=15, fmt=fmt_100, advance=advancing) a, b, c
read (unit=9, fmt="(a)", advance="no", \&
size=rec_size, iostat=ios) line
write (unit=16, fmt="(i1)", advance=advancing) n
write (unit=16, fmt=fmt_200, advance="no") x(1:n)

```

The iostat specifier may be used to check for an end-of-file, end-of-record, or error condition.

One of the important uses of nonadvancing input/output occurs when the size of the records is not known. To illustrate this, the follow-
ing program counts the number of characters in a file, reading the input one character at a time. iostat values for end-of-record and end-of-file are required to be negative, but are otherwise processor dependent. The values -2 and -1 are typical, but the manual for your system should be consulted.
```

program char_count
integer, parameter :: end_of_record = -2
integer, parameter :: end_of_file = -1
character(len=1) :: c
integer :: character_count, ios
character_count = 0
do
read (unit=*, fmt="(a)", advance="no", \&
iostat=ios) c
if (ios == end_of_record) then
cycle
else if (ios == end_of_file) then
exit
else
character_count = character_count + 1
end if
end do
print *, "The number of characters in the file is", \&
character_count
end program char_count

```

Another obvious use is to print part of a line at one place in a program and finish the line later. If things are implemented properly, it also should be possible to use nonadvancing input/output to supply a prompt to a terminal and have the user type in data on the same line. This is not absolutely guaranteed, because many systems consider input from a terminal and output to the terminal to involve two different files. Here is a simple example:
```

program test_sign
integer :: number
write (unit=*, fmt="(a)", advance="no") \&
"Type in any integer: "
read *, number
write (unit=*, fmt="(a, i9, a)", advance="no") \&
"The number ", number, " is "
if (number > 0) then

```
```

    print *, "positive."
    else if (number == 0) then
    print *, "zero."
    else
print *, "negative."
end if
end program test_sign
Type in any integer: 36
The number 36 is positive.

```

\subsection*{9.3.6 Data Transfer on Internal Files}

Transferring data from machine representation to characters or from characters back to machine representation can be done between two variables in an executing program. A formatted sequential access input or output statement is used; list-directed formatting is permitted. The format is used to interpret the characters. The internal file and the internal unit are the same character variable.

Templates that may be used to construct data transfer statements on an internal file are
```

read ( unit=default-char-variable \&
, fmt= format \&
[, iostat= scalar-default-int-variable ] \&
) [ input-list]
write ( unit= default-char-variable \&
, $\mathrm{fmt}=$ format \&
[, iostat= scalar-default-int-variable ] \&
) [ output-list]

```

Examples of data transfer statements on internal files are
```

read (unit=char_24, fmt=fmt_1, iostat=io_err) \&
mary, x, j, name
write (unit=char_var, fmt=*) x

```

Some rules and restrictions for using internal files are:
1. The unit must be a character variable that is not an array section with a vector subscript.
2. Each record of an internal file is a scalar character variable.
3. If the file is an array or an array section, each element of the array or section is a scalar character variable and thus a record. The or-
der of the records is the order of the array elements (for arrays of rank two and greater, the first subscript varies most rapidly). The length of the record, which must be the same for each record, is the length of one array element.
4. If the character variable is an array or part of an array that has the pointer attribute, the variable must be allocated before its use as an internal file.
5. If the number of characters written is less than the length of the record, the remaining characters are set to blank. If the number of characters is greater than the length of the record, the remaining characters are truncated.
6. The records in an internal file are assigned values when the record is written. An internal file also may be assigned a value by a character assignment statement, or some other means.
7. To read a record in an internal file, it must be defined.
8. An internal file is always positioned at the beginning before a data transfer occurs.
9. Only formatted sequential access is permitted on internal files. List-directed formatting is permitted.
10. File connection, positioning, and inquiry must not be used with internal files.
11. The use of the iostat specifier is the same as for external files.
12. On input, blanks are ignored in numeric fields.
13. On list-directed output, character constants are delimited with quotes.

As a simple example of the use of internal files, the following write statement converts the value of the integer variable \(n\) into the character string s of length 10 :
write (unit=s, fmt="(i10)") n

If \(\mathrm{n}=999\), the string s would be "bbbbbbb999", where \(b\) represents a blank character. To make the conversion behave a little differently, we can force the first character of \(s\) to be a sign (9.8.16) and make the rest
of the characters digits, using as many leading zeros as necessary (9.8.5).
```

write (unit=s, fmt="(sp, i10.9)") n

```

Now if \(\mathrm{n}=999\), the string s will have the value " +000000999 ".
Another use of internal input/output is to read data from a file directly into a character string, examine it to make sure it has the proper form for the data that is supposed to be read, then read it with formatting conversion from the internal character string variable to the variables needed to hold the data. To keep the example simple, suppose that some input data record is supposed to contain 10 integer values, but they have been entered into the file as 10 integers separated by colons. List-directed input requires that the numbers be separated by blanks or commas. One option is to read in the data, examine the characters one at a time, and build the integers; but list-directed input will do everything except find the colon separators. So another possibility is to read in the record, change the colons to commas, and use an internal list-directed read statement to convert the character string into 10 integer values. Here is a complete program, but it just reads in the numbers and prints them.
```

program p_internal
character(1en=100) :: internal_record
integer, dimension(10) :: numbers
integer :: colon_position
read (unit=*, fmt="(a)") interna1_record
do
colon_position = index(internal_record, ":")
if (colon_position == 0) exit
internal_record (colon_position:colon_position) \&
= ","
end do
read (unit=internal_record, fmt=*) numbers
print "(5i5)", numbers

```
end program p_interna1

If the input is
the output is
\begin{tabular}{rrrrr}
3 & 24 & 53 & 563 & -34 \\
290 & -9 & 883 & 9 & 224
\end{tabular}

Of course, in a real program, some error checking should be done to make sure that the internal record has the correct format after the colons are converted to commas.

Another example of formatted writing to an internal file occurs in the big integers module in 7.7.1, in which this feature is used to construct a format specification tailored to the exact length of the output data of a later print statement.

\subsection*{9.3.7 Unformatted Input/Output}

For unformatted input and output, the file usually consists of values stored using the same representation used in program memory. This means that no conversion is required during input and output. Unformatted input/output may be done using both sequential and direct access. It is always advancing.

Direct access is indicated by the presence of a rec= specifier; sequential access occurs when no rec= specifier is present.

Templates that may be used to construct unformatted access data statements are
```

read ( unit= unit-number \&
[, rec= record-number ] \&
[, iostat= scalar-default-int-variable ] \&
) [ input-list]

```
write (unit= unit-number \&
 [, rec= record-number] \&
 [, iostat= scalar-default-int-variable] \&
) [output-list]

Examples of unformatted access reading are
```

read (unit=8) a, b, c(1:n, 1:n)
read (unit=9, rec=14, iostat=iend) x, y
read (unit=4) y

```

Examples of unformatted access writing are
```

write (unit=9, iostat=is) a, b, c, s
write (unit=7, iostat=status) x
write (unit=9, rec=next_record_number) x

```

The record number given by the \(\mathrm{rec}=\) specifier is a scalar integer expression whose value indicates the number of the record to be read or written. If the access is sequential, the file is positioned at the beginning of the next record prior to data transfer and positioned at the end of the record when the input/output is finished, because nonadvancing unformatted input/output is not permitted. The iostat specifier may be used in the same way it is used for formatted input/output.

Unformatted access is very useful when creating a file of data that must be saved from one execution of a program and used for a later execution of the program. Suppose, for example that a program deals with the inventory of a large number of automobile parts. The data for each part (in a module in our simple example) consists of the part number and the quantity in stock.
```

type, public :: part
integer :: id_number, qty_in_stock
end type part
type (part), dimension(10000), pub1ic :: part_1ist
integer, public:: number_of_parts

```

Suppose the integer variable number_of_parts records the number of different parts that are stored in the array part_1ist. At the end of the program, the number of parts and the entire part list can be saved in the file named part_file with the following statements:
```

open (unit=9, file="part_file", \&
position="rewind", form="unformatted", \&
action="write", status="replace")
write (unit=9), number_of_parts, \&
part_list(1:number_of_parts)

```

At the beginning of the next execution of the program, the inventory can be read back into memory with the statements:
```

open (unit=9, file="part_file", \&
position="rewind", form="unformatted", \&
action="read", status="old")
read (unit=9), number_of_parts, \&
part_list(1:number_of_parts)

```

See 9.4 for the description of the open statement.

\subsection*{9.3.8 Direct Access Data Transfer}

When a file is accessed directly, the record to be processed is the one given by the record number in a \(\mathrm{rec}=\mathrm{specifier}\). The file may be formatted or unformatted.

Templates that may be used to construct direct access data statements are
```

read ( unit= unit-number \&
, [ fmt= format ] \&
, $\mathrm{rec}=$ record-number \&
[, iostat= scalar-default-int-variable ] \&
) [ input-list]

```
write (unit= unit-number] \&
 [, fmt= format] \&
 , \(\mathrm{rec}=\) record-number \&
 [, iostat= scalar-default-int-variable] \&
) [output-list]

The format must not be an asterisk.
Examples of direct access input/output statements are
```

read (unit=7, fmt=fmt_x, rec=32) a
read (unit=10, rec=34, iostat=io_status) a, b, d
write (unit=8, fmt="(2f15.5)", rec=n+2) x, y

```

The iostat specifier is used just as it is with sequential access.
To illustrate the use of direct access files, let us consider the simple automobile parts example used in 9.3 .7 to illustrate unformatted input/output. In this example, suppose that the parts list is so large that it is not feasible to read the entire list into memory. Instead, each time information about a part is needed, just the information about that one part is read from an external file. To do this in a reasonable amount of time, the file must be stored on a device such as a disk, where each part is accessible as readily as any other. Analogous but more realistic examples might involve the bank accounts for all customers of a bank or tax information on all tax payers in one country. This time a structure is not needed, because the only information in the file is the quantity on hand. The part identification number is used as the record number of the record in the file used to store the information for the part having that number. Also, the array is not needed because the program deals with only one part at a time.

Suppose we just need a program that looks up the quantity in stock for a given part number. This program queries the user for the part number, looks up the quantity on hand by reading one record from a file, and prints out that quantity.
```

program part_info
integer :: part_number, qty_in_stock
print *, "Enter part number"
read *, part_number
open (unit=9, file="part_file", \&
access="direct", rec1=10, \&
form="unformatted", \&
action="read", status="old")
read (unit=9, rec=part_number) qty_in_stock
print *, "The quantity in stock is", qty_in_stock
end program part_info

```

Of course, the program could be a little more sophisticated by using a loop to repeat the process of asking for a part number and providing the quantity in stock. Also, there must be other programs that create and maintain the file that holds the database of information about the parts. A more complex organization for the file may be necessary if the range of legal part numbers greatly exceeds the actual number of different parts for which information is saved.

\subsection*{9.4 The open Statement}

The open statement establishes a connection between a unit and an external file and determines the connection properties. After this is done, the file can be used for data transfers (reading and writing) using the unit number. It is not necessary to execute an open statement for files that are preconnected to a unit.

The open statement may appear anywhere in a program and, once executed, the connection of the unit to the file is valid in the main program or any subprogram for the remainder of that execution, unless a close statement affecting the connection is executed.

If a file is connected to one unit, it may not be connected to a different unit at the same time.

Execution of an open statement using a unit that is already open is not permitted.

\subsection*{9.4.1 Syntax Rule for the open Statement}

The form of the open statement is
open (connect-spec-list)
where the permissible connection specifications are
```

unit= external-file-unit
file= file-name-expr
access= scalar-char-expr
action= scalar-char-expr
form= scalar-char-expr
iostat= scalar-default-int-variable
position= scalar-char-expr
rec1= scalar-int-expr
status= scalar-char-expr

```

Examples are
```

open (unit=9, iostat=ios, \&
status="scratch", action="readwrite")
open (unit=8, access="direct", file="plot_data", \&
status="old", action="read")

```

Some rules and restrictions for the open statement are
1. An external unit number is required.
2. A specifier may appear at most once in any open statement.
3. The file= specifier must appear if the status is old, new, or replace; the file= specifier must not appear if the status is scratch.
4. The status= specifier must appear.
5. The action= specifier must appear. It must not be read if the status is new or replace. It must be readwrite if the status is scratch.
6. The position= specifier must appear if the access is sequential and the status is old.
7. The character expression established for many of the specifiers must contain permitted values in a list of alternative values as described below. For example, old, new, replace, and scratch are permitted for the status= specifier; any other combination of let-
ters is not permitted. Uppercase letters may be used. Trailing blanks in any specifier are ignored.

\subsection*{9.4.2 The Connection Specifiers}
iostat \(=\quad\) The iostat \(=\) specifier must be a default integer variable. It is given a value that is a positive integer if there is an error condition while executing the open statement and zero if there is no error.
file \(=\quad\) The file= specifier indicates the name of the file to be connected. If the name is omitted, the connection will be made to a processor-determined file.
status \(=\quad\) The value of the status= specifier must be old, new, replace, or scratch. old refers to a file that must exist. new refers to a file that must not exist. If the status is replace and the file does not exist, it is created and given a status of old. If the status is replace and the file does exist, it is deleted, a new file is created with the same name, and its status is changed to old. scratch refers to a scratch file that exists only until termination of execution of the program or until a close is executed on that unit. Scratch files must be unnamed. replace is recommended when it is not certain if there is an old version, but it is to be replaced if there is one.
access= The value of the access= specifier must be direct or sequential. direct refers to direct access. sequential refers to sequential access. The method must be an allowed access method for the file. If the file is new, the allowed access methods given to the file must include the one indicated. If the access is direct, there must be a \(r e c 1=\) specifier to specify the record length.
form= \(\quad\) The value of the form= specifier must be formatted or unformatted. formatted indicates that all records will be formatted. unformatted indicates that all records will be unformatted. If the file is connected for direct access, the default is unformatted. If the file is connected for sequential access, the default is formatted. If the file is new, the allowed forms given to the file must include the one indicated.
\(\mathrm{rec} 1=\quad\) The \(\mathrm{rec} 1=\) specifier has a positive value that specifies the length of each record if the access method is direct or the maximum length of a record if the access method is sequential. If the file is connected for formatted input/output, the length is the number of characters. If the file is connected for unformatted input/output, the length is measured in processor-dependent units. The length may, for example, be the number of computer words. If the file exists, the length of the record specified must be an allowed record length. If the file does not exist, the file is created with the specified length as an allowed length.
position \(=\) The value of the position=specifier must be rewind or append. rewind positions the file at its initial point. append positions the file at the terminal point or just before an endfile record, if there is one. The file must be connected for sequential access. If the file is new, it is positioned at its initial point.
action \(=\) The value of the action \(=\) specifier must be read, write, or readwrite. read indicates that write, print, and endfile statements are prohibited. write indicates that read statements are prohibited. readwrite indicates that any input/output statement is permitted.

\subsection*{9.5 The close Statement}

Execution of a close statement terminates the connection of a file to a unit. Any connections not closed explicitly by a close statement are closed by the operating system when the program terminates. The form of the close statement is
```

close (close-spec-list)

```

The items in the close specification list may be selected from
```

unit=external-file-unit
iostat= scalar-default-int-variable
status= scalar-char-expr

```

Examples are
```

close (unit=9)

```
```

close (unit=8, iostat=ir, status="keep")

```

Some rules for the close statement are
1. An external unit number is required.
2. A close statement may refer to a unit that is not connected or does not exist, but it has no effect. This is not considered an error.
3. The status= specifier must have a value that is keep or delete. If it is keep, the file continues to exist after closing the file. If it has the value of de1ete, the file will not exist after closing the file. The default value is keep, except that the default for scratch files is delete. If you specify a status for a scratch file, it must be de1 ete.
4. The rules for the iostat= specifier are the same as for the open statement.
5. A specifier must not appear more than once in a close statement.
6. Connections that have been closed may be reopened at a later point in an executing program. The new connection may be to the same or to a different file.

\subsection*{9.6 The inquire Statement}

The inquire statement provides the capability of determining information about a file's existence, connection, access method, or other properties during execution of a program. For each property inquired about, a scalar variable of default kind is supplied; that variable is given a value that answers the inquiry. The variable may be tested and optional execution paths selected in a program based on the answer returned. The inquiry specifiers are indicated by keywords in the inquire statement. A file inquiry may be made by unit number, by the file name, or by an output list that might be used in an unformatted direct access output statement.

The values of the character items (except name) are always in uppercase.

\subsection*{9.6.1 Syntax Rule for the inquire Statement}

The form of an inquiry by unit number or file name is

> inquire (inquiry-spec-list)

An inquiry by unit must include the following in the inquiry specification list:

> unit=external-file-unit

An inquiry by name must include the following in the inquiry specification list:
file= file-name

The expression for the file name may refer to a file that is not connected or does not exist. The value for the file name must be acceptable to the system. An inquire statement must not have both a file specifier and a unit specifier.

In addition, the inquiry specification list may contain the following items. The type of the item following the keyword is indicated; each item following the keyword and equals sign must be a scalar variable of default kind, if it is not type character.
```

access $=$ character
action= character
direct= character
exist= logical
form= character
formatted= character
iostat= integer
name $=$ character
named= logical
nextrec= integer
number $=$ integer
opened= logical
position= character
read= character
readwrite= character
rec $1=$ integer
sequential= character
unformatted= character
write= character

```

Examples of the inquire statement are
```

inquire (unit=9, exist=ex)
inquire (file="t123", opened=op, access=ac)

```

\subsection*{9.6.2 The iolength Inquiry}

The form of an inquire statement used to determine the length of an output item list is

> inquire (iolength= scalar-default-int-variable) \& output-item-list

The length value returned in the scalar integer variable will be an acceptable value that can be used later as the value of the rec \(7=\) specifier in an open statement to connect a file whose records will hold the data indicated by the output list of the inquire statement.

An example of this form of the inquire statement is
```

inquire (iolength=iolen) x, y, cat

```

\subsection*{9.6.3 Specifiers for Inquiry by Unit or File Name}

This section describes the syntax and effect of the inquiry specifiers that may appear in the unit and file forms of the inquire statement. The values returned in the inquiry specification list are those current at that point in the execution of the program.

The iostat inquiry specifier indicates error condition information about the inquiry statement execution itself. If an error condition occurs, all the inquiry specifiers are undefined except the iostat specifier.
exist \(=\quad\)\begin{tabular}{l}
If the inquiry is by unit, the logical variable indicates \\
whether or not the unit exists. If the inquiry is by file, \\
the logical variable indicates whether or not the file ex- \\
ists.
\end{tabular}
opened \(=\quad\)\begin{tabular}{l}
If the inquiry is by unit, the logical variable indicates \\
whether or not the unit is connected to some file. If the \\
inquiry is by file, the logical variable indicates whether \\
or not the file is connected to some unit.
\end{tabular}
number \(=\quad\)\begin{tabular}{l}
The value returned is the number of the unit connected \\
to the file. If there is no unit connected to the file, the \\
value is -1.
\end{tabular}
named \(=\quad\)\begin{tabular}{l}
The scalar logical value is true if and only if the file has \\
a name.
\end{tabular}
\begin{tabular}{l}
The value is the name of the file if the file has a name; \\
otherwise, the designated variable becomes undefined.
\end{tabular}

The processor may return a name different from the one given in the file= specifier by the program, because a user identifier or some other processor requirement for file names may be added. The name returned will be acceptable for use in a subsequent open statement. The case (upper or lower) used is determined by the processor.
access \(=\) The value returned is SEQUENTIAL if the file is connected for sequential access, DIRECT if the file is connected for direct access, or UNDEFINED if the file is not connected.
sequential= The value returned is YES if sequential access is an allowed method, NO if sequential access is not an allowed method, or UNKNOWN if the processor does not know if sequential access is allowed.
direct= The value returned is YES if direct access is an allowed method, NO if direct access is not an allowed method, or UNKNOWN if the processor does not know if direct access is allowed.
form \(=\quad\) The value returned is FORMATTED if the file is connected for formatted input/output, UNFORMATTED if the file is connected for unformatted input/output, or UNDEFINED if the file is not connected.
formatted \(=\) The value returned is YES if formatted input/output is permitted for the file, NO if formatted input/output is not permitted for the file, or UNKNOWN if the processor cannot determine if formatted input/output is permitted for the file.
unformatted= The value returned is YES if unformatted input/output is permitted for the file, NO if unformatted input/output is not permitted for the file, or UNKNOWN if the processor cannot determine if unformatted input/output is permitted for the file.
\(\operatorname{rec} 7=\quad\) The integer value returned is the maximum record length of the file. For a formatted file, the length is in characters. For an unformatted file, the length is in pro-
cessor-dependent units. If the file does not exist, the specified variable becomes undefined.
nextrec \(=\) The integer value returned is one more than the last record number read or written in a file connected for direct access. If no records have been processed, the value is 1 . The specified variable becomes undefined if the file is not connected for direct access or if the file position is indeterminate because of a previous error condition.
position \(=\) The value returned is REWIND if the file is connected with its position at the initial point, APPEND if the file is connected with its position at the end point or UNDEFINED if the file is not connected, is connected for direct access or if any repositioning has occurred since the file was connected.
action \(=\quad\) The value returned is READ if the file is connected limiting the access to input, WRITE if the file is connected limiting the access to output, READWRITE if the file is connected for input and output, or UNDEFINED if the file is not connected.
read \(=\quad\) The value returned is YES if read is one of the allowed actions for the file, NO if read is not one of the allowed actions for the file, or UNKNOWN if the processor is unable to determine if read is one of the allowed actions for the file.
write \(=\quad\) The value returned is YES if write is one of the allowed actions for the file, NO if write is not one of the allowed actions for the file, or UNKNOWN if the processor is unable to determine if write is one of the allowed actions for the file.
readwrite \(=\) The value returned is YES if input and output are allowed for the file, NO if input and output are not both allowed for the file, or UNKNOWN if the processor is unable to determine if input and output are allowed for the file.

\subsection*{9.6.4 Table of Values Assigned by inquire}

Table 9-1 indicates the values assigned to the various variables by the execution of an inquire statement.

Table 9-1 Values assigned by the inquire statement
\begin{tabular}{|c|c|c|c|c|}
\hline & \multicolumn{2}{|r|}{Inquire by file} & \multicolumn{2}{|r|}{Inquire by unit} \\
\hline Specifier & Unconnected & Connected & Connected & Unconnected \\
\hline access= & UNDEFINED & \multicolumn{2}{|l|}{SEQUENTIAL or DIRECT} & UNDEFINED \\
\hline action= & UNDEFINED & \multicolumn{2}{|l|}{READ, WRITE, or READWRITE} & UNDEFINED \\
\hline direct= & UNKNOWN & \multicolumn{2}{|l|}{YES, NO, or UNKNOWN} & UNKNOWN \\
\hline exist= & \multicolumn{2}{|l|}{true if file exists, false otherwise} & \multicolumn{2}{|l|}{true if unit exists, false otherwise} \\
\hline form= & UNDEFINED & \multicolumn{2}{|l|}{FORMATTED or UNFORMATTED} & UNDEFINED \\
\hline formatted= & UNKNOWN & \multicolumn{2}{|l|}{YES, NO, or UNKNOWN} & UNKNOWN \\
\hline iostat= & \multicolumn{4}{|c|}{0 for no error, a positive integer for an error} \\
\hline name= & \multicolumn{2}{|l|}{Filename (may not be same as file=value)} & Filename if named, else undefined & Undefined \\
\hline named= & \multicolumn{2}{|l|}{true} & true if file named, false otherwise & false \\
\hline nextrec= & Undefined & \multicolumn{2}{|l|}{If direct access, next record \#; else undefined} & Undefined \\
\hline number= & -1 & \multicolumn{2}{|r|}{Unit number} & -1 \\
\hline opened= & false & \multicolumn{2}{|c|}{true} & false \\
\hline position= & UNDEFINED & \multicolumn{2}{|l|}{REWIND, APPEND, ASIS, or UNDEFINED} & UNDEFINED \\
\hline read= & UNKNOWN & \multicolumn{2}{|l|}{YES, NO, or UNKNOWN} & UNKNOWN \\
\hline readwrite= & UNKNOWN & \multicolumn{2}{|l|}{YES, NO, or UNKNOWN} & UNKNOWN \\
\hline rec \(1=\) & Undefined & \multicolumn{2}{|l|}{If direct access, record length; else maximum record length} & Undefined \\
\hline sequential= & UNKNOWN & \multicolumn{2}{|l|}{YES, NO, or UNKNOWN} & UNKNOWN \\
\hline
\end{tabular}

Table 9-1 Values assigned by the inquire statement
\begin{tabular}{|c|c|c|c|}
\hline unformatted= & UNKNOWN & YES, NO, or UNKNOWN & UNKNOWN \\
\hline write \(=\) & UNKNOWN & YES, NO, or UNKNOWN & UNKNOWN \\
\hline iolength \(=\) & \multicolumn{3}{|c|}{ recl= value for output-item-list } \\
\hline
\end{tabular}

\subsection*{9.7 File Positioning Statements}

Execution of a data transfer usually changes the position of a file. In addition, there are three statements whose main purpose is to change the position of a file. Changing the position backwards by one record is called backspacing. Changing the position to the beginning of the file is called rewinding. The endfile statement writes an endfile record and positions the file after the endfile record.

The syntax of the file positioning statements is
backspace (position-spec-list)
rewind (position-spec-list)
endfile (position-spec-list)
A position specification may be either of the following:
unit=external-file-unit
iostat \(=\) scalar-default-int-variable
Examples of file positioning statements are
```

backspace (unit=8, iostat=status)
rewind (unit=10)
endfile (unit=10, iostat=ierr)

```

Rules and restrictions for file positioning statements:
1. The backspace, rewind, and endfile statements may be used only to position external files.
2. The external file unit number is required.
3. The files must be connected for sequential access.

\subsection*{9.7.1 The backspace Statement}

Execution of a backspace statement causes the file to be positioned before the current record if there is a current record, or before the preceding record if there is no current record. If there is no current record and
no preceding record, the position of the file is not changed. If the preceding record is an endfile record, the file becomes positioned before the endfile record. If a backspace statement causes the implicit writing of an endfile record and if there is a preceding record, the file becomes positioned before the record that precedes the endfile record.

If the file is already at its initial point, a backspace statement does not affect it. Backspacing over records written using list-directed formatting is prohibited.

\subsection*{9.7.2 The rewind Statement}

A rewind statement positions the file at its initial point. Rewinding has no effect on the position of a file already at its initial point.

\subsection*{9.7.3 The endfile Statement}

The endfile statement writes an endfile record and positions the file after the endfile record written. Writing records past the endfile record is prohibited. After executing an endfile statement, it is necessary to execute a backspace or a rewind statement to position the file before the endfile record prior to reading or writing the file.

\subsection*{9.8 Formatting}

Data usually is stored in memory as the values of variables in some binary form. For example, the integer 6 may be stored as 0000000000000110 , where the 1 s and 0 s represent bits. On the other hand, formatted data records in a file consist of characters. Thus, when data is read from a formatted record, it must be converted from characters to the internal representation, and when data is written to a formatted record, it must be converted from the internal representation into a string of characters. A format specification provides the information needed to determine how these conversions are to be performed. The format specification is basically a list of edit descriptors that describe the format for the values in the input/output list.

A format specification is written as a character string or expression. The character expression, when evaluated, must be a valid format specification. Using these methods is called explicit formatting.

There is also list-directed formatting. Formatting (that is, conversion) occurs without specifically providing the editing information usually contained in a format specification. In this case, the editing or formatting is implicit. List-directed editing, also called "default formatting", is explained in 9.8.17.

Some rules and restrictions pertaining to format specifications are:
1. If the expression is a character array, the format is derived in array element order.
2. If the expression is an array element, the format must be entirely contained within that element.

\subsection*{9.8.1 Format Specifications}

The items that make up a format specification are edit descriptors, which may be data edit descriptors or control edit descriptors. Each data list item must have a corresponding data edit descriptor; other descriptors control spacing, tabulation, etc.

Each format item has one of the following forms:
```

[ $r$ ] data-edit-desc
control-edit-desc
[ $r$ ] ( format-item-list)

```
where \(r\) is an integer literal constant called a repeat factor; it must be a positive integer with no kind parameter value.

Examples:
```

read (unit=*, fmt="(5e10.1, i10)") max_values, k
print "(a, 2i5)", "The two values are: ", n(1), n(2)

```

The data edit descriptors have the forms shown in Table 9-2, where \(w\) specifies the width of the field, \(m\) the minimum number of digits written, \(d\) the number of decimal places, and \(e\) the number of digits in the exponent.

Table 9-2 Data Edit Descriptors
\begin{tabular}{cc}
\hline Descriptor & Data type \\
\hline \(\mathbf{i} w[. m]\) & decimal integer \\
\(\mathrm{f} w . d\) & real, positional form \\
es \(w . d[\mathrm{e} e]\) & real, scientific form \\
en \(w . d[\mathrm{e} e]\) & real, engineering form \\
\(1 w\) & logical \\
\(\mathrm{a}[w]\) & character ("alphabetic") \\
\hline
\end{tabular}
\(w, m, d\), and \(e\) must be integer literal constants with no kind parameter. \(w\) must be nonnegative for the \(\mathbf{i}\) and f edit descriptors; it must be positive for the es, 1, and a edit descriptors. \(e\) must be positive. \(d\) and \(m\) must be nonnegative. The values of \(m, d\), and \(e\) must not exceed the value of \(w\).

When \(w\) is not zero, it designates the width of the field in the file, that is, the number of characters transferred to or from the file. When \(w\) is zero, the value is printed in the smallest field in which it fits. Also, as explained in 9.8.5 to 9.8.10, in the description of each edit descriptor, \(m\) is the number of digits in the number field, \(d\) is the number of digits after the decimal point, and \(e\) is the number of digits in the exponent.

The control edit descriptors have the forms shown in Table 9-3. \(n\) is a positive integer literal constant with no kind parameter.

Table 9-3 Control Edit Descriptors
\begin{tabular}{cc}
\hline Descriptor & Function \\
\hline \(\mathrm{t} n\) & tab to position \(n\) \\
\(\mathrm{t}] n\) & tab left \(n\) positions \\
\(\mathrm{tr} n\) & tab right \(n\) positions \\
{\([n] /\)} & next record \\
\(:\) & stop formatting if i/o list is \\
exhausted \\
sp & default printing of plus sign \\
ss & print plus sign \\
\hline
\end{tabular}

\subsection*{9.8.2 Formatted Data Transfer}

When formatted data transfer is taking place, the next item in the input/output list is matched up with the next data edit descriptor to determine the form of conversion between the internal representation of the data and the string of characters in the formatted record. Before this matching process occurs, the input/output list is considered to be expanded by writing out each element in an array and each component in a structure. Analogously, the repeated edit descriptors are considered to be expanded, and the whole specification is considered to be repeated as often as necessary to accommodate the entire list, as explained below regarding the use of parentheses. Let's take an example:
```

print "(i5, 2(i3, tr1, i4), i5)", i, n(1:4), j

```

The expanded input/output list would be
\[
\mathrm{i}, \mathrm{n}(1), \mathrm{n}(2), \mathrm{n}(3), \mathrm{n}(4), \mathrm{j}
\]
and the expanded list of edit descriptors would be
i5, i3, tr1, i4, i3, tr1, i4, i5

As the formatting proceeds, each input/output list item is read or written with a conversion as specified by its corresponding data edit descriptor. Note that complex data type items require two real data edit descriptors. The control edit descriptors affect the editing process at the point they occur in the list of edit descriptors.

An empty format specification such as () is restricted to input/output statements without a list of items. The effect on input is that one record is skipped in the input file. The effect on output is that no characters are written to the record.

Control edit descriptors do not require a corresponding data item in the list. When the data items are completely processed, any control edit descriptors occurring next in the expanded list of edit descriptors are processed and then the formatting terminates.

\subsection*{9.8.3 Parentheses in a Format Specification}

The action indicated by encountering a right parenthesis in a format specification depends on the nesting level. The rules are the following:
1. When the rightmost right parenthesis is encountered and there are no more data items, input/output terminates.
2. When the rightmost right parenthesis is encountered and there are more data items, the format is searched backward first until a right parenthesis is encountered, then back to the matching left parenthesis. If there is no other right parenthesis except the outermost one, format control reverts to the left parenthesis at the beginning of the format specification. A slash edit descriptor is considered to occur after processing the rightmost right parenthesis and before processing the left parenthesis.
3. If there is a repeat factor encountered when reverting to the left parenthesis, the repeat before the parenthesis is reused.
4. Sign control is not affected. It remains in effect until another sign edit descriptor is encountered.

This process is illustrated by the following two cases:
\[
\text { print "(a, i5)", "x", 1, "y", 2, "z", } 3
\]
is equivalent to
\[
\begin{gathered}
\text { print "(a, i5, /, a, i5, /, a, i5)", \& } \\
\text { "x", 1, "y", 2, "z", 3 }
\end{gathered}
\]
and
\[
\text { print "(a, (i5))", "x", 1, 2, } 3
\]
is equivalent to
\[
\text { print "(a, i5, /, i5, /, i5)", "x", 1, 2, } 3
\]

The first format is a little more flexible because numbers could be added to the output list without changing the format.

\subsection*{9.8.4 Numeric Editing}

The edit descriptors that cover numeric editing are i,f,en, and es. The following rules apply to all of them.

On input:
1. Leading blanks are not significant.
2. Within a field, blanks are ignored.
3. Plus signs may be omitted in the input data.
4. In numeric fields that have a decimal point and correspond to \(f\), en, or es edit descriptors, the decimal point in the input field overrides placement of the decimal point indicated by the edit descriptor.
5. There must be no kind parameter in the input data.

On output:
1. A positive or zero internal value may have a plus sign, depending on the sign edit descriptors used.
2. The number is right justified in the field. Leading blanks may be inserted.
3. If the number or the exponent is too large for the field width specified in the edit descriptor, the output field is filled with asterisks.

The processor must not produce asterisks when elimination of optional characters (such as the optional plus sign indicated by the sp edit descriptor) will allow the output to fit into the output field.

\subsection*{9.8.5 Integer Editing}

The integer edit descriptor is
\[
\mathrm{i} w[. m]
\]
\(w\) is the field width unless \(w=0\), in which case the minimal necessary field width is used; \(m\) is the least number of digits to be output. \(m\) has no affect on an input field. If \(m\) is omitted, its default value is 1 . The value of \(m\) must not exceed the value of \(w\) unless \(w=0\). Leading zeros pad an integer field to the value of \(m\). The field on output consists of an optional sign and the magnitude of the integer number without leading zeros, except in the case of padding to the value of \(m\). All blanks are output only if the magnitude is zero and \(m=0\).

Input. The character string in the file must be an optionally signed integer constant.

Output. The field consists of leading blanks, followed by an optional sign, followed by the unsigned value of the integer. At least one digit must be output unless \(m\) is 0 and the output value is 0 .

Example:
```

read (unit=15, fmt="(i5, i8)") i, j

```

If the input field is
bbb2401110107
\(\mathbf{i}\) is read using the integer \(\mathbf{i 5}\) edit descriptor and j is read with a i 8 edit descriptor. The resulting values of \(i\) and \(j\) are 24 and 1,110,107, respectively.

Example:
```

integer :: i
integer, dimension(4), parameter :: \&
ik = (/2, 1, 0, 0/)
character(len=*), parameter :: \&
i_format = "(a, i3, a, i3.3, a, i0, a, i0.0, a)"
print i_format, "|", (ik(i), "|", i=1,4)

```
produces the line of output:
\[
|2| 001|0| \mid
\]

\subsection*{9.8.6 Real Editing}

The forms of the edit descriptors for real values are
```

fw.d
esw.d [ee ]

```

\subsection*{9.8.7 The f Edit Descriptor}

If \(w>0, \mathrm{f}\) editing converts to or from a string of \(w\) digits with \(d\) digits after the decimal point. \(d\) must not be greater than \(w\). The number may be signed. If \(w=0\), the value is printed using the smallest field width possible; \(w\) may not be 0 for input.

Input. If the input field contains a decimal point, the value of \(d\) has no effect. If there is no decimal point, a decimal point is inserted in front of the rightmost \(d\) digits. There may be more digits in the number than the processor can use. On input, the number may contain an e indicating an exponent value.

Output. The number is an optionally signed real number with a decimal point, rounded to \(d\) digits after the decimal point. If the number is less than one, the processor may place a zero in front of the decimal point. At least one zero must be output if no other digits would appear. If the number does not fit into the output field, the entire field is filled with asterisks.

Example:
```

read (unit=12, fmt="(f10.2, f10.3)") x, y

```

If the input field is
bbbb6. 42181234567890
the values assigned to \(x\) and \(y\) are 6.4218 and 1234567.89, respectively. The value of \(d\) (indicating two digits after the decimal point) is ignored for \(x\) because the input field contains a decimal point.

Example:
```

rea1 :: price = 473.25
print "(a, f0.2)", "The price is \$", price

```
produces the output
The price is \(\$ 473.25\)

\subsection*{9.8.8 The es Edit Descriptor}
es is the exponential form scientific edit descriptor.

Input. The form is the same as for \(f\) editing.
Output. The output of the number is in the form of scientific notation; \(1 \leq \mid\) mantissa \(\mid<10\), except when the output value is 0 .

Example:
```

write (unit=6, fmt="(es12.3)") b

```

The form of the output field is
\[
[\pm] y \cdot x_{1} x_{2} \ldots x_{d} \exp
\]
where \(y\) is a nonzero digit and \(\exp\) is a signed integer; the sign must be present in the exponent.

Examples of output using the es edit descriptor are found in Table 9-4.

Table 9-4 Examples of output using the es edit descriptor
\begin{tabular}{cc}
\hline Internal value & Output field using ss, es12.3 \\
\hline 6.421 & \(6.421 \mathrm{E}+00\) \\
-.5 & \(-5.000 \mathrm{E}-01\) \\
.0217 & \(2.170 \mathrm{E}-02\) \\
4721.3 & \(4.721 \mathrm{E}+03\) \\
\hline
\end{tabular}

\subsection*{9.8.9 The en Edit Descriptor}
en is the engineering form scientific edit descriptor.
Input. The form is the same as for \(f\) editing.
Output. The output of the number is in the form of engineering notation; \(1 \leq \mid\) mantissa \(\mid<1000\), except when the output value is 0 . The exponent is a multiple of 3 .

Example:
```

write (unit=6, fmt="(en12.3)") b

```

The form of the output field is
\[
[\pm] y \cdot x_{1} x_{2} \ldots x_{d} \exp
\]
where \(y\) is a one, two, or three digit integer and exp is a signed integer that is a multiple of 3 ; the sign must be present in the exponent.

Examples of output using the en edit descriptor are found in Table 9-5.

Table 9-5 Examples of output using the en edit descriptor
\begin{tabular}{cc}
\hline Internal value & Output field using ss, en12.3 \\
\hline 6.421 & \(6.421 \mathrm{E}+00\) \\
-.5 & \(-500.000 \mathrm{E}-03\) \\
.0217 & \(21.70 \mathrm{E}-03\) \\
4721.3 & \(4.721 \mathrm{E}+03\) \\
\hline
\end{tabular}

\subsection*{9.8.10 Complex Editing}

Editing of complex numbers requires two real edit descriptors, one for the real part and one for the imaginary part. Different edit descriptors may be used for the two parts. Data read for a complex quantity is converted by the rules of conversion for assignment to complex. Other controls and characters may be inserted between the specification for the real and imaginary parts.

Example:
```

complex :: cm(2)
read (unit=5, fmt="(4es7.2)") cm(:)
write (unit=6, fmt="(2 (f7.2, a, f7.2, a))") \&
rea1(cm(1)), " + ", aimag(cm(1)), "i ", \&
rea1(cm(2)), " + ", aimag(cm(2)), "i "

```

If the input record is
bb55511bbb2146bbbb100bbbb621
the values assigned to \(\mathrm{cm}(1)\) and \(\mathrm{cm}(2)\) are \(555.11+21.46 i\) and \(1+6.21 i\), respectively, and the output record is
\(b 555.11 b+b b b 21.46 \mathrm{i} b b b b 1.00 b+b b b b 6.21 \mathrm{i} b\)

\subsection*{9.8.11 Logical Editing}

The edit descriptor used for logical editing is
\(1 w\)
\(w\) is the field width.
Input. The input field for a logical value consists of any number of blanks, followed by an optional period, followed by \(t\) or \(f\), either uppercase or lowercase, followed by anything. Valid input fields for true include \(t\), True, .TRUE., . T , and thursday_afternoon, although the last is poor practice.

Output. The output field consists of \(w-1\) leading blanks, followed by T or F.

Example:
write (unit=6, fmt="(217)") 11, 12
If 11 and 12 are true and false, respectively, the output record will be
\(b b b b b b\) т \(b b b b b b \mathrm{~F}\)

\subsection*{9.8.12 Character Editing}

The edit descriptor for character editing is
\[
\mathrm{a}[w]
\]
\(w\) is the field width measured in characters. If \(w\) is omitted, the length of the data object being read in or written out is used as the field width. Let len be the length of the data object being read or written.

Input. If \(w\) is greater than len, the rightmost len characters in the input field are read. If \(w\) is less than len, the input is padded with blanks on the right.

Output. If \(w\) is greater than len, blanks are added on the left. If \(w\) is less than len, the leftmost \(w\) characters will appear in the output field. Unlike numeric fields, asterisks are not written if the data does not fit in the specified field width.

Example:
```

character (len=*), parameter :: \&
slogan="Save the river"
write (unit=*, fmt="(a)") slogan

```
produces the output record
Savebthebriver

\subsection*{9.8.13 Position Editing}

Position edit descriptors control tabbing left or right in the record before the next list item is processed. The edit descriptors for tabbing are:
\begin{tabular}{ll}
\(\mathrm{t} n\) & tab to position \(n\) \\
\(\mathrm{t} n\) & tab left \(n\) positions \\
tr \(n\) & tab right \(n\) positions
\end{tabular}
\(n\) must be an unsigned integer constant with no kind parameter.

The \(\mathrm{t} n\) edit descriptor positions the record just before character \(n\), so that if a character is put into or taken from the record, it will be the \(n\)th character in the record. tr \(n\) moves right \(n\) characters. tl \(n\) moves left \(n\) characters.

If, because of execution of a nonadvancing input/output statement, the file is positioned within a record at the beginning of an input/output statement, left tabbing may not position that record any farther left than the position of the file at the start of the input/output operation.

Input. The \(t\) descriptor may position either forward or backward. A position to the left of the current position allows input to be processed twice.

Output. The positioning does not transmit characters and does not by itself cause the record to be shorter or longer. Positions that are skipped are blank filled, unless filled later in the processing. A character may be replaced by the action of subsequent descriptors, but the positioning descriptors do not carry out the replacement.

Examples: if \(x=12.66\) and \(y=-8654.123\),
```

print "(f9.2, tr6, f9.3)", x, y

```
produces the record
bbbb12.66bbbbbb-8654.123
print "(f9.2, t7, f9.3)", x, y
produces the record
bbbb12-8654.123

\subsection*{9.8.14 Slash (/) Editing}

The current record is ended when a slash is encountered in a format specification. The slash edit descriptor consists of the single slash character (/).

Input. If the file is connected for sequential access, the file is positioned at the beginning of the next record. The effect is to skip the remainder of the current record. For direct access, the record number is increased by one. A record may be skipped entirely on input.

Output. If the file is connected for sequential access, the file is positioned at the beginning of a new record. For direct access, the record number is increased by one, and this record becomes the current record. An empty record is blank filled.

Example: if \(\mathrm{a}=1.1, \mathrm{~b}=2.2\), and \(\mathrm{c}=3.3\),
```

print "(f5.1, /, 2f6.1)", a, b, c

```
produces two records
bb1.1
\(b b b 2.2 b b b 3.3\)

\subsection*{9.8.15 Colon Editing}

The colon edit descriptor consists of the single colon character (:).
If the list of items in the formatted read or write statement is exhausted, a colon stops format processing at that point. It has no effect if there is more data.

Example:
```

fmt_spec = "(3(f3.1, :, /))"
write (unit=*, fmt=fmt_spec) a, b, c

```
produces only three records
1.1
2.2
3.3

The slash edit descriptor causes only three records to be output because the output list is exhausted when the colon edit descriptor is processed the third time. Without the colon edit descriptor, the output above would be followed by a blank line.

\subsection*{9.8.16 Sign Editing}

Sign editing applies to numeric fields only; it controls the printing of the plus sign. It only applies to output. The sign edit descriptors are
\(\mathrm{s} \quad\) optional plus is processor dependent
sp optional plus must be printed
ss optional plus must not be printed
The s edit descriptor indicates that the printing of an optional plus sign is up to the processor; it is the default. sp indicates that an optional plus sign must be printed. ss indicates that an optional plus sign must not be printed. The occurrence of these descriptors applies until another one (\(s, s p, s s\)) is encountered in the format specification.

Example: if \(x(1)=1.46\) and \(x(2)=234.1217\),
```

write (unit=*, fmt="(sp, 2f10.2)") x(1:2)

```
produces the record
\(b b b b b+1.46 b b b+234.12\)

\subsection*{9.8.17 List-Directed Formatting}

List-directed formatting, also called default formatting, is selected by using an asterisk (*) in place of an explicit format specification in a read, write, or print statement. List-directed editing occurs based on the type of each list item.

Example:
```

read (unit=5, fmt=*) a, b, c

```

Some rules and restrictions relating to list-directed formatting are:
1. List-directed formatting cannot be used with direct access or nonadvancing input/output.
2. The record consists of values and value separators.
3. If there are no list items, an input record is skipped or an output record that is empty is written.

Values. The values allowed are
\[
\begin{array}{ll}
\text { null } & \text { a null value as in , (no value between separators) } \\
c & \text { an unsigned literal constant without a kind parameter } \\
r^{*} c & r \text { repetitions of the constant } c \\
r^{*} & r \text { repetitions of the null value }
\end{array}
\]
where \(r\) is a string of digits.
Separators. The separators allowed are
, a comma, optionally preceded or followed by contiguous blanks
/ a slash, optionally preceded or followed by contiguous blanks
one or more blanks between two nonblank values
Input. Input values generally are accepted as list-directed input if they are accepted in explicit formatting with an edit descriptor. There are some exceptions. They are
1. The type must agree with the next item in the list.
2. Embedded blanks are not allowed, except within a character constant and around the comma or parentheses of a complex constant.
3. Complex items in the list include the parentheses for a complex constant. They are not treated as two reals, as is done with data edit descriptors. Blanks may occur before or after the comma. An example is
4. Logical items must not use value separators as the optional characters following the \(t\) or \(f\).
5. Character constants must be delimited by quotes. When a character constant is continued beyond the current record, the end of the record must not be between any quotes that are doubled to indicate a quote in the character string. Value separators may be representable characters in the constant.
6. If len is the length of the next input list item, \(w\) is the length of a character constant in the input, and if
\[
\begin{array}{ll}
\text { len } \leq w & \text { the leftmost len characters of the constant are used } \\
\text { len }>w & \begin{array}{l}
\text { the } w \text { characters of the constant are used and } \\
\text { the field is blank filled on the right }
\end{array}
\end{array}
\]

Null Values. A null value is encountered if
1. There is no value between separators.
2. The record begins with a value separator.
3. The \(r^{*}\) form is used.

\section*{Rules and Restrictions:}
1. An end of record does not signify a null value.
2. The null value does not change the next list item; however, the following value will be matched with the following list item.
3. In complex number input, the entire constant may be null, but not one of the parts.
4. If a slash terminates the input, the rest of the list items are treated as though a null value had been read. This applies to the remaining items in an array.

Example:
```

rea1 x(4)
read (unit=5, fmt=*) i, x(:)

```

If the input record is
\[
b 6,, 2.418 /
\]
the result is that \(\mathrm{i}=6, \mathrm{x}(1)\) is unchanged, and \(\mathrm{x}(2)=2.418 . \mathrm{x}(3)\) and \(x(4)\) are unchanged.

Output. List-directed output uses the same conventions that are used for list-directed input. There are a few exceptions that are noted below for each of the intrinsic types. Blanks and commas are used as separators except for certain character constants that may contain a separator as part of the constant. The processor begins new records as needed, at any point in the list of output items. A new record does not begin in the middle of a number, except that complex numbers may be separated between the real and the imaginary parts. Very long character constants are the exception; they may be split across record boundaries. Slashes and null values are never output. Each new record begins with a blank for printing control, except for continued delimited character constants. The processor has the option of using the repeat factor, \(r^{*} c\).

Integer. The effect is as though a suitable \(\mathbf{i} w\) edit descriptor were used.

Real. The effect is as though an \(f\) or an es edit descriptor were used, except that for es form output the first significant digit is just right of the decimal point instead of to its left. The output result depends on the magnitude of the number, and the processor has some discretion in this case.

Complex. The real and imaginary parts are enclosed in parentheses and separated by a comma (with optional blanks surrounding the comma). If the length of the complex number is longer than a record, the processor may separate the real and imaginary parts on two records.

\section*{Logical.}

List-directed output prints T or F depending on the value of the logical data object.

Character. Character constants are output as follows:
1. Character constants are not delimited by quotes.
2. Character constants are not surrounded by value separators.
3. Only one quote is output for each quote embedded in the character constant.

330 Input and Output
4. A blank is inserted in new records for a continued character constant.

\section*{Intrinsic Procedures}

There are four classes of intrinsic procedures: inquiry functions, elemental functions, transformational functions, and subroutines.

\section*{A. 1 Intrinsic Functions}

An intrinsic function is an inquiry function, an elemental function, or a transformational function. An inquiry function is one whose result depends on the properties of its principal argument, rather than the value of this argument; in fact, the argument value may be undefined. An elemental function is one that is specified for scalar arguments but may be applied to array arguments, as described in Section A.2. All other intrinsic functions are transformational functions; they almost all have one or more array-valued arguments or an array-valued result.

The names of the intrinsic functions are given in Sections A. 4 to A.9. In most cases, functions accept arguments of more than one type and the type of the result is the same as the type of the arguments.

\section*{A. 2 Elemental Intrinsic Procedures}

\section*{A.2.1 Elemental Intrinsic Function Arguments and Results}

For an elemental intrinsic function, the shape of the result is the same as the shape of the argument with the greatest rank. If the arguments are all scalar, the result is scalar. For those elemental intrinsic functions that have more than one argument, all arguments must be conformable (i.e., have the same shape). In the array-valued case, the values of the elements, if any, of the result are the same as would have been obtained if the scalar-valued function had been applied separately, in any order, to corresponding elements of each argument. Arguments called
kind must always be specified as a scalar integer parameter. The value of the parameter must be a processor supported kind number.

\section*{A.2.2 Elemental Intrinsic Subroutine Arguments}

For an elemental intrinsic subroutine, either all actual arguments must be scalar or all intent(out) arguments must be arrays of the same shape, and the remaining arguments must be conformable with them. In the case that the intent (out) arguments are arrays, the values of the elements, if any, of the results are the same as would be obtained if the subroutine with scalar arguments were applied separately, in any order, to corresponding elements of each argument.

\section*{A. 3 Positional Arguments or Argument Keywords}

All intrinsic procedures may be invoked with either positional arguments or argument keywords. The descriptions in Sections A. 4 to A. 10 give the keyword names and positional sequence. A keyword is required for an argument only if a preceding optional argument is omitted or a preceding actual argument is specified using a keyword. For example, a reference to cmp 1 x may be written in the form cmplx (rea1_part, complex_part, \(m\)) or in the form cmp1x (y=complex_ part, kind=m, x=real_part).

Many of the argument keywords have names that are indicative of their usage. For example,
\(\left.\begin{array}{ll}\begin{array}{l}\text { kind } \\
\text { string, string_a } \\
\text { back }\end{array} & \begin{array}{l}\text { Describes the kind of the result } \\
\text { An arbitrary character string } \\
\text { Indicates a string scan is }\end{array} \\
\text { to be from right to left (backward) }\end{array}\right\}\)\begin{tabular}{l}
A mask that may be applied to the arguments \\
mask
\end{tabular} \begin{tabular}{l}
A selected dimension of an array argument
\end{tabular}

\section*{A. 4 Argument Presence Inquiry Function}

The inquiry function present permits an inquiry to be made about the presence of an actual argument associated with a dummy argument that has the optional attribute. Its result is logical.

\section*{A. 5 Numeric, Mathematical, Character, and Logical Procedures}

\section*{A.5.1 Numeric Functions}

The elemental functions int, rea1, and cmp1x perform type conversions. The elemental functions aimag, conjg, aint, anint, nint, abs, modulo, floor, ceiling, max, and min perform simple numeric operations.
```

abs(a)
aimag(z)
aint(a, kind)
Optional kind
anint(a, kind)
Optional kind
ceiling(a)
cmplx(x, y, kind)

```
 Optional y, kind
conjg(z)
int(a, kind)
 Optional kind
floor(a)
\(\max (a 1, a 2, a 3, \ldots\))
 Optional a3,...
\(\min (a 1, a 2, a 3, \ldots)\)
 Optional a3,...
modulo(a, p)
nint(\(a\), kind)
 Optional kind
real(a, kind)
 Optional kind
\(\operatorname{sign}(\mathrm{a}, \mathrm{b})\)

Absolute value
Imaginary part of a complex number
Truncation to whole number

Nearest whole number

Least integer greater than or equal to number
Conversion to complex type
Conjugate of a complex number
Conversion to integer type
Greatest integer less than or equal to number Maximum value

Minimum value

Modulo function; a-floor(a/p)*p; if nonzero, modulo(\(\mathrm{a}, \mathrm{p}\)) has the sign of p
Nearest integer

Conversion to real type

Absolute value of \(a\) with the sign of \(b\)

\section*{A.5.2 Mathematical Functions}

The elemental functions sqrt, exp, log, log10, sin, cos, tan, asin, acos, atan, atan2, sinh, cosh, and tanh evaluate mathematical functions.
\(\operatorname{acos}(x)\)
\(\operatorname{asin}(x)\)
\(\operatorname{atan}(x)\)
\(\operatorname{atan} 2(y, x)\)
\(\cos (x)\)
\(\cosh (x)\)
\(\exp (x)\)
\(\log (x)\)
\(\log 10(x)\)

Arccosine
Arcsine
Arctangent
Arctangent of \(y / x\)
Cosine
Hyperbolic cosine
Exponential
Natural logarithm
Common logarithm (base 10)
\begin{tabular}{ll}
\(\sin (x)\) & Sine \\
\(\sinh (x)\) & Hyperbolic sine \\
\(\operatorname{sqrt}(x)\) & Square root \\
\(\tan (x)\) & Tangent \\
\(\tanh (x)\) & Hyperbolic tangent
\end{tabular}

\section*{A.5.3 Character Functions}

The elemental functions ichar, char, index, verify, adjust1, adjustr, scan, and len_trim perform character operations. The transformational function repeat returns repeated concatenations of a character string argument. The transformational function trim returns the argument with trailing blanks removed.
\begin{tabular}{ll}
adjustl(string) & \begin{tabular}{c}
Adjust left; move leading blanks to end \\
adjustr(string) \\
char(i, kind) \\
\(\quad\) Optional kind
\end{tabular} \\
\begin{tabular}{ll}
Adjust right; move trailing blanks to beginning
\end{tabular} \\
ichar(c) & \begin{tabular}{c}
Character in given position \\
in processor collating sequence \\
Position of a character \\
in processor collating sequence
\end{tabular} \\
index(string, substring, back) & Starting position of a substring \\
\(\quad\) Optional back & Length without trailing blank characters \\
len_trim(string) & \begin{tabular}{l}
Repeated concatenation \\
repeat(string, ncopies) \\
scan(string, set, back) \\
\(\quad\) Optional back
\end{tabular} \\
Scan a string for any character \\
trim(string) & in a set of characters \\
verify(string, set, back) & Remove trailing blank characters \\
\(\quad\) Optional back & Find a character in a string
\end{tabular}

\section*{A.5.4 Character Inquiry Function}

The inquiry function len returns the length of a character entity. The value of the argument to this function need not be defined. It is not necessary for a processor to evaluate the argument of this function if the value of the function can be determined otherwise.
len(string) Length of a character entity

\section*{A.5.5 Logical Function}

The elemental function logical converts between objects of type logical with different kind parameter values.

Convert between objects of type logical with different kind type parameters

\section*{A.5.6 Kind Functions}

The inquiry function kind returns the kind parameter value of an integer, real, complex, or logical entity. The transformational function selected_real_kind returns the real kind parameter value that has at least the decimal precision and exponent range specified by its arguments. The transformational function selected_int_kind returns the integer kind parameter value that has at least the decimal exponent range specified by its argument.
\begin{tabular}{ll}
\begin{tabular}{l}
kind(x) \\
selected_int_kind(r)
\end{tabular} & \begin{tabular}{l}
Kind parameter value \\
Integer kind parameter value, \\
sufficient for integers with r digits
\end{tabular} \\
selected_real_kind(p,r) & \begin{tabular}{c}
Real kind parameter value, \\
Optional p,r \\
given decimal precision and range
\end{tabular}
\end{tabular}

\section*{A. 6 Numeric Manipulation and Inquiry Functions}

The numeric manipulation and inquiry functions are described in terms of a model for the representation and behavior of numbers on a processor. The model has parameters which are determined so as to make the model best fit the machine on which the executable program is executed.

\section*{A.6.1 Models for Integer and Real Data}

The model set for integer \(i\) is defined by
\[
i=s \times \sum_{k=1}^{q} w_{k} \times r^{k-1}
\]
where \(r\) is an integer exceeding one, \(q\) is a positive integer, each \(w_{k}\) is a nonnegative integer less than \(r\), and \(s\) is +1 or -1 . The model set for real \(x\) is defined by
\[
x=\left(\begin{array}{cc}
0 & o r \\
s \times b^{e} \times \sum_{k=1}^{p} f_{k} \times b^{-k}
\end{array}\right.
\]
where \(b\) and \(p\) are integers exceeding one; each \(f_{k}\) is a nonnegative integer less than \(b ; f_{1}\) is also nonzero; \(s\) is +1 or -1 ; and \(e\) is an integer that lies between some integer maximum \(e_{\max }\) and some integer minimum
\(e_{\min }\) inclusively. For \(x=0\), its exponent \(e\) and digits \(f_{k}\) are defined to be zero. The integer parameters \(r\) and \(q\) determine the set of model integers, and the integer parameters \(b, p, e_{\min }\) and \(e_{\max }\) determine the set of model floating point numbers. The parameters of the integer and real models are available for each integer and real data type implemented by the processor. The parameters characterize the set of available numbers in the definition of the model. The numeric manipulation and inquiry functions provide values related to the parameters and other constants related to them. Examples of these functions in this section use the models
\[
i=s \times \sum_{k=1}^{s 1} w_{k} \times 2^{k-1}
\]
and
\[
x=0 \quad \text { or } \quad s \times 2^{e} \times\left(1 / 2+\sum_{k=2}^{24} f_{k} \times 2^{-k}\right) \quad-126 \leq e \leq 127
\]

\section*{A.6.2 Numeric Inquiry Functions}

The inquiry functions radix, digits, minexponent, maxexponent, precision, range, huge, tiny, and epsilon return scalar values related to the parameters of the model associated with the type and type parameters of the arguments. The value of the arguments to these functions need not be defined, and pointer arguments may be disassociated.
```

digits(x) Number of significant digits p in the model
epsilon(x)
huge(x)
maxexponent(x)
minexponent(x)
precision(x)
radix(x)
range(x)
tiny(x)

```

Number of significant digits \(p\) in the model
Number that is almost negligible compared to one
Largest number in the model
Maximum exponent in the model; emax
Minimum exponent in the model; emin
Decimal precision
Base of the model; b
Decimal exponent range;
floor(log10(huge(x)))
Smallest positive number in the model

\section*{A.6.3 Floating Point Manipulation Functions}

The elemental functions exponent, scale, nearest, fraction, set_exponent, spacing, and rrspacing return values related to the components of the model values (A.6.1) associated with the actual values of the arguments.
```

exponent(x)
fraction(x)
nearest(x, s)
rrspacing(x)
scale(x, i)
set_exponent(x, i)
spacing(x)

```

\section*{A. 7 Bit Manipulation and Inquiry Procedures}

The bit manipulation procedures consist of a set of ten functions and one subroutine. Logical operations on bits are provided by the functions ior, iand, not, and ieor; shift operations are provided by the functions ishft and ishftc; bit subfields may be referenced by the function ibits and by the subroutine mvbits; single-bit processing is provided by the functions btest, ibset, and ibclr.

For the purposes of these procedures, a bit is defined to be a binary digit \(w\) located at position \(k\) of a nonnegative integer scalar object based on a model nonnegative integer defined by
\[
j=\sum_{k=0}^{s-1} w_{k} \times 2^{k}
\]
and for which \(w_{k}\) may have the value 0 or 1 . An example of a model number compatible with the examples used in A.6.1 would have \(s=32\), thereby defining a 32-bit integer.

An inquiry function bit_size is available to determine the parameter \(s\) of the model. The value of the argument of this function need not be defined. It is not necessary for a processor to evaluate the argument of this function if the value of the function can be determined otherwise.

Effectively, this model defines an integer object to consist of \(s\) bits in sequence numbered from right to left from 0 to \(s-1\). This model is valid only in the context of the use of such an object as the argument or result of one of the bit manipulation procedures. In all other contexts, the model defined for an integer in A.6.1 applies. In particular, whereas the models are identical for \(w_{s-1}=0\), they do not correspond for \(w_{s-}\) \(1=1\) and the interpretation of bits in such objects is processor dependent.
```

bit_size(i)
btest(i, pos)
iand(i, j)
ibclr(i, pos)
ibits(i, pos, len)
ibset(i, pos)
ieor(i, j)
ior(i, j)
ishft(i, shift)
ishftc(i, shift, size)
Optional size
not(i)
Number of bits in the model; s
Bit testing
Logical and
Clear bit
Bit extraction
Set bit
Exclusive or
Inclusive or
Logical shift
Circular shift
Number of bits in the model; s
Bit testing
Logical and
Clear bit
Bit extraction
Set bit
Exclusive or
Inclusive or
Logical shift
Circular shift
Logical complement

```

\section*{A. 8 Array Intrinsic Functions}

The array intrinsic functions perform the following operations on arrays: vector and matrix multiplication, numeric or logical computation that reduces the rank, array structure inquiry, array construction, array manipulation, and geometric location.

\section*{A.8.1 The Shape of Array Arguments}

The transformational array intrinsic functions operate on each array argument as a whole. The shape of the corresponding actual argument must therefore be defined; that is, the actual argument must be an array section, an assumed-shape array, an explicit-shape array, a pointer that is associated with a target, an allocatable array that has been allocated, or an array-valued expression.

Some of the inquiry intrinsic functions accept array arguments for which the shape need not be defined. They include the function 1bound and certain references to size and ubound.

\section*{A.8.2 Mask Arguments}

Some array intrinsic functions have an optional mask argument that is used by the function to select the elements of one or more arguments to be operated on by the function.

The mask affects only the value of the function, and does not affect the evaluation, prior to invoking the function, of arguments that are array expressions.

A mask argument must be of type logical.

\section*{A.8.3 Vector and Matrix Multiplication Functions}

The matrix multiplication function matmul operates on two matrices, or on one matrix and one vector, and returns the corresponding matrix-
matrix, matrix-vector, or vector-matrix product. The arguments to matmul may be numeric (integer, real, or complex) or logical arrays. On logical matrices and vectors, matmul performs Boolean matrix multiplication (that is, multiplication is .and. and addition is .or.).

The dot product function dot_product operates on two vectors and returns their scalar product. The vectors are of the same type (numeric or logical) as for matmu1. For logical vectors, dot_product returns the Boolean scalar product.
dot_product(vector_a, Dot product of two rank-one arrays vector_b)
matmul(matrix_a, Matrix multiplication
matrix_b)

\section*{A.8.4 Array Reduction Functions}

The array reduction functions sum, product, maxval, minva1, count, any, and a 11 perform numerical, logical, and counting operations on arrays. They may be applied to the whole array to give a scalar result or they may be applied over a given dimension to yield a result of rank reduced by one. The optional dim argument selects which subscript is reduced. By use of a logical mask that is conformable with the given array, the computation may be confined to any subset of the array (for example, the positive elements).
all(mask, dim) True if all values are true
Optional dim
any(mask, dim) True if any value is true
Optional dim
count(mask, dim)
Optional dim
maxval(array, dim, mask)
Number of true elements in an array

Maximum value in an array
Optional dim, mask
minval(array, dim, mask)
Minimum value in an array
Optional dim, mask
product(array, dim, mask)
Optional dim, mask
sum(array, dim, mask)
Optional dim, mask

\section*{A.8.5 Array Inquiry Functions}

The functions size, shape, 1 bound, and ubound return, respectively, the size of the array, the shape, and the lower and upper bounds of the subscripts along each dimension. The size, shape, or bounds must be defined.

The values of the array arguments to these functions
need not be defined.
\begin{tabular}{ll}
lbound(array, dim) & Lower dimension bounds of an array \\
Optional dim & Shape of an array or scalar \\
shape(source) \\
size(array, dim) & Total number of elements in an array \\
\begin{tabular}{c}
Optional dim \\
ubound(array, dim) \\
Optional dim
\end{tabular} & Upper dimension bounds of an array
\end{tabular}

\section*{A.8.6 Array Construction Functions}

The functions merge, spread, pack, and unpack construct new arrays from the elements of existing arrays. merge combines two conformable arrays into one array by an element-wise choice based on a logical mask. spread constructs an array from several copies of an actual argument (spread does this by adding an extra dimension, as in forming a book from copies of one page). pack and unpack, respectively, gather and scatter the elements of a one-dimensional array from and to positions in another array where the positions are specified by a logical mask.
merge(tsource.
fsource, mask)
pack(array, mask, vector)
Optional vector
spread(source, dim, ncopies)
unpack(vector, mask, field)

Merge under mask
Where mask is true, result is tsource, elsewhere result is fsource
Pack an array into an array of rank one under a mask. Result size is count(mask). If vector is present, result is padded with terminal elements of vector to size(vector).
Replicates array by adding a dimension

Unpack an array of rank one into an array under a mask. Where mask is true, elements of field are replaced by elements of vector. result has shape of mask.

\section*{A.8.7 Array Reshape Function}
reshape produces an array with the same elements as its argument, but with a different shape.
reshape(source, shape, pad, order)
Optional pad, order

\section*{A.8.8 Array Manipulation Functions}

The functions transpose, eoshift, and cshift manipulate arrays. transpose performs the matrix transpose operation on a two-dimensional array. The shift functions leave the shape of an array unaltered but shift the positions of the elements parallel to a specified dimension of the array. These shifts are either circular (cshift), in which case elements shifted off one end reappear at the other end, or end-off (eoshift), in which case specified boundary elements are shifted into the vacated positions.
```

cshift(array, shift, dim) Circular shift
Optional dim
eoshift(array, shift, End-off shift
boundary, dim)
Optional boundary, dim
transpose(matrix)

```

Circular shift

End-off shift

Transpose of an array of rank two

\section*{A.8.9 Array Location Functions}

The functions max 100 and minloc return the location (subscripts) of an element of an array that has maximum and minimum values, respectively. By use of an optional logical mask that is conformable with the given array, the reduction may be confined to any subset of the array. The size of the returned value is the rank of the array.
```

maxloc(array, mask) Location of a maximum value in an array
Optional mask
minloc(array, mask) Location of a minimum value in an array
Optional mask

```

\section*{A. 9 Pointer Nullify and Association Status Inquiry Functions}

The function nul1 returns a null (disassociated) pointer. The function associated tests whether a pointer is currently associated with any target, with a particular target, or with the same target as another pointer.
null(mold)
Optional mold
associated(pointer, target)
Optional target

A null pointer

Association status or comparison

\section*{A. 10 Intrinsic Subroutines}

Intrinsic subroutines are supplied by the processor and have the special definitions given in this section. An intrinsic subroutine is referenced by a cal1 statement that uses its name explicitly. The name of an intrinsic subroutine must not be used as an actual argument.

\section*{A.10.1 Date and Time Subroutines}

The subroutines date_and_time and system_clock return integer data from the date and real-time clock. The time returned is local, but there are facilities for finding out the difference between local time and Coordinated Universal Time.

The subroutine cpu_time returns in seconds the amount of CPU time used by the program from the beginning of execution of the program.
```

date_and_time(date, time,
zone, values)
Optional date, time,
zone, values
system_clock(count,
count_rate, count_max)
Optional count, count_rate,
count_max
cpu_time(time)

```

Obtain date and time
date="ccyymmdd"
time="hhmmss.sss"
values=(/year, month, day, gmt_min, hr,min,sec,msec/)
Obtain data from the system clock
count_rate is in counts per second.

Obtain processor time in seconds

\section*{A.10.2 Pseudorandom Numbers}

The subroutine random_number returns a pseudorandom number greater than or equal to 0.0 and less than 1.0 or an array of pseudorandom numbers. The subroutine random_seed initializes or restarts the pseudorandom number sequence.
random_number(harvest)
random_seed(size, put, get)
Optional size, put, get

Returns pseudorandom number
Initializes or restarts the pseudorandom number generator

\section*{F Language Forms}

B

This appendix contains an informal description of the major parts of the F programming language.

The notation used is a very informal variation of Backus-Naur form (BNF) in which characters from the F character set are to be written as shown. Lowercase italicized letters and words represent general categories for which specific syntactic entities must be substituted in actual statements. The rules are not a complete and accurate syntax description of F , but are intended to give the general form of the important language constructs.

Brackets [] indicate optional items. A "list" means one or more items separated by commas.

A more detailed description of the F syntax can be found on the Fortran World Wide Web site http://www.fortran.com.

\section*{program:}
program program name
[use statements]
[declaration statements]
[executable statements]
end program program-name

\section*{public module:}
module module name
use statements
public
end module module name

\section*{private module:}
module module name
[use statements

\section*{344} F Language Forms
```

    private]
    [ access statements ]
    [ declaration statements ]
    [ contains
subroutines and functions ]
end module module name

```

\section*{subroutine:}
[prefix] subroutine subroutine name ([argument list])
[use statements]
[declaration statements]
[executable constructs]
end subroutine subroutine name

\section*{function:}
[prefix] function function name ([argument list]) \& result (function result)
[use statements]
[declaration statements]
[executable constructs]
end function function name
prefix:
elemental
pure
recursive
pure recursive

\section*{use statement:}
use module name [, rename list]
use module name, on1y : [only list]

\section*{access statement:}
pub1ic:: list of procedures, operators, assignments
private :: list of procedures, operators, assignments

\section*{declaration statement:}
intrinsic statement
type definition statement
type declaration statement

\section*{intrinsic statement:}
intrinsic:: intrinsic procedure names

\section*{type definition statement:}
type, [access specifier] :: derived type name [private]
component declarations
end type derived type name

\section*{type declaration statement:}
type [, attribute list] : : initialization list

\section*{initialization:}
```

name [ = expression ]
name => expression

```

\section*{type:}
```

integer [(kind= kind parameter ) ]
rea1 [ ( kind= kind parameter ) ]
complex [(kind= kind parameter ) ]
logical[(kind= kind parameter )]
character ( 1 en= length parameter)
character(1en=*)
type (derived type name)

```

\section*{attribute:}
access specifier
parameter
allocatable
dimension (array bounds)
intent (intent specifier)
optional
pointer
save
target
access specifier:
public
private

\section*{intent specifier:}
in
out
in out

\section*{executable construct:}
if construct
if statement
do construct
case construct
where construct
forall construct
assignment statement
pointer assignment statement
allocate statement
deallocate statement
call statement
cycle statement
exit statement
return statement
stop statement
open statement
close statement
inquire statement
read statement
print statement
write statement
backspace statement
rewind statement
endfile statement

\section*{if construct:}
```

if (logical expression) then
executable statements
[ else if (logical expression) then
executable statements ]
[ else
executable statements ]
end if

```

\section*{do construct:}
[do construct name :] do [loop control] executable constructs end do [do construct name]

\section*{loop control:}
variable \(=\) start, stop \([:\) stride \(]\)

\section*{case construct:}
select case (expression)
case (case selector)
executable statements
[case (case selector)
executable statements]
[case default
executable statements]
end select
where construct:
where (mask expression)
where body constructs
[e1 sewhere (mask expression)
where body constructs
...]
[e] sewhere
where body constructs]
endwhere
where body construct:
assignment statement
where construct
where statement

\section*{forall construct:}
fora 11 (forall triplet list [, mask])
forall body constructs
end fora11

\section*{348} F Language Forms

\section*{forall triplet:}
```

variable =start : stop [ : stride ]

```

\section*{forall body construct:}
assignment statement
pointer assignment statement
where construct
where statement
forall construct forall statement

\section*{assignment statement:}
variable \(=\) expression

\section*{pointer assignment statement}
pointer \(=>\) target

\section*{allocate statement:}
a11ocate (allocation list [, stat= variable])
deallocate statement
dea110cate (deallocation list \([\), stat= variable])
call statement:
ca11 subroutine name (actual argument list)

\section*{cycle statement:}
cyc1e [do construct name]
exit statement:
exit [do construct name]
return statement:
return
stop statement:
stop

\section*{open statement:}
open (open specifier list)

\section*{open specifier:}
unit=value
iostat \(=\) value
file= value
status= value
access= value
form= value
rec \(7=\) value
position=value
action= value

\section*{close statement:}
close (close specifier list)

\section*{close specifier:}
unit= value
iostat \(=\) value
status \(=\) value
inquire statement:
inquire (inquire specifier list)
inquire specifier:
unit= value
file= value
iostat \(=\) value
exist=value
opened= value
number \(=\) value
named \(=\) value
name \(=\) value
access \(=\) value
sequential= value
direct \(=\) value
form= value
formatted= value
unformatted=value
rec \(1=\) value
nextrec \(=\) value
position= value
action= value
read \(=\) value
write \(=\) value
readwrite \(=\) value

\section*{read statement:}
read format [, variable list]
read (io control specifier list) [variable list]

\section*{print statement:}
print format [, expression list]

\section*{write statement:}
write (io control specifier list) [expression list]
io control specifier:

> unit \(\mathrm{t}=\) value
> \(\mathrm{fmt}=\) value
> rec \(=\) value
> iostat \(=\) value
> advance \(=\) value
> size \(=\) value
backspace statement:
backspace (position specifier list)
endfile statement:
endfile (position specifier list)
rewind statement:
rewind (position specifier list)
position specifier:
unit= value
iostat \(=\) value

\section*{A}
a edit descriptor 34, 180
abs function 333
abstract data type 266
access
direct 287, 301, 303
sequential 287, 294, 301
access statement \(87,232,265\)
access= 309
access \(=\) specifier 305,309
acos function 333
action= specifier 305, 309
actual argument 99
adaptive trapezoidal integration 121
adjustl function 198, 334
adjustr function 334
advance= specifier 293
advancing input/output 290, 294
aimag function 333
aint function 333
all function 339
allocatable attribute 134
allocate statement 134, 137, 258
allocation
memory 136
allocation status 138, 258
anint function 333
any function 339
argument
actual 99
agreement 99
dummy 93, 99
intent 94
keyword 102, 332
mask 338
optional 103
passing 99-104
pointer 100
procedure 92, 104
arithmetic 1
arithmetic operator 6
array 129-174
assignment 140
assumed-shape 133
automatic 134
bound 134
character 177
conformable 140
constructor 135
declaration 133
dummy argument 133
dynamic 136
element renumbering 145
extent 134
name 133
parent 138
section 138, 140
shape 134, 140
ASCII 180
asin function 333
assignment 30-32
array 140
character 178
extending 232-235, 245
masked array 141
pointer 254-258
substring 187
assignment statement 30
associated
pointer 253
associated function 260, 341
association
pointer 341
assumed length 180
assumed-shape array 133
asterisk format 18
atan function 333
atan2 function 333
attribute
allocatable 134
dimension 133
parameter 178
pointer 134, 253
private 219, 240, 265
public 219, 265
save 106
target 254
automatic array 134
automatic character 180
average 17

\section*{B}
backspace statement 284, 314
backspacing 314
big integer 239
binary search 152-156
binary tree 273
bit function 125, 337
bit_size function 337
blank character 21
block
interface 228
statement 51
where 143
body
loop 69
bound
array 134
lower 139
upper 139
bset function 126
btest function 126, 337
built-in function 23-26
built-in subroutine 23

\section*{C}
call statement 90
case construct 65-69
flowchart 66
case default statement 66
case statement 66
range 66
ceiling function 333
char function 181, 334
character
array 177
assignment 178
automatic 180
blank 21
comparison 8, 180
concatenation 8,189
constant \(3,8,178\)
declaration 177
delimiter 3, 8
dummy argment 180
exlamation 22
input/output 180
length \(14,177,179\)
operator 8
parameter 178
set 22
special 3, 22
string 3, 18, 177
type 8
character function 334
close 307
close statement 307
cmplx function 24, 333
collating sequence 180
comma
separator 3
comment 22
common subexpression 42
comparison
character 180
operator 182
complex
comparison 6
constant 5
kind 12
type 5
component
structure 217, 222
concatenation 8,189
condition
end-of-file 292
end-of-record 292
error 292
conditional execution 51
conformable array 140
conjg function 333
connection
file 304
constant
character \(3,8,178\)
complex 5
integer 4
logical 7
named 9
real 5
construct
case 65-69
control 51-82
do 69-82
forall 143
if 52-63
name 70
where 141
constructor
array 135
structure 223
contains statement 91
continued statement 21
control construct 51-82
control edit descriptor 316
control specification list
input/output 293
conversion
kind 24
conversion function 24
cos function 333
cosh function 333
count function 173, 339
cpu_time subroutine 174, 342
cshift function 148, 341
cycle statement 71

\section*{D}
dangling pointer 261
data
input 15
data edit descriptor 316
data record 282
data transfer statement 293-304
data type 4-13
abstract 266
intrinsic 4-13
date_and_time subroutine 174, 342
deallocate statement 138, 259
declaration
array 133
character 177
structure 221
type 221
default format 18, 33
default formatting 293, 327-330
default initialization 223
default kind 11, 26
defined operator
precedence 237
definite integral 107-109, 120
definition
type 221, 239
delimiter
character 3,8
derived type 219
digits function 336
dimension attribute 133
direct access input/output 287, 301, 303
direct= specifier 309
disassociated
pointer 253
discriminant 43
division
integer 29
do construct 69-82
flowchart 69
interation count 74
do statement 69
do variable 73
dot_product function 339
dummy argument 93, 99
array 133
character 180
dynamic array 136
dynamic storage allocation 136

\section*{E}
edit descriptor 33, 315, 316-327
/ 325
: 326
a \(34,180,324\)
character 324
colon 326
complex 323
control 316
data 316
engineering 322
es 34, 319, 321
f 34, 319, 321
i \(34,319,320\)
integer 320
1323
logical 323
numeric 319
position 35, 324
ps 320
real 321
repeated 35
s 326
scientific 321
sign 326
slash 325
sp 326
ss 326
t 324
tab 324
tl 324
tr 324
elemental function 331
elemental procedure 230,331
else if statement 52
elsewhere statement 141
end do statement 69
end function statement 97
end if statement 52
end program statement 4
end subroutine statement 90
endfile record 284
endfile statement 284
end-of-file condition 292
end-of-record condition 292
eoshift function 148, 341
epsilon function 336
equation
linear 166-172
quadratic 37-46
error
condition 292
roundoff 32
es edit descriptor 34
escape velocity 53-57
execution
block 53
conditional 51
exist= specifier 309
exit statement 71
exlamation character 22
exp function 333
explicit formatting 293,315
exponent function 336
exponential notation 5
expression 26-29, 209
alternative form 29
equivalent 28
evaluation 28, 208-215
interpretation 27
extending assignment 232-235, 245
extending intrinsic function 237
extending operator 235,246
extent
array 134
external file 285, 294

\section*{\(F\)}
f edit descriptor 34
factorial function 113
Fibonacci sequence 40, 115
file 282, 284-293
access 287
connection 304
existence 286
external 285, 294
input 18
internal 285, 288, 298
position 288, 314
preconnection 291
file positioning statement 314
file \(=\) specifier 305, 309
floor function 333
flowchart
case construct 66
do construct 69
fmt= specifier 293
forall construct 143
form
program 21-22
form= specifier 305,309
format 2, 34
asterisk 18
default \(2,18,33,37\)
specifier 293
format specification \(315,316,318\)
formatted input/output 294
formatted record 282, 315
formatted= specifier 309
formatting 315-330
default 293, 327-330
explicit 293, 315
input/output 32-37
list-directed 2, 293, 327-330
fraction function 336
function 89, 95-98
abs 333
\(\operatorname{acos} 333\)
adjustl 198, 334
adjustr 334
aimag 333
aint 333
all 339
anint 333
any 339
array 338
asign 333
associated 260, 341
atan 333
atan2 333
big_size 337
bit 125, 337
bset 126
btest 126, 337
built-in 23-26
ceiling 333
char 181, 334
character 334
cmplx 24, 333
conjg 333
conversion 24
cos 333
cosh 333
count 173, 339
cshift 148, 341
digits 336
dot_product 339
elemental 331
eoshift 148, 341
epsilon 336
exp 333
exponent 336
factorial 113
floor 333
fraction 336
generic 227
huge 336
iand 126,337
ibclr 127, 337
ibset 337
ichar 181, 334
ieor 127, 337
index 188, 193, 334
inquiry 331, 335, 339
int 24,333
intrinsic 23-26, 331
ior 126,337
ishft 127, 337
ishftc 127,337
kind 25, 335
lbound 338, 339
len 179, 334
len_trim 186, 334
\(\log 333\)
\(\log 10333\)
logical 25, 334
mathematical 25, 333
matmul 338
\(\max 25,333\)
maxexponent 336
maxloc 145, 341
maxval 339
merge 340
\(\min 25,333\)
minexponent 336
minloc 146, 157, 341
minval 339
modulo 31, 333
nearest 336
nint 333
not 127, 337
null 341
null function 259
numeric 333, 335
pack 140, 340
precision 336
present 103, 332
product 339
radix 336
range 251,336
real 24, 333
reduction 339
repeat 334
reshape 136, 340
rrspacing 336
scale 336
scan 334
selected_int_kind 11, 26, 335
selected_real_kind 11, 26, 96, 335
set_exponent 336
shape 134,339
\(\sin 333\)
sinh 333
size 170, 338, 339
spacing 336
spread 170, 340
sqrt 333
sum 171, 339
\(\tan 333\)
\(\tanh 333\)
tiny 336
transformational 331
transpose 341
trim 186, 334
ubound 338, 339
unpack 140, 340
verify 194, 211, 334
function statement 97

\section*{G}
garbage collection 261
Gaussian elimination 166
generic function 227
generic procedure 227
generic subroutine 227
golden ratio 40

\section*{H}

Hanoi
towers of 116
huge function 336

\section*{I}
i edit descriptor 34
iand function 126, 337
ibclr function 127, 337
ibset function 337
ichar function 181, 334
ieor function 127, 337
if construct 52-63
if statement 52
if-then statement 53
implied do list 136
income tax 58-63
indentation
statement 51
index function 188, 193, 334
indirect recursion 119
initial point of a file 288
initialization
default 223
input
echo 15
interactive 19
prompt 19
terminal 19
input data 15
input file 18
input/output 281-330
advancing 290, 294
character 180
control specification list 293
direct access 287, 301, 303
external 294
formatted 294
formatting 32-37
internal 298
list 294
nonadvancing 288, 290, 296
sequential access \(287,294,301\)
unformatted 301
input/output statement 281
inquire statement 286, 291, 308-313
inquiry function 331, 335, 339
int function 24, 333
integer
big 239
constant 4
division 29
kind 11
model 335, 337
type 4
integral
definite 76, 107-109, 120
intent
argument 94
in 94
in out 94
out 94
interface block 104, 228
internal file 285, 288, 298
intrinsic data type 4-13
intrinsic function 23-26, 331
extending 237
intrinsic operator 145
intrinsic procedure 331
intrinsic statement 79
intrinsic subroutine 23,342
iolength \(=\) specifier 310
ior function 126, 337
iostat \(=\) specifier \(292,293,296,305,307,309\), 314
ishft function 127, 337
ishftc function 127, 337

\section*{K}
keyword
argument 102, 332
pure 98
recursive 114
result 97
statement 21
kind 11-14
complex 12
conversion 24
default 11, 26
integer 11
logical 11
real 5, 11
kind function 25, 335

\section*{L}
lbound function 338, 339
len function 179, 334
len_trim function 186, 334
length 14
assumed 180
character 14, 177, 179
record 284
trimmed 185
letter
frequency 201-205
linear equation 166-172
linked list 263-272
list 129
control specification 293
implied do 136
input/output 294
linked 263-272
list-directed formatting 293, 327-330
local variable 93
log function 333
\(\log 10\) function 333
logical
constant 7
operator 7
type 7
logical function 25,334
logical kind 11
loop
body 69
lower bound 139

\section*{M}
mask argument 338
masked array assignment 141
mathematical function 25,333
matmul function 338
max function 25,333
maxexponent function 336
maxloc function 145, 341
maxval function 339
median 163
memory allocation 136
merge function 340
min function 25, 333
minexponent function 336
minloc function 146, 157, 341
minval function 339
model
integer 335, 337
real 335
module 85-125, 227-252
private 85
public 85
modulo function 31, 333
mvbits subroutine 127, 337

\section*{N}
name 10
array 133
construct 70
length 3, 10
parameter 9
program 3
scope 105
variable 14
name= specifier 309
named constant 9
named= specifier 309
nearest function 336
nextrec= specifier 309
nint function 333
nonadvancing input/output 288, 290, 296
not function 127, 337
null function 341
null pointer 253
null string 177
number= specifier 309
numeric function 333,335
numeric operand 12

\section*{0}
open statement 291, 304-307
opened= specifier 309
operand
numeric 12
operator
arithmetic 6
character 8
comparison 182
extending 235, 246
intrinsic 145
logical 7
precedence 27
relational 6
user defined 236, 248
optional argument 103

\section*{P}
pack function 140, 340
palindrome 205
parameter 9
character 178
kind 11-14
name 9
parameter attribute 178
parent array 138
parenthesis 28
partial record 296
partition sort 158
pendulum calculation 46-50
pointer 253-280
argument 100
assignment 254-258
associated 253
association 341
attribute 134
dangling 261
disassociated 253
null 253
undefined 253
variable 253
position
edit descriptor 35
file 288, 314
position= specifier 305,309
precedence
defined operator 237
operator 27
precision 11, 26
precision function 336
preconnection
file 291
present function 103, 332
primary 26, 208
print statement 15, 35
printing 35, 284
private attribute 219, 240, 265
private module 85
private statement \(87,232,240,265\)
probability 109-112, 172-174
procedure 85-125
argument 92, 104
elemental 230, 331
generic 227
intrinsic 331
pure 98
recursive 112-120
product function 339
program
form 21-22
name 3
program statement 3
prompt
input 19
public attribute 219, 265
public module 85
public statement 87, 232, 265
pure keyword 98
pure procedure 98

\section*{Q}
quadratic equation \(37-46\)
complex roots 43
quick sort 158
quote \(3,8,178\)

\section*{R}
radix function 336
random_int subroutine 109, 172
random_number subroutine 109, 172, 342
random_seed subroutine 342
range 26
range function 251,336
read statement \(17,135,190\)
read= specifier 309
readwrite \(=\) specifier 309
real
constant 5
kind 5, 11
model 335
type 5
real function 24,333
rec= specifier 293, 302, 303
recl= specifier 305, 309
record 282-284
data 282
endifle 284
formatted 282, 315
length 284
partial 296
unformatted 282
recursion 89, 112-120, 210, 248, 264
indirect 119
tail 114
recursive keyword 114
recursive procedure 112-120
recursive sort 159
reduction function 339
relational operator 6
repeat factor 316
repeat function 334
repeated edit descriptor 35
reshape function 136, 340
result keyword 97
result variable 97
return statement 105
rewind statement 284
rewinding 314
roundoff error 32,57
rrspacing function 336

\section*{S}
save attribute 106
scale function 336
scan function 334
scope 105-106
search
binary 152-156
efficiency 156
sequential 148
searching 148-156
section
array 138,140
select case statement 66
selected_int_kind function 11, 26, 335
selected_real_kind function 11, 26, 96, 335
selecting 163-166
separator
comma 3
sequence
collating 180
sequential access input/output 287, 294, 301
sequential search 148
sequential= specifier 309
set_exponent function 336
shape
array 134,140
shape function 134, 339
side effect 98
sin function 333
sinh function 333
size function 170, 338, 339
size= specifier 293
sort
partition 158
quick 158
recursive 159
sorting 89, 157-163, 271-280
spacing function 336
specifier 309
access \(=305\)
action \(=305,309\)
advance \(=293\)
direct= 309
exist \(=309\)
file \(=305,309\)
\(\mathrm{fmt}=293\)
form \(=305,309\)
format 293
formatted \(=309\)
iolength \(=310\)
iostat \(=292,293,296,305,307,309,314\)
name \(=309\)
named \(=309\)
nextrec \(=309\)
number 309
opened \(=309\)
position \(=305,309\)
read \(=309\)
readwrite \(=309\)
rec \(=293,302,303\)
recl=305, 309
sequential \(=309\)
size \(=293\)
status \(=305,307\)
unformatted= 309
unit \(=293,307,309,314\)
unit=unit= specifier 305
write \(=309\)
spread function 170, 340
sqrt function 333
statement
access \(87,232,265\)
allocate 134, 137, 258
assignment 30
backspace 284, 314
block 51
call 90
case 66
case default 66
close 307
contains 91
continued 21
cycle 71
data transfer 293-304
deallocate 138, 259
do 69
else if 52
elsewhere 141
end do 69
end function 97
end if 52
end program 4
end subroutine 90
endfile 284
exit 71
file positioning 314
function 97
if 52
if-then 53
indentation 51
input/output 281
inquire 286, 291, 308-313
intrinsic 79
keyword 21
length 21
open 291, 304-307
pointer assignment 254, 258
print 15, 35
private \(87,232,240,265\)
program 3
public \(87,232,265\)
read \(17,135,190\)
return 105
rewind 284
select case 66
stop 82
subroutine 90
type 9, 219
use 88
status
allocation 138, 258
status= specifier 305, 307
step size 74
stop statement 82
storage
unreferenced 261
storage allocation
dynamic 136
stride 74, 139
string
character 3, 18, 177
null 177
structure 217
component 217, 222
constructor 223
declaration 221
recursive 217, 264
subexpression
common 42
subroutine \(89,89-95\)
built-in 23
cpu_time 174, 342
date_and_time 174, 342
generic 227
intrinsic 23, 342
mvbits 127, 337
random_int 109, 172
random_number 109, 172, 342
random_seed 342
system_clock 174,342
subroutine statement 90
subscript 130-133
triplet 138
vector 139
substring 184
assignment 187
sum function 171, 339
swapping 157
system_clock subroutine 174, 342

\section*{T}
tail recursion 114
tan function 333
tanh function 333
target attribute 254
term 209
terminal point of a file 288
tiny function 336
towers of Hanoi 116
transformational function 331
transpose function 341
tree 273-280
binary 273
trim function 186, 334
trimmed length 185
triplet
subscript 138
type 4-13
character 8
complex 5
declaration 221
definition 219, 221, 239
derived 219
integer 4
intrinsic 4-13
logical 7
operation 4
real 5
statement 9
value 4
type statement 219

\section*{U}
ubound function 338, 339
undefined
pointer 253
underscore 10
unformatted record 282
unformatted= specifier 309
unit 290
unit= specifier 293, 307, 309, 314
unpack function 140, 340
upper bound 139
use statement 88
only 88
user defined operator 236, 248

\section*{V}
variable 14
do 73
local 93
name 14
pointer 253
result 97
vector subscript 139
verify function 194, 211, 334

\section*{W}
where block 143
where construct 141
write \(=\) specifier 309

\section*{A}
a edit descriptor 34, 180
abs function 333
abstract data type 266
access
direct 287, 301, 303
sequential 287, 294, 301
access statement 87, 232, 265
access= 309
access \(=\) specifier 305, 309
acos function 333
action= specifier 305,309
actual argument 99
adaptive trapezoidal integration 121
adjustl function 198, 334
adjustr function 334
advance \(=\) specifier 293
advancing input/output 290, 294
aimag function 333
aint function 333
all function 339
allocatable attribute 134
allocate statement 134, 137, 258
allocation
memory 136
allocation status 138, 258
anint function 333
any function 339
argument
actual 99
agreement 99
dummy 93, 99
intent 94
keyword 102, 332
mask 338
optional 103
passing 99-104
pointer 100
procedure 92, 104
arithmetic 1
arithmetic operator 6
array 129-174
assignment 140
assumed-shape 133
automatic 134
bound 134
character 177
conformable 140
constructor 135
declaration 133
dummy argument 133
dynamic 136
element renumbering 145
extent 134
name 133
parent 138
section 138, 140
shape 134,140
ASCII 180
asin function 333
assignment 30-32
array 140
character 178
extending 232-235, 245
masked array 141
pointer 254-258
substring 187
assignment statement 30
associated
pointer 253
associated function 260, 341
association
pointer 341
assumed length 180
assumed-shape array 133
asterisk format 18
atan function 333
atan2 function 333
attribute
allocatable 134
dimension 133
parameter 178
pointer 134, 253
private 219, 240, 265
public 219, 265
save 106
target 254
automatic array 134
automatic character 180
average 17

\section*{B}
backspace statement 284, 314
backspacing 314
big integer 239
binary search 152-156
binary tree 273
bit function 125, 337
bit_size function 337
blank character 21
block
interface 228
statement 51
where 143
body
loop 69
bound
array 134
lower 139
upper 139
bset function 126
btest function 126, 337
built-in function 23-26
built-in subroutine 23

\section*{C}
call statement 90
case construct 65-69
flowchart 66
case default statement 66
case statement 66
range 66
ceiling function 333
char function 181, 334
character
array 177
assignment 178
automatic 180
blank 21
comparison 8, 180
concatenation 8,189
constant 3, 8, 178
declaration 177
delimiter 3,8
dummy argment 180
exlamation 22
input/output 180
length \(14,177,179\)
operator 8
parameter 178
set 22
special 3, 22
string \(3,18,177\)
type 8
character function 334
close 307
close statement 307
cmplx function 24,333
collating sequence 180
comma
separator 3
comment 22
common subexpression 42
comparison
character 180
operator 182
complex
comparison 6
constant 5
kind 12
type 5
component
structure 217, 222
concatenation 8, 189
condition
end-of-file 292
end-of-record 292
error 292
conditional execution 51
conformable array 140
conjg function 333
connection
file 304
constant
character \(3,8,178\)
complex 5
integer 4
logical 7
named 9
real 5
construct
case 65-69
control 51-82
do 69-82
forall 143
if 52-63
name 70
where 141
constructor
array 135
structure 223
contains statement 91
continued statement 21
control construct 51-82
control edit descriptor 316
control specification list
input/output 293
conversion
kind 24
conversion function 24
cos function 333
cosh function 333
count function 173, 339
cpu_time subroutine 174,342
cshift function 148, 341
cycle statement 71

\section*{D}
dangling pointer 261
data
input 15
data edit descriptor 316
data record 282
data transfer statement 293-304
data type 4-13
abstract 266
intrinsic 4-13
date_and_time subroutine 174, 342
deallocate statement 138, 259
declaration
array 133
character 177
structure 221
type 221
default format 18, 33
default formatting 293, 326-329
default initialization 223
default kind 11, 26
defined operator
precedence 237
definite integral 107-109, 120
definition
type 221, 239
delimiter
character 3,8
derived type 219
digits function 336
dimension attribute 133
direct access input/output 287, 301, 303
direct= specifier 309
disassociated
pointer 253
discriminant 43
division
integer 29
do construct 69-82
flowchart 69
interation count 74
do statement 69
do variable 73
dot_product function 339
dummy argument 93, 99
array 133
character 180
dynamic array 136
dynamic storage allocation 136

\section*{E}
edit descriptor 33, 315, 316-326
/ 325
: 325
a \(34,180,323\)
character 323
colon 325
complex 322
control 316
data 316
es \(34,319,321\)
f \(34,319,321\)
i \(34,319,320\)
integer 320
1323
logical 323
numeric 319
position 35, 324
ps 320
real 321
repeated 35
s 326
scientific 321
sign 326
slash 325
sp 326
ss 326
t 324
tab 324
tl 324
tr 324
elemental function 331
elemental procedure 230, 331
else if statement 52
elsewhere statement 141
end do statement 69
end function statement 97
end if statement 52
end program statement 4
end subroutine statement 90
endfile record 284
endfile statement 284
end-of-file condition 292
end-of-record condition 292
eoshift function 148, 341
epsilon function 336
equation
linear 166-172
quadratic \(37-46\)
error
condition 292
roundoff 32
es edit descriptor 34
escape velocity 53-57
execution
block 53
conditional 51
exist= specifier 309
exit statement 71
exlamation character 22
exp function 333
explicit formatting 293, 315
exponent function 336
exponential notation 5
expression 26-29, 209
alternative form 29
equivalent 28
evaluation 28, 208-215
interpretation 27
extending assignment 232-235, 245
extending intrinsic function 237
extending operator 235,246
extent
array 134
external file 285, 294

\section*{F}
f edit descriptor 34
factorial function 113
Fibonacci sequence 40, 115
file 282, 284-293
access 287
connection 304
existence 286
external 285, 294
input 18
internal 285, 288, 298
position 288,314
preconnection 291
file positioning statement 314
file \(=\) specifier 305, 309
floor function 333
flowchart
case construct 66
do construct 69
fmt= specifier 293
forall construct 143
form
program 21-22
form= specifier 305, 309
format 2, 34
asterisk 18
default 2, 18, 33, 37
specifier 293
format specification \(315,316,318\)
formatted input/output 294
formatted record 282, 315
formatted= specifier 309
formatting 315-329
default 293, 326-329
explicit 293, 315
input/output 32-37
list-directed 2, 293, 326-329
fraction function 336
function 89, 95-98
abs 333
acos 333
adjustl 198, 334
adjustr 334
aimag 333
aint 333
all 339
anint 333
any 339
array 338
asign 333
associated 260, 341
atan 333
atan2 333
big_size 337
bit 125, 337
bset 126
btest 126, 337
built-in 23-26
ceiling 333
char 181, 334
character 334
cmplx 24, 333
conjg 333
conversion 24
\(\cos 333\)
cosh 333
count 173, 339
cshift 148, 341
digits 336
dot_product 339
elemental 331
eoshift 148, 341
epsilon 336
exp 333
exponent 336
factorial 113
floor 333
fraction 336
generic 227
huge 336
iand 126, 337
ibclr 127, 337
ibset 337
ichar 181, 334
ieor 127, 337
index 188, 193, 334
inquiry \(331,335,339\)
int 24, 333
intrinsic 23-26, 331
ior 126,337
ishft 127, 337
ishftc 127, 337
kind 25, 335
lbound 338, 339
len 179,334
len_trim 186, 334
\(\log 333\)
\(\log 10333\)
logical 25, 334
mathematical 25, 333
matmul 338
\(\max 25,333\)
maxexponent 336
maxloc 145, 341
maxval 339
merge 340
\(\min 25,333\)
minexponent 336
minloc 146, 157, 341
minval 339
modulo 31, 333
nearest 336
nint 333
not 127, 337
null 341
null function 259
numeric 333, 335
pack 140, 340
precision 336
present 103, 332
product 339
radix 336
range 251, 336
real 24, 333
reduction 339
repeat 334
reshape 136, 340
rrspacing 336
scale 336
scan 334
selected_int_kind 11, 26, 335
selected_real_kind 11, 26, 96, 335
set_exponent 336
shape 134,339
\(\sin 333\)
sinh 333
size \(170,338,339\)
spacing 336
spread 170,340
sqrt 333
sum 171, 339
\(\tan 333\)
tanh 333
tiny 336
transformational 331
transpose 341
trim 186, 334
ubound 338, 339
unpack 140, 340
verify 194, 211, 334
function statement 97

\section*{G}
garbage collection 261
Gaussian elimination 166
generic function 227
generic procedure 227
generic subroutine 227
golden ratio 40

\section*{H}

Hanoi
towers of 116
huge function 336

\section*{I}
i edit descriptor 34
iand function 126, 337
ibclr function 127, 337
ibset function 337
ichar function 181, 334
ieor function 127, 337
if construct 52-63
if statement 52
if-then statement 53
implied do list 136
income tax 58-63
indentation
statement 51
index function 188, 193, 334
indirect recursion 119
initial point of a file 288
initialization
default 223
input
echo 15
interactive 19
prompt 19
terminal 19
input data 15
input file 18
input/output 281-329
advancing 290, 294
character 180
control specification list 293
direct access 287, 301, 303
external 294
formatted 294
formatting 32-37
internal 298
list 294
nonadvancing 288, 290, 296
sequential access \(287,294,301\)
unformatted 301
input/output statement 281
inquire statement 286, 291, 308-313
inquiry function \(331,335,339\)
int function 24, 333
integer
big 239
constant 4
division 29
kind 11
model 335, 337
type 4
integral
definite 76, 107-109, 120
intent
argument 94
in 94
in out 94
out 94
interface block 104, 228
internal file 285, 288, 298
intrinsic data type 4-13
intrinsic function 23-26, 331
extending 237
intrinsic operator 145
intrinsic procedure 331
intrinsic statement 79
intrinsic subroutine 23, 342
iolength= specifier 310
ior function 126, 337
iostat \(=\) specifier \(292,293,296,305,307,309\), 314
ishft function 127, 337
ishftc function 127, 337

\section*{K}
keyword
argument 102, 332
pure 98
recursive 114
result 97
statement 21
kind 11-14
complex 12
conversion 24
default 11, 26
integer 11
logical 11
real 5, 11
kind function 25, 335

\section*{L}
lbound function 338, 339
len function 179, 334
len_trim function 186, 334
length 14
assumed 180
character 14, 177, 179
record 284
trimmed 185
letter
frequency 201-205
linear equation 166-172
linked list 263-272
list 129
control specification 293
implied do 136
input/output 294
linked 263-272
list-directed formatting 293, 326-329
local variable 93
log function 333
\(\log 10\) function 333
logical
constant 7
operator 7
type 7
logical function 25, 334
logical kind 11
loop
body 69
lower bound 139

\section*{M}
mask argument 338
masked array assignment 141
mathematical function 25,333
matmul function 338
max function 25,333
maxexponent function 336
maxloc function 145,341
maxval function 339
median 163
memory allocation 136
merge function 340
min function 25,333
minexponent function 336
minloc function \(146,157,341\)
minval function 339
model
integer 335, 337
real 335
module 85-125, 227-252
private 85
public 85
modulo function 31, 333
mvbits subroutine 127, 337

\section*{N}
name 10
array 133
construct 70
length 3, 10
parameter 9
program 3
scope 105
variable 14
name= specifier 309
named constant 9
named= specifier 309
nearest function 336
nextrec= specifier 309
nint function 333
nonadvancing input/output 288, 290, 296
not function 127, 337
null function 341
null pointer 253
null string 177
number= specifier 309
numeric function 333, 335
numeric operand 12

\section*{0}
open statement 291, 304-307
opened= specifier 309
operand
numeric 12
operator
arithmetic 6
character 8
comparison 182
extending 235,246
intrinsic 145
logical 7
precedence 27
relational 6
user defined 236, 248
optional argument 103

\section*{P}
pack function 140, 340
palindrome 205
parameter 9
character 178
kind 11-14
name 9
parameter attribute 178
parent array 138
parenthesis 28
partial record 296
partition sort 158
pendulum calculation 46-50
pointer 253-280
argument 100
assignment 254-258
associated 253
association 341
attribute 134
dangling 261
disassociated 253
null 253
undefined 253
variable 253
position
edit descriptor 35
file 288, 314
position= specifier 305, 309
precedence
defined operator 237
operator 27
precision 11, 26
precision function 336
preconnection
file 291
present function 103, 332
primary 26, 208
print statement 15, 35
printing 35, 284
private attribute \(219,240,265\)
private module 85
private statement \(87,232,240,265\)
probability 109-112, 172-174
procedure 85-125
argument 92, 104
elemental 230, 331
generic 227
intrinsic 331
pure 98
recursive 112-120
product function 339
program
form 21-22
name 3
program statement 3
prompt
input 19
public attribute 219, 265
public module 85
public statement 87, 232, 265
pure keyword 98
pure procedure 98

\section*{Q}
quadratic equation \(37-46\)
complex roots 43
quick sort 158
quote \(3,8,178\)

\section*{R}
radix function 336
random_int subroutine 109, 172
random_number subroutine 109, 172, 342
random_seed subroutine 342
range 26
range function 251, 336
read statement 17, 135, 190
read= specifier 309
readwrite \(=\) specifier 309
real
constant 5
kind 5, 11
model 335
type 5
real function 24,333
rec= specifier 293, 302, 303
recl= specifier 305,309
record 282-284
data 282
endifle 284
formatted 282, 315
length 284
partial 296
unformatted 282
recursion 89, 112-120, 210, 248, 264
indirect 119
tail 114
recursive keyword 114
recursive procedure 112-120
recursive sort 159
reduction function 339
relational operator 6
repeat factor 316
repeat function 334
repeated edit descriptor 35
reshape function 136, 340
result keyword 97
result variable 97
return statement 105
rewind statement 284
rewinding 314
roundoff error 32, 57
rrspacing function 336

\section*{S}
save attribute 106
scale function 336
scan function 334
scope 105-106
search
binary 152-156
efficiency 156
sequential 148
searching 148-156
section
array 138, 140
select case statement 66
selected_int_kind function 11, 26, 335
selected_real_kind function 11, 26, 96, 335
selecting 163-166
separator
comma 3
sequence
collating 180
sequential access input/output 287, 294, 301
sequential search 148
sequential \(=\) specifier 309
set_exponent function 336
shape
array 134,140
shape function 134, 339
side effect 98
sin function 333
sinh function 333
size function 170, 338, 339
size \(=\) specifier 293
sort
partition 158
quick 158
recursive 159
sorting 89, 157-163, 271-280
spacing function 336
specifier 309
access \(=305\)
action \(=305,309\)
advance \(=293\)
direct \(=309\)
exist \(=309\)
file \(=305,309\)
\(\mathrm{fmt}=293\)
form=305, 309
format 293
formatted \(=309\)
iolength \(=310\)
iostat \(=292,293,296,305,307,309,314\)
name \(=309\)
named \(=309\)
nextrec \(=309\)
number 309
opened \(=309\)
position \(=305,309\)
read \(=309\)
readwrite \(=309\)
rec \(=293,302,303\)
recl \(=305,309\)
sequential \(=309\)
size \(=293\)
status \(=305,307\)
unformatted= 309
unit \(=293,307,309,314\)
unit=unit= specifier 305
write \(=309\)
spread function 170, 340
sqrt function 333
statement
access \(87,232,265\)
allocate 134, 137, 258
assignment 30
backspace 284, 314
block 51
call 90
case 66
case default 66
close 307
contains 91
continued 21
cycle 71
data transfer 293-304
deallocate 138, 259
do 69
else if 52
elsewhere 141
end do 69
end function 97
end if 52
end program 4
end subroutine 90
endfile 284
exit 71
file positioning 314
function 97
if 52
if-then 53
indentation 51
input/output 281
inquire 286, 291, 308-313
intrinsic 79
keyword 21
length 21
open 291, 304-307
pointer assignment 254, 258
print 15, 35
private \(87,232,240,265\)
program 3
public \(87,232,265\)
read \(17,135,190\)
return 105
rewind 284
select case 66
stop 82
subroutine 90
type 9, 219
use 88
status
allocation 138, 258
status= specifier 305,307
step size 74
stop statement 82
storage
unreferenced 261
storage allocation
dynamic 136
stride 74, 139
string
character \(3,18,177\)
null 177
structure 217
component 217, 222
constructor 223
declaration 221
recursive 217, 264
subexpression
common 42
subroutine 89, 89-95
built-in 23
cpu_time 174, 342
date_and_time 174, 342
generic 227
intrinsic 23, 342
mvbits 127, 337
random_int 109, 172
random_number 109, 172, 342
random_seed 342
system_clock 174,342
subroutine statement 90
subscript 130-133
triplet 138
vector 139
substring 184
assignment 187
sum function 171, 339
swapping 157
system_clock subroutine 174, 342

\section*{T}
tail recursion 114
tan function 333
tanh function 333
target attribute 254
term 209
terminal point of a file 288
tiny function 336
towers of Hanoi 116
transformational function 331
transpose function 341
tree 273-280
binary 273
trim function 186, 334
trimmed length 185
triplet
subscript 138
type 4-13
character 8
complex 5
declaration 221
definition 219, 221, 239
derived 219
integer 4
intrinsic 4-13
logical 7
operation 4
real 5
statement 9
value 4
type statement 219

\section*{U}
ubound function 338, 339
undefined
pointer 253
underscore 10
unformatted record 282
unformatted= specifier 309
unit 290
unit \(=\) specifier 293, 307, 309, 314
unpack function 140, 340
upper bound 139
use statement 88
only 88
user defined operator 236, 248

\section*{V}
variable 14
do 73
local 93
name 14
pointer 253
result 97
vector subscript 139
verify function 194, 211, 334

\section*{W}
where block 143
where construct 141
write= specifier 309```

[^0]: * An asterisk denotes the comparison entry at each stage, which is the last entry of the first half of the segment still under active consideration.

