
1

Neglected FORTRAN
Better use of f90 in scientific research

Drew McCormack

2

TABLE OF CONTENTS
1. Course Outline 4

1.1 Day 1: Basic f90 Constructs 4
1.2 Day 2: Abstract Data Types (ADTs) 4
1.3 Day 3: Parallelism 4

2. Is f90 an extension of f77? 4
2.1 A language unto itself 4

3. Form 5
3.1 Fixed Form 5
3.2 Free Form 5
3.3 Indentation 6

4. Variables 6
4.1 Implicit none 6
4.2 Variable names 7
4.3 Variable declarations 7

5. Arrays 7
5.1 Array Sections 7
5.2 Allocatable Arrays 8
5.3 Array Pointers 8
5.4 Array Arithmetic 9
5.5 Assumed-Shape Arrays 9
5.6 Assumed-Size Arrays 9
5.7 Intrinsic Functions 10

6. Interfaces 10
6.1 Implicit Interface 10
6.2 Explicit Interface 11
6.3 Interface Statement 11
6.4 Overloading procedure names 12
6.5 Overloading built-in operators 13
6.6 Passing functions as arguments 13
6.7 Passing array sections Error! Bookmark not defined.

7. Modules 13
7.1 Uses of modules 13
7.2 Modules versus Common Blocks 13

7.3 As ‘container’ for procedures 14
8. User-defined Types 14

8.1 Going beyond integer, real and complex 14
9. Intent 15

9.1 Protecting data 15
10. Data hiding 15

10.1 Public and Private 15
11. Control 16

11.1 Select Case 16
12. I/O 16

12.1 Inline formats 16
12.2 Creating a series of files 16

13. Day 1 Exercises 17
13.1 Arrays 17
13.2 Modules and stuff 17

14. Modular Programming 18
14.1 Why bother writing ‘good’ code? 18
14.2 Procedural approach 18
14.3 Abstract Data Type (ADT) 18
14.4 Object-Oriented Programming 19
14.5 Interface and Implementation 19
14.6 Connascence 20

15. ADTs in f90 20
15.1 Module as Unit of Encapsulation 20
15.2 Data 20
15.3 Methods 20
15.4 Instantiating an ADT 21
15.5 Constructor 21
15.6 Destructor 22
15.7 Getters and setters 23

16. Relationships between ADTs 23
16.1 Composition: ‘From little things, big things grow’ 23
16.2 Association 24

17. Design 25

3

17.1 Identifying ADTs 25
17.2 Identifying ADT methods 25

18. An Advanced Example 26
18.1 The ‘MatrixTransform’ ADT 26

19. Day 2 Exercises 38
19.1 A group project 38
19.2 Linked list 39
19.3 Dynamic array 39

20. Parallelization 41
20.1 Philosophy 41
20.2 Two schemes 41

21. Preliminaries of MPI 41
21.1 Introduction 41
21.2 Advantages 41
21.3 Disadvantages 41
21.4 Distributed-Memory architecture 41
21.5 Writing MPI programs 41
21.6 Header file 42
21.7 Initialization and finalization 42
21.8 Communicators 42
21.9 Processor identity 42

22. Point-to-Point Communication 43
22.1 What is Point-to-Point Communication? 43
22.2 Sending data 43
22.3 Receiving data 44

23. Collective Communication 44
23.1 What is collective communication? 44
23.2 Broadcast 44
23.3 Scatter 45
23.4 Gather 45
23.5 Send and receive 45
23.6 Reduction 45
23.7 All-to-all 46
23.8 Variations 46

24. Synchronization 46
24.1 Blocking Calls 46
24.2 Non-Blocking Calls 47

25. OpenMP Preliminaries 48
25.1 Advantages 48
25.2 Disadvantages 48
25.3 Shared-Memory Architecture 48
25.4 Threads 48

26. Work Sharing Constructs 48
26.1 Parallel Regions 48
26.2 Do loops 49
26.3 Parallelizing a single loop 49
26.4 Avoiding synchronization 49
26.5 Scheduling iterations 50
26.6 What is a race condition? 50
26.7 Private and Shared 51
26.8 Allowing variables to retain their values 52
26.9 Using locks 52
26.10 Reduction 53
26.11 Calling procedures from parallel regions 54
26.12 Serial code in parallel sections 54
26.13 OpenMP routines 55
26.14 More information on OpenMP 55

27. Day 3 Exercises 55
27.1 Array redistribution in MPI 55
27.2 Reduction in MPI 56
27.3 Do Loops with OpenMP 56
27.4 Avoiding race conditions 56

28. Implementation Specifics 57
28.1 Make files 57
28.2 IBM SP2 Considerations 57
28.3 SGI Origin Considerations 58

4

1. Course Outline

1.1 Day 1: Basic f90 Constructs

This is the stuff you would find in a book on f90.

We will emphasize the practical aspects, i.e., how you can use the
stuff in the books in a useful way.

What is worth using, and what isn’t?

What are the reasons for certain constructs?

1.2 Day 2: Abstract Data Types (ADTs)

This is about high-level modular programming.

It is really how f90 was intended to be used.

We will take what we learned on day 1, and apply it in all its glory.

We will also undertake a group project to hopefully show the strengths
of the modular programming model.

1.3 Day 3: Parallelism

A crash course in Message Passing Interface (MPI) and OpenMP.

The advantages and disadvantages of each.

The most useful constructs in each.

2. Is f90 an extension of f77?

2.1 A language unto itself

f90 is an abused language. People take little bits of it to improve their
f77 codes, but rarely use it how it was intended.

f90 is not just allocatable arrays; it is a modern, powerful language,

which when properly used, bears little resemblance to f77.

f90 builds on the strengths of f77 in particular, high performance for
numerical code by adding tools garnered from other languages to
simplify programming, and make programs more structured.

It also adds powerful array facilities unmatched by any other language.

Figure 1 Examples of f77 and f90. Any similarity?

An example of f77
c if(arg.gt.1.) arg=1.
c if(arg.lt.-1.) arg=-1.
 a=acos(arg)
c write(6,100) r4,r5,r6,s2,s3,arg,a
 arg=(r1**2+r5**2-r3**2)/(2.*r1*r5)
 if(arg.gt.1.) arg=1.
 if(arg.lt.-1.) arg=-1.
 b=acos(arg)
 arg=(r1**2+r4**2-r2**2)/(2.*r1*r4)
 if(arg.gt.1.) arg=1.
 if(arg.lt.-1.) arg=-1.
 g=acos(arg)
 s2=exp(-gam*(r6i-abs(r2-r3)))
 s3=exp(gam*(r6i-r2-r3))
 r6=r6i+epp*s2-epp*s3
 arg=(r2**2+r3**2-r6**2)/(2.*r2*r3)
c if(arg.gt.1.) arg=1.
c if(arg.lt.-1.) arg=-1.
 d=acos(arg)
c write(6,100) r2,r3,r6,s2,s3,arg,d
 100 format(1x,7e12.4)
 a0=pi*(1.-0.294*exp(-0.6*(r2-1.951)**2)*exp(-0.6*(r1-4.230)**2))
 &*(1.-0.294*exp(-0.6*(r3-1.951)**2)*exp(-0.6*(r1-4.230)**2))
 r6a=sqrt(r4**2+r5**2+2.*r4*r5*cos(a-a0))
 sinaa0=sin(a-a0)
 sina0=sin(a0)
 sina=sin(a)
 sind=sin(d)

An example of f90
!--
! Description of CoherentStateFunc here.
!--

5

module CoherentStateFuncClass
implicit none

!-------------------------
! Description of CoherentStateFunc variables.
!-------------------------
type CoherentStateFunc
 private
 ! Variable definitions here
end type

!-------------------------
! Interface statements here.
!-------------------------
interface new
 module procedure newCoherentState
end interface

!--
! CoherentStateFunc methods.
!--
contains

 !-------------------------
 ! Constructor
 !-------------------------
 subroutine newCoherentState(this,coordCenter,lowEnergy,highEnergy, &
 movingPositiveDirection)
 implicit none
 type (CoherentStateFunc) :: this
 real,intent(in) :: coordCenter
 real,intent(in) :: lowEnergy,highEnergy
 logical,intent(in) :: movingPositiveDirection

 write(6,*)'constructing coherent state func'

 end subroutine newCoherentState

end module

3. Form

3.1 Fixed Form

The most obvious change in f90 is form. Though this is probably the
least important change, it can make code easier to read, and frees the
programmer from worrying about column counts. This can, in some
cases, even prevent bugs.

Figure 2 Two very similar pieces of f77. Where could the bug be?

 implicit real*8 (a-h,o-z)
 a = b + c * (ax + bx)**2 – ax*bx + (a–c)*a+bx
 implicit real*8 (a-h,o-z)
 a = b + c * (ax + bx)**2 – ax*bx + (a–c)*a + bx

3.2 Free Form

Generally, free form is simpler and neater. It better facilitates
indentation.

In free form, you use comments beginning with an exclamation mark
(i.e. “!”). They can begin anywhere on the line. You can also add them
at the end of a line.

The free form continuation character is “&”. This is put at the end of
the continuing line, rather than at the beginning of the next.

Figure 3Comparison of free- and fixed form

C
C we are doing a do loop here, but this
C comment is not nicely indented, and the
C continuation character is also out of whack.
C
 do i = 1,n
 a = b + c(i) * (ax + bx)**2 +

6

 $ (a–c(i))*a+bx + ax**3 – ax*bx
 enddo
 !
 ! This comment follows the indentation
 ! So does the continuation character
 !
 do i = 1,n
 a = b + c(i) * (ax + bx)**2 + &
 (a–c(i))*a+bx + &
 ax**3 – ax*bx ! you can also do
 ! this
 enddo

3.3 Indentation

Indentation helps make code easier to read.

There is nothing in f77 which prevents indentation, though it is neater
with free form.

There are no hard and fast rules about indentation, but indenting by
between 2-5 spaces, or with a tab, is good practice.

Figure 4 Indentation makes things more readable. Notice that spacing also
helps.

! Starting loop
do i = 1,n
a = b + c(i) * (ax + bx)**2 + (a–c(i))*a+bx + &
ax**3 – ax*bx
if (c(i) < 0) then
c(i) = 1
else
c(i) = -1
! extra test
if (a == b) then
a = b + 1
endif

endif
enddo
!
! Starting loop
!
do i = 1,n

 a = b + c(i) * (ax + bx)**2 + (a–c(i))*a+bx + &
 ax**3 – ax*bx

 if (c(i) < 0) then
 c(i) = 1
 else
 c(i) = -1
 !
 ! extra test
 !
 if (a == b) then
 a = b + 1
 endif
 endif

enddo

4. Variables

4.1 Implicit none

This is actually not a f90 construct: it’s always been there. It’s time to
start using it.

DO NOT use implicit typing! Use only ‘implicit none’, and define all
variables.

7

Figure 5 Reasons not to use implicit typing

You are forced to use a particular form of variable name. For example, ‘point’ is
more to the point than ‘ipoint’.
If you misspell a variable, you will generally not get a warning: you will have
made a brand new variable.
If you use fixed format, and go past column 72, you will also create a new
variable, and may not get a warning.
Using implicit typing doesn’t fit well with modular programming, where you have
user-defined types.
Someone reading your code can see exactly what everything is in the procedure
header if you use explicit typing.
Allows the compiler to find your bugs!

Figure 6 This example, demonstrating why you should use implicit none, really
happened. What is wrong with this code? Finding the answer cost the
programmer days! Using implicit none, it would have been detected
immediately.

implicit real*8(a-h,o-z)
...
complex*16 array(numElements)
...
call MPI_SEND(array,numElements,MPI_COMPLEX16, &
 procToSendTo,tag,MPI_COMM_WORLD,error)

4.2 Variable names

Try to avoid using meaningless, overly meager variable names. How
long you make them is personal choice, but make them so that
anyone reading the code knows what variables are.

Two popular naming conventions are underscored and mixed-case.

Figure 7 Examples of underscored and mixed-case variable names

Underscored variables Mixed-case variable names
wave_function waveFunction
point_num pointNum
num_points numPoints
a_long_variable_name aLongVariableName
basis_func_num basisFuncNum

4.3 Variable declarations

In f90 you can define variables like in f77, but I prefer using the “::”
operator, because it makes things a bit easier to read.

Figure 8 One way to declare variables

real,allocatable :: array(:)
real,allocatable,dimension(:) :: array2, array3
integer,intent(in) :: num
type(FourierGrid),pointer :: fourierGrid
type(WaveFunction) :: waveFunc

5. Arrays

5.1 Array Sections

f90 has very powerful array facilities

You can make any array section you can dream of, but be mindful that
not everything will be fast.

The “:” operator stipulates ranges in f90 arrays.

Figure 9 Examples and descriptions of array sections

Array Section Description
a(:) ‘a’ is a rank one array, and we are using all of it.

8

a(2:) Now we only have from element 2 up.
a(:5) Now we only have up to element 5.
a(2:5) Elements 2 to 5.
a(2:6:2) Elements 2 to 6 in steps of 2. i.e. elements 2, 4, 6
b(2,:) ‘b’ is a rank 2 array, but this is only rank 1. We are

taking all the elements in the second dimension of ‘b’
such that the first dimension has index 2.

b(1:4,2:2) A rank 2 array comprised the matrix formed by
allowing the first index to range from 1 to 4, and the
second from 2 to 2.

5.2 Allocatable Arrays

Allocatable arrays are an important addition to f90, and one that most
people know about.

Allocatable arrays allow the sizing of an array to be postponed until it
is known.

Figure 10 Allocatable arrays

Declaration real, allocatable :: a(:,:)
real, dimension(:,:), allocatable :: b

Allocation allocate(a(5,5), b(4,10))
allocate(a(2:5,10:2:-2), b(0:jmax))

Deallocation deallocate(a,b)
Testing status if (allocated(a)) then

...

5.3 Array Pointers

Pointers have been slower to catch on with the FORTRAN community

Pointers can be used in two basic ways: they can point to something
already in existence, or they can be made to point to something new

The pointer assignment operator is “=>”. So “a=>b” says “point a at b”.

A pointer can point to anything the same type as itself, as long as that
thing is a pointer itself, or is declared to have ‘target’ status.

Array-typed pointers can point to sub-arrays or full-arrays

When a pointer is used to point to something new, the ‘allocate’
statement is used on it in the same way as if it were an allocatable
array

When a pointer points to something, it can be used as if it were a
normal variable. Remember though, if you change the pointer variable,
you are also changing the thing it points to!

Figure 11 Use of pointers

Declaration real,pointer :: a(:,:)
integer,pointer :: b
type(WaveFunc),pointer :: waveFunc

Pointing at
existing object

real,pointer :: a(:,:)
real :: b(5,10)
a => b(2:4,3:7)

Using allocate
and deallocate

real,pointer :: a(:,:)
real,pointer :: b

allocate(a(2:4,3:7))
deallocate(a)

! doesn’t have to be an array
allocate(b)
b = 5
deallocate(b)

Making pointer
point to
nothing

nullify(a)

9

5.4 Array Arithmetic

Arrays can be added, subtracted, multiplied etc just like numbers. In
the case of an array, the arithmetic occurs in an element-wise manner.
The position of the element is what counts, not the index number.

Scalars can also be included in array arithmetic. When a scalar is
used, it applies to all elements of the array expression.

Figure 12 Examples of array arithmetic

Code Description
a = b Assign all elements of array a to the

corresponding elements of b.
a = b * c Multiply each element in b by the

corresponding element in c, and put the
result in the corresponding element in
a.

real :: a(10), b(10,10)
real :: d(10)
a = a + b(2,:) / d

Here we take the second dimension of
b, corresponding to the first index equal
to 2, and use that in the expression.
Notice the arrays are still conforming,
i.e., they are all rank one.

waveFunc = waveFunc**2 Square each element of waveFunc, and
put the result back in waveFunc.

5.5 Assumed-Shape Arrays

If the interface between a subroutine and it’s caller is explicit (see
Section 6), a passed array can be assumed-shape.

This means that the array inside the procedure gets it’s dimensions
from the array that is passed to the procedure.

You can query the length of any dimension using the ‘size’ intrinsic
function.

Be careful: The lower bound of any assumed-shape array defaults to

one, irrespective of the bounds of the array passed in. Only the size of
each dimension is passed. You can, however, set a lower or upper
bound manually in the called procedure.

Figure 13 Example of an assumed-shape array

!
! in main program
!
real :: a(-1:1)
call sub(a)
call anotherSub(a)

...

!
! subroutine with explicit interface to main
!
subroutine sub(aInSub)
real :: aInSub(:) ! indexes are 1,2,3

...

subroutine anotherSub(aInSub)
real :: aInSub(-1:) ! indexes are –1,0,1

5.6 Assumed-Size Arrays

Sometimes it is desirable to be able to change the rank of an array.
This can be done using assumed-size arrays.

If the rank is n, you set the size of the first n-1 dimensions to whatever
you want, and the last dimension gets an asterix.

10

You cannot get the size of an assumed-size array with the ‘size’
function. You must pass the size of the array in as a variable, or find
another way to do it.

An explicit interface is NOT required to use an assumed-size array,
though you can of course have one.

Figure 14 Example of an assumed-size array

!
! in main program
!
real :: a(10,10,10) ! here a is rank 3
integer :: n = size(a)
call sub(a,n)

...

subroutine sub(aInSub,sizeOfA)
real :: aInSub(2:4,5,5,5,*) ! now we have rank 5
integer :: sizeOfA

...

5.7 Intrinsic Functions

f90 has many built-in functions which interact nicely with f90 arrays.

These functions can save you a lot of typing, and make for very
readable, and less buggy code.

Take the case of doing a matrix-vector multiplication. The f77 way
would be to write a double do loop, and introduce a variable to
accumulate the results for each column.

In f90 this can be written:
vector = matmul(matrix, vector)

It is nearly impossible to make a mistake doing this without the
compiler finding it. It is very easy to make a mistake with the do loops.

Be careful though: I don’t recommend using the built-in functions in
performance critical pieces of code, because they may not be that
fast. If you need to do something only a few times, though, they are
invaluable.

Figure 15 Some useful intrinsic functions, and how they can be used

matmul array(4,:) = matmul(matrix, array2d(4,:))
transpose array(:) = matmul(transpose(matrix), &

 matmul(matrix, array))
sum real x

x = sum(array(:,:,:))
x = sum(array * array)

dot_product normWaveFunc = dot_product(waveFunc,waveFunc)
conjg normWaveFunc = sum(conjg(waveFunc) * &

 waveFunc)
abs normWaveFunc = sum(abs(waveFunc)**2)
size sizeArray = size(a)

sizeSecondDimOnly = size(a, 2)
lbound lowerBoundSecondDim = lbound(a,2)
ubound upperBoundFirstDim = ubound(a,1)

6. Interfaces

6.1 Implicit Interface

In f77, all interfaces are implicit. What this basically means is that each
program unit (e.g. procedure) does not know anything about the other
units in the program.

For example, I can pass a real array to a subroutine, and inside the
subroutine I can pretend it’s a complex array, and the compiler will not
complain. The subroutine doesn’t know anything about what it is being

11

passed to it, other than its memory address.

Unless you deliberately make the interface explicit, in f90 the default is
also to have an implicit interface.

I recommend using implicit interfaces as little as possible. Your motto
should be “Give the compiler as much information as possible, and it
will do the work for you”.

6.2 Explicit Interface

In f90 you have the option of making an interface explicit. This can be
achieved in one of two ways.

The obvious way is to use an ‘interface’ statement. This is placed in
the ‘caller’ (i.e. the unit calling the subroutine) and tells the caller
details about what the ‘callee’ expects.

The second, and in my view easier, way is to put all of your
subroutines in modules. Then when you need to call one of the
subroutines, you ‘use’ the module in the caller. This automatically
makes the interface explicit.

6.3 Interface Statement

Interface statements actually have three uses. The first is making an
explicit interface, as just explained.

The second is to facilitate the passing of procedural arguments to
procedures (i.e. functions and subroutines). In this case the interface
statement tells the callee what the interface of the procedure being
passed in is.

The third is to allow procedure name overloading. In this case, an
interface statement makes it possible to use the same name to call
two different procedures. In order for this to work, the arguments of the
two or more overloaded procedures must be different, so the compiler
can determine which one should be called.

Figure 16 Uses of the interface statement

Forming an
explicit interface

!
! in caller
!
real x
integer y(10)

interface
 subroutine sub(a,b)
 real :: a
 integer :: b(:)
 end subroutine sub
end interface

call sub(x,y)

...

subroutine sub(a,b)
real :: a
integer :: b(:)
! body of sub here

Passing a
procedure as an
argument

!
! function to pass in
!
real function PES(x)
real x
PES = x
end function PES

...

!
! in caller
!

12

call receivesFuncArgument(PES)

...

!
! callee
!
subroutine receivesFuncArgument(func)
real val
interface
 real function func(x)
 real x
 end function func
end interface
val = func(1.0) ! this calls PES
end subroutine

6.4 Overloading procedure names

Something which is used a lot in modular programming is procedure
overloading.

Basically, the same name is given to two or more functions or
subroutines. The program distinguishes between them based on the
signature of the call made.

For example, I could overload two subroutines to be called ‘setZCut’,
with one taking an argument of type ‘real’ and the other taking an
argument of type ‘integer’. If I call ‘setZCut’ passing an integer, then
the subroutine taking an integer is called.

Obviously, you cannot overload two routines with exactly the same
signature.

Figure 17 Overloading procedures

Outside a module !

! caller
!
real realNum = 2.8
integer i = 2
interface setZCut
 subroutine setZCutVersion1(r)
 real r
 end subroutine
 subroutine setZCutVersion2(i)
 integer i
 end subroutine
end interface

call setZCut(realNum) ! calls version 1
call setZCut(intNum) ! calls version 2

Inside a module module modName

interface setZCut
 module procedure setZCutVersion1
 module procedure setZCutVersion2
end interface

contains

 subroutine setZCutVersion1(r)
 real r
 ! subroutine code here
 end subroutine

 subroutine setZCutVersion2(i)
 integer i
 ! subroutine code here
 end subroutine

end module

!

13

! in caller
!
use modName
call setZCut(realNum) ! calls version 1
call setZCut(intNum) ! calls version 2

6.5 Overloading built-in operators

It is also possible to overload built-in operators, such as ‘*’ and ‘+’. In
this way, you can make user-defined types behave more like built in
types.

For example, you write a function which adds two wavefunctions
together, and returns the resulting wavefunction. If you overload this
with the name “operator(+)”, whenever you call write “waveFunc1 +
waveFunc2”, the routine will be called.

Apart from built in operators such as “+” and “*”, you can also overload
assignment, i.e., “=”, and comparison operators like “==”.

6.6 Passing functions as arguments

As stated above, the ‘interface’ statement allows procedures to be
passed as arguments to other procedures. Why would this be useful?

It allows for more generic programming. So, for example, you could
write a routine which performs a finite difference derivative on any
one-dimensional function. This routine can then be used to derivate
any function with the signature in the interface block.

7. Modules

7.1 Uses of modules

Modules are an extremely useful addition to f90. For example, they

can be used to hold data like common blocks, but much more
elegantly and safely.

They can also hold procedures, and make the interfaces explicit
automatically.

Modules also make it possible to use abstract data types (ADTs),
which will be discussed on Day 2.

Note that a module should be compiled before any code that ‘uses’
that module. A ‘make’ file can help with this aspect.

Figure 18 Basic layout of a module

module nameOfModule
implicit none
! data is declared here, and interface statements
contains
 ! subroutines and functions are declared here
end module

!
! to use a module
!
program mainProgram
use nameOfModule ! must be first
implicit none
end program

7.2 Modules versus Common Blocks

The simplest application of modules is as a replacement for common
blocks.

There are two advantages of modules over common blocks:

Firstly, the declaration of data in the module is located in only one part
of the code: the module. In a common block, the data is redeclared

14

every time the common block is used. If you want to change the
common block, you have to change every instance of the common
block. To update a module you only change the code in one place.

Modules offer ‘strong typing’. A weakness of common blocks is that
the number and type of data constructs are not checked, so if, for
example, you accidentally leave out a variable, the compiler will not
flag it as an error. This could lead to an annoying bug. In modules,
however, the type of the data is fixed, and cannot be accidentally
changed.

7.3 As ‘container’ for procedures

A module can also contain procedures. The procedures must be
added after a ‘contains’ statement in the module.

The big advantage of putting procedures in modules is, as already
discussed, that the interface to those procedures is automatically
explicit.

The procedures in a module can only be called by other parts of the
program that ‘use’ the module.

The ability to add both data and procedures to a module facilitates the
modular programming techniques to be discussed on Day 2 of this
course.

8. User-defined Types

8.1 Going beyond integer, real and complex

In f77, all data is either an integer, real, complex, or some other simple
data type.

Arrays are the most advanced data type possible in f77.

In f90 we have seen f90 arrays, for which sub-arrays can be defined.
These are a more powerful data type.

But f90 also allows you to define your own data types. This is

achieved via the ‘type’ statement, and forms the basis for the modular
programming to be discussed on Day 2.

A user-defined type is a data structure made up of simple types (e.g.
real, integer) and other user-defined types, and can be treated much
like the built in types. For example, you can pass a user-defined type
to a subroutine.

To use a user-defined type, you first define it. This tells the compiler
how the user-defined type is constructed.

Having defined the user-defined type, you can then create ‘instances’
(i.e. variables) of that type, just like you create instances of reals,
integers etc.

The only thing you can’t put in a user-defined type is an allocatable
array. However, you can use a pointer to achieve exactly the same
thing (see Section on pointers).

To access an entry in a user-defined type, you can use the “%”
operator.

Figure 19 User-defined types

Declaring type typeName
 ! variable declarations here
end type

Declaring a
variable of user-
defined type

type (typeName) :: typeVar

Accessing a
variable in the
user-defined type

typeVar%var

Example !
! Defining a wavefunction
!
type WaveFunction
 real,pointer :: coeffs(:,:,:)
 type (BasisSet) :: basis
 integer :: totalSize

15

 type (StopWatch):: sw
end type

!
! making a wavefunction
!
type (WaveFunction) :: wf
wf%totalSize = 10
wf%coeffs(1,1,1) = 5.

9. Intent

9.1 Protecting data

Usually, when you call a procedure, you know how each argument
should be treated. For example, you may know that one argument is
for input, and another is for output from the procedure.

However, the compiler does not know this, and if for some reason a
variable is ‘abused’, perhaps by someone not familiar with the code,
the compiler will be unable to help.

Using the ‘intent’ keyword, you can tell the compiler (and any other
programmers) how an argument should be used. If the variable is
used inappropriately, the compiler will not allow it.

Figure 20 Stating the ‘intent’ of an argument

Preventing an argument
from being changed in a
procedure

subroutine sub(a)
implicit none
real,intent(in) :: a
...

Only using a variable for
output.

subroutine sub(a)
implicit none
real,intent(out) :: a
...

Allowing both input and
output (the default case)

subroutine sub(a)
implicit none
real,intent(inout) :: a
...

10. Data hiding

10.1 Public and Private

Something which is very important to modular programming is being
able to hide data in one part of a program from another part of the
program. This is tied to the concept of ‘encapsulation’.

The idea is that if a piece of data is only accessible from a small part
of the program, and if there is something wrong with that data or it
needs to be modified, only a small and well-defined part of the
program needs to be considered.

f90 allows for control of data ‘visibility’ through the ‘private’ and ‘public’
modifiers. These can be added to a variable in a module. ‘public’ is the
default, and means that any part of the program using the module has
access to the variable, and can change it. If ‘private’ is used, the
variable is only accessible inside the module itself.

The ‘private’ modifier can also be added as the first line in a type-
definition block, in which case all variables in the user-defined type are
only accessible inside the module.

Figure 21 Use of ‘private’ and ‘public’

Controlling
visibility of
module variables

module modName
implicit none
integer,private :: i ! only visible in
 ! module
integer,public :: j ! visible wherever
 ! module is used

16

integer :: k ! visible wherever
 ! module is used
end module

Using private in a
user-defined type

module modName

! var1 and var2 only visible in module
type typeName
 private
 integer :: var1
 real :: var2
end type

end module

11. Control

11.1 Select Case

The ‘select case’ statement is sometimes neater than an ‘if-then-elseif’
construct.

Ranges, as used to stipulate sub-arrays, are also allowed. These must
not overlap.

Figure 22 A ‘select case’ example

integer i

select case (i)
case (1)
 ! code here for i = 1 case
case (2:10)
 ! code here for if i = 2,10
case (11:)
 ! code here for if i is 11 or greater

case (:-1)
 ! code here for if i is less than -1
case default
 ! code here for none-of-the-above case
end select

12. I/O

12.1 Inline formats

Usually in f77 people use a numbered format statement to define input
or output format.

An alternative is to put the format in the read/write statement itself.

Figure 23 Format in a write statement

write(6,’(“the result is “,f12.6)’)result

12.2 Creating a series of files

Sometimes you need to create a series of numbered files from within a
program. This could occur, for example, in a parallel program.

You can do this by creating some numbered strings, and opening files
with those names. To create a numbered string, you have to create an
internal file. This is just a character variable which can be written to
like a file.

If you use an internal file, make sure you use formatted output to write
to it.

You can use the ‘trim’ intrinsic function to discard any blanks at the
start or end.

17

Figure 24 Using an internal file to make a numbered string

character(len=20) :: fileName,numAsString
integer :: i = 44 ! file number is 44
write(numAsString,’(i2)’)i
fileName = ‘firstPart’//trim(numAsString) ! concatenate

13. Day 1 Exercises

13.1 Arrays

i. In one line, evaluate the expectation value of a 2D potential, which is
stored in an array ‘pot(:,:)’ for a normalized wavefunction stored in
array ‘waveFunc(:,:)’. Try to figure out two different ways to do this.
(Hint: use intrinsic functions)

ii. Assume you have set up a 1D DVR representation for a
wavefunction. The wavefunction is stored in an array ‘waveFunc’. You
have also set up ‘kineticMatrix’, the kinetic energy matrix in the FBR
representation. Assume ‘transMatrix’ transforms from the DVR to the
FBR representation. The transpose of ‘transMatrix’ transforms from
the FBR to the DVR. Beginning from the DVR representation, in one
line (with continuations if necessary), perform the kinetic energy
operation on the wavefunction, and finish with ‘waveFunc’ in the DVR
representation.

13.2 Modules and stuff

i. (a) Write a routine which squares the elements of a rank 1 real array.
DO NOT pass the array length as an argument. Use an interface
statement to make the interface explicit. Write a main program to test.
(b) Now write a module and put the routine you have just written in the
module. Remove the interface statement. ‘Use’ the module in the main
program, and see if it works as before.

ii. (a) Write a routine which squares the elements of a real array of any
rank (call it ‘square’). Do not pass the number of elements as an
argument. Instead, put the routine in a module (call it ‘ArraySquarer’),
introduce a module variable numElements for the number of elements,
and set it in the main program before calling the routine. (b) Add
another routine to the module called ‘setup’. This routine should take a
single argument, the number of elements in the array to be squared,
and set the module variable with it. Make the module variable ‘private’.
Now instead of setting the module variable from within the main
program, call ‘setup’ to do it.

iii. (a) Now introduce a user defined type in the module and put
numElements in the user defined type. Change the name of the
module to ‘ArraySquarerClass’ and call the user defined type
‘ArraySquarer’. Change ‘setup’ and ‘square’ so that each takes an
extra argument: put an argument of type ArraySquarer as the first
argument in each case (call it ‘this’ in each case). (b) Now in your
main program, define two different lengthed real arrays. Also define
two ArraySquarer’s, and call ‘setup’ for each with the appropriate
arguments corresponding to the array lengths. Square the two arrays
using the two different ArraySquarer’s. Congrats, you have made your
first Abstract Data Type (ADT)!

18

14. Modular Programming

14.1 Why bother writing ‘good’ code?

In the eighties, people involved in writing software for commercial
interests discovered something disturbing: the ‘procedural’ approach
to programming that they were using didn’t scale very well. They found
that once a program became bigger than about 100000 lines, updating
the code became prohibitively time consuming. Basically, the bigger a
‘procedural’ program gets, the more complex it gets.

People started to look for programming models which would scale
better, and this led to object-oriented programming, which is now the
industry-wide standard.

Scientific programming is fast approaching the scenario faced by
business a decade ago. Our computers are getting faster, and our
codes larger and more complex. If you have ever worked on a f77
code larger than about 50000 lines, you will know the problem.

At the same time, the limiting factor in producing scientific results is
being shifted from the computers, to the people programming them.
As the computers get faster, the programmers become the bottleneck
in the process.

Scientists thus need to adopt practices which will enable them to avoid
wasting time. Extra effort to make things clear now could save
countless hours later on. Code that is clear can be ‘learnt’ much
quicker by a new researcher than spaghetti code. Code that is easily
reusable can save time rewriting code to perform equivalent tasks.

With these goals in mind, today you will be introduced to a new way of
programming. The intention is to make your programs more modular.
Rather than being one huge interconnected unit, a program gets
broken down into a number of much smaller loosely-coupled units.
Learning to use this approach will require an initial investment of time,
but ultimately it could save you weeks or even months of programming
time.

14.2 Procedural approach

Until now, you have been using the procedural programming model,
though perhaps you didn’t realize it

In procedural programming, data and procedures are kept separate.
You pass the data to the procedures, and the procedures modify the
data, but the two are not part of the one entity.

The procedure implements an algorithm that performs a certain task
on ANY conforming data set.

14.3 Abstract Data Type (ADT)

‘Modular’ programming makes use of abstract data types (ADT)

An ADT is an entity which has both data and the methods
(procedures) that act on that data.

Data and methods are intimately linked in one entity.

We say that an ADT ‘encapsulates’ data and operations/methods in
one entity.

Important to this model is ‘data hiding’

Data hiding is ensuring that the data in an ADT is invisible to anything
outside the ADT. Other ADTs, for example, should not be able to read
or write the data in the ADT. It should be ‘private’ to the ADT to which
it belongs.

Operations or methods are what are used to perform actions. You can
send a ‘message’ to an ADT, requesting some information from it, or
requesting it to perform some action. These ‘messages’ are simply
procedure calls. For example, I could ‘message’ a wave function ADT
requesting that it tell me how much memory it is using.

In f90, the module is what makes programming with ADT’s possible. A
module can encapsulate data and procedures in one unit, and you can
use the ‘private’ and ‘public’ keywords to hide data.

19

14.4 Object-Oriented Programming

Object-oriented programming (OOP) is one step further than
programming with ADTs.

OOP languages include C++, Delphi, python and Java.

OOP has become the most widely-used programming model in use
today.

It has much to offer, particularly for large software systems, but is also
more complicated than using ADTs, and probably less useful for
scientific programming than it is for, say, commercial programming.

Like ADT-based programming, OOP is centered around encapsulating
data and operations in one entity: the class.

However, OOP goes further, by enabling one class to inherit
characteristics of other classes. OOP also allows classes to behave
‘polymorphically’. That is, they behave differently in different situations.

OOP is beyond the scope of this course, though ADT programming is
a good first step to understanding OOP.

14.5 Interface and Implementation

The ‘interface’ is what the user of an ADT sees. By ‘user’ I mean
anything using the ADT. This can be another ADT, the main program,
etc. It is not the person using the computer, though such a person may
be writing the ‘user’ code.

In procedural programming, the data is part of the interface. For
example, if I call an FFT, I have to pass it auxiliary arrays. The user
has to know how long these arrays must be, their type, etc. The FFT
routine is also forever locked in to using auxiliary arrays of that form. If
it requires different auxiliary arrays later, all the auxiliary arrays in the
program must be changed!

In ADT programming, you try as much as possible to make the
interface consist only of procedures, not data. You should try to hide
the ADT data, and only allow interaction with the ADT through the

methods of the ADT (i.e. procedures).

Using ADTs is about reducing the interface. Changing the interface of
a program unit in any programming model requires that other
sections of the code also be modified. In ADT-based programming,
whenever possible you avoid changing the interface. That way, you
don’t have to make changes to the rest of the program.

You can, however, expand the interface. For example, you can add
new methods to the interface, because doing this does not require any
changes to be made to the rest of the program. But the interface that
already exists should not change.

In ADT programming the implementation of the ADT is independent of
the interface. The interface is fixed, but the implementation can
change. This is the whole idea: being able to change one part of the
code without worrying about other parts. Having a fixed interface
facilitates this. The rest of the program just uses the interface, which is
unchanging; only the ADT itself knows about the implementation.

As long as the writer of an ADT sticks to the existing interface for that
ADT, he/she can implement the ADT any way they like. They can use
any data structures (e.g. arrays, linked lists) and algorithms (e.g.
different libraries) they choose.

Effectively, an ADT is a ‘black box’. But this doesn’t mean you can’t
change what’s in it. It only means you can change what’s inside
independently of what is outside.

A very important goal of ADT programming is “NO CODE
DUPLICATION”. Rather than copying a particular piece of code
several times throughout a program (e.g. code to apply an FFT), code
that is used often is encapsulated in units: ADTs. The code for the
ADT only occurs once in the program, but you can make multiple
‘instances’ of the ADT. For example, the code for all FFTs would occur
in one ADT, but you might need lots of different FFTs in the one
program. Each time you need a new FFT, you simply ‘create’ an
‘instance’ of the ADT.

Why is avoiding code duplication good? For one, there is less chance

20

of programmer error: you get that piece of code right once and forget
it. It also makes porting and maintaining the code easier. Porting just
requires some very specific ADTs be modified, not a program-wide
search. Maintaining the code is easier because if you need to change
something, you only need to do this in one place, not throughout your
program.

14.6 Connascence

The idea of separating interface from implementation and reducing the
scope of the interface is captured well by the idea of ‘connascence’.

‘Connascence’ is a measure of how much a program unit depends on
other units, and how much they depend on it. You can ask yourself
this to determine the ‘connascence’: “If I change this aspect of the
code, how much of the rest of the code do I need to change?”

The aim is to make the connascence between units, in this case
ADTs, as low as possible. This corresponds to reducing the interface.

The connascence between elements inside a single ADT will be very
high; this is OK. But the connascence between different ADTs should
be kept to a minimum. This can be achieved, for example, by data
hiding.

15. ADTs in f90

15.1 Module as Unit of Encapsulation

The f90 module is capable of containing data, and procedures.

A module can also have user-defined types, which are data
definitions.

It is possible to hide data in a module from users of the module using
‘private’ and ‘public’ keywords.

All of these qualities make the f90 module perfect for implementing an
ADT. So how do you do it?

15.2 Data

The ADT data is defined in a user-defined type in the module.

Data hiding is enforced by using the keyword ‘private’ whenever
possible. This can be applied in the user-defined type, or to other data
or procedures in the module.

In Figure 25, using ‘private’ in the user-defined type makes all the data
in that type only accessible in the module.

Note that the ADT is called ‘MyADT’. The module containing the ADT
is, by convention, called ‘MyADTClass’.

Figure 25 How to enter data in an ADT in f90

module MyADTClass
implicit none

type MyADT
 private
 integer :: i
 real :: j
 real :: array(10)
 complex,pointer :: arrayPointer(:)
end type

end module

15.3 Methods

The methods (procedures) for the ADT are also contained in the
module, after a ‘contains’ statement.

These are just like ordinary procedures, except that, by convention,
the ADT variable is always passed in first, and is called ‘this’. ‘this’ is
the instance of the ADT being ‘messaged’.

If a method name is likely to be used in other ADTs as well (e.g.

21

getNumPoints), it should be overloaded using an interface statement.

You can force users to use the generic name (e.g. getNumPoints),
rather than the ADT specific name (e.g. getNumPointsMyADT), by
making the ADT procedure name private. This helps make a program
more readable: rather than having 5 slightly different names for
procedures each doing basically the same thing, you have one generic
name.

Figure 26 An ADT with data and methods in f90

module MyADTClass
implicit none

type MyADT
 private
 integer :: i
end type

! overload the procedure ‘set’
interface set
 module procedure setMyADT
end interface

! make setMyADT private
private :: setMyADT

contains

 !
 ! sets the ADT integer i to num
 !
 subroutine setMyADT(this,num)
 implicit none
 type (MyADT) :: this
 integer,intent(in) :: num
 this%i = num
 end subroutine setMyADT

end module

15.4 Instantiating an ADT

Now that we have defined an ADT, we need to use it. You use an ADT
by creating instances of it, or ‘instantiating’ it.

This is just like declaring a variable. Actually, when you declare a real
number, you are really instantiating it; creating an instance of a real
number.

Instantiating an ADT in f90 involves first ‘using’ the ADT module, and
then simply declaring a variable of the ADT.

You can then call the procedures of the ADT with the instance you
have created. You pass the instance as the first argument.

Figure 27 Instantiating MyADT from Figure 26

program MyProgram
use MyADTClass
implicit none
type (MyADT) :: instanceOfMyADT
type (MyADT) :: anotherInstance, andAnotherInstance

call set(instanceOfMyADT,5) ! calling MyADT method

end program

15.5 Constructor

Nearly every ADT you write will need some setting up. A ‘constructor’
is a special procedure that every ADT has to ‘setup’ and initialize it’s
data.

By convention, the constructor is always called ‘new’. In order that

22

every ADT can use this generic name, you need to use overloading.

A constructor takes any arguments it needs to setup the ADT. It
usually stores values it will need later, and allocates memory.

The constructor of an ADT instance variable should be called before
any other methods are called for that instance.

You can have as many constructors as you like. They could each take
different parameters, for example.

One commonly used type of constructor is a ‘copy constructor’. This
takes a second ADT instance as an argument, and copies it into the
messaged ADT instance.

Figure 28 Adding a constructor and a copy constructor to MyADT

module MyADTClass
implicit none

type MyADT
 private
 integer :: i
 real,pointer :: realArray(:)
end type

interface new
 module procedure newMyADT,newCopyMyADT
end interface

interface set
 module procedure setMyADT
end interface

private :: newMyADT,newCopyMyADT,setMyADT

contains

 ! constructor
 subroutine newMyADT(this,num)

 implicit none
 type (MyADT) :: this
 integer,intent(in) :: num
 this%i = num
 allocate(this%realArray(10))
 end subroutine newMyADT

 ! copy constructor
 subroutine newCopyMyADT(this,toCopy)
 implicit none
 type (MyADT) :: this,toCopy
 this%i = toCopy%i
 allocate(this%realArray(10))
 this%realArray(:) = toCopy%realArray(:)
 end subroutine newCopyMyADT

 subroutine setMyADT(this,num)
 implicit none
 type (MyADT) :: this
 integer,intent(in) :: num
 this%i = num
 end subroutine setMyADT

 ...

end module

15.6 Destructor

A destructor performs the opposite task to a constructor: it cleans up
when the instance is not needed anymore.

A destructor usually deallocates any memory that is associated with a
particular instance. The constructor/destructor approach makes
memory management easier, because all allocation and deallocation
of memory is localized in these procedures.

23

For every call to a constructor in a program, there should be a
corresponding call to a destructor. Otherwise there could be a memory
leak, ie, memory could be allocated without being deallocated.

The destructor is called ‘delete’ by convention.

The destructor just takes the instance as an argument. It does not take
any other arguments.

Figure 29 Adding a destructor to MyADT

module MyADTClass
implicit none

...

interface delete
 module procedure deleteMyADT
end interface

private :: deleteMyADT

contains

 ...

 ! destructor
 subroutine deleteMyADT(this)
 implicit none
 type (MyADT) :: this
 deallocate(this%realArray)
 end subroutine deleteMyADT

 ...

end module

15.7 Getters and setters

Getters and setters are two types of commonly used methods known
collectively as ‘accessor methods’, because they offer access to the
data in an ADT (albeit through a strictly defined interface).

A ‘getter’ gets some information from an ADT instance, and a ‘setter’
sets some aspect of the ADT.

An example of a getter would be ‘getNumPoints’, which would return
the number of points, say, on a Fourier grid.

An example of a setter would be ‘setTimeStep’, which would set the
time step, say, in a propagator.

Often setters are not needed, because most of the setting can be
done in the constructor. Getters are quite common though.

16. Relationships between ADTs

16.1 Composition: ‘From little things, big things grow’

One of the great strengths of the ADT approach to programming is
being able to create hierarchies of interacting instances which mimic
relationships in the ‘real world’.

‘Composition’ is about composing one ADT from other ADTs. In this
way you can build up layers, beginning with the lowest fundamental
ADTs which are made up only of simple types (e.g. real, integer,
logical etc), and moving to high level ADTs which are composed
mostly of the low-level ADTs.

For example, a low-level ADT would be an FFT. This just transforms a
set of data according to some mathematical formulas. Higher than this
is a FourierGrid, which is a grid on which to represent a function. The
FourierGrid includes several FFTs to perform any transforms
appropriate for its data. Higher again is a WaveFunction, which
includes FourierGrids in order to represent itself.

24

Composition is very easy to implement. You simply include a variable
of the low-level type in the definition of the high-level type. Of course,
in the constructor of the high-level type you must also call the
constructor of the low-level type, and equivalently for the destructor.

Figure 30 An example of composition

module HighLevelClass
use LowLevelClass
implicit none

type HighLevel
 type (LowLevel) :: low
end type

...

contains

 ! constructor
 subroutine newHighLevel(this)
 implicit none
 type (HighLevel) :: this
 ! construct low level instance
 call new(this%low)
 end subroutine newHighLevel

 ! destructor
 subroutine deleteHighLevel(this)
 implicit none
 type (HighLevel) :: this
 call delete(this%low)
 end subroutine deleteHighLevel

 ...

end module

16.2 Association

Composition is actually a specialized case of ‘association’.

Association is simply the idea that one class can be associated in
some way with another. An Analyzor ADT in a wavepacket program,
for example, may be associated with a particular WaveFunction which
it is analyzing. I.e., There is a relationship between the two: the
Analyzor analyzes the WaveFunction.

An association can either be implemented by composition, i.e., having
one ADT as part of the other, or it can be implemented by having
separate ADTs which may use ‘references’ to each other.

A ‘reference’ is simply a pointer in f90. The idea is that an ADT stores
a pointer to any other ADT which it may need to send messages to.
For example, the Analyzor would store a pointer to the particular
WaveFunction that it is analyzing. That way it could request
information from the WaveFunction. However, the WaveFunction
would not need to store a reference to the Analyzor, because it
doesn’t need to know anything about the Analyzor.

Usually any ADTs which a particular ADT needs references too are
passed in to the constructor. The ADT then simply points pointers,
which are part of it’s type-definition, to the passed-in ADTs. It does not
need to construct or destruct the passed-in ADTs, because this should
already be taken care of.

Figure 31 An example of association

module HighLevelClass
use LowLevelClass
implicit none

type HighLevel
 type (LowLevel),pointer :: low
end type

25

...

contains

 ! constructor
 subroutine newHighLevel(this,toReference)
 implicit none
 type (HighLevel) :: this
 type (LowLevel),target :: toReference
 this%low => toReference
 end subroutine newHighLevel

 ! destructor
 subroutine deleteHighLevel(this)
 implicit none
 type (HighLevel) :: this
 nullify(low) ! good practice, but not necessary
 end subroutine deleteHighLevel

 ! a method using the reference
 subroutine method(this)
 implicit none
 type (HighLevel) :: this
 call lowLevelMethod(this%low) ! call method of low
 end subroutine method

end module

17. Design

17.1 Identifying ADTs

At first, modular programming with ADTs can take a bit of getting used
to, but ultimately it is a very natural way to structure code.

One thing which may be difficult at first is simply identifying what the
different ADTs should be. Often there are many different hierarchy
designs which could be used, some better than others.

A simple approach to identifying ADTs is to use language. Write a
description of the problem and how it will be solved. The nouns are
good candidates for ADTs. It’s that simple!

Figure 32 Using language to identify ADTs. The nouns underlined are good
candidates for ADTs, though others do exist.

We are going to write a wavepacket program for one degree of freedom. The
wavepacket is represented on a fourier grid, and is initially a coherent state
function. It is propagated by the split operator propagator, and analyzed by a flux
analyzor. The potential is an Eckart function.

17.2 Identifying ADT methods

Having identified the ADTs, we need to assign them methods. Some
of the methods are common to all ADTs, like the constructor and
destructor. Others are used to allow limited access to the data: the
accessor methods (i.e., getters and setters). These are relatively
obvious.

Other good candidates can again be recognized through language.
The verbs are potential methods for the ADTs. For example,
‘propagate’ and ‘analyze’.

But basically you should think in terms of messages. What question or
request would one ADT have for another? Such questions correspond
to methods.

26

18. An Advanced Example

18.1 The ‘MatrixTransform’ ADT

The ‘MatrixTransform’ ADT is an ADT which I developed to fulfil a
particular need in quantum wavepacket calculations. These
calculations frequently require that a particular dimension of a
multidimensional array be transformed by a matrix multiplication, for all
possible values of the remaining dimensions. Mathematically, it might
look like this

∑ ′′ =′
j

ijkjjkji xAx for all i and k.

Here, we are clearly treating a rank 3 array, x, and transforming the
2nd dimension by matrix A.

Because this occurs so often in wavepacket calculations, I decided it
was wise to make this an ADT, to reduce code duplication and make
programming easier in the long run. I thus created an ADT called
‘MatrixTransform’, which transforms any dimension of any complex
array using a real matrix.

The creation of the ADT was not that easy, because I had to make
sure it could take arrays of different rank, and this led to a lot of code
which looks very similar. Unfortunately, this can’t be avoided in f90,
but at least once someone has done the initial work, the ADT can be
used over and over by anyone needing its functionality.

The implementation of MatrixTransform involves representing an array
of any rank as a rank 3 array. This is implemented via a second ADT
called ‘DimensionDescriptor’, which describes a dimension in a
particular array in terms of its rank 3 equivalent. The array passed in
for transforming is first converted to a rank 3 array, with the 2nd

dimension the dimension to be transformed. The transform then
occurs for the rank 3 array. The reason for doing this is to avoid writing
the whole algorithm for every possible rank of array, and every
possible dimension to be transformed. You could say that the array is

transformed to a ‘generic’ form first.

Below you can find the source code for ‘MatrixTransform’. First look at
how the ADT is used. If you wish, you can go on to try to understand
the ADT implementation, but it is quite extensive. (Note that there are
a few other modules included, which are used by the MatrixTransform
ADT.)Try to keep in mind that although writing the ADT could be quite
a bit of work initially, you will save lots of time every time you use it. If
you have many such matrix transforms in your code, you will
presumably benefit greatly from using the ADT, as will anyone else
who uses it.

Figure 33 The ‘MatrixTransform’ ADT and how to use it.

use MatrixTransformClass
type (MatrixTransform) :: mt
integer,parameter :: n=10
real(8) :: matrix(n,n)
complex(8) :: coeffs(1000,n,2000)

! setup matrix and coeffs array here
matrix = 1.1d0
coeffs = 1.d0

! setup MatrixTransform
call new(mt,matrix)

! Apply transform to second dimension of coeffs array
call PerformForwardTransform(mt,coeffs,2)

! Transform coeffs back again, assuming matrix is unitary
call PerformReverseTransform(mt,coeffs,2)

call delete(mt)

...

!---
! Module with the kinds of numbers used in the program. This keeps
! decisions about how large numbers (eg reals) should be localized
! in one module.
!---

27

module NumberKinds
implicit none
integer,parameter :: KIND=8
end module

!---
! This class describes an array dimension in terms of a reduced
! representation. The reduced representation is a rank 3 array, where
! the second dimension is the dimension we are describing. All arrays
! can be represented in this form, as far as memory layout
! is concerned.
! So, for example, take a rank 5 array called a(l,m,n,o,p).
! The first dimension would be represented as the reduced array
! red(1,l,m*n*o*p).
! The second dimension as red(l,m,n*o*p).
! The fifth dimension as red(l*m*n*o,p,1).
! The purpose of reducing arrays in this way is to make algorithms
! more generic. Instead of writing a different algorithm to treat
! all possible array sizes, and all dimensions, we simply write
! one algorithm which treats the reduced case.
!--
module DimensionDescriptorClass
use NumberKinds
implicit none

!--------------------------------
! Fields
!------------------
! size1 The size of the first dimension in
! the reduced representation.
! size2 The size of the second dimension in
! the reduced representation.
! size3 The size of the third dimension in
! the reduced representation.
!--------------------------------
type DimensionDescriptor
 integer :: size1,size2,size3
end type

!--------------------------------
! Private members
!--------------------------------
private :: NewDimensionDescriptor, DeleteDimensionDescriptor

!--------------------------------
! Interfaces

!--------------------------------
interface new
 module procedure NewDimensionDescriptor
 module procedure NewDimensionDescriptor1DC, NewDimensionDescriptor1DR
 module procedure NewDimensionDescriptor2DC, NewDimensionDescriptor2DR
 module procedure NewDimensionDescriptor3DC, NewDimensionDescriptor3DR
 module procedure NewDimensionDescriptor4DC, NewDimensionDescriptor4DR
 module procedure NewDimensionDescriptor5DC, NewDimensionDescriptor5DR
 module procedure NewDimensionDescriptor6DC, NewDimensionDescriptor6DR
end interface

interface delete
 module procedure DeleteDimensionDescriptor
end interface

!--------------------------------
! member functions
!--------------------------------
contains

 !--
 ! Constructor
 ! This is a general constructor, taking an array of dimension sizes,
 ! and the dimension to describe.
 !--
 subroutine NewDimensionDescriptor(this,sizes,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 integer,intent(in) :: sizes(:)
 integer,intent(in) :: dim
 integer :: d

 !
 ! tests
 !
 if (dim < 1 .or. dim > size(sizes)) then
 write(6,*)'bad dim in DimensionDescriptor constructor'
 stop
 endif

 do d = 1,size(sizes)
 if (sizes(d) < 1) then
 write(6,*)'bad dimension sizes in DimensionDescriptor
constructor'
 stop
 endif

28

 enddo

 !
 ! Set reduced dimensions
 !
 this%size1 = 1
 this%size2 = sizes(dim)
 this%size3 = 1

 do d = 1,dim-1
 this%size1 = this%size1 * sizes(d)
 enddo

 do d = size(sizes),dim+1,-1
 this%size3 = this%size3 * sizes(d)
 enddo

 end subroutine NewDimensionDescriptor

 !--
 ! Constructors
 ! The following constructors take the arrays for which the
 ! descriptor is to be constructed as an argument.
 !--
 subroutine NewDimensionDescriptor1DC(this,array)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 complex(KIND),intent(in) :: array(:)

 call new(this,(/size(array)/),1)

 end subroutine NewDimensionDescriptor1DC

 !-------------------------------

 subroutine NewDimensionDescriptor2DC(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 complex(KIND),intent(in) :: array(:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2)/),dim)

 end subroutine NewDimensionDescriptor2DC

 !-------------------------------

 subroutine NewDimensionDescriptor3DC(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 complex(KIND),intent(in) :: array(:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2),size(array,3)/),dim)

 end subroutine NewDimensionDescriptor3DC

 !-------------------------------

 subroutine NewDimensionDescriptor4DC(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 complex(KIND),intent(in) :: array(:,:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2), &
 size(array,3),size(array,4)/), dim)

 end subroutine NewDimensionDescriptor4DC

 !-------------------------------

 subroutine NewDimensionDescriptor5DC(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 complex(KIND),intent(in) :: array(:,:,:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2), &
 size(array,3),size(array,4),size(array,5)/), dim)

 end subroutine NewDimensionDescriptor5DC

 !-------------------------------

 subroutine NewDimensionDescriptor6DC(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 complex(KIND),intent(in) :: array(:,:,:,:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2), &

29

 size(array,3),size(array,4), &
 size(array,5),size(array,6)/), dim)

 end subroutine NewDimensionDescriptor6DC

 !-------------------------------

 subroutine NewDimensionDescriptor1DR(this,array)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 real(KIND),intent(in) :: array(:)

 call new(this,(/size(array)/),1)

 end subroutine NewDimensionDescriptor1DR

 !-------------------------------

 subroutine NewDimensionDescriptor2DR(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 real(KIND),intent(in) :: array(:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2)/),dim)

 end subroutine NewDimensionDescriptor2DR

 !-------------------------------

 subroutine NewDimensionDescriptor3DR(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 real(KIND),intent(in) :: array(:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2),size(array,3)/),dim)

 end subroutine NewDimensionDescriptor3DR

 !-------------------------------

 subroutine NewDimensionDescriptor4DR(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 real(KIND),intent(in) :: array(:,:,:,:)

 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2), &
 size(array,3),size(array,4)/), dim)

 end subroutine NewDimensionDescriptor4DR

 !-------------------------------

 subroutine NewDimensionDescriptor5DR(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 real(KIND),intent(in) :: array(:,:,:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2), &
 size(array,3),size(array,4),size(array,5)/), dim)

 end subroutine NewDimensionDescriptor5DR

 !-------------------------------

 subroutine NewDimensionDescriptor6DR(this,array,dim)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 real(KIND),intent(in) :: array(:,:,:,:,:,:)
 integer,intent(in) :: dim

 call new(this,(/size(array,1),size(array,2), &
 size(array,3),size(array,4), &
 size(array,5),size(array,6)/), dim)

 end subroutine NewDimensionDescriptor6DR

 !--
 ! Destructor
 ! Currently does nothing.
 !--
 subroutine DeleteDimensionDescriptor(this)
 implicit none
 type (DimensionDescriptor),intent(inout) :: this
 end subroutine DeleteDimensionDescriptor

 !--

end module DimensionDescriptorClass

30

!---
! This represents a transform which involves matrix multiplying
! one dimension of a complex array, where the matrix is real.
! For example:
! if A is a rank 3 array, A(:,:,:), we could construct a matrix
! transform to transform, say, the second dimension. The transform
! transforms the second dimension M(:,:) . A(i,:,j)
! for all values of i and j.
! This transform class uses the dimension descriptor approach, where
! any dimension of any array is reduced to the middle dimension of
! a rank 3 array.
!---
module MatrixTransformClass
use NumberKinds
use DimensionDescriptorClass
use OpenMPConfig
implicit none

!--------------------------------
! Fields
!
! forwardMatrix The matrix for the forward transform.
! reverseMatrix The matrix for the reverse transform. Assumes
! the reverse transform is simply the transpose
! of the forward transform matrix.
!--------------------------------
type MatrixTransform
 private
 real(KIND),pointer :: forwardMatrix(:,:)
 real(KIND),pointer :: reverseMatrix(:,:)
end type

!--------------------------------
! Enumerators
!--------------------------------
integer,parameter,private :: FORWARD = 0, REVERSE = 1

!--------------------------------
! Private members
!--------------------------------
private :: NewMatrixTransform, DeleteMatrixTransform
private :: PerformForwardMT1D,PerformForwardMT2D,PerformForwardMT3D
private :: PerformForwardMT4D,PerformForwardMT5D,PerformForwardMT6D
private :: PerformReverseMT1D,PerformReverseMT2D,PerformReverseMT3D

private :: PerformReverseMT4D,PerformReverseMT5D,PerformReverseMT6D
private :: PerformMatrixTransformInPlace

!--------------------------------
! Interfaces
!--------------------------------
interface new
 module procedure NewMatrixTransform
end interface

interface delete
 module procedure DeleteMatrixTransform
end interface

interface PerformForwardTransform
 module procedure PerformForwardMT1D
 module procedure PerformForwardMT2D
 module procedure PerformForwardMT3D
 module procedure PerformForwardMT4D
 module procedure PerformForwardMT5D
 module procedure PerformForwardMT6D
end interface

interface PerformReverseTransform
 module procedure PerformReverseMT1D
 module procedure PerformReverseMT2D
 module procedure PerformReverseMT3D
 module procedure PerformReverseMT4D
 module procedure PerformReverseMT5D
 module procedure PerformReverseMT6D
end interface

!--------------------------------
! member functions
!--------------------------------
contains

 !--
 ! Constructor
 !--
 subroutine NewMatrixTransform(this,matrix)
 implicit none
 type (MatrixTransform) :: this
 real(KIND),intent(in) :: matrix(:,:)
 integer :: s1,s2

31

 s1 = size(matrix,1)
 s2 = size(matrix,2)

 nullify(this%forwardMatrix, this%reverseMatrix)
 allocate(this%forwardMatrix(s1,s2))
 allocate(this%reverseMatrix(s2,s1))

 this%forwardMatrix = matrix
 this%reverseMatrix = transpose(matrix)

 end subroutine NewMatrixTransform

 !--
 ! Destructor
 !--
 subroutine DeleteMatrixTransform(this)
 implicit none
 type (MatrixTransform),intent(inout) :: this

 deallocate(this%forwardMatrix, this%reverseMatrix)

 end subroutine DeleteMatrixTransform

 !--
 ! This scales the reverse transform matrix by a real
 ! factor.
 !--
 subroutine ScaleReverseTransform(this,scaleFac)
 implicit none
 type (MatrixTransform),intent(inout) :: this
 real(KIND),intent(in) :: scaleFac

 this%reverseMatrix = scaleFac * this%reverseMatrix

 end subroutine ScaleReverseTransform

 !--
 ! Accessor for the number of rows in the forward transform.
 !--
 integer function GetNumRowsForward(this) result (num)
 implicit none
 type (MatrixTransform),intent(in) :: this

 num = size(this%forwardMatrix,1)

 end function GetNumRowsForward

 !--
 ! Accessor for the number of columns in the forward transform.
 !--
 integer function GetNumColsForward(this) result (num)
 implicit none
 type (MatrixTransform),intent(in) :: this

 num = size(this%forwardMatrix,2)

 end function GetNumColsForward

 !--
 ! Accessor for the number of rows in the reverse transform.
 !--
 integer function GetNumRowsReverse(this) result (num)
 implicit none
 type (MatrixTransform),intent(in) :: this

 num = size(this%reverseMatrix,1)

 end function GetNumRowsReverse

 !--
 ! Accessor for the number of columns in the reverse transform.
 !--
 integer function GetNumColsReverse(this) result (num)
 type (MatrixTransform),intent(in) :: this

 num = size(this%reverseMatrix,2)

 end function GetNumColsReverse

 !--
 ! Accessor which returns the forward matrix.
 !--
 function GetForwardMatrix(this) result (matrix)
 type (MatrixTransform),intent(in) :: this
 real(KIND),pointer :: matrix(:,:)

 matrix => this%forwardMatrix

 end function GetForwardMatrix

 !--
 ! Accessor which returns the reverse matrix.

32

 !--
 function GetReverseMatrix(this) result (matrix)
 type (MatrixTransform),intent(in) :: this
 real(KIND),pointer :: matrix(:,:)

 matrix => this%reverseMatrix

 end function GetReverseMatrix

 !--
 ! The following routines are for specific ranked arrays. These
 ! routines reduce the dimension to be transformed under the
 ! dimension descriptor approach, and then call a general routine
 ! to actually do the tranformation.
 !--
 subroutine PerformForwardMT1D(this,coeffs,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:)
 complex(KIND),optional :: coeffsAfter(:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter

 call new(dimDesc,coeffs)
 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,FORWARD)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,FORWARD)
 endif
 call delete(dimDesc)

 end subroutine PerformForwardMT1D

 !-------------------

 subroutine PerformForwardMT2D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:)
 complex(KIND),optional :: coeffsAfter(:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)

 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,FORWARD)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,FORWARD)
 endif
 call delete(dimDesc)

 end subroutine PerformForwardMT2D

 !-------------------

 subroutine PerformForwardMT3D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter, &
 dimDescAfter,FORWARD)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,FORWARD)
 endif
 call delete(dimDesc)

 end subroutine PerformForwardMT3D

 !-------------------

 subroutine PerformForwardMT4D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)

33

 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter, &
 dimDescAfter,FORWARD)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,FORWARD)
 endif
 call delete(dimDesc)

 end subroutine PerformForwardMT4D

 !-------------------

 subroutine PerformForwardMT5D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,FORWARD)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,FORWARD)
 endif
 call delete(dimDesc)

 end subroutine PerformForwardMT5D

 !-------------------

 subroutine PerformForwardMT6D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:,:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:,:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)

 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,FORWARD)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,FORWARD)
 endif
 call delete(dimDesc)

 end subroutine PerformForwardMT6D

 !------------------

 subroutine PerformReverseMT1D(this,coeffs,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:)
 complex(KIND),optional :: coeffsAfter(:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter

 call new(dimDesc,coeffs)
 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,REVERSE)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,REVERSE)
 endif
 call delete(dimDesc)

 end subroutine PerformReverseMT1D

 !-------------------

 subroutine PerformReverseMT2D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:)
 complex(KIND),optional :: coeffsAfter(:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then

34

 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,REVERSE)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,REVERSE)
 endif
 call delete(dimDesc)

 end subroutine PerformReverseMT2D

 !-------------------

 subroutine PerformReverseMT3D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,REVERSE)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,REVERSE)
 endif
 call delete(dimDesc)

 end subroutine PerformReverseMT3D

 !-------------------

 subroutine PerformReverseMT4D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then

 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,REVERSE)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,REVERSE)
 endif
 call delete(dimDesc)

 end subroutine PerformReverseMT4D

 !-------------------

 subroutine PerformReverseMT5D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then
 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,REVERSE)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,REVERSE)
 endif
 call delete(dimDesc)

 end subroutine PerformReverseMT5D

 !-------------------

 subroutine PerformReverseMT6D(this,coeffs,dim,coeffsAfter)
 implicit none
 type (MatrixTransform),intent(in) :: this
 complex(KIND) :: coeffs(:,:,:,:,:,:)
 complex(KIND),optional :: coeffsAfter(:,:,:,:,:,:)
 type (DimensionDescriptor) :: dimDesc,dimDescAfter
 integer,intent(in) :: dim

 call new(dimDesc,coeffs,dim)
 if (present(coeffsAfter)) then

35

 call new(dimDescAfter,coeffsAfter,dim)
 call PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter,&
 dimDescAfter,REVERSE)
 call delete(dimDescAfter)
 else
 call PerformMatrixTransformInPlace(this,coeffs,dimDesc,REVERSE)
 endif
 call delete(dimDesc)

 end subroutine PerformReverseMT6D

 !--
 ! Transforms a reduced dimension array, where the transform
 ! is not in-place.
 ! dimDesc is a dimension descriptor for the coeffs array.
 !--
 subroutine PerformMatrixTransform(this,coeffs,dimDesc,coeffsAfter, &
 dimDescAfter,direction)
 implicit none
 type (MatrixTransform),intent(in) :: this
 type (DimensionDescriptor),intent(in) :: dimDesc,dimDescAfter
 complex(KIND),intent(in) :: &
 coeffs(dimDesc%size1,dimDesc%size2,*)
 complex(KIND),intent(inout) :: &
 coeffsAfter(dimDescAfter%size1,dimDescAfter%size2,*)
 real(KIND),pointer :: transMatrix(:,:)
 integer,intent(in) :: direction
 integer :: &
 row,col,numCols,numRows,low,high
 integer :: s1,s2,s3,s1a,s2a,s3a,i,j,k

 select case (direction)
 case (FORWARD)
 transMatrix => this%forwardMatrix
 case (REVERSE)
 transMatrix => this%reverseMatrix
 case default
 write(6,*)'bad direction in Matrix Transform'
 stop
 end select

 numRows = size(transMatrix,1)
 numCols = size(transMatrix,2)

 s1 = dimDesc%size1
 s2 = dimDesc%size2

 s3 = dimDesc%size3

 s1a = dimDescAfter%size1
 s2a = dimDescAfter%size2
 s3a = dimDescAfter%size3

 !
 ! check dimensions for conformity
 !
 if (s1 /= s1a .or. s3 /= s3a .or. &
 numRows /= s2a .or. numCols /= s2) then
 write(6,*)'non-conforming arrays in MatrixTransform'
 stop
 endif

 if (s3 >= s1 .and. .not.InParallel()) then

 !
 ! parallelize last dimension
 !
 !$OMP parallel do private(col,row,k)
 do k = 1,s3
 coeffsAfter(:,:,k) = (0.d0,0.d0)
 do col = 1,numCols
 do row = 1,numRows
 coeffsAfter(:s1,row,k) = coeffsAfter(:s1,row,k) + &
 transMatrix(row,col) * coeffs(:s1,col,k)
 enddo
 enddo
 enddo

 elseif (.not.InParallel()) then

 !
 ! parallelize first dimension
 !
 !$OMP parallel private(k,col,row,i,j,low,high)

 low = GlobalIndex(s1,MyThread(),1)
 high = low + GetLocalDim(s1,MyThread()) - 1

 do k = 1,s3
 do j = 1,s2a
 do i = low,high
 coeffsAfter(i,j,k) = (0.d0,0.d0)
 enddo

36

 enddo
 do col = 1,numCols
 do row = 1,numRows
 do i = low,high
 coeffsAfter(i,row,k) = coeffsAfter(i,row,k) + &
 transMatrix(row,col) * coeffs(i,col,k)
 enddo
 enddo
 enddo
 enddo

 !$OMP end parallel

 else ! already in parallel region

 do k = 1,s3
 coeffsAfter(:,:s2a,k) = (0.d0,0.d0)
 do col = 1,numCols
 do row = 1,numRows
 coeffsAfter(:,row,k) = coeffsAfter(:,row,k) + &
 transMatrix(row,col) * coeffs(:,col,k)
 enddo
 enddo
 enddo

 endif

 end subroutine PerformMatrixTransform

 !--
 ! Transforms a reduced dimension array, where the transform
 ! is in-place.
 ! dimDesc is a dimension descriptor for the coeffs array.
 !--
 subroutine PerformMatrixTransformInPlace(this,coeffs, &
 dimDesc,direction)
 implicit none
 type (MatrixTransform),intent(in) :: this
 type (DimensionDescriptor),intent(in) :: dimDesc
 complex(KIND),intent(inout) ::
coeffs(dimDesc%size1,dimDesc%size2,*)
 complex(KIND),allocatable :: coeffsTemp1(:,:,:)
 complex(KIND),allocatable :: coeffsTemp2(:,:)
 real(KIND),pointer :: transMatrix(:,:)
 integer,intent(in) :: direction
 integer ::
row,col,numCols,numRows,low,high

row,col,numCols,numRows,low,high
 integer :: s1,s2,s3,i,j,th,k

 select case (direction)
 case (FORWARD)
 transMatrix => this%forwardMatrix
 case (REVERSE)
 transMatrix => this%reverseMatrix
 case default
 write(6,*)'bad direction in Matrix Transform'
 stop
 end select

 numRows = size(transMatrix,1)
 numCols = size(transMatrix,2)

 s1 = dimDesc%size1
 s2 = dimDesc%size2
 s3 = dimDesc%size3

 !
 ! Checks
 !
 if (numRows /= numCols) then
 write(6,*)'for in-place matrix transform, matrix must be square'
 stop
 endif
 if (numRows /= s2) then
 write(6,*)'transform and array non-conforming in MatrixTransform'
 stop
 endif

 if (s3 >= s1 .and. .not.InParallel()) then

 !
 ! parallelize last dimension
 !
 !$OMP parallel private(col,row,th,k)

 !$OMP single
 allocate(coeffsTemp1(s1,s2,0:NumThreads()-1))
 !$OMP end single

 th = MyThread()

 !$OMP do

37

 do k = 1,s3
 coeffsTemp1(:,:,th) = (0.d0,0.d0)
 do col = 1,numCols
 do row = 1,numRows
 coeffsTemp1(:s1,row,th) = coeffsTemp1(:s1,row,th) + &
 transMatrix(row,col) * coeffs(:s1,col,k)
 enddo
 enddo
 coeffs(:s1,:s2,k) = coeffsTemp1(:s1,:s2,th)
 enddo

 !$OMP end parallel

 deallocate(coeffsTemp1)

 elseif (.not.InParallel()) then

 !
 ! parallelize first dimension
 !
 allocate(coeffsTemp2(s1,s2))

 !$OMP parallel private(k,col,row,i,j,low,high)

 low = GlobalIndex(s1,MyThread(),1)
 high = low + GetLocalDim(s1,MyThread()) - 1

 do k = 1,s3

 do j = 1,s2
 do i = low,high
 coeffsTemp2(i,j) = (0.d0,0.d0)
 enddo
 enddo

 do col = 1,numCols
 do row = 1,numRows
 do i = low,high
 coeffsTemp2(i,row) = coeffsTemp2(i,row) + &
 transMatrix(row,col) * coeffs(i,col,k)
 enddo
 enddo
 enddo

 do j = 1,s2

 do i = low,high
 coeffs(i,j,k) = coeffsTemp2(i,j)
 enddo
 enddo

 enddo

 !$OMP end parallel

 deallocate(coeffsTemp2)

 else

 !
 ! already in a parallel region
 !
 allocate(coeffsTemp2(s1,s2))
 do k = 1,s3
 coeffsTemp2(:,1:s2) = (0.d0,0.d0)
 do col = 1,numCols
 do row = 1,numRows
 coeffsTemp2(:,row) = coeffsTemp2(:,row) + &
 transMatrix(row,col) * coeffs(:,col,k)
 enddo
 enddo
 coeffs(:,:s2,k) = coeffsTemp2(:,:s2)
 enddo
 deallocate(coeffsTemp2)

 endif

 end subroutine PerformMatrixTransformInPlace

 !--

end module MatrixTransformClass

38

19. Day 2 Exercises

19.1 A group project

We are going to write a 1D wavepacket code to propagate an initially
gaussian wavepacket on a 1D Eckart potential energy surface. We are
going to analyze with a flux method to determine the probability of
crossing the barrier.

I will supply the design document. This is simply the interfaces that
everyone must conform to. Each person works independently on
implementation. When we are all finished, we will put it together and
try to get some results.

WaveFunctionWaveFunction

SplitOpPropagatorSplitOpPropagator

CoherentStateFuncCoherentStateFunc EckartPESEckartPES FourierGridFourierGrid

FluxAnalyzorFluxAnalyzor

ADT ADT methods

FourierGrid subroutine new(real lowBound,
real highBound, integer numPoints)

subroutine delete()

integer function getNumPoints()

subroutine transToMomenta(complex array(:))

subroutine transToCoords(complex array(:))

integer function getCoordStep()

real array(:) function getMomenta()

real array(:) function getCoords()

real function getMomentum(integer index)

real function getCoord(integer index)

SplitOpPropagator subroutine new(WaveFunction wfToProp, real
timeStep)

subroutine delete()

subroutine propagate(integer numTimeSteps)

WaveFunction subroutine new(FourierGrid fg, CoherentStateFunc
initFunc, EckartPES pes, real mass)

subroutine delete()

subroutine performExpPotentialOp(real timeStep)

subroutine performExpKineticOp(real timeStep)

complex function getValueAtCoord(integer pointNum)

EckartPES subroutine new(real barrierPosition,
real barrierHeight, real widthParam)

subroutine delete()

real function getValueAtCoord(real coord)

CoherentStateFunc subroutine new(real coordCenter,
real lowEnergy, real highEnergy, real mass, logical
movingPositiveDirection)

39

movingPositiveDirection)

subroutine delete()

complex function getValueAtCoord(real coord)

complex function getValueAtMomentum(real
momentum)

FluxAnalyzor subroutine new(WaveFunc wf, CoherentStateFunc
initGaussFunc, integer cutPointNum, real
analysisTimeStep, real mass)

subroutine delete()

subroutine storeCoeffs()

subroutine analyzeAndReport(real lowEnergy, real
highEnergy, integer numEnergies)

19.2 Linked list

A linked list, like an array, is a data structure, i.e., it holds data. The
nice thing about a linked list is that it can grow and shrink dynamically,
allocating and deallocating any memory it needs as it goes. An array,
of course, has a fixed size (though see the next exercise for a way to
make an array change size).

A linked list is a bit limited because you can’t index it like an array.
That is, you can’t say a(5), for example. Instead you can only move
through it in order, moving from one element to the next.

Try to write a linked list ADT to hold integers. You will need two user-
defined types in the ADT: one is the list itself, and the other is one
‘node’ of the list. A list is made up of connected nodes, each node
holding one integer.

In the node, you need a pointer to the next node in the list, as well as
the integer it holds.

In the list type, you store a pointer to the first node, and a pointer to
the current node.

The list is traversed by moving the current node from the first node to
the next etc until the last node is reached (it’s pointer doesn’t point to
anything; it is not ‘associated’).

The list ADT will need to have methods to move the current pointer to
the first node; to advance the current pointer one node; to get the
integer from the current node; to add a node before the first node; and
to add a node before or after the current node.

This is quite a lot of work, but will improve your understanding of
pointers and ADTs considerably.

19.3 Dynamic array

A dynamic array is one that can grow itself if it needs more memory.

A dynamic array is useful because you don’t need to know how many
elements you have in total before you start putting them in the array.

Write an ADT for a 1D dynamic array of reals.

You will need a user defined type holding an array, and an integer for
how long the array is at present. You will need methods to set an
element of the array; and return the occupied part of the array. For
efficiency, you may add a method which enables the user to add
multiple elements at a time.

The dynamic array should have two constructors: one takes the size at
which the array should initially be constructed, and the other takes no
argument and allocates the array with some default initial size (this
size should be a parameter in the module).

The idea is that whenever someone attempts to set an element of the
array which is outside the current range of indexes, the ADT should
allocate a bigger array, copy the data into the bigger array, and
deallocate the old small array. This is how it grows. You can decide by
how much the array should grow each time, but perhaps a doubling of
it’s size is good. (You could put a parameter in the module which is the

40

factor by which the array increases each time. You could even have a
constructor which takes this factor from the user.)

41

20. Parallelization

20.1 Philosophy

One way to make computers go faster is to increase the speed of their
processors, memory, etc. This is analogous to having a one very
competent person do a project. This is the kind of philosophy behind,
for example, the CRAY C90, which uses vectorization to achieve its
computational power.

Another approach is to use multiple processors to share the work. This
is analogous to having many less competent people carry out the
project. There are obvious inefficiencies here because the people
have to coordinate their actions; the same is true of parallel computer
systems.

Today we are going to talk about the second approach: parallelization.

20.2 Two schemes

Firstly, we will discuss MPI. This can be used on distributed memory
machines, like the IBM SP3, and on shared memory machines, like
the ORIGIN3000.

Lastly, we will discuss OpenMP, which is only for programming
shared-memory machines.

21. Preliminaries of MPI

21.1 Introduction

Message Passing Interface (MPI) is simply a collection of subroutines
(in C or FORTRAN) which enable processors to exchange data. You
simply call these subroutines from inside your program, meaning you
don’t have to worry about the nitty-gritty details of memory addresses

etc.

21.2 Advantages

Message Passing Interface (MPI) is very portable. It can be used on
distributed- and shared-memory computers.

Programs written in MPI are also generally very efficient, though it is
always possible to write slow programs if your parallelization strategy
is bad.

21.3 Disadvantages

MPI is an all or nothing programming method. You can’t really
parallelize a part of your program; you must convert your whole
program at once.

MPI is probably a bit more difficult to learn than, say, OpenMP, and
perhaps more prone to bugs.

21.4 Distributed-Memory architecture

MPI generally runs on distributed-memory machines, though it can
also run on shared-memory machines. In the latter case, the shared-
memory computer just simulates a distributed-memory computer.

In distributed-memory machines, each processor has its own memory,
which only it has access to.

If a processor wants some data that is in another processor’s memory,
it must send a message (e.g. using MPI) requesting that that data be
sent. When it receives the data, it is put somewhere in its own
memory, where it can be utilized.

21.5 Writing MPI programs

Writing MPI programs is very similar to writing serial (i.e., one
processor) FORTRAN programs. You just have to remember that
each processor is running it’s own copy of the program.

42

All the copies are the same, but different processors usually take
different paths through the code because of conditional statements
(e.g., if then else endif). So even though the code run by each
program is the same, each processor will usually do different things.

21.6 Header file

In order to call MPI routines in a FORTRAN program, you must
include the ‘mpif.h’ file in the code unit making the call.

This file contains parameters used in calls to MPI routines.

Figure 34 Including the MPI header file

program myProgram
implicit none
include ‘mpif.h’
...

21.7 Initialization and finalization

Before sending or receiving any data with MPI, it is necessary to call
an initialization routine: MPI_INIT.

When all communications are complete, MPI_FINALIZE must be
called.

If an error occurs in either case, the integer error flag argument is set
by the routine before returning. If you wish, you can check the value of
this to determine what happened. However, you can usually ignore
this if you are not too worried about robustness of your code.

Figure 35 Calling MPI_INIT and MPI_FINALIZE

program myProgram
implicit none
include ‘mpif.h’

integer error
call MPI_INIT(error)
...
call MPI_FINALIZE(error)
end program

21.8 Communicators

You can think of a communicator as a network linking certain
processors.

You can make your own communicators, but this is not usually
necessary. Most of the time you will want to communicate through the
global communicator MPI_COMM_WORLD. This communicator
connects all processors in the ‘WORLD’, in other words, all processors
running your program.

You often need to pass the communicator you are using as an
argument to MPI routines. Otherwise, you needn’t worry too much
about them.

To determine the number of processors in a communicator, you use
MPI_COMM_SIZE.

Figure 36 Determining how many processors are in a communicator

include ‘mpif.h’
integer num_procs,error
call MPI_COMM_SIZE(MPI_COMM_WORLD,num_procs,error)
! num_procs will have been set to the number of
! processors in MPI_COMM_WORLD

21.9 Processor identity

Each processor in a particular communicator has an identity, a
number between 0 and one less than the number of processors in the
communicator.

43

Each processor keeps the same identity throughout the run.

These numbers have no real meaning, they are just ‘names’.
Processor 0 is no different in MPI from Processor 100, though it is
always possible to make a distinction between the processors in you
own program, of course. (E.g. You could make processor 0
responsible for certain extra tasks.)

To get the number of a processor, you use the subroutine
MPI_COMM_RANK, which stands for the rank of the processor in the
particular communicator passed in.

Figure 37 Getting the number (rank) of a processor

include ‘mpif.h’
integer my_id, error
call MPI_COMM_RANK(MPI_COMM_WORLD,my_id,error)
! after the call, my_id is the number
! of the processor in the MPI_COMM_WORLD communicator

22. Point-to-Point Communication

22.1 What is Point-to-Point Communication?

Point-to-Point (PtoP) Communication is communication involving only
two processors.

Basically, one processor can send data to another processor, who
receives it and places it in its own memory.

In PtoP communication, the two basic operations are to send data and
to receive data. That’s really all there is to it.

In theory you can accomplish everything in MPI with just PtoP
communication, but it is sometimes more convenient to use collective
communication, in which more than two processors are involved.

22.2 Sending data

If a processor wants to send some data to another processor, it can
call the MPI_SEND routine.

This simply puts in a request to the computer hardware to send a
certain amount of memory from an address in the processors memory,
to another processor. The other processor must call the MPI_RECV
routine in order to receive the sent data.

In an MPI_SEND call you need to pass the following: the variable you
would like to send; the number of elements in the variable (1 if scalar;
>1 if array); the type of the elements; the identity of the receiving
processor; a tag for the message; the communicator; and the usual
error flag.

The type of the elements should be an MPI parameter. Each
FORTRAN type has a corresponding MPI type. For example, a real is
represented by MPI_REAL. (MPI_REAL is simply a parameter in
mpif.h)

The tag is simply an integer that you set yourself, which identifies the
particular send call you are making. The corresponding receive call
should use the same tag.

Requests for sends and receives are carried out in the order that they
are made, so usually it is not necessary to use different tags for
different calls. You still have to set the tag, but you could always use
0, for example.

Figure 38 Making a request to send data to another processor

include ‘mpif.h’
integer error, tag, procToSendTo
real*8 array(numElements)
tag = 878
procToSendTo = 5
call MPI_SEND(array,numElements,MPI_REAL8, &
 procToSendTo,tag,MPI_COMM_WORLD,error)

44

22.3 Receiving data

There should be a corresponding receive call made for each send.

The receive routine takes similar parameters to the send routine.

The most significant difference between the MPI_SEND and MPI_RECV
calls is the presence of a status array in MPI_RECV. Upon return, the
status array contains various information about the call. You can usually
ignore it, but sometimes it may have something of interest to you.

Note that you must supply a status array, and its size should be
MPI_STATUS_SIZE.

Figure 39 Making a request to receive data from another processor

include ‘mpif.h’
integer error, status(MPI_STATUS_SIZE)
integer tag, procToRecvFrom
real*8 recvArray(numElements)
tag = 878
procToRecvFrom = 1
call MPI_RECV(recvArray,numElements,MPI_REAL8, &
 procToRecvFrom,tag,MPI_COMM_WORLD,status,error)

When receiving, it is possible to stipulate that you don’t mind what the tag
of a message is, or what the source of the message is.

If you don’t care about the tag, you simply pass MPI_ANY_TAG where the
tag argument normally goes.

If you are not fussed by which processor is sending the message, use
MPI_ANY_SOURCE.

Both the tag and the source of the message can still be determined after
the call by examining the status array. The tag is in status(MPI_TAG) and
the source is status(MPI_SOURCE).

23. Collective Communication

23.1 What is collective communication?

Collective Communication is communication involving more than two
processors at a time.

Usually collective communication routines are just implemented in
terms of PtoP calls, but your code will usually be simpler and neater if
you use collective communication (though it may not be any faster).

23.2 Broadcast

Broadcasting, as the name suggests, is sending some data from one
processor to all other processors in the communicator.

Figure 40 Diagrammatic representation of an MPI broadcast

time

processor

Figure 41 Broadcasting a real array from processor 0.

include ‘mpif.h’

45

integer n = 10
integer error
integer bcastProc = 0 ! broadcasting processor
real*8 array(n)
call MPI_BCAST(array,size(array),MPI_REAL8,bcastProc, &
 MPI_COMM_WORLD,error)

23.3 Scatter

A scatter involves ‘scattering’ some data among the processors in the
communicator. In other words, one processor divides an array of data
up into as many portions as there are processors, and sends each
processor one of the portions.

Figure 42 Diagrammatic representation of an MPI scatter

time

processor

23.4 Gather

Gather is the opposite of scattering. Each processor has an array of
data, and all of these are gathered and delivered to one processor.

Figure 43 Diagrammatic representation of an MPI gather

time

processor

23.5 Send and receive

MPI_SENDRECV allows a processor to send data to one processor
while simultaneously receiving from another.

23.6 Reduction

There are many types of reductions possible, but they all involve
taking some data from each processor, combining it in some way (i.e.
reducing it), and putting the result on one processor.

For example, you can add arrays on all processors, putting the
resulting array on one processor.

You can also determine the maximum of all the data, putting the result
on one processor.

46

Note that in each case, the reduction is performed on an element-wise
basis. So determining the maximum for arrays does not return a
scalar, it returns another array. Each element in the result is the
maximum for that array position from the arrays on all processors.

Note also that with MPI_REDUCE only the so-called root processor
gets the result. The other processors still have to pass all the
arguments, including a result array, but anything not needed will be
ignored.

Figure 44 Adding data on all processors, and determining the maximum of the
data on all processors. In both cases, the result is only put on processor 2.

include ‘mpif.h’
integer resultProc = 2 ! root processor
integer error, n = 10
real*8 array(n),resultArray(n)
call MPI_REDUCE(array,resultArray,n,MPI_REAL8, &
 MPI_SUM,resultProc,MPI_COMM_WORLD,error)
include ‘mpif.h’
integer resultProc = 2 ! root processor
integer error, n = 10
real*8 array(n),resultArray(n)
call MPI_REDUCE(array,resultArray,n,MPI_REAL8, &
 MPI_MAX,resultProc,MPI_COMM_WORLD,error)

23.7 All-to-all

All-to-all involves each processor sending some distinct data to every
other processor. In other words, if you are one processor, you must
receive some distinct data from every other processor, and send some
distinct data to every other processor.

This can be used if you need to redistribute a multidimensional array.
For example, if you have a rank 2 array distributed over the second
dimension, and you need to have it distributed over the first

dimension, you could use all-to-all.

23.8 Variations

All of the collective communication routines have different variations.
To date we have discussed only the most basic cases.

Each type of routine can, for example, be implemented in blocking or
non-blocking form (see next section). So far we have only used the
blocking form.

It is also possible in many cases to have varying amounts of data on
each processor. Such routines have a ‘V’ attached to their names. For
example, the variable data version of MPI_GATHER is called
MPI_GATHERV.

Some communication types also have a version with the word ‘ALL’
included. These versions put the result on all processors, rather than
just one processor. For example, MPI_ALLREDUCE does the same
thing as MPI_REDUCE, except that the result is sent to all processors.

24. Synchronization

24.1 Blocking Calls

Blocking calls are calls to routines which do not return until all
communication is complete. So far we have only seen blocking calls.

For example, a call to MPI_SEND will not return until the receiving
processor has called MPI_RECV, and all the transfer of data is
complete.

Blocking calls are safe, in that you know that when the program has
returned from one, all data has already been transferred, so you can’t
accidentally change data before it is sent or use it before it has been
received.

However, blocking calls may not be that efficient, because usually one
processor must wait for the other.

47

In addition, in some instances blocking calls can cause a program to
‘deadlock’. This means that the processors are each waiting for
another to do something, and none of them can proceed.

For example, if two processors perform an MPI_SEND to each other,
they will deadlock. This is because each will be waiting for the other to
make a call to MPI_RECV, and neither will be able to proceed.

Note that you can manually block processors too. One way is to issue
a call to MPI_BARRIER. This causes processors reaching the call to
wait until all other processors have reached the same point.

24.2 Non-Blocking Calls

A non-blocking call is a call to a routine which is allowed to return
before the communication is complete.

Most MPI routines have a non-blocking version. A non-blocking
version has an ‘I’ in it. For example, a non-blocking send is called
‘MPI_ISEND’, and a non-blocking reduction is ‘MPI_IREDUCE’.

Non-blocking calls can lead to more efficient code, because the
processors don’t have to wait for each other. If one processor issues a
request to send some data, and the other processor is not ready to
receive, the sending processor can just keep on calculating.

Using non-blocking calls also prevents deadlocks. For example, in the
case we discussed above, where two processors send to one another,
if they each issue an MPI_ISEND, there is no deadlock. Each exits the
routine before the communication has taken place, and both are then
able to make calls to MPI_IRECV or MPI_RECV, at which point the
communication can proceed.

Non-blocking calls take an extra argument: the request number. This
is an integer, which the routine sets (you don’t set it yourself). You can
use this to check whether the communication is complete later in your
program.

The drawback of non-blocking calls is that you have to be more careful
when using them. If you use some data that is being communicated

before the communication is complete, you will get unpredictable
results. You won’t get a run-time error, but your results may change
between runs of the program.

Basically, if you need to change some data that is involved in a non-
blocking communication, you should first make sure that the
communication is complete. To do that, you can use a call to
MPI_WAIT.

MPI_WAIT takes the request number of the communication request as
an argument.

Figure 45 Using a non-blocking send with a wait

include ‘mpif.h’
integer error, tag, procToSendTo, request
integer status(MPI_STATUS_SIZE)
real*8 array(numElements)

tag = 878
procToSendTo = 5

call MPI_ISEND(array,numElements,MPI_REAL8, &
 procToSendTo,tag,MPI_COMM_WORLD,request,error)

! you can do extra work here, but don’t use array!!!

call MPI_WAIT(request,status,error)

! here you may use array again

48

25. OpenMP Preliminaries

25.1 Advantages

A very important advantage of OpenMP is that it is easier to learn than
MPI.

Another is that your program can be parallelized incrementally. That
is, you don’t need to modify the whole program at once, you can just
do a few performance-critical sections to begin with, leaving the rest of
the program serial. Though, over time you probably will want to
parallelize most of your program, and ultimately this could take as long
as using MPI.

OpenMP programs look very much like serial programs, with extra
comment lines. These comments are ignored by a standard
FORTRAN compiler, but are used to parallelize the code by an
OpenMP-enabled compiler. Your OpenMP code can be run as a
normal serial program, or in parallel!

If used correctly, OpenMP programs are as fast, or faster than MPI
programs.

25.2 Disadvantages

The main disadvantage of OpenMP is that it is less portable than MPI,
because it can only be used on shared-memory architectures.

25.3 Shared-Memory Architecture

As already stated, OpenMP can only be used on shared-memory
computers. Shared memory computers have multiple CPUs, but only
one logical address space.

The logical address space is simply the memory addresses that are
important to the program. The physical memory may not be in one unit

at all, but may be distributed throughout the system; however, the
program just thinks there is one big memory.

The memory in SGI Origin computers, like TERAS, is like this: it is
physically distributed, with each processor having its own memory, but
there is one big address space.

Writing a program for a shared-memory computer is thus more like
writing a program for a serial computer. All data is shared, but you
have to remember that multiple CPUs could be modifying data at the
same time.

25.4 Threads

OpenMP is based on the idea of ‘threads’. Threads are ‘threads of
computation’.

One thread usually runs on one processor, and you can think of it as a
processor, except that it doesn’t have it’s own memory: it shares its
memory with other threads.

Unlike in MPI where the number of processors is fixed for a run, in
OpenMP the number of threads can change in time. In serial sections,
there will be one thread, and parallel regions there could be multiple
threads sharing the burden.

The phrase ‘work sharing’ is used in relation to OpenMP a lot. The
idea is that multiple threads share the work that needs to be done.
OpenMP is really about indicating to the compiler the way you would
like the work to be shared.

26. Work Sharing Constructs

26.1 Parallel Regions

By default, your program is serial, even if it is compiled with an
OpenMP compiler. So, if you do nothing but compile a serial program,
it will just run as a serial program, on one processor.

49

In order to use multiple threads, you need to define ‘parallel regions’.
These are simply regions of your code where multiple threads can run.

Within any one parallel region, the number of threads cannot change,
but the number of threads can change between different parallel
regions.

To begin a parallel region in f90, you use ‘!$OMP parallel’, and to
terminate it you use ‘!$OMP end parallel’. In f77, you use ‘C$OMP
parallel’ etc.

Notice that each instruction just looks like a comment, so any serial
compiler will simply ignore them.

The string !$OMP (or C$OMP for f77) is used in every OpenMP
instruction; it tells the compiler that the line is not an ordinary
comment, but is OpenMP.

When the program reaches a parallel region, it may form multiple
threads. You can’t control exactly how many, but it will never be more
than is set in your environment.

Throughout that parallel region, the threads work as though they are
each running a separate copy of the code. If there are no more
OpenMP instructions, each thread will simply do the same thing, to the
same data.

26.2 Do loops

Having multiple threads do the same thing is not generally very useful.
To get any benefit from OpenMP, you have to have the threads do
different things: they have to ‘work share’.

The most widely applicable way to do this is to divide up the iterations
in a loop between the threads. You do this by including ‘!$OMP do’
before a do loop, and ‘!$OMP enddo’ directly after the loop.

Doing this will cause the compiler to divide the iterations of the loop as
evenly as possible between the threads. Each thread then only does
its share of the iterations, rather than all of them.

Figure 46 Parallelizing a do loop with OpenMP

!$OMP parallel
...
!$OMP do
do i = 1,10
 a(i) = i*0.2
enddo
!$OMP enddo
...
!$OMP end parallel

26.3 Parallelizing a single loop

If in some part of your code you only have a single do loop to
parallelize, and no other parallel constructs, it is more efficient to
combine the ‘!$OMP parallel’ and ‘!$OMP do’ instructions into the one
‘!$OMP parallel do’ instruction.

Note also that an OpenMP enddo is not necessary.

Figure 47 Parallelizing a single do loop

!$OMP parallel do
do i = 1,10
 a(i) = i*0.2
enddo ! parallel loop ends here

26.4 Avoiding synchronization

Just as in MPI, in OpenMP you can get synchronization.
Synchronization is where one processor has to wait for another. This
is inefficient.

In the do loop examples above any thread finished its iterations has to

50

wait at the end of the loop for all the other threads before continuing.

If you know that it is safe for the thread to continue without waiting
(i.e., the results will not be affected), you can use the ‘nowait’ keyword
to indicate this to the compiler.

Figure 48 Using ‘nowait’ to avoid synchronization

!$OMP parallel
...
!$OMP do
do i = 1,10
 a(i) = i*0.2
enddo
!$OMP enddo nowait
...
!$OMP end parallel

26.5 Scheduling iterations

In the default case, the compiler just assigns iterations of a parallel do
loop as evenly as possible to the different threads. This is known as
‘static scheduling’.

Sometimes, this may be undesirable. For example, if some iterations
involve much more calculation than others, some threads may finish
much earlier than others, and may have to wait.

You can override the default scheduling of iterations in OpenMP using
the ‘schedule’ keyword.

You can choose between ‘static’, ‘dynamic’, and ‘guided’.

‘static’ is the default, where iterations are distributed as evenly as
possible.

‘dynamic’ distributes a chunk of iterations to each thread, and when a
thread is finished, it goes back to ask for another chunk. This is good if
iterations are not evenly-balanced in terms of computation time.

‘guided’ is like ‘dynamic’, except the chunksize gets exponentially
smaller.

Figure 49 An example of scheduling a do loop

!$OMP parallel

...

! In the following loop, we use dynamic scheduling
! with a chunk size of 2. The chunk size parameter
! is optional.

!$OMP do schedule(dynamic,2)
do i = 1,10
 a(i) = i*0.2
enddo
!$OMP enddo

...

!$OMP end parallel

26.6 What is a race condition?

Because we have multiple threads which are all accessing the same
memory, it is possible, if you are not careful, that these threads will try
to change the same data at the same time.

This does not lead to a run-time error, but may lead to different results
each time the program is run. The results may depend on the order in
which the threads change the data, and because the speed of each
thread may be different in each run, the results may change between
runs.

This is called a ‘race condition’, because the results depend on a
‘race’ between threads.

51

Note that there is no problem if more than one thread ‘reads’ a
memory location. A problem can only arise if a memory location is
being ‘written’ by one or more threads.

OpenMP has several ways of avoiding race conditions.

Figure 50 Example of a race condition. Each thread attempts to update the
same j.

!$OMP parallel do
do i = 1,10
 do j = 1,5
 a(i) = i*0.2 + j*0.5
 enddo
enddo

26.7 Private and Shared

One way to avoid certain race conditions is to duplicate data. This is
the idea behind ‘private’ variables.

By default, all variables in a parallel region are ‘shared’. That means
there is only one copy of them, with all threads using that copy.

When you enter a parallel region, you can direct the compiler to make
some variables ‘private’. What this does is make a separate copy of
those variables for each thread.

These private variables are, by default, uninitialized upon entry to the
parallel region, and have an undefined value after the parallel region
has been exited.

Note that loop variables for parallel loops are automatically private.
(Otherwise, you would get a race condition in our earlier examples.)

If you do not explicitly give a variable the private or shared attribute, it
will take on the default. Usually this is ‘shared’.

You can change the default from ‘shared’ to ‘private’ by simply

including ‘default(private)’ at the start of the parallel region.

You can also choose ‘default(none)’. This assumes nothing, and you
are then forced to explicitly make every variable shared or private.
This can be useful for debugging.

Figure 51 Making variables private to avoid race conditions

integer i,j
real a(10),priv,sharedConst

priv = 0.0
sharedConst = 1.1
j = 10

!$OMP parallel private(j,priv) shared(sharedConst)

! priv has no definite value here
! j also has no definite value here
! sharedConst is still 1.1

!$OMP do
do i = 1,10 ! i is automatically private
 priv = i + 5.0
 do j = 1,5
 a(i) = i*0.2 + j*0.5 – priv + sharedConst
 enddo
enddo
!$OMP enddo

!$OMP end parallel

! priv has no definite value here
! neither does i or j
! sharedConst is still 1.1

52

26.8 Allowing variables to retain their values

We have just seen that if variables are made private in a parallel
region, they have no definite value upon entry to the region, or on
exiting the region. You can override this behavior.

If you want your private variables to all be initialized with the value of
the variable before entering the parallel region, you can use
‘firstprivate’.

If you want your variable after the parallel region to take on the value
that the variable would have had if the program were serial, you can
use ‘lastprivate’.

Figure 52 Using ‘firstprivate’ and ‘lastprivate’

integer i,j
real fpriv,lpriv,a(10)

fpriv = 5.0
lpriv = 1.0

!$OMP parallel private(j) firstprivate(fpriv) &
!$OMP lastprivate(lpriv)

! fpriv is still 5.0 here
! lpriv has no definite value here

!$OMP do
do i = 1,10
 do j = 1,5
 a(i) = priv + 1.
 enddo
 lpriv = i
enddo
!$OMP enddo

!$OMP end parallel

! fpriv has no definite value here
! lpriv is 10.0 here

26.9 Using locks

Sometimes a race condition can be more subtle than we have seen so
far.

For example, if you are using a variable ‘sum’ to accumulate a sum in
a loop, you may think you are safe.

Figure 53 A subtle race condition

sum = 0.0
!$OMP do
do i = 1,100
 sum = sum + a(i)
enddo
!$OMP enddo

Actually, when you run this code, you will have a race condition. The
reason is that the threads can race even within a single statement!

Say thread 0 got the value of ‘sum’ and ‘a(i)’ from memory, but before
it could add these and put the result back in ‘sum’, thread 1 updated
‘sum’ itself. Hopefully you can see that this will lead to the wrong result
for ‘sum’.

One way to avoid this is to use a ‘lock’. The basic idea is that once
one thread is in a ‘locked’ region, no other thread can enter until the
first thread has left it.

The most basic directive for getting a lock is ‘atomic’. When used, this
applies to one statement only, and allows only one thread at a time to
perform that statement.

53

Figure 54 Using atomic to prevent race condition

sum = 0.0
!$OMP do
do i = 1,100
 !$OMP atomic
 sum = sum + a(i)
enddo
!$OMP enddo

If you have more than one statement, you can use the ‘critical’
keyword.

Figure 55 Using ‘critical’ to ‘lock’ more than one statement

sum = 0.0
!$OMP do
do i = 1,100
 !$OMP critical
 sum = sum + a(i)
 sum = sum * 2.0
 !$OMP end critical
enddo
!$OMP enddo

Note that neither of the above examples will be efficient, because the
threads will have to take it in turn to go through the ‘locked’ code, but
the results will be correct.

This hopefully shows you how you can use locks, but, in practice, you
would use reduction to do the above examples (see next section).

26.10 Reduction

Often you will come across cases where you are summing something
in a loop, and you have a variable (e.g. ‘sum’) which you are using to
accumulate the result.

You would like to make this fast, and so avoid using the ‘lock’
approach above. Basically, you want each thread to be able to run

independently, rather than having to wait for other threads.

So you decide it would be good to have separate ‘sum’ variables for
each thread, i.e., you decide to use ‘private’. But wait... the private
variables lose their value before you exit the parallel section, so how
could you add them all up to get the total sum.

You can probably think of a way to do it using an extra shared
variable, but the most elegant way is to use a ‘reduction’.

This is quite a lot like the reductions we saw in MPI. You accumulate
some different results for each thread, and at the end you combine
these.

You can apply any arithmetic operation in the reduction. For example,
you can add things (i.e., sum), or multiply them, etc

The compiler creates private variables for you, initializing them,
accumulates the result for each thread, and at the end of the loop
combines them into one variable again.

Figure 56 Performing a sum with reduction

sum = 0.0
!$OMP parallel do reduction(+:sum)
do i = 1,100
 sum = sum + a(i)
enddo

Reductions only work for scalar variables; you can’t do it like this with
an array.

If you want accumulate multiple sums in an array, you will have to do
that manually. The next example shows you how you could perform a
matrix transformation of the second dimension of a rank 3 array.

There are some things in the example which have not been covered
yet. For example, the ‘single’ directive, and the OMP functions. Maybe
it is better to go forward and review these before you really try to
understand this example.

54

Figure 57 Using a temporary array for a matrix transform.

!$OMP parallel private(row,col,threadNum)

!$OMP single
allocate(sumArray(s1,s2,OMP_GET_NUM_THREADS()))
!$OMP end single

threadNum = OMP_GET_THREAD_NUM()

!$OMP do
do j = 1,s1
 sumArray(:,:,threadNum) = (0._KIND,0._KIND)
 do row = 1,s2
 do col = 1,s2
 sumArray(:,row,threadNum) = sumArray(:,row) + &
 matrix(row,col) * coeffs(:,col,j)
 enddo
 enddo
 coeffs(:,:,j) = sumArray(:,:,threadNum)
enddo
!$OMP enddo

!$OMP single
deallocate(sumArray)
!$OMP end single

!$OMP end parallel

26.11 Calling procedures from parallel regions

What happens if you call a procedure from inside a parallel region?

If you think of each thread calling it’s own copy of the procedure, you
can pretty much guess what will happen.

If you pass a shared variable to a procedure inside a parallel region, it
will also be shared in the procedure itself, i.e., all procedures will be
using the same variable.

Any global variables, such as module variables, are also shared,
because there is only one copy of them in the program.

Variables declared inside the procedure (i.e. local variables) are
created inside each thread’s copy of the procedure, so these are not
shared: they are private.

So basically you can call a procedure as you normally would, but be
careful if there are some global variables being written in the
procedure, or you are passing shared data to a procedure, because
then you could get a race condition!

26.12 Serial code in parallel sections

Sometimes in a parallel section a situation arises where you would like
only one thread to perform a certain block of code. For example, you
may need to allocate an array, and then you don’t want all threads to
allocate the array, because this would lead to an error.

OpenMP has a couple of ways of indicating that code should only be
performed by one processor. Note that these cannot be used in a
parallel do loop, they are for use in a parallel region but outside a
parallel do loop.

The ‘single’ directive indicates that the first thread that arrives should
carry out the code, but that all others should ignore the code and wait
at the end of the code block. You can allow the other threads to
continue without waiting by using ‘nowait’.

Figure 58 Using the ‘single’ directive

!$OMP parallel

!$OMP single
allocate(sumArray(10,10))
!$OMP end single

...

55

!$OMP single
deallocate(sumArray)
!$OMP end single nowait

!$OMP end parallel

A very similar directive is the ‘master’ directive. Only the master thread
(i.e., thread number 0) will perform the code in a master block. The
other threads go on without waiting.

Figure 59 Using the ‘master’ directive

!$OMP parallel

!$OMP master
call startTimer()
!$OMP end master

...

!$OMP master
call stopTimer()
!$OMP end master

!$OMP end parallel

26.13 OpenMP routines

OpenMP has several procedures which can be called to get certain
information, or to set an aspect of the environment. We’ll cover a few
important ones here, but there are routines for just about all aspects of
OpenMP.

One useful routine is OMP_GET_NUM_THREADS. This returns the
current number of threads in a parallel region.

Similar to this is OMP_GET_MAX_THREADS. This returns the
maximum number of threads that can be used, as set in the
environment. It can be useful if you want to declare an array for the
whole program, and one dimension depends on the number of
threads.

You can get the current thread number using
OMP_GET_THREAD_NUM. This returns a number between 0 (the
master) and OMP_GET_NUM_THREADS() –1.

Note that if you use these functions, and then try to compile your code
with a serial compiler, you will get link errors. You can easily get
around this by including wrapper routines for the OpenMP procedures.
You don’t have to write these yourself; they are given in an appendix
of the OpenMP documentation. The documentation is available at the
OpenMP web site (see next section).

26.14 More information on OpenMP

We haven’t covered all OpenMP constructs here, but we have
certainly covered all the ones that I have found useful in my work.

If you would like to know more, check out the OpenMP web site:
www.openmp.org

27. Day 3 Exercises

27.1 Array redistribution in MPI

Assume we have a rank 2 array of data. In an MPI program, we
decide to distribute this data over all processors, and we decide that
we will do this by evenly distributing the first dimension of the array.
So, if our array is a(1:n,1:m), then processor 0 has a(1:n/nprocs,1:m),
processor 1 has a(n/nprocs+1:2*n/nprocs, 1:m), etc. (We will assume
that n is exactly divisible by the number of processors, nprocs.)

Now assume that we need the data distributed not over the first
dimension, but over the second dimension of the array. Write MPI

56

code to accomplish this redistribution. You will need an extra array
which represents the redistributed ‘a’ array. You can do this any
number of ways. Consider using MPI_ALL_TO_ALL, or perhaps non-
blocking sends and receives, or even MPI_SENDRECV.

27.2 Reduction in MPI

(a) Determine the sum of all elements in the array ‘a’ in the above
exercise. Do this first using MPI_GATHER and MPI_BCAST, such that
all processors get the result of the sum. You should calculate the sum
of the elements on each processor separately, then gather them onto
one processor, sum the partial sums, and then broadcast the result.

(b) Next do it with MPI_ALLGATHER, avoiding the broadcast.

(c) Finally, do it with MPI_ALLREDUCE.

27.3 Do Loops with OpenMP

Add OpenMP statements to parallelize the following loops. Make sure
that you identify the variables that should be private. Try to reduce
synchronization as much as possible. (Hint: you may need ‘nowait’)

do i = 1,1000
 do j = 1,10
 const = dble(i)/dble(j)
 a(i,j) = const * b(j)
 enddo
enddo

do i = 1,1000
 do j = 1,5
 a(i,j) = a(i,j) * 0.1d0
 enddo
enddo

27.4 Avoiding race conditions

(a) The following code accumulates the sums of the second dimension
of an array for each index of the first dimension. The result is added to
array ‘sum’. Use OpenMP to parallelize the outer loop of this code.
When the program is run, the values in ‘sum’ must end up being the
same in the OpenMP code as in the serial code. (Hint: To avoid a race
condition, you will need to add a dimension to the temporary array.)

real,allocatable :: temp(:)
integer,parameter :: n = 1000, m = 2000
integer :: i,j
real :: array(n,m),sum(n)

sum = 1.155d0
allocate(temp(n))

temp = 0.d0
do j = 1,m
 do i = 1,n
 temp(i) = temp(i) + array(i,j)
 enddo
enddo

sum(:) = sum(:) + temp(:)
deallocate(temp)

(b) Use OpenMP to parallelize the inner loop of the above example.
To make the code efficient, you will need to use ‘nowait’. You will need
to restructure the code quite a bit.

57

28. Implementation Specifics

28.1 Make files

A makefile keeps track of the dependencies in your program. By using
a makefile, you can avoid recompiling your whole program when only
a small part of it really needs to be recompiled.

A makefile includes various default rules for compiling your code at the
beginning.

It then has a list of ‘dependencies’. This simply tells the ‘make’
program what to update if changes are made to a particular file.

You can also use macros in makefiles. These can be assigned values,
and used throughout the makefile. By using macros, you only have to
change a variable in one place, rather than all occurrences in your
makefile.

To compile your program you simply type ‘make’. Your makefile
should be called ‘makefile’ or ‘Makefile’.

By default, make just tries to compile the first dependency it comes to.
You should make this your standard executable.

A dependency line consists of a file name, followed by a colon, and
then the names of the files it depends on. For example, ‘main.o: main.f
another.o’ means that the file main.o depends on main.f and
another.o. If either main.f or another.o change, main.o will be
recompiled.

The line continuation character in a make file is a backslash.

You can add shell commands after any dependency line. These are
the commands used to update the file. Note, you must put a TAB
before any command.

You can also add ‘phony targets’. These can be invoked by typing
‘make phony_target_name’. For example, it is standard to have one
phony target called ‘clean’, which removes any executables and object
files (see example). A phony target does not depend on any other

files; it just has shell commands.

Figure 60 A sample makefile.

this is a macro
OBJECTS = WaveFunction.o FluxAnalyzor.o CoherentStateFunc.o \
 EckartPES.o SplitOpPropagator.o FourierGrid.o

#
this is the default rule for creating a .o file from a .f
#
The $< means to substitute the name of the first file depended
upon (files that are depended upon are called ‘prerequisites’).
#
.f.o:
 f90 -64 -freeform -O3 -c $<

onedim.x: $(OBJECTS) main.o
 f90 -64 -o onedim.x $(OBJECTS) main.o -lscs

main.o: main.f $(OBJECTS)
FourierGrid.o: FourierGrid.f
EckartPES.o: EckartPES.f
CoherentStateFunc.o: CoherentStateFunc.f
WaveFunction.o: WaveFunction.f FourierGrid.o \
 CoherentStateFunc.o \
 EckartPES.o
SplitOpPropagator.o: SplitOpPropagator.f WaveFunction.o
FluxAnalyzor.o: FluxAnalyzor.f WaveFunction.o \
 CoherentStateFunc.o

clean:
 rm *.o *.mod *.x

28.2 IBM SP2 Considerations

In order to compile MPI code on the SP2, you need to use the mpxlf90
command. This is simply a shell script which, after linking in the
appropriate MPI libraries, calls the standard xlf90 compiler.

58

If you want more information about MPI, or the IBM parallel
environment, there is lots of documentation in the directory:
/usr/lpp/poe.pedocs

The scientific library to use on the IBM SP2 is the ESSL library.
Documentation on this can be found in: /usr/lpp/essl

Figure 61 Recommended compile options for the IBM SP2

For debugging mpxlf90 -qflttrap=ov:zero:inv:en
-qsigtrap -qfixed -g -C -qarch=pwr2
-lessl

Fully optimized mpxlf90 -qfixed -O3 -qarch=pwr2 -lessl
Free format Replace –qfixed with -qfree

To run a program on the SP2, you can either run it interactively using
the ‘poe’ command, or submit it to the queuing system: loadleveller.
Either way you need to use ‘poe’, the ‘parallel operating environment’
to run the MPI program.

To use ‘loadleveller’, you need to make a .cmd file. This has various
details about setting up the parallel environment, such as the number
of processors to use, if the program is parallel or serial, etc. To learn
more about writing a .cmd file, read the poe guides in the
documentation directories on the SP2.

Figure 62 A sample .cmd file for using loadleveller

#@ executable = /usr/bin/poe
#@ arguments = executable_file -euilib us -pulse 0
#@ job_type = parallel
#@ requirements = (Adapter == "hps_user")
#@ preferences = (Machine == {"sp2n13" "sp2n14" "sp2n15" "sp2n16"})
#@ class = plong
#@ output = job.o
#@ error = job.e
#@ file_limit = unlimited,unlimited
#@ core_limit = unlimited,unlimited
#@ data_limit = unlimited,unlimited
#@ stack_limit = unlimited,unlimited

#@ min_processors = 6
#@ max_processors = 6
#@ queue

Having written a command file, submit it using ‘llsubmit file_name.cmd’

‘llq’ is a command to view the current loadleveller queue, and ‘llstatus’
shows the status of the various processors in the system.

28.3 SGI Origin Considerations

To compile an MPI program on the SGI, you need to link in the MPI
library, using ‘-lmpi’. Note that you may need to load the mpt module
first. If that is the case, you should put ‘module load mpt’ somewhere
in your shell resource file (e.g., .cshrc, .profile).

To compile an OpenMP program, you need to include the flag ‘-mp’,
both for compilation and linking.

The SGI scientific library is SCSL. You can link this in using ‘-lscs’. For
OpenMP programs, use ‘-lscs_mp’. Note that you need to ensure that
the appropriate module is loaded first. You may need to add ‘load
module scsl’ to your resource files. The NAG library is also available
on the SGI system.

Figure 63 Recommended compile options for the SGI Origin computers

Debug f90 -DEBUG:trap_uninitialized=ON -g -C
Fully
optimized

f90 -O3

MPI Link in –lmpi
OpenMP Add –mp option

To run an MPI program on the SGI Origin systems, it is necessary to
use ‘mpirun’. This command takes the number of processors as an
option. Set this with ‘-nt num_procs’.

There are many environment variables on the SGI. You set these in

59

your jobs to control how your parallel programs run. To learn more
about the environment variables, type ‘man ENVIRONMENT’.

Figure 64 Some important environment variables

The maximum number of OpenMP threads. OMP_NUM_THREADS
Whether or not the number of threads can change
in time (TRUE) or is fixed (FALSE).

OMP_DYNAMIC

