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Preface to the second edition

I am very pleased that my thesis has encountered high attention by X-ray reflectivity fans; nearly
one hundred copies have been distributed since March 1997 until July 1999. Since there are no
more paper copies available and the microfiche version is not so much attractive, I decided to
release the postscript version of the thesis on my web page so that anybody interested can print
it.

This version differs from the original version from March 1997 in the following:
e the preface you are currently reading has been added,
e few typos from the first version of the thesis have been corrected (see the web page of the
thesis for their list),
e abstracts on the last page have been added.

I would like to mention the following two notes here:

e The grating truncation rods are called just “truncation rods (TR)” in this thesis, while
in our later publications they are called “grating truncation rods (GTR)” in order to
distinguish them from “crystal truncation rods (CTR)”.

e The Fresnel coefficients for rough multilayer gratings with gaussian roughness are damped
by a simple exponential form similarly to those for planar multilayers — see P. Mikulik and
T. Baumbach, X-ray reflection by rough multilayer gratings: Dynamical and kinematical
scattering, Phys. Rev. B 59, 7632 (1999).

Enjoy well the reading!

Petr Mikulik
Brno, November 1999

e-mail: mikulik@physics.muni.cz

Related web pages:
my personal page: http://www.sci.muni.cz/ mikulik/
web page of the thesis: http://www.sci.muni.cz/ mikulik/Thesis/
web page of my publications: http://www.sci.muni.cz/ mikulik/Publications.html
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Introduction

Les progres récents dans les techniques de croissance ont rendu possible I’'élaboration de struc-
tures de faible dimensionalité telles que les films minces (multicouches planaires), les structures
mésoscopiques et les nanostructures (réseaux périodiques latéralement et en multicouches, fils
et points quantiques). Ces matériaux trouvent des applications en électronique et en optique.

L’optimisation des procédés de fabrication et la compréhension des propriétés physiques de
ces échantillons nécessitent des méthodes d’analyse structurale non destructives. Complémen-
taires aux méthodes directes de sondes locales, comme la microscopie a force atomique, les tech-
niques de diffusion élastique des rayons X permettent de sonder localement I’'espace réciproque,
fournissant ainsi des informations sur les propriétés statistiques des parameétres structuraux
moyennés sur de grands volumes d’échantillon.

De nos jours, le développement des méthodes de diffusion des rayons X est favorisé par
I’avancée technologique considérable des équipements comme les dispositifs & cristal multiple
qui permettent d’obtenir une bonne précision dans I'espace réciproque. En plus des sources de
rayons X conventionnelles ou & anode tournante, courantes dans les laboratoires, les nouvelles
sources de radiation synchrotron tres intense ont permis I’étude d’objets de basse dimensionalité
a faible pouvoir de diffraction ainsi que les processus de diffusion diffuse de faible intensité.
En plus du domaine dynamique accru de l'intensité mesurée et d’un faisceau trés paralléle,
les synchrotrons permettent aussi d’ajuster la longueur d’onde et de changer le contraste des
constituants de 1’échantillon.

La réflectivité des rayons X (XRR), spéculaire et non spéculaire, est une méthode pra-
tique pour I'étude structurale des multicouches cristallisées ou amorphes. Elle est sensible a
la distribution de l'indice de réfraction dans I’échantillon. La réflectivité étudie la diffusion &
petits angles autour de l'angle critique de réflexion totale et fournit la carte de distribution
de lintensité diffusée au voisinage de 'origine du réseau réciproque. Ainsi la technique XRR,
pour I’étude des propriétés cristallines est complémentaire des diverses méthodes de diffrac-
tion de rayons X comme la diffraction conventionnelle symétrique et asymétrique, la diffraction
fortement asymétrique plus élaborée et la diffraction en incidence rasante.

Le présent travail est consacré a I’étude par réflexion des rayons X de multicouches planaires
ou structurées latéralement.

En premiére approximation, l'intensité diffusée par un échantillon est proportionnelle au
carré du module de la transformée de Fourier de la densité électronique. A partir du réseau de
I’'intensité mesurée, on peut déduire le profil de la densité électronique et par suite les propriétés
verticales (épaisseurs de couches) ou latérales (rugosités, corrélations dans les interfaces ou
structure latérale des couches) caractérisant les multicouches. Aussi la technique XRR est
utilisée non seulement pour ’étude des multicouches planaires classiques, mais permet aussi
de révéler les propriétés de différentes sortes d’échantillons latéralement structurés comme les
réseaux ou de multicouches déposées sur des substrats inclinés ou de couches avec des structures
en ilots.

J’ai développé plusieurs approches pour traiter les théories de la réflectivité des rayons X et
résoudre I’équation d’onde par différentes méthodes. La principale approche s’apparente a celles
de l'optique dans le visible avec pour changement un indice de réfraction voisin de 1 dans le
cas des rayons X. Les autres traitements viennent de la diffraction des rayons X par les cristaux
(la théorie cinématique de la diffusion) et de la mécanique quantique (’approximation de I'onde
déformée de Born).

Les théories dynamiques donnent des solutions rigoureuses aux probléemes étudiés. Cepen-
dant, elles ne sont habituellement pas bien adaptées pour une compréhension physique qualita-
tive des résultats calculés. Pour cette raison, je développe plusieurs théories approchées de XRR
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qui expliquent facilement les phénomeénes de diffusion et fournissent des algorithmes de calcul
rapides numériquement. Mais les régions de validité des approximations considérées doivent étre
déterminées.

Les théories de diffusion des rayons X étudiées dans ce travail comprennent la théorie cinéma-
tique, 'approximation de 'onde déformée de Born, la théorie dynamique et diverses approxima-
tions de la théorie dynamique, comme 'approximation a une réflexion unique, 'approximation
a onde multiple et 'approximation & deux ondes.

Dans les différentes théories faites, les auteurs utilisent des notations différentes rendant ainsi
difficile une comparaison directe entre les différentes approches théoriques. Aussi l'originalité de
ce travail est de traiter différentes théories dans un formalisme unique qui permet, d’une maniére
solide et phénoménologique, 1’étude, la comparaison et la discussion des régions de validité de
toutes les théories traitées. Par exemple, j’ai montré que les coefficients de Fresnel, bien connus
dans la réflectivité optique sur des multicouches planaires, ont leurs équivalents dans la théorie
cinématique et peuvent étre généralisés dans le cas de la réflectivité sur des réseaux. Je montre
aussi 'avantage d’un formalisme matriciel dans les théories dynamiques. Enfin j’introduis dans
la XRR le concept de la représentation graphique des phénomeénes de diffusion au moyen de la
construction d’Ewald.

Maintenant, je vais brievement exposer le plan de cette these. Tout d’abord je fais un rappel
des caractéres fondamentaux de espace réciproque, avec les formules de correspondance entre
les rotations angulaires effectuées durant les mesures et les balayages associés dans 'espace
réciproque.

Ensuite, je traite la réflectivité spéculaire sur des multicouches planaires. Je développe la
théorie dynamique habituelle a partir de laquelle I'approximation & une diffusion unique est
déduite. La théorie cinématique est traitée ensuite par la méthode de la phase stationnaire
et les coefficients de réflexion de Fresnel qui sont déduits sont comparés a ceux de la théorie
dynamique. J’applique ces théories pour expliquer la courbe de réflectivité spéculaire d’une
multicouche quasipériodique de Fibonacci.

Dans le chapitre suivant, j’étudie la réflectivité spéculaire et non spéculaire sur des multi-
couches planaires rugueuses. Les interfaces planes traitées dans le précédent chapitre dans les
théories dynamique et cinématique sont reformulées de maniere & tenir compte des propriétés
statistiques des interfaces rugueuses de fagon aléatoire. J’ai appliqué ceci pour 'ajustement
des courbes expérimentales. J’ai traité aussi la diffusion diffuse en employant I'approximation
de I'onde déformée de Born. Les principaux caractéres de la diffusion diffuse incohérente sont
briévement présentés par des mesures.

La principale partie de ce travail est consacrée a I’étude de la réflectivité des rayons X sur
des réseaux de multicouches. A l’aide du formalisme et de la notation précédemment intro-
duits, je résouds le probléeme par la théorie cinématique, I'approximation de 'onde déformée
de Born et la théorie dynamique exacte. Les approximations de I’onde multiple et en particu-
lier ’approximation & deux ondes ont été déduites de la théorie dynamique. J’ai comparé ces
théories de facon analytique et numérique essentiellement dans le cas de réseaux a courte pério-
de. Le but est de montrer dans quelles conditions les théories approchées de diffusion unique
donnent des résultats corrects, et dans quelles régions les effets dynamiques de diffusion multi-
ple Pemportent. Aussi I'intérét principal d’une telle étude méthodologique est pour les théories
de diffusion elles-mémes et non pas pour l'optimisation de la structure des échantillons en vue
d’applications particuliéres.

Enfin, j’ai traité la diffusion par des réseaux rugueux. Les imperfections de structure qui
existent dans les réseaux de multicouches sont prises en compte, y comprises la rugosité des
interfaces et celle des parois des réseaux. Le formalisme proposé est capable d’intégrer facilement
ces effets a la fois dans les théories dynamique et cinématique.



Introduction

Recent progress in the growth techniques makes it possible to fabricate low-dimensional
structures, like thin films (planar multilayers), mesoscopic structures and nanostructures (lat-
eral surface and multilayer gratings, quantum wires and quantum dots). These elements find
applications in electronic and optical devices.

Optimization of the fabrication process and the physical understanding of the samples re-
quires non-destructive structural studies of the samples produced. Complementary to the direct
local probing methods (i.e., AFM microscopy), the X-ray elastic scattering methods probe lo-
cally the reciprocal space, thus providing information about the statistical properties of the
structural parameters averaged over a large volume of the sample.

Nowadays, the development of X-ray scattering methods is encouraged by advanced technical
equipment being widely available, like the multiple crystal arrangements enabling good precision
in reciprocal space to be obtained. Further, complementary to the conventional or rotating
anode laboratory sources, new high-intensity synchrotron radiation sources are advantageously
involved in studies of low-dimensional objects whose diffraction power is small, as well as in
the studies of low-intensity diffuse scattering. In addition to the improved dynamical range
of measured intensity and highly parallel beam, synchrotrons also provide the possibility of
wavelength tuning, thus changing the contrast of the sample constituents.

X-ray reflectivity (XRR), including both the specular X-ray reflection (SXR) and non-
specular X-ray reflection (NSXR), is conveniently applied for the structural studies of both
crystalline and amorphous multilayer samples. It is sensitive to the distribution of the refractive
index in the sample. It studies the scattering at small angles around the critical angle of total
external reflection, and it maps the distribution of the scattered intensity around the origin
of the reciprocal space. Thus XRR is complementary to miscellaneous X-ray diffraction meth-
ods, namely the conventional symmetric and asymmetric X-ray diffraction, the more elaborate
highly asymmetric diffraction, and the grazing incidence diffraction, which study the crystalline
properties.

The present work is devoted to the X-ray reflection studies of multilayered samples, either
planar or laterally structured.

In a rough approximation, the intensity scattered by a sample is proportional to the square
of modulus of the Fourier transform of the electron density. Thus the electron density profile
can be deduced from the measured intensity pattern, and subsequently the vertical properties
(layer thicknesses) as well as the lateral properties (roughnesses and correlation properties of
interfaces or lateral layer structure) characterizing multilayers can be determined. Therefore
XRR is now being applied not only to the usual planar multilayers, but also to reveal the
properties of various kinds of laterally structured samples, for instance gratings, multilayers
grown on inclined substrate surfaces or layers with random island structures.

Several approaches for treating the theories of X-ray reflectivity are developed, solving the
wave equation by various methods. The main approach comes from the usual optics of visible
light, which is modified for X-rays since the index of refraction is near unity. The other treat-
ments proceed from X-ray diffraction from crystals (the kinematical theory of scattering) and
from quantum mechanics (the distorted-wave Born approximation).

The dynamical theories give rigorous solutions to the studied problems. However, they
are usually not well suited for a qualitative physical understanding of the calculated results.
Therefore I develop several approximative theories for XRR that explain easily the scattering
phenomena and provide rapid algorithms for numerical calculation. On the other hand, the
regions of validity of the approximations involved have to be determined.
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In particular, the X-ray scattering theories studied in this work comprise the kinematical the-
ory, the distorted-wave Born approximation, the dynamical theory and various approximations
of the dynamical theory, like the single-reflection approximation, the multiple-beam approxima-
tion and the two-beam approximation.

Apart from the use of different approximations, also different notation is used by various
authors, making a direct comparison of the theoretical approaches difficult. Therefore, one
particular aim of the present work is to treat different theories using a uniform formalism that
will enable the regions of validity of all treated theories to be studied, compared and discussed
in a consistent and methodological way. For example, I show that the Fresnel coefficients,
well-known from the optical reflectivity from planar multilayers, have their counterparts in the
kinematical theory, and that they can be generalized in the case of reflectivity from gratings.
I also show the advantage of the matrix formalism for the dynamical theories. In addition, I
introduce into XRR the concept of the graphical representation of the scattering phenomena by
means of the Ewald construction.

Now I briefly outline the structure of the presented thesis. In the first part, I deal with the
basic characteristics of the reciprocal space. Relations providing the connection between the
angular rotations during an experiment and the appropriate scans in the reciprocal space are
provided.

Further, the specular reflectivity from planar multilayers is discussed. The usual dynamical
theory is developed, from which the single-reflection approximation is derived. The kinematical
theory treated by the stationary-phase method is discussed afterwards and the derived kinemat-
ical Fresnel reflection coefficients compared to the dynamical ones. The theories are applied to
explain the specular reflectivity curve of a quasiperiodic Fibonacci multilayer.

Specular and non-specular X-ray reflectivity from rough planar multilayers are studied in
the following chapter. Both the dynamical and kinematical theories for flat interfaces treated
in the previous chapter are reformulated in order to cover the statistical properties of randomly
rough interfaces. The application to fitting the experimental curves is demonstrated. The
diffuse scattering is dealt with as well, for which the distorted-wave Born approximation is
employed. The main features of the incoherent diffuse scattering are briefly presented from the
measurement.

The main part of the work is devoted to the study of X-ray reflectivity from multilayer
gratings. Following the general formalism and notation introduced in the previous chapters, the
problem is solved by the kinematical theory, distorted-wave Born approximation and rigorous
dynamical theory. Multiple-beam approximations, mainly the two-beam approximation, are
derived from the dynamical theory. These theories are compared analytically and numerically,
addressing mainly the short period gratings. The aim is to show the conditions under which
the approximate single-scattering theories give correct results, and which are the regions where
dynamical effects of multiple scattering prevail. Therefore the main interest of such a method-
ological study is given to the scattering theories themselves, and not to the optimization of the
sample structure for particular applications.

The scattering from rough gratings is treated afterwards. The real structural imperfections
of multilayer gratings are taken into account, comprising the roughnesses of the interfaces and
of the side walls of the grating shapes. The proposed unified formalism enables these effects to
be easily incorporated into both the dynamical and the kinematical theories.
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Résumé

Dans ce chapitre nous nous intéressons & la notion d’espace réciproque et a la géométrie des
expériences de diffusion des rayons X. Nous définissons les angles qui décrivent I’orientation du
faisceau incident et des vecteurs d’onde diffusés par rapport a I’échantillon mesuré. Au cours
d’une expérience, nous faisons varier I'orientation du faisceau incident et des vecteurs d’onde
diffusés par rotations de I’échantillon et du détecteur, montés sur un goniomeétre. Nous donnons
les formules de correspondance entre les angles et les coordonnées dans 'espace réciproque.

Nous tragons l'intensité diffusée par I’échantillon en fonction du vecteur de diffusion, dif-
férence entre le vecteur d’onde incident et le vecteur d’onde diffusé. Nous obtenons ainsi une
carte dans I’espace réciproque de I'intensité diffusée.

Nous utilisons la construction d’Ewald, trés utile pour une représentation des conditions de
diffusion dans I’espace réciproque, pour tracer les vecteurs d’onde impliqués dans ces processus.
Elle nous permet de comprendre comment la géométrie coplanaire des expériences nous limite
la zone d’exploration possible de I’espace réciproque, pour une longueur d’onde donnée.
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2.1 Introduction

In this chapter we deal with the notion of the reciprocal space and with the geometry of X-
ray scattering experiments. We introduce the angles describing the orientation of the incident
and scattered wave vectors with respect to a measured sample. Running an experiment, we
change the orientation of the incident and exit wave vectors by rotating the sample and the
detector on the goniometers. The reciprocal space is explored in scans related to the goniometer
movements. We provide useful formulae for the transition between the angular and the reciprocal
space coordinates.

We plot the intensity scattered by the sample versus the scattering vector, which is the
difference of the scattered and incidence wave vectors. This gives us a reciprocal space map of
the scattered intensity.

We use the Ewald construction as a very convenient tool to represent the scattering conditions
in the reciprocal space by tracing the wave vectors involved in the scattering processes. Tt
also shows how the reflection geometry of the experiment limits the accessible region of the
reciprocal space that can be explored in coplanar scattering geometry by a radiation with a
given wavelength.

2.2 Reciprocal space and angular representations

Let us suppose a typical X-ray scattering experiment, Fig. 2.1. An incident monochromatic
plane wave propagating with the vacuum wave vector K, irradiates the sample surface. The
detector measures the intensity scattered into a direction K5. Since we suppose elastic scattering
processes, the lengths of both wave vectors are the same, |K;| = |Ks| = 2w /), where X is the
vacuum wavelength. For a given wavelength, the scattering process K; — Kj is characterized
by the scattering vector (or the wave vector transfer) Q = Ko — Kj.

If we plot the wave vectors in real space, Fig. 2.1, then they show us the direction of propa-
gation. We note that the dimension of the real space are metres [m], whereas the dimension of
wave vectors are reciprocal metres (or more frequently for X-rays, reciprocal Angstroms [A~1]).
Therefore we naturally plot wave vectors in reciprocal space as it is shown in Fig. 2.2. The
reciprocal space drawings allow us a very illustrative and convenient graphical representation
of the phenomena of the propagation of the scattered waves. The idea of the reciprocal space
has been introduced by Ewald in the early stage of the dynamical theory of X-ray diffraction
[CJK92].

The scattering geometry is given by the angles which the incident and exit wave vectors
make with a given coordinate system. We deal with the experiments on layered and laterally
large samples. Therefore we choose the coordinate system of the real space so that the axes
&,y are parallel to the sample surface and the axis 2z is the inner surface normal, Fig. 2.1.
Similarly we choose the coordinate system of the reciprocal space. The waves (i.e., the reflected
and diffracted-reflected waves in our terminology) that can be experimentally measured in the
reflectivity experiments (in the so-called Bragg geometry) propagate above the sample surface.
Therefore they are scattered from the transmitted wave by the wave vector transfer @ having
the negative component ,. For this reason we plot the reciprocal space drawings with the axis
—(@Q, pointing up (parallel to the outward surface normal).

The coordinates of the incident wave vector are given by the angle of incidence 61 and the
azimuthal angle @1 (Fig. 2.1)

K, = (K1, K1y, K1) = K(cos 6 cos g1, cosbsingg, sinf;) . (2.1a)
Similarly, the outgoing wave vector coordinates are
K, = (Ko, Koy, Ko,) = K(cos 63 cos g3, cosbysingy, —sinbs) . (2.1b)

If the sample is laterally homogeneous, the scattering acts only in the plane of incidence (defined
by K; and the surface normal n) and it is convenient to omit the § components (¢; = w9 = 0)
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Figure 2.1. Real space representation of a scattering experiment. (a) Definition of the angle of incidence
0: and the azimuth ¢, of the incident wave K;. (b) Sketch of an experimental arrangement in the
coplanar geometry (here a triple-axis diffractometer). The setup of source, monochromator, slits, and
the wavelength determines the direction of the incident wave K;. The setup of the slits, analyser and
detector defines the direction of the exit beam K,, those intensity is measured. @ is the wave vector
transfer and 260 is the scattering angle.

which are zero. This scattering geometry is called the coplanar geometry and it allows us to
deal with the & and 2z components only, Fig. 2.1(b),

K, = (Ki;, Ki,) = K(cosf, sinb) (2.2a)
KQ = (Kgx,ng) = K(COS 02, —sin6‘2) . (22]:))
In the most part of this report we work in the coplanar geometry because of dealing with
the laterally homogeneous samples. The need of the third coordinate g will arise in the non-
coplanar reflection geometry in the study of the scattering from laterally inhomogeneous samples
(gratings, Ch. 5).
The scattering vector @ of the scattering process K; — K is
Q =K, — K, = K(cosfy — cosfy, sinfy + sinf)
01 — 69 0, — 92> (2.3)
, 08

— 2K sin(20/2) <sin

and its length is | Q| = 2K sin(260/2), where 26 is the scattering angle, Fig. 2.1(b).
The scattering process is described by any pair of the variables Q;, @, 01, 60>. The reversed
relations transforming @ into the pair (01, 65) are

0, = atan @a — asin @
_Qz 2K
(2.4)
@, = atan @z + asin @ .
—Q, 2K

Now we discuss which part of the reciprocal space can be explored by X-rays with a given
wavelength, Fig. 2.2. We plot the end-point of the incident wave vector K; at the origin O of the
reciprocal space. The beginning point S is given by the angle of incidence and the wavelength
A. If we plot the exit wave vector from the point S, then its end-point has to lie on the Ewald



2.2 Reciprocal space and angular representations 13

Figure 2.2. Coplanar scattering geometry drawn in a two-dimensional section of a three-dimensional
reciprocal space.

sphere IC with the radius K = 27/A. We note that the intersection of the Ewald sphere with the
plane of incidence is now the “Ewald circle”. However, we keep the name of the “Ewald sphere”.
A change of the angle of incidence moves the point S along the sphere Kg and the end-point of
the scattering vector along IC,,. A change of the detector position changes the scattering angle
20 and it moves the end-point of Ky along the Ewald sphere K. For reflection experiments,
the angles of incidence and exit have to be positive, therefore we cannot go below the limiting
Ewald spheres K; and Ky, for which the angle of incidence and exit is zero, respectively. Further,
the maximal wave vector transfer appears for Ko = —K; and therefore we cannot explore the
reciprocal space beyond the sphere Ky, of the diameter 47 /).

The accessible region of the reciprocal space that can be explored in the coplanar geometry
with a radiation with fixed wavelength is shown in Fig. 2.3 by the shaded area. This is shown
in a coplanar case; for a true 3d picture of I(Qs, @y, Q) we should imagine that the circles
are spheres. The X-ray reflectivity method, which is studied in the present work, explores the
intensity distribution around the origin O of the reciprocal space. The collected data, i.e., the
intensity vs. the reciprocal space coordinates, we call reciprocal space mapping of the scattered
intensity. In this work, these two-dimensional maps (see Figs. 4.13, 5.12, 5.23 for instance) are
plotted by the program pm3d written by the author of this thesis.!

Since the index of refraction of X-rays is close to unity, X-ray reflectivity experiments take
place near the origin of reciprocal space, where the angles of incidence and exit are small. The
wave vector transfer is approximately

Q ~ K ((67 —03)/2, (01 + 6)) = K (—26(26 — 2w) /2, —26) (2:5)
and it is small compared to the incidence and exit wave vectors |Q| < K = |K;| = | K.
The reversed relations under this small-angle approximation are
91 _Qz + Qa: w = _Qz + Qa:
2K —Q, 2K —Q, (2.6)
0 — _Qz . Qx 20 — _Qz
2 2K —Q, K

'Tt is available at the WWW page http://www.sci.muni.cz/ mikulik/. This program is free software and it
is distributed under the GNU General Public License.
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L[] L] L[] ] ] ] L[]

Figure 2.3. Reciprocal space of a crystalline sample. The shaded region is accessible in the coplanar
geometry for a fixed wavelength. The abbreviations refer to different X-ray scattering techniques available
for exploring different parts of the reciprocal space: XRR (X-ray reflectivity), XRD (X-ray diffraction),
HAXRD (highly asymmetric X-ray diffraction), GID (grazing-incidence X-ray diffraction, a non-coplanar
technique).

We describe the scattering geometry in the “angular space” either by the pair of the incidence
and ezit angles 61,0, or by the pair of the incidence and scattering angles w = 01,260 = 61 + 0-.
The latter pair is preferred when performing the experiments, and the incidence angle is referred
to the sample or rocking angle, while the scattering angle is referred to the detector angle (the
angle between the primary beam and the line sample—detector). Another convention employed
mainly in non-coplanar scattering geometries uses the notation of «a;, s instead of 61, 5.

2.3 Experimental scans in the reciprocal space

When we perform an experiment, we change the diffractometer setup in order to change the angle
of incidence and the scattering angle. Most of the movement is done by rotating goniometers
with sample, monochromator and analyzer crystals or slits mounted on them. According to
a motor movement, we drive in the reciprocal space along a one-dimensional scans, i.e., along
a certain path. Fig. 2.4 shows some typical scans passing through an arbitrary point in the
reciprocal space.

Running an experiment, we have direct access to the following elementary angular movements
of the diffractometer setup:

w-scan (rocking scan). We rock the sample keeping the detector position 26 fixed. The mea-
sured points lie on the circle along the origin of the reciprocal space.

In the coplanar reflection geometry, the measured points can fill the region of w € [0;26)].
In X-ray reflectivity, this scan goes nearly parallel with the ();-scan. The w-scan crosses

a truncation rod @, (i.e., the line parallel to the axis @, at given Q,) at w = % +

asin H(si?f%’ which approximates to w = % + 1?50 for small angles.

260-scan (detector scan). We fix the sample position at w and rotate the detector. The points
on the 26-scan lie on inclined Ewald sphere with the origin in the beginning of the vector
K;.

In the coplanar reflection geometry, this scan starts at the position 20 = w and ends at
the intersection of the Ewald sphere K and the limiting Ewald sphere KC;, Fig. 2.2.
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The 26-scan crosses a truncation rod @, for 20 = w + arccos (cosw + Q,/K), which

approximates to 20 = w + \/w? — 2Q, /K for small angles.

¢-scan (azimuthal scan). We rotate the sample about its surface normal. Fig. 2.4 would be
rotated about the @, axis.

Combining the elementary angular rotations we can perform the common reciprocal space
scans:

specular scan. We change both the angle of incidence and the detector angle keeping their
ratio 26 /w = 2 fixed. This scan starts at the origin of the reciprocal space and it explores
the intensity along the axis @),.

Qx-scan. We change both the angle of incidence and the detector angle keeping the component
Q. of the wave vector transfer constant.

In the coplanar geometry, the starting point of this scan follows the condition (K —|Q|)?+
Q? = K2, therefore it starts at Q, = i(K — K2 — Qg) In the half-space Q, < 0 the

angular positions of the starting point are (w,26) = (0,asin —Q,/K), on the side Q, > 0
they are (01,02) = (asin—Q,/K,0). For small angles this approximates to (w,26) =
(0,-Q,/K) for Q; < 0 and (w,6s) = (—Q,/K,0) for Q, > 0.

Q@ ,-scan. We change both the angle of incidence and the detector angle while keeping @, of
the wave vector transfer constant.

In the coplanar geometry, the starting point of this scan follows the condition (K —|Q|)?+
Q? = K2, therefore it starts at |Q,| = /2K|Q.| — Q2. In the half-space Q, < 0 the
angular positions of the starting point are (w,20) = (0,acos (1 + Q,/K)), on the side
Qg; >0 they are (01,62) = (acos (1 — QI/K) 0). For small angles this approximates to

(w,20) = (0,/—2Q;/K) for Q, <0 and (w,s) = (1/2Q,/K,0) for Q, > 0.

offset scan. This scan is a line in the reciprocal space pointing towards the origin. We perform
this scan by going from an angular offset w/26 # 1/2 with the step of Aw/A26 =1/2.

().-scan
offset scan
A_QZ
specular scan
() z-scan
K : w-scan
— 2 —
< 20-scan _
~ -~
~ -
S s
02 \ Q\
--L-- N
260 /
K, L/
\ lJ
w = 91
O Qx

Figure 2.4. Drawing of the reciprocal space scans.
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Résumé

Dans ce chapitre, nous traitons les processus fondamentaux qui interviennent dans la réflectivité
spéculaire des rayons X sur des échantillons avec des interfaces parfaitement planes. En partant
des équations de Maxwell, nous en déduisons I’équation d’onde, la relation de dispersion et les
solutions des ondes planes. La présentation de ces résultats de base bien connus nous a permis
d’établir un formalisme général que nous utiliserons dans tout ce travail pour des approches
théoriques plus sophistiquées. Ensuite, nous nous intéressons a I'indice de réfraction des rayons
X, parametre du matériau qui détermine toutes les expériences de diffusion.

Dans la partie suivante, nous étudions les théories applicables au calcul de 'amplitude de la
réflectivité. A partir des conditions de continuité entre les ondes a I'interface, nous obtenons les
expressions des deux lois de base de I'optique : la loi de la réflexion et la loi de Snell. Nous en
faisons une représentation graphique au moyen de la construction d’Ewald. La dérivation de ces
formules conduit aux coefficients de Fresnel. La faible valeur négative de la susceptibilité est la
principale cause de la différence existant entre I'optique X et Poptique classique (dans le visible) :
la réflectivité totale externe a lieu pour tous les matériaux, les coefficients de Fresnel diminuant
brutalement au-dessus de I'angle critique ; aussi 'intensité réfléchie n’est mesurable que dans le
domaine des faibles angles d’incidence (mesurés par rapport a la surface des échantillons).

Nous formulons alors la théorie dynamique de la réflexion sur des matériaux en strates au
moyen de formalismes de matrices et de récurrence. Nous obtenons aussi les formules des ampli-
tudes des champs électriques de 'onde a l'intérieur de la multicouche ; nous verrons leur impor-
tance plus tard dans I’approximation de I'onde déformée de Born. Les principaux avantages du
formalisme matriciel introduit dans ce chapitre seront démontrés dans ’étude de la réflectivité
par des réseaux en multicouches ol nous pouvons généraliser les coefficients de Fresnel, initiale-
ment définis pour la réflexion sur des interfaces planes. Nous trouvons que dans le cas ou les
intensités réfléchies sont faibles, la théorie dynamique peut étre remplacée par 'approximation
d’une réflexion simple. Cette approximation calcule 'amplitude de I'onde réfléchie comme la
somme des contributions des ondes diffusées une seule fois & chaque interface, de telle sorte
qu’elle calcule de facon dynamique la réflectivité a chaque interface mais néglige la diffusion
multiple entre les différentes interfaces.

Dans la partie suivante, nous résolvons I'équation d’onde au moyen de la théorie cinéma-
tique habituelle dans la diffraction des rayons X. Ensuite, nous calculons la réflectivité pour
des multicouches homogenes et de grandes largeurs avec une approche de calcul différente de
Iapproximation de Fraunhofer qui n’est pas utilisable. Cette méthode de phase stationnaire
transforme I'intégrale cinématique de diffraction de volume (équivalente au principe de Huygens
en optique) en une intégrale de chemin le long du parcours classique du faisceau réfléchi dans
I’échantillon. Cependant, la théorie cinématique est équivalente a la premiere approximation de
Born. Aussi, cette théorie cinématique ne tient pas compte de l'effet de la réfraction, de grande
importance dans la réflectivité des rayons X. Ceci est en désaccord avec la diffraction des rayons
X sur des multicouches, ou la réfraction entraine seulement un petit décalage par rapport aux
positions cinématiques de Bragg.

Dans la derniére partie de ce chapitre, nous comparons ces théories au moyen de traite-
ments analytiques et de simulations numériques. Nous réalisons la comparaison sur deux sortes
d’échantillons : une multicouche périodique et une multicouche de Fibonacci. Tout d’abord, nous
calculons la réflectivité sur une multicouche périodique simple. En utilisant une approche tout
a fait inhabituelle pour décrire la séquence périodique des couches par la terminologie employée
dans la physique des quasicristaux, nous préparons 1’étape suivante du calcul de la réflectivité
sur une multicouche de Fibonacci. La séquence des couches de cette multicouche est quasipéri-
odique et une description analytique du profil de la réflectivité n’est pas facile. Aussi, nous
utilisons I'approche que nous avons déja développée pour la diffraction par des multicouches de
Fibonacci et nous montrons que nous sommes capables de calculer la transformée de Fourier de
la distribution de 'indice de réfraction et de trouver une formule analytique pour les positions
des pics.
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3.1 Introduction

In this chapter we deal with the basic phenomena of the specular X-ray reflection (SXR) from
samples with perfectly flat interfaces. We start with the Maxwell equations from which we derive
the wave equation, dispersion relation and the plane wave solutions. By presenting these basic
and well-know results we establish a general formalism which we will keep in the whole work
for more sophisticated theoretical approaches. In the second part of the general introduction
we discuss the refractive index of X-rays as a material parameter determining all the scattering
experiments.

In the next part we study the theories applicable to the calculation of the specular reflectivity
amplitude. We apply the boundary conditions for an interface between two layers and formulate
two basic laws of optics, the law of reflection and the Snell’s law. We represent them graphically
by means of the Ewald construction. We derive the formulae for the Fresnel coefficients. The
small negative value of the susceptibility causes the main difference of X-ray optics with respect
to the usual (visible) one: total external reflection of X-rays occurs for all materials, the Fresnel
coefficients fall down quickly above the critical angle and therefore the reflected intensity is
measurable only for small angles of incidence (measured with respect to the sample surface).

Then we formulate the dynamical theory of X-ray reflection from layered structures by means
of both the matrix and recurrent formalisms. We provide formulae also for the amplitudes of the
wavefields inside the multilayer, from which we will make use later in the distorted-wave Born
approximation. The main advantage‘s of the matrix formalism introduced in the present chapter
will be demonstrated mainly in the study of the reflectivity by multilayered gratings, where we
can generalize the Fresnel coefficients, originally defined for the reflection from smooth interfaces.
We find that for small reflected intensities the dynamical theory can be replaced by the single-
reflection approximation. This approximation calculates the amplitude of the reflected wave as
a sum of contributions of the waves scattered once at each interface, so that it calculates the
reflectivity at each interface dynamically, but neglects the multiple scattering between different
interfaces.

In the next section we solve the wave equation by means of the kinematical theory usual in X-
ray diffraction. Since we calculate reflectivity from a homogeneous and laterally large multilayer,
we cannot use the Fraunhofer approximation and therefore we employ a different calculation ap-
proach. This stationary phase method transforms the volume kinematical “diffraction” integral
(equivalent to the Huygens principle known in optics) into the path integral along the classical
path of the reflected beam in the sample. The kinematical theory is equivalent to the first Born
approximation employing the vacuum plane waves as the eigenstates. It does not contain the
effect of refraction, which, however, is of major importance in X-ray reflectivity. This is different
to the X-ray diffraction from multilayers, where the refraction causes only a “small” shift in the
Bragg position.

In the final part of this chapter we compare these theories by means of both the analytical
treatment and numerical simulations. We perform the comparison for two kinds of samples: a
periodic multilayer and a Fibonacci multilayer. Firstly, we calculate the reflectivity from a simple
periodic multilayer. By using a quite unusual approach of describing the periodic layer sequence
by the terminology of the physics of quasicrystals we prepare the next step of calculating the
reflectivity from a Fibonacci multilayer. The layer sequence of this multilayer is quasiperiodic
and an analytical description of the reflectivity profile is not easy. Therefore we employ an
approach we developed earlier for the diffraction on Fibonacci multilayers and we show that we
are able to calculate the Fourier transform of the refractive index distribution and to find an
analytical formula for the peak positions.
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3.2 Wave equation

X-rays are electromagnetic radiation. Their propagation can be described by the Maxwell equa-
tions, similarly to the visible optics [Kni76, BW93]. Combining the following two equations

0B oD
rot F = —E s rot H = W (3].)

with the material relation
B = o, H (3.2)
(we note we use the ST system of units), we get

0?°D(r,t)

rotrot E(r,t) = —pour(r) I

(3.3)

This differential equation connects the electric field intensity E(r,t) and the electric displace-
ment D(r,t). Since we study stationary scattering processes, the time dependence is expressed
as E(r,t) = E(r)e”™! and D(r,t) = D(r)e™™! (this choice of the sign follows the quantum-
mechanical notation). Further, using the material relation D(7) = €pe,(7)E(r) we get

rotrot E(r) = K2pu,(r)e, (r)E(r) , (3.4)
where the vacuum wave vector length is

oW _2m

=2 (3.5)

The fundamental of the X-ray scattering is the scattering by the individual electrons, which is
kinematical (see the definition of the structure factor [AKK 74, Pin78]). The X-ray reflectivity
depends on the electron density averaged over large volume, comparable to the volume of the
unit cell, and therefore the wave feels only the macroscopic changes of the electric permitivity
[Hol96]. This allows us to approximate divD = e(r)div E(r) = 0. Let us assume that pu, = 1,
which is mostly valid for the X-ray region. Then (3.4) is transformed into the vectorial wave
equation

(A + K?¢,(r)E(r) =0 . (3.6)

Introducing here formally the index of refraction n(r) and the wave vector length in the medium
k(r)

n(r) = Ve(r) (3.7)
E(r) = n(r)K (3.8)

the wave equation is transformed to
(A+K*(r)E(r)=0. (3.9)

Its solution in a homogeneous medium (er(r) = const) on a class of plane waves

E(k,r) = Ey(k) ()7 (3.10)
provides the dispersion relation
|k(r)|? = E*(r) . (3.11)

Therefore, the dispersion relation has an infinite number of solutions and the end-points of wave
vectors of all allowable waves lie on the sphere K with diameter k = nK, Fig. 2.2, which we call
the Fwald sphere.
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Electromagnetic waves are transversal, i.e., the amplitude Ej is perpendicular to the direction
of the propagation k [AKK'74, BW93]. The sample surface defines the unique plane in the
isotropic vacuum and therefore the vector Ey can be decomposed into two polarization states
with respect to this plane. The component of Ej lying in the plane parallel to the sample surface
is called o-polarization. The perpendicular component is called w-polarization and it lies in the
plane of incidence (the plane determined by the incidence wave vector and the surface normal).
Bearing in mind that the sample is laterally homogeneous, then from symmetry considerations
it follows that in the reflection process both components are scattered independently. There
is no transition between the o and 7 polarizations for u, ~ 1 and the scattering is coplanar,
i.e., the wave vector of the scattered wave lies in the plane of incidence. Then the vectorial
wave equation reduces to a scalar wave equation. The m-polarization components of Ey after
and before reflection make an angle 26 and the amplitude of the scattered wave is diminished
by cos(20). The o-polarized Ey component remains perpendicular to the plane of incidence.
Studying X-ray reflectivity in the low angular region only, cos(26) =~ 1 and polarization effects
play no role. Therefore the vectorial wave equation reduces to a scalar wave equation that is
the same for both polarizations. It can be represented by any of the equivalent forms

(A + K2er(r) ) E(r)
(A +K?n’(r)) E(r)
(A+K(r) ) E(r)

0
0 (3.12)
0.

The previous discussion on the transition from the vectorial to scalar wave equation was based
on qualitative symmetry considerations. The validity of this result can be verified by means of
the rigorous application of the boundary conditions for both o (transversal electric, TE mode)
and 7 (transversal magnetic, TM mode) polarizations separately [BW93, Hol96].

Finally, a particular plane wave solution in a homogeneous medium is

E(r) = Eye'*r (3.13)

Therefore the total wavefield in a homogeneous medium can be expressed by a superposition of
plane waves e™**". In the most general case, it can be written as a superposition of transmitted
(t) and reflected (r) waves

E(r) = //dkn E(ky,r) =//dk (Et(k)e“’“”"““%z) +Er(k)ei<’°n"u—kzz>)
_ // dk ik (Et(kz)eikzz _I_Er(kz)efikzz) _

We made explicit use of the dispersion relation (3.11) that determines the third component
k, = \/k? — k2 — k2 of the wave vector k* = (kg, ky, 2k.) if two other components (kg, ky) = k|

are known. According to the sample symmetry, we choose the parallel direction 7 as parallel
to the sample surface.

(3.14)

The intensity of a wave is I(k) = |E(k)|?. Then the sample reflectivity is defined [Pin78] as
the ratio of the energy fluxes of the scattered E(k) and incoming wave i, (k")

Ey
Einc

(3.15)

2
R(kinC) — ‘ . kz

inc
kZ

3.3 Refractive index

In the previous section we described the propagation of an electromagnetic wave in a homo-
geneous medium by means of the Maxwell equations. We characterized formally the material
by the index of refraction n(r), see (3.7), depending on the position. However, from classical
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electrodynamics [Fey64] we know that the index of refraction depends on the interaction of the
medium with the electromagnetic wave and therefore it depends also on the wavelength A of the
incident wave. We can now write the relations (3.7),(3.8) explicitly including the wavelength
dependence

kE(r,A\) = n(r,A\)K (3.16)
n?(r,\) = e(r,)). (3.17)

The electric permittivity €, is unity in vacuum. The electron susceptibility (polarizability) x(X\)
is introduced [CowT75]

e(r,A) =14+ x(r,N) . (3.18)

X-ray scattering is the scattering of electromagnetic waves by electrons. The polarizability is
proportional to the electron density p(r) [Pin78]

r l>\2 4r 1
X(r) = ———p(r) = =z p(r) . (3.19)
7
The classical electron radius re = 1= ¢ —9.8179 10715 m characterizes the amplitude of

dmeg mec?
wave scattered by one electron in the forward direction

E(r,t) = % Eo(0,[1]) (3.20)

where Ej is the amplitude of the incoming wave and the brackets [] denote the retarded value.
The wave scattered in the forward direction by an atom with Z electrons is

f"rel

B(lr) ==

Eo(0,t) , (3.21)

where f = Z is the atomic scattering factor. In a crystal it equals the zeroth order Fourier
transform of the electron density of the unit cell. In classical electrodynamics, the scattering
factor is a real function. However, the electromagnetic waves cause atomic excitations. The
Honl dispersion corrections [H633] take the absorption and the inelastic scattering into account

f=Z+f+if". (3.22)

These corrections are calculated by means of relativistic quantum mechanics and for the common
wavelengths they are tabulated in the International Tables for X-Ray Crystallography [0C92]. A
complementary source of information are the Henke tables [HGD93].! Henke tables cover f’ and
f" for the atoms with atomic number Z between 1 and 92 in the energy region 30 eV-30 keV
and they are based on a compilation of the available experimental measurements and theoretical
calculations. The wavelength dependence of the dispersion correction is shown in Fig. 3.1 for
As and Ga atoms.

Finally, the electron susceptibility (polarizability) of a material having M atoms in the
elementary cell (volume V) is

M
Tel)\2 mzzjl fm(A) / Y
x(A) = — - v, v m = Zm + [ (A) Fif(A) . (3.23)

From the above discussion follows that the scattered intensity of a crystal is wavelength
dependent. Some materials (e.g., GaAs/GalnAs) have nearly the same susceptibilities for the
usual X-ray tube radiation (e.g., the CuK, spectral line). Measurable contrast in the reflectivity
curves can be achieved using the wavelength dependence of the dispersion corrections for different

!They are available on the Internet at ftp://xrayl.physics.sunysb.edu
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Table 3.1. Refractive indices and critical angles for the wavelength CuKa, (1.540562 A). The “AlAs on
GaAs” states for an AlAs layer grown on a GaAs, where the elementary cell has tetragonal distortion.
The calculation has been performed by the program abrefr. This program is available at the WWW
page of the author of this thesis, http://www.sci.muni.cz/ mikulik/ and it is distributed under the
GNU General Public License.

‘ material ‘ d=1-n=—x/2 ‘ critical angle 0¢ ‘
AlAs 1.062 - 107° +42.933- 10~ 0.264°
AlAs on GaAs | 1.065 - 107° 4+32.940 - 107 0.264°
Cr 2.120-1075+142.176 - 1076 0.373°
Fe 2.248 - 1075 +42.890 - 106 0.384°
GaAs 1.456 - 1075 +44.198 - 10~7 0.309°
Ge 1.454 1075 +74.164 - 107 0.309°
sapphire 1.268 - 1075 +41.473- 1077 0.288°
Si 7.577-107% +41.755 - 1077 0.223°
ThFey 2.262 - 107° +3.366 - 1076 0.385°
W 4.602 -107° 4 73.746 - 1076 0.550°
Y5Coyy 2.158 - 1075 4+ 72.848 - 1076 0.376°

atoms (Fig. 3.1). Here the use of synchrotron radiation is advantageous because it enables one

to tune the wavelength to the absorption edges of particular atoms.

The susceptibilities of some commonly used materials for are presented in Table 3.1 for
CuKa; wavelength (A = 1.540562 A). We notice that they are of the order of 10=° and therefore

n= Ve

dispersion correction

X

:\/1+xz1+2

3
wavelength [A]

(3.24)

Figure 3.1. Wavelength dependence of the dispersion corrections f' and f" for Ga and As atoms. Since

Zaa = 31 and Zas = 33, these corrections are of high importance near the absorption edge (at about

1A).
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Since the phase velocity of X-ray in medium is higher than in vacuum, then the refractive
index of X-rays is smaller than 1 and the susceptibility x is negative. Introducing a deviation
parameter §

n=1-4, 5:-% (3.25)

then facilitates calculations.

Finally, we make a brief note on the optical reflection of neutrons. The wave function of
neutrons scattered by an atom fulfils [Sea89]

Y1) = 2 o(0.14) | (3.26)

where the neutron scattering length b is tabulated for common materials. Comparing this
equation with (3.21) we find that all the relations for X-ray optical reflectivity remain valid for
neutrons as well if we replace the X-ray scattering length (f - ro) by b. Contrary to X-rays,
neutron scattering length b is not related to Z and it can be positive as well as negative. The
main advantage of neutron reflectometry lies in the sensitivity to the magnetic properties of
explored materials.

3.4 Dynamical theory of X-ray reflection

In the previous section we studied the propagation of X-rays in a homogeneous medium. Further,
we will study the X-ray reflectivity from a multilayered system. A planar multilayer (Fig. 3.5)
is formed by a stack of layers deposited on a thick substrate. The problem to solve now is to
find the wavefields firstly in each layer and secondly on the top of the multilayer.

3.4.1 Boundary conditions

Let us study the transition of a wave through the interface j separating two adjacent layers
j,j + 1 (Fig. 3.2). The general solution of the dispersion equation (3.11) is given by (3.14). The
unknown coefficients E/ (k%) = Ej,(k.,z) are constant in each homogeneous layer j. From the
Maxwell equations the boundary conditions can be derived [BW93]. They provide relations to

layer j

interface j

layery BT (k)
Et(j+1)(k7£j+1)) pli+1)

Y,

Figure 3.2. Wave vectors interacting at one interface shown in the real (a) and reciprocal (b) spaces.
This geometry corresponds to angle of incidence greater than the critical angle (cf. Fig. 3.3(b)).
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connect the wavefields in two adjacent layers j, 7 +1 separated by the interface j. The continuity
relations of the amplitudes of electric intensity at the interface require

Z // dkﬁj)’ E(J')ei(kﬁj)’mikgj)'z) —

s=t,r

S

s=t,r

(3.27)

and the continuity of the normal derivatives

Z (1) // dkﬁj)l kgj) Egj)ei(kﬁﬂf,,uikgj),z) _

s=t,r

' i ; iR+ (G+1)
Z (il)// dkﬁ”l)' KU+ E§]+1)el(kHJ rEkI )

s=t,r

(3.28)

The summation s goes over the transmitted ((¢), +k,) and reflected ((r), —k,) waves. The two
equations above can be rewritten into the equivalent form

// dk” LT (Elgj)(kgj))eikgj)z + E,(ﬂ')e—ikﬁj)z
_ Et(jJrl)(kgj"'l))eikgjﬂ)Z _ Er(j-l—l)(kgj'i'l))e_ikgjﬂ)z) B

// dky ™I (kgf) Et(j)(kgj))eikgj)z — R0 B =ik

r

_RUHD BUED (G0 kT ) Eﬁjﬂ)(kgjﬂ))e—ikgj“)z) _

(3.29)

Since this equation has to be fulfilled at each point r of the interface, the boundary condi-
tions separate into independent equations for each lateral component k| given by the term in
parenthesis, which are formally (lateral) Fourier coefficients of the wavefield E(r, z). Therefore
the interface decomposes the total wavefield into separate groups of lateral Fourier components
corresponding to the same lateral wave vector component k. Further it shows that if at least

one of the waves Et(zn),Et(inH) propagates in the medium, then it gives rise to the other three
waves with the same lateral wave vector component k. Thus we get the well-known law [BW93]

of the conservation of the lateral (tangential) wave vector components

@) _ .G) _ .G+ 4 (G+1)
Ry =k =Ry =k (3.30)
which becomes for &k, = 0
. , - .
k) = k) = kD = KD (3.31)

This way we formulated two principles that determine the propagation of rays in a medium:
the dispersion relation (3.11) for the wave vectors in a homogeneous medium and the tangential
condition (3.30) for the wave vectors at an interface. We combine both into a graphical rep-
resentation in reciprocal space, similar to the Fwald construction used in X-ray diffraction. In
particular, we draw the Ewald construction for a vacuum-layer interface (Fig. 3.3) and formulate
two basic laws of the optical reflectivity [BW93].
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Law of reflection

From the dispersion equation it follows that the end-points of two wave vectors drawn from
the same point in reciprocal space lie on the Ewald sphere (with diameter K (nK) in vacuum
(medium), respectively). The specular condition relates the lateral components of the wave
vectors kj of both waves E; kimitka2) and B, elkimi=k:2) ¢4 be the same. Therefore their
perpendicular wave vector components +k, differ in sign only and the angle of reflection equals
the angle of incidence #;. This phenomenon is called the law of reflection and in Fig. 3.3(a) we
represent it graphically in reciprocal space by means of the Ewald construction.

Snell’s law

The tangential conditions applied to both layers give

Y =k (3.32)
thus the wave vector components in the coplanar case are
kg(ﬁj) — kg(cj-i-l)
(3.33)

U = \/(n(j+1)K)2 — k2 = VED) + (nG+0)2 — (n@)2)K2

Since ky = k) cos 019 = K, = K cos 6y, the equivalent angular condition known as Snell’s law
holds

n) cos 9 = nU+D cog U = cos b, . (3.34)

These two laws are known from classical optics [BW93]. Now we propose to discuss Snell’s
law by the Ewald construction for a vacuum-layer interface j = 1 (n() =1, n® =n < 1),
Fig. 3.3. The incoming vacuum wave K defines the origin S of the vacuum Ewald sphere K¢,
Its lateral component (i.e., projection into a plane parallel to the surface) K, has to be the
same for the wave propagating in the medium n too. Because of this conservation of the lateral
components, the end-point of the wave vector of the wave excited in the medium has to lie at
the intersection of the surface normal drawn from the end-point of K and the Ewald sphere K.
Since nK < K, three distinct cases may happen:

1. Two tiepoints T, T~ and therefore two waves are excited in the medium n: the trans-
mitted k; and the reflected k, waves, Fig. 3.3(b). Geometrical relations between the wave
vectors then lead to Snell’s law (3.33).

2. One tiepoint T is excited on the Ewald sphere K, Fig. 3.3(c). The transmitted wave Et(Q)

propagates parallel to the surface k?) = 0. This happens at certain vacuum incidence

angle #; = O¢. The conditions

cosbo = n (3.35a)
Oc V2Red = /—Rey (3.35b)

ke = KvV1-n2~KV2§ (3.35¢)

%

hold and O¢ (k¢) are called the critical angle (critical wave vector) of total external
reflection, respectively.
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Q.

/2 ICUGC

e \

Figure 3.3. Graphical representation of the basic laws of reflectivity by means of the Ewald construction.
The vacuum Ewald sphere is KV%¢, that of the layer with the refractive index n is K and n is the inner
surface normal. Figure (a) represents the law of reflection. Snell’s law is demonstrated in figures (b)—(d),
where the angle of incidence 8;: (b) is above the critical angle 8¢; (c) equals the critical angle; (d) is
below the critical angle. In the latter case the lateral component of k is larger than the radius of the
Ewald sphere of the medium and the condition k* = (nK)? — k2 gives rise to the evanescent wave with
purely imaginary k.-component of the wave vector (if photoelectric absorption is neglected).
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3.  For angles of incidence below the critical angle the surface normal n does not cross the
Ewald sphere K and therefore no real solution exists in the material n. The tiepoint T; is
given by the intersection of n with the @, axis, Fig. 3.3(d). In the medium, the lateral
component k, exceeds the admissible real wave vector length nK which gives rise to an
imaginary vertical wave vector component k,. Therefore the wave vector in the medium
is complex and the condition of the conservation of the tangential components Eq. (3.32)
is valid for both real and imaginary parts of wave vectors independently. The imaginary
component k, represents exponential damping of the wave in the medium in the direction
perpendicular to the surface. This wave is called an evanescent wave.

We explain our method of plotting the imaginary part of the wave vector k in Fig. 3.3(d)
in the following way. The lateral component k, is real and it is given by the segment AT;.
The length of the wave vector in the medium is nK and therefore its end-point B lies on
K while the beginning point is A. From the relation k? = (nK)? — k2 it follows that AT;
is the hypotenuse and AB, BT; are the other sides of the right angle triangle ABT;. Then
|T;B| is the length of the imaginary part k, of the vertical component of the wave vector.
Moving the point B into the point C on the axis @), we get Imk = T;C.

Let us write the relation between the vacuum incidence angle w = 6; and the angle 8 = 6(2)
and k, in the medium explicitly. From Eq. (3.34) for the case of small angles follows

0=vVw?—20=/w?—06%. (3.36)

The z component of the wave vector is

k, = VK2 —20K? = \| K2 — k2, , (3.37)

where in both cases the critical values ¢ and ko are complex. Further we can see that for
angles above the critical angle (w > 6¢) these approximations hold:

92
Ref ~ w-— i + 00} /w?) (3.38)
k2
k, ~ K,+iK,Imd— ﬂg + O(k4 /K3 . (3.39)

z

Therefore for larger angles of incidence the wave vector in the medium approaches the vacuum
vector and refraction corrections are negligible.

3.4.2 Penetration depth

The amplitude of the plane wave propagating in a homogeneous medium (3.13) can be reex-
pressed

E(T’) — EO e—Im(k;)z . ei(k”'l‘”-I—Re (k;)z) (340)
and therefore the z-dependence of the intensity is
I(z) = |E(z)* = 1(0) e 2T (k)= (3.41)

The penetration depth A is defined [BW93] as the depth at which the intensity drops 1/e times,
I(A) = (1/e) - 1(0), thus

1

" 2Tm (k) (3:42)
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Figure 3.4. Angular dependence of the penetration depth of tungsten for the wavelength CuKa,
(1.540562 A). Tungsten is used as a capping layer for magnetic films [GRCt94]. Since it is a heavy
element, its critical angle 8 = 0.550° is superior to the critical angle of the underlying materials. There-
fore for small angles of incidence the evanescent wave propagating in a thick W layer damps substantially
the intensity of the wavefield propagating in the underneath layers.

First of all we can see that for larger angles of incidence w > 0¢ (2k, > k¢) the penetration
depth is inverse of the linear absorption coefficient p

1 1

A Oc)=—=——. 3.43

(w>0c) PR ATY; (3.43)

Using the angular notation, the penetration depth is alternatively expressed as

A@g::PKInlal—a) w2—25ﬂ4’ (3.44)
Aw00) = - ! (3.45)

w =—=—" .

¢ o 2Kwlm§

The angular dependence of the penetration depth is shown in Fig. 3.4. We note that in the
non-absorbing case the penetration depth grows to infinity above 6. This is mostly the case of
the neutron reflectivity [Sea89, Zab90].

The sensitivity of the penetration depth on the angle of incidence w is of crucial importance
for near-surface structure studies. Increasing the angle of incidence the transmitted wave pene-
trates more deeper and reveals information about atoms more distant from the sample surface.
In addition to the X-ray optical reflectivity other X-ray scattering techniques (strongly asymmet-
ric X-ray diffraction [Ha76, HNCM88, AM90, HBB95], X-ray fluorescence [dBLH94, Bru86] and
grazing-incidence X-ray diffraction [MECT79, AAS84, BdB86, RP90, SPB95, BTPHY95]) make
use of this surface sensitivity.

3.4.3 Fresnel coefficients

The propagation directions of the transmitted and reflected waves in the reflection process
from a single interface have been determined in the previous section. Let us now calculate the
amplitudes of the corresponding wavefields at the position z = z; of an interface j separating
layers j and j+1. The indices refer to our numbering of interfaces and layers in a multilayer,
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layer 1: vacuum

21

layer 2

22

layer 3

layer 4

layer j interface g
layer j+1 {00

layer N — 1
layer N

ZN -1

ZN

layer N + 1: substrate

substrate

substrate

(a) (b) (c)

Figure 3.5. Sketch of a multilayer presenting the notation used in the text (a). Two particular examples
of deterministic multilayers, a periodic multilayer with 4 periods and a quasiperiodic Fibonacci multilayer
of the 5th order are shown in figures (b) and (c), respectively.

Fig. 3.5. Applying the boundary conditions (kj=const) the integrand of (3.29) turns into the
system of equations

By Y - EOD 4 R+

BOED - B EE) gD i _ e gty (3.46)

This can be expressed by means of a convenient matrix formalism (similarly to the Abeéles matrix
formalism [Ab50]):

PO . B (z)) = PUH . B () | (3.47)

The boundary matriz of layer j is defined by

() = ‘ ‘ () L
and the amplitudes are represented by the column vector
. E(])(Z) E(]) eikgj)z
G (y) = ¢ _ t
EY(z) = (E,E])(z) = Er(j) e—z‘kﬁ“z . (3.49)

The wavefield on the bottom side of the upper layer j is determined by the wavefield in the
upper part of the layer j 4+ 1

EW(z)) = Pjje1 - BV (2

)
S 11
Py = (POl — L <tj ff) _ (3.51)

(3.50)

J



3.4 Dynamical theory of X-ray reflection 31
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Figure 3.6. The Fresnel coefficients determine the reflection and transmission amplitudes of the waves
passing through an interface. Irradiating the interface from the opposite side, they are related by t = —t/

and 1 + vt/ = tt'.

The “interface” matrix P; ;11 describes transition through the interface separating layers j and
J + 1. Tts elements are the Fresnel reflection and transmission coefficients [BW93]

Y o= (£> = Lﬂ) - kgﬂ)
EY EU+_g kD + k9T (3.52)
(T
Et(y) 2 g ED) 4 g0+

The graphical representation of their meaning is shown in Fig. 3.6.
In optics, the Fresnel coefficients are mostly written by the equivalent angular expressions.
Within the approximation sin 6 ~ 6, adequate in X-ray optics, we write

0
i = N
0 (3.53)
t; =

Further, for angles much larger than the critical angle the approximate formulae (3.39) give

o B kT - P K () - xUHY)
v e B Q2 B Q2 (3:54)
tj ~ 1,

where the vacuum wave vector transfer Q@ = Ko — K1 = (0,0,Q,), Q. = —2K;,. The approxi-
mate value t = 1 means that the transmitted wave is not diminished by the reflection process and
dynamical extinction plays no role. The reflected intensity depends on the momentum transfer
by the power law

) ~ Q" (3.55)

which is similar to Porod’s law in small-angle scattering [Gui63].

3.4.4 Reflection from a multilayer

In the preceding part we calculated the amplitudes of the waves acting in a reflection process by
a single interface. Let us now calculate the reflection by a multilayer consisting of N interfaces,
Fig. 3.5. The boundary conditions, either (3.47) or (3.50), couple the wavefields of two adjacent
layers j,j + 1 at interface j (at z = z;). The wavefield inside the layer j (i.e., for z;_; < z <
z;) is described by the column vector (3.49). Because both components are plane waves, the
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amplitudes between the lower interface 5 + 1 and the upper interface j are coupled by the phase
relation

BUHD () = QUHD . BUHD (5, ) (3.56)

—ikDt;
(4) — e Wl 0. _ 1/'1)]' 0
Q ( oo )= e (3.57)

The phase matrix QU) is called propagation matriz, and tj = zj — z;j 1 is the layer thickness.

The boundary and propagation matrices allow us to describe the reflectivity from a multilayer
by means of a very convenient matrix formalism. Using Eqgs. (3.50) and (3.56), the wavefields
calculated at the bottom interfaces of two neighbouring layers are coupled by the matrix relation

B0 (z) = P QU BV (z50) = N - BOTD (2541) (3.58)
Nj =P Q0D (3.59)

The matrix A couples the matrices of the interface j and of the underlaying layer, i.e., it couples
the wavefields on the top of interfaces j and j + 1. Afterwards, the vacuum (index v) and the
substrate (index s) wavefields are connected by the transfer matriz of the whole multilayer M

@) — M. @) (3.60)

N
My, M12>
M=1]IN; = , 3.61

j[[l I <M21 M>o (3:61)
where the product goes over all interfaces. The substrate has infinite thickness, therefore its
reflectivity amplitude R® is zero and its phase matrix QV+1) is defined to be unity. Finally, the

reflectivity amplitude of the whole multilayer is

My

R=R'=221
My,

(3.62)

In this matrix arrangement we described the wavefields by connecting them via the matrices
Nj. This underlines the dominant role the interfaces play in the reflectivity. However, an
equivalent calculation approach oriented to the bulk properties of the layers can be developed.
We mention the bulk approach in this place not only because it is used in the X-ray diffraction,
but mainly because we will make use of it later in the dynamical theory of reflectivity gratings
(Ch. 5). Let us connect (3.47) and (3.56) and introduce the transfer matriz of layer j

M) = pl). Q). (7)(]'))*1 , (3.63)

which depends only on the parameters of layer j. Then the multilayer transfer matrix is expressed
by

_ (py-1 aqML s _ (M Mo
M= (P") L. MML.ps = <M21 M22> (3.64)
N .
MME =TT MY, (3.65)
j=2

where the product goes over all layers (cf. (3.61)).

However, we usually suppose that the reflection is interface-related scattering because the
physical meaning is included in the matrices . The elements of the multilayer transfer matrix
M, given by Eq. (3.61), of the interface transfer matrices N; and of any stack of A; have clear
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Figure 3.7. Physical meaning of the elements of a multilayer transfer matrix M. This stack plays a role
of a “generalized” interface, cf. Fig. 3.6.

physical meaning. Let us show it denoting any of the before-mentioned matrices by M, Fig. 3.7.
If an incident wave Ej comes from above of the multilayer stack (arrangement (a)), then the
wavefields on the upper and bottom sides are related by

(20)= (o) () e

wherefrom the stack reflection and transmission coefficients follow

pt_ Br_ My

50 Ml“ (3.67)
Tt="L—-___ .

Ey My

If the incident wave comes from the bottom side of the stack (arrangement (b)), then

(EOE> B (%; %lﬁ) (g[?) (3.68)

from which the backward stack reflection and transmission coefficients are found

R Ep M
Ey M
0 H (3.69)
B 1
T =—=—".
EO_ M4

In the latter formula we made use of the equality (det M) = 1. If this condition is not fulfilled
(in the case of rough multilayers, for instance), then T~ = (det M)/Mj;. The amplitudes
R*,TT,R~, T~ play the role of generalized Fresnel coefficients of a multilayer stack in the
same manner as the Fresnel reflection and transmission coefficients act at a single interface,
see Fig. 3.6. Therefore the structure and the physical meaning of those matrices are the same,
and with the addition of the associativity of the matrix multiplication it means that the big
multilayer matrix M can be calculated from whichever stack we prefer.

This is of main importance in the calculation of reflectivity from multilayers where the stack-
ing sequence (layer arrangement) is given by a deterministic mathematical rule, see Sec. 3.6.
Since the layer sequence in those multilayers is mostly given by a recurrent rule, the correspond-
ing matrix sequence (3.61) reflects this rule in the same way. This makes the matrix approach
very natural and numerically faster compared to the calculation of the whole multilayer matrix
layer by layer.
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It follows from the earlier discussion that the matrix approach provides the wavefield am-
plitudes in each layer. We will make use of it in the DWBA calculation (Sec. 4.5), where these
wavefields in each layer form an eigenstate needed in the DWBA calculation. However, up to
now we put the phase shifts of the waves zero at the origin of direct space (the factor +ik,z
appears in the exponent) and it seems to be more convenient to work with amplitudes whose
phase shifts are zero at the lower inner interface of the layer. Then we define T(U), RU) by

Et(j)(zj) ) ik (2=2)
E(]) = () —‘k(j)( . (3.70)
D))~ \RO e~k (=)
and we further use them in the DWBA.
Further we note that we generalize TU), R() to the many-beam case in the dynamical theory

of gratings (Ch. 5), where we present them as the coefficients of the linear combination of the
independent eigenvectors of the matrix solution of the wave equation.

Single-reflection approximation—matrix approach

The dynamical theory gives exact relations for the reflectivity amplitude. However, as it is
the usual case of dynamical theories, the relations are not quite transparent. Therefore we
find that in the angular region, where the reflected intensity is small (compared to unity), it is
possible to simplify these equations and derive a semi-kinematical-like approximation of X-ray
reflectivity. We show that the physical meaning of this approximation is that it sums only the
contributions of the single-reflection processes, i.e., the total reflectivity amplitude is the sum
of the amplitudes of waves reflected once by each interface. This is contrary to the dynamical
theory, which takes into account the interaction of the waves reflected by all the interfaces, and
the reflected wave above the sample surface is in dynamical equilibrium with the wavefield below.
The single-reflection approximation can be obtained from the dynamical theory supposing the
back-reflection Fresnel coefficient being zero, t' = 0, Fig. 3.6.
The boundary matrix (3.51) can be written in the alternative matrix form

Loy, (0 N\ _ 1
P““_?j[(o 1>+r] <1 0)}:?(1'“]1). (3.71)

J

The unity and anti-unity matrices (proportional to the first and the third Pauli matrices [Dav69])
are defined

I= (é ?) ., I'= (? é) : (3.72)

They follow the relations

ir=ri=r, Irr=r, or' = (I'g)" , (3.73)

where Q is a diagonal matrix and the superscript 7' denotes matrix transpose. Then it is possible
to develop the multilayer matrix (3.61) in the powers of the Fresnel coefficients t;. Restricting
ourselves to the term linear in v; we neglect the multiple scattering processes and the transfer
matrix is approximated

N N J
V) p— AT 1+ T] @™ v 7 T ™| - (3.74)
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In order to calculate the reflectivity amplitude (3.62), the matrix elements

N
My, = HQ(j)
]
=/ (3.75)
N 7 A N
My = (ST @™ 7 T o™
j=1m=2 n=j+1 21

need to be evaluated. Putting the explicit form of the phase matrix (3.57) into the above
equations we get for the amplitude of the reflected wave

My, A -~
= = Y II (e 2y 1 , (3.76)

j=1m=2 21

which expands into the explicit forms
N j-1
R= th H D2 = Zt] H 2k th H ¢ia" tm (3.77a)
j=1 m=2
N .
R=) e, $j = Z ¢t (3.77b)

or into the recurrent form
R=RW R — t + RU+D) e*iqgﬂl)tjﬂ ’ RWY) — ¢y . (3.77¢)
The wave vector transfer in layer j

) = _op0) (3.78)

has been introduced. The phase factor ®; = e’* k% has been defined in (3.57).

The relations (3.77a)—(3.77c) give clear evidence why this approach is called the single-
reflection approzimation [Hol96]. The incoming wave penetrates into the sample and it passes
j—1 layers before being reflected at the jth interface and after the reflection process it goes back.
The reflection process changes the amplitude by t; and therefore the reflection by each interface
is treated dynamically, applying the correct boundary conditions. The total phase shift on the
passed path is ¢; = Zm 9 z

The summation in (3.77a)- (3.770) is evaluated going from the interface nearer the vacuum
towards the substrate interface, thus it is optimized for a layer sequence given by a mathematical
rule determining the layers from the top of the multilayer to its bottom. In contrary, the
mathematical rule determining the layer sequence can be given starting from the substrate to
the vacuum (i.e., in the growth direction). Then it is useful to relate the phase shifts to the
substrate

R=¢"NF (3.79)

and thus define alternative explicit and recurrent relations for F
(m)
F = Z tj el Dm0 im (3.80a)

F o= Fm, FU) = (1 + FUTD) gt FOVE) — g (3.80b)

These formulae will be used to calculate the reflectivity by the Fibonacci multilayer in Sec. 3.6.2.
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Parratt formalism

The formula (3.58) enables us to calculate dynamically the amplitudes of both the transmitted
and reflected waves in each layer in the multilayer. However, in many cases the studied sample
consists of a small number of layers and the primary interest is the calculation of the reflected
intensity on the top of the multilayer only. Then a faster calculation procedure would be the
following one. The recurrent matrix algorithm (3.58) treated earlier can be transformed into a
recursion one which couples the reflectivity amplitude at the bottom layer interfaces by a single
relation

EY)(z) _t;+ RUD =it 1

Gy

ED(z) 1+ 1t;RG+HD et

RV) = (3.81)

We start the recurrent calculation procedure from the reflectivity R(N) = vy of the substrate
interface and after evaluating RU) at all of the upper interfaces the multilayer reflectivity ampli-
tude R = R(") is known. This recurrent formula well-known in optics [Kni76] has been used first
in X-ray reflectivity measurement by Parratt [Par54], together with the approximate relations
(3.53).

Single-reflection approximation—Parratt formalism

Let us use the Parratt formalism and assume that the reflected intensities are weak. Then the
denominator in (3.81) can be approximated by unity and the recurrent relation becomes linear

RU) — v+ RUD -ia" (3.82)

We find that this equation coincides perfectly with the single-reflection approximation we derived
earlier using the matrix formalism, Eq. (3.77c).

Contrary to the rule (3.81), the above linear recurrent relation can be applied efficiently to
deterministic multilayers if explicit or recurrent relations for R() in (3.77c) or for the phases
#U) in (3.77b) are known. This will be demonstrated in Sec. 3.6.

3.4.5 Single layer

Let us study the reflectivity from a system of a single layer (thickness ¢3) deposited on a thick
substrate. The dynamical theory will be used first. The multilayer transfer matrix is

M = (P 'MOps (3.83)
My = PO .Q@ . (p)-1 ;< B (14 (92)?) (1—(<1>2)2))

2kPe, \K)2(1 - (32)2) K1+ (22)?)
_ k,g) oS q,(zZ)tQ sin q,g2)t2 (3.84)
ED \i(6)2sing s kP cos gty ) '
where qEQ) = kg)tg and (®9)% = eiqg)t? The reflectivity curve is shown in Fig. 3.8. We can notice

the periodic oscillations, known as the thickness oscillations or the Kiessig fringes [Kie31]. They

are caused by the finite layer thickness, i.e., by the periodicity in the matrix Msy; the boundary

matrices of vacuum P? and of the substrate P® do not contribute to the phase shifts.
Calculating the reflectivity by the approach of the matrices N the transfer matrix is

_ — ; I n 1 0 1 o
M=NN, = 4k£1)k£2)‘1)2 <t1 1) <0 (@2)2> <t2 1)

_ ; (1 + t1t2('1>2)2 t9 + tl(@2)2>

4k£1)k£2)(1)2 T+ 'CQ((I)Q)Q Tty + (@2)2 (385)
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where the Fresnel coefficients ty,ts apply to the vacuum-layer and layer-substrate interfaces,
respectively. According to (3.62), the reflectivity amplitude is the same as provided by the
second iteration of the Parratt formalism (3.81)

ot (D)2

=" 3.86
1+ £yt (D)2 (3.86)

Now let us use approximative methods to calculate the reflectivity amplitude. Within the
single-reflection approximation (3.77¢c) it is

(2

e
R =t 41y (@9)* =11 4107 2 (3.87)

We find that the reflectivity coincides with that calculated by the dynamical theory (Fig. 3.8)
except for a small region close to the critical angle of the layer. There the wave is still evanescent,
but the imaginary part of the vertical component of the wave vector decreases and the reflected
intensity is still close to unity.

The maxima of the reflectivity oscillations follow the relation
—q(), = "—m (3.88)

and they are inversely proportional to the layer thickness. However, the measurement is per-
formed in the vacuum, therefore neither the reciprocal space maxima

Qe = \J@ i+ A1 = TR K? %\ [02,, + 80,K2 = a2, + k2, (3.89)
nor the angular distribution of maxima (angle of incidence wy,)

2m A
2 _ P2 = — = —
Win =06 = gpm =g (3.90)

are equidistant due to the refraction.
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Figure 3.8. Reflectivity from a single tungsten layer (thickness 100 A) deposited on a sapphire substrate.

(a) Dynamical theory (full curve) and the single-reflection approximation (dashed curve) coincide except

for the region near the critical angle of the layer. (b) Reflectivity calculated by the kinematical theory

is not shifted by the critical angle, and the period of oscillations appro(a)ches that calculated dynamically
2

as the vacuum wave vector transfer (), approaches that in the layer q;”’.
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3.5 Kinematical theory of X-ray reflection

In the previous part we treated the dynamical theory of X-ray reflection, which solved the

wave equation and the boundary conditions exactly. Now we will formulate the kinematical

theory, which is based on an approximate solution of the wave equation. We will show that the

kinematical theory calculates the reflected field as a single reflection process (as it was the case

of the single-reflection approximation of the dynamical theory), where all the waves are vacuum

plane waves and not waves refracted due to the refractive index distribution in the sample.
The wave equation (3.12) in a medium can be rearranged into the form

(A+ K*)E(r) =V(r) E(r) (3.91)
that separates the vacuum wave equation (homogeneous equation)

(A+K*)E(r) =0 (3.92)
and the contribution by a scattering potential in the medium

V(ir)=(1—e(r)K?=—-K?x(r) . (3.93)

This differential equation can be solved by means of the method of Green functions. The Green
function of the homogeneous equation (3.92) is [Dav69]

1 eilr—r'IK

G(r,r') = (3.94)

Cdrm e — |
and it represents an outgoing spherical wave in vacuum. The exact solution of the wave equation
(3.91) is

E(r) = Bue(r) —|—/dr'G(r,r')V(r')E(r'), (3.95)

where Ein.(7) is a solution of the homogeneous equation, i.e., the incident vacuum wave
Eine(r) = Ey KT (3.96)

Equation (3.95) contains the true wavefield E(r) on both sides and it can be solved by iterations.
Let us restrict ourselves to the first iteration (Born approzimation of the first order [Gui63,
Dav69]) by replacing the true wavefield E(r) under the integral by the incoming wave. Then
the scattered wave is

By(r) = /dr' (KZX(’"')> T ). (3.97)

4 |r — 7|

Using the relation

47‘(’1"6[
K2

the integral can be transformed into several equivalent representations, including

ei\rfr’ |K
EBy(r) = / Ar' (=raap(r)) g Bl (3.99)
This integral is the well-known diffraction integral used frequently in X-ray diffraction [AKK 74,
CowT75]. It is equivalent to the Huygens principle used in optics, which gives a clear physical

interpretation of the integral: a scatterer at r’ reacts to the incoming wave FEi,.(r') by the
response function T'(r') = —rgp(r) by issuing a spherical wave % The wave scattered by

the whole crystal is a coherent sum over all the spherical waves from the individual scatterers.
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In the usual kinematical theory of X-ray diffraction [Gui63, AKK™*74] the integral (3.99)
is solved by replacing the spherical wave in the crystal by a plane wave. This Fraunhofer
approzimation is valid for crystals smaller than the first Fresnel zone [BW93], thus it cannot be
applied to multilayers with lateral dimension in the order of millimetres. Therefore, we further
proceed in a way similar to that used in X-ray diffraction from multilayers [Mik93a, HKA 93]
where the correspondence to the kinematical approximation of the Takagi-Taupin equations
[Tau64, Tak69, Spe81] has been shown.

The incoming plane wave Ei,.(r) = Ey e'K™ impinges on a planar multilayer whose structural
parameters depend on the growth direction z. Let us rearrange the integral (3.97) accordingly.
The amplitude on the sample surface is

K2 1 .
E,(r=0) = Eo / dz( 4>;(“">> / / dady e e R K K (3.100)

The volume integral can be separated into two parts

E.(0) = Eo/dz (K2x(2)/4r) €5 U(2, K) (3.101)
Uz, K) = //dxdy%ei(l(’”“”"'l(’v‘y"'lﬁ‘) (3.102)

with r = \/z2 + y2 + 22. It follows from the translation invariance of the planar multilayer that
the scattered plane wave is a plane wave and therefore the integral (3.102) should be solved
analytically. The integral (3.102) is of the type U(z, K) = [[dzdy A(z,y) &7 ¥ where the
amplitude A is a slowly varying function and the phase T is a rapidly oscillating function of its

sample E

|

Figure 3.9. The stationary point S lies on the classical path ASE of the ray going to the observation point
P. Line AS is parallel to the incoming wave vector K and the line SE is parallel to the outgoing wave
vector K, while the law of reflection holds. The stationary phase method replaces the volume integral
(3.100) describing the scattering from all volume elements by the integral of the contributions of the
stationary points along the classical path of the outgoing wave, Eq. (3.105).
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arguments. Therefore U(z, K') can be solved analytically using the two-dimensional stationary
phase method [AKK™74]. The stationary point S is the extremal point of the phase

E
Oz [z5,ys] dy [zs5,ys]

Evaluated it gives

Ko, By ] (3.103)

[zs,ys] = [_E 2, K, 4
We can see that the stationary point lies on the classical path of the beam in the sample
(Fig. 3.9), i.e., in the intersection of the path of the incidence and the outgoing waves following
the law of reflection.
Values of A,T and of the determinant of the second derivatives of T' evaluated at the sta-
tionary point are

T|zs,ys] = K,z

1 K
A = — = z
[$57 yS] |rS’| K2
(5) (5) - G, ()
Ox? oy? 020Y ) | 116 ys] rK,)
Therefore
21
Uz K) = I;” giK:2 (3.104)
and the reflected wave amplitude becomes
iK? 21K,z —iK> —iQ:z
E. = Ey dz x(z)e”™** = Ej dz x(z) e "%*% . (3.105)
2K, Q.

We have found that the resulting reflectivity amplitude is proportional to the Fourier transform
of the susceptibility profile in the growth direction. This feature is similar to all the scattering
calculations of the kinematical theory as we can see by the comparison with the kinematical
theory of X-ray diffraction. However, to be more strict, the reflectivity is non-zero only at the
regions where susceptibility changes (i.e., at the interfaces), because the integration method “per
partes” applied to (3.105) gives

_K2 o0 d ) ) .
E, = Ey Q—E [/0 dz <_>;(zz)> e Q2 _ [X(z) e_’sz]O (3.106)

and the last term is zero.

From figure 3.9, showing the ray propagation along the classical path, and from the resulting
Fourier transform we find the physical meaning of the kinematical theory. The incoming vacuum
plane wave propagates through the sample without any refraction and without being absorbed.
In each point it excites a reflected plane wave, so that the law of reflection holds. However, the
amplitude of the incoming wave is not diminished by the reflection process and therefore the
kinematical theory, as well as the single-reflection approximation, is limited only to the regions
of weak reflections. If this would not be the case, then the intensity of the transmitted wave
would not be constant, which could be maintained only by a higher-order Born approximation.

The stationary phase method is an approximate method that solves the integral (3.100).
It approximates the amplitude A(z,y) by its value in the stationary point and integrates the
exponential of the phase T'(z,y) expanded into the first two terms of the Taylor series. However,
an analytical solution can be found by means of the decomposition of the Green function (3.94)
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Figure 3.10. Fresnel transmission coefficient t calculated dynamically and reflection coefficients v calcu-
lated dynamically and kinematically for a vacuum/sapphire surface and CuK, wavelength (critical angle
0.288°).

into plane waves,? which leads to exactly the same result as given by Eq. (3.105) [Hol96]. To
our knowledge the mathematical reason of this perfect coincidence has not yet been given.

A similar kinematical calculation approach will be used for the laterally structured multilay-
ers (multilayered gratings) in Ch. 5. Now let us apply this kinematical approach to some simple
cases.

Single interface

Let us consider the reflection from an interface separating two media 1,2 with refractive indices
ny =14 x1/2, na =1+ x2/2. The susceptibility profile is thus

x(z) =x1 H(=2) + x2 H(z) , (3.107)

where H (z) is the Heaviside function (defined by H(2<0) = 0 and H(2>0) = 1) with the Fourier
transform H(Q,) = [dz H(z)e™"9:* = 1/iQ,. The relative amplitude of the reflected wave,
i.e., the kinematical Fresnel reflection coefficient, is given by the Fourier transform

. E, —iK? / , K? k2. — k2
kin _ 7 —iQz2z 20 1C
v = — = dzx(z)e = — — =<

(3.108)

— 00

As we can see, the kinematical reflection coefficient coincides with the dynamical Fresnel coeffi-
cient calculated for large angles of incidence, see Eq. (3.54). A comparison of both the dynamical
and kinematical Fresnel reflection coefficients is shown in Fig. 3.10. We observe that the kine-
matical one diverges for small angles of incidence and it is proportional to the difference of the
scattering potentials V5 — Vi = K2(x1 — x2).

2The equality ei:T = i I % dk. dk,, where k. = \/|k|* — k2 — kZ, is proved by the stationary phase method
in [AKK™*74]. The analytical proof can be easily obtained putting » = (0,0, z) (without loss of generality) and
integrating it directly in polar coordinates. We note that the integration region covers the part where k. is real

as well as the part where k. is imaginary.
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Multilayer

The susceptibility of a multilayer is constant in each layer j, thus

N
X(z) =Y XV [H(z = 2z) = H(z = zj41)] , (3.109)
=2
where j goes over all layers of the multilayer. The integral (3.105) then turns into the sum
9 N .9 N
R = KOS 0) [Lei@n 4 oi@enn] = KD po) iges (3.110)
@3 =2 @ j=2
where we have defined the structure-geometric factor of layer j
: N e 1
) — ) 6'7 3.111
X —1Q), ( )

We find this expression very close to our summation formalism of the semi-kinematical X-ray
diffraction from crystals [Mik93a, Mik93b, MHKP95] derived from the Bartels et al. formalism
[BHLS86]. In the formula (3.110), the pre-factor in front of the sum is iK?/Q, and the contribu-
tion from each layer is proportional to its susceptibility. In symmetrical XRD, the pre-factor in
front of the sum over the structure-geometric factors is iKC/2y;, = iK?C/2K}, = iK*C/Qp.,
where C' is the polarization factor (C' = 1 for the o-polarization), and ~y is the direction cosine
of the diffracted wave. The structure-geometric factor of the diffraction from a layer is propor-
tional to the Fourier transform of the susceptibility. Therefore both XRD and SXR express the
same scattering phenomena of diffraction around a Bragg peak, which for SXR is the origin of
the reciprocal space, (hkl) = (000).

However, in SXR we prefer the “interface” representation of the scattering effects. By
expressing the susceptibility (3.109) as a sum going over the interfaces (similarly to (3.107))

N
x(z) = Z (X(HD — X(j)> H(z — zj41) . (3.112)
j=1

Putting this relation into the kinematical diffraction integral (3.105) we get the reflectivity
amplitude

N

K2 N ) . . . . . .
LS ) [Xm e Q=7 _ 4 i+1) eﬂgzﬂ =3 dhineiQez (3.113)
j=1

D) X
Q7 &
where the summation is performed over the interfaces. The kinematical Fresnel reflection coef-
ficient of the jth interface reads

Rkin —

) K?
tkln _

(k&) — (k)
j Q_g (X :

Q2
We can see that (3.113) is formally the same relation as the single-reflection approximation of the
dynamical theory of X-ray reflection, except for the absorption and refraction effects, because

() — yU+D)y = (3.114)

e we have used the Born approximation of the first order that takes only single scattering
processes into account,

e the vacuum wave vector transfer is applied instead of the actual momentum transfer in
each layer—we utilized the incident vacuum plane wave (3.96) as the first estimate in the
iterative solution (3.95).

A better approximation that would take into account the refraction and absorption effects would
involve at least the mean refractive index of the whole multilayer. However, we show in the subse-
quent section that these refraction corrections are given by the single-reflection approximation.
Another possibility for going beyond the first Born approximation is the calculation by the
distorted-wave Born approximation, which will be employed later.
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Single layer
The reflectivity amplitude (3.113) for a single-layered system (Sec. 3.4.5) gives
RN™ = o0 4 ohin emi@el2 (3.115)

The kinematical reflectivity curve, Fig. 3.8(b), approaches the single-reflection approximation

of the dynamical theory for (), = qz2 , therefore for angles of incidence larger than the critical
angle of the layer material, w > 92]. Below the critical angle the kinematical Fresnel coefficient
diverges and so does the kinematically calculated reflected intensity. This is because of using
the vacuum plane wave (3.96) as the wave transmitted and scattered inside the sample, and not
the wave with the wave vector inside the material (3.10).

3.6 Multilayers with the layer sequence given by a deterministic
rule

In this section we study the reflectivity curves of multilayers whose layer sequence is constructed
according to a certain mathematical rule. As particular examples we take a periodic multi-
layer, which is a well-known type of multilayer, and a quasiperiodic Fibonacci multilayer, whose
structure is not explored so often. The construction rule of the layer sequence (i.e., the rule
determining how the layers of different materials are arranged above the substrate) is quite easy
for the periodic multilayer, but it is not the case of the Fibonacci multilayer [SL87, Jan92]. We
will show that the reflectivity curve of the Fibonacci multilayer is self-similar and we find a
rule determining the peak positions. However, in order to calculate this specular curve and the
Fourier transform of a quasiperiodic lattice we will make use of the terminology of the physics
of quasicrystals and for more transparency we use it for the construction of both periodic and
Fibonacci multilayers.

Further, the theories of the specular reflectivity calculation presented earlier will be compared
and discussed and they will be used to characterize the reflectivity curves of the proposed
multilayers, mainly the peak positions.

3.6.1 Periodic multilayer

Let us treat the specular reflectivity from a periodic multilayer consisting of the periodic repe-
tition of two building blocks A and B, the A layer being above the substrate (Fig. 3.5(b)). We
derive the dynamical, single-reflection and kinematical formulae and we perform their compar-
ison. We use the single-reflection approximation to find the peak positions and we show that
they are equidistant in the reciprocal space of the averaged multilayer, but not equidistant in
the vacuum (i.e., the experimental) reciprocal space.

We base our calculation approach on the physics of quasicrystals [SL87, Jan92, AG95], which
will be probably found a little bit cumbersome for such a simple lattice as the periodic one is, but
we will profit from this approach in the calculation of the reflectivity pattern of a quasiperiodic
multilayer in the following section.

Firstly we show some mathematical rules determining the sequence of layers A, B of a
periodic lattice. Let us suppose the infinite periodic lattice

P = ABABABABABABAB...

being the limit of its orders P,, or of its generations P,

P, = AB | = AB
P, = ABAB ! = ABAB
P; = ABABABAB ! = ABABAB etc.

We can find some equivalent definitions of these lattices [Mik95]:
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recurrent: P1=AB, P,=P,_1P,_1, and P;n:PllP;nfl:Pgm,

the first analytical: Py=AB, P,=(P1)2" " and P,.=(P1)?",

deflation (substitutional): P1(A,B)=AB, P,(A,B)=P,_1(AB,AB),

the second analytical: Ppo=A1Ao...Aon and PgnzAlAg ... Ap,, where the objects A; are
either A or B according to

A:{ A for |(j+1)/2] —[5/2]
i B for [(j+1)/2] —[5/2]

The function |z] denotes the integer part of z.

W=

1
0

3

The layer positions are za, = tg +tap (n — 1), 2, = tap (n — 1), where the lattice period is
defined by tap =t4 + tB.

The recursion rule 1. can be used in the dynamical calculation of the reflectivity. The matrix
sequence (3.65) can be evaluated in the same way as the periodic layer sequence, thus yielding
the recurrent relation

MML,TL — MBAMML,n—l ’ MML,l — MBA — MBMA ) (3116)
If the rule 2. is used, then the explicit analytical relation is found
MMER — (Mp )™ (3.117)

Within the approach of the matrices N the reflectivity from the vacuum and substrate interfaces
have to be treated explicitly

M = (PusPy5) NBNA) N Pas . (3.118)

This matrix calculation method provides numerically efficient dynamical calculation which
is required for thick multilayers. However, for thin layers the single-reflection approximation
is acceptable and therefore we perform the corresponding calculation now. It will enable us to
derive a relation for the peak positions.

The phase term in (3.77b) is a sum over the phase terms in layers above the layer j, so that

qﬁjA:ngbA—i-(n—i-l)qﬁB , gbjB =n¢s+ nep , (3.119)
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Figure 3.11. X-ray reflectivity curve of the periodic multilayer (substrate GaAs, 10 periods of 130 A
thick GaAs and 70 A thick AlAs). The dynamical theory (full curve) is compared to the single-reflection
approximation (a) and good coincidence is found except the region close to the critical angle due to the
same reasons as in the case of a single-layered sample, Fig. 3.8. Comparison of the dynamical theory to
the kinematical theory is shown in the figure (b).
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where n is the number of periods between the vacuum and the layer j, n = [4]. The particular
phase shifts are ¢4 = g, at4 and ¢ = q,ptp. It is convenient to introduce the mean momentum
transfer in the multilayer

(¢z) = (gzata + q.BtB)/taB . (3.120)

Further, the periodic multilayer consisting of M periods has total thickness ¢ = Mt p. Then
the single-reflection approximation gives the explicit formula for the reflectivity amplitude

M-—1
R = (vyp —ta) + Z [t +1ta ei¢B]e—im(¢A+¢B) +tas e~ M (da+¢B)

m=0

1— eii<qlz>t

= (typ —ta) + F 4ty e et (3.121)

1-— e_i<Qz>tAB
We defined as t4 (tp) the Fresnel coefficients of the interface below the A (B) layer, respectively,
and t,p = t; that of the vacuum/layer B and t45 = tyy that of the layer A /substrate interface.
The structure factor of one period is

F=tp+rtye B8 = (1 — ¢ 10:B!B) (3.122)

where we used the identity t; ;11 = —tj;1;. From the form of the middle term in (3.121) it
follows that the reflectivity maxima are distributed equidistantly in the reciprocal space of the
averaged multilayer

27

whilst they are not equidistant in the angular space

A

The main maxima are called Bragg peaks as well, since their positions follow a condition similar
to the Bragg formula in X-ray diffraction [Gui63].

The maxima of the reflectivity curve of the periodic multilayer are indexed by one integer
m and the amplitude in the maximum is proportional to the number of layers M

1 — e~ ¥az)mt
¢ =M. (3.125)

]_ — e_i<q:.>mtAB

Finally we note that in this section we have treated the specular reflectivity from a periodic
multilayer whose main motif consisted of two building layers A, B. The generalization to the
case of more building layers is straightforward, since only the structure factor (3.122) is changed
by adding the phase shifts of the additional layers and the Fresnel reflection coefficients of the
additional interfaces.

3.6.2 Fibonacci multilayer

A Fibonacci lattice is a well-known quasiperiodic lattice with very interesting diffraction proper-
ties [LS86, Els86]. The X-ray diffraction from the Fibonacci multilayer were frequently analyzed
[MBC*85, TMC*86, TKO90, MHKP95], but the X-ray reflectivity has not got such attention.
Therefore we perform this analysis in the present section.

The Fibonacci multilayer, shown schematically in Fig. 3.5(c), consists of two building layers
A, B deposited on a substrate according to the rule of the Fibonacci lattice [Jan92]. The infinite
Fibonacci lattice

F=ABAABABAABAAB ...
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is the limit of its generations F,

Fo=B F; = ABA
Fi=A F, = ABAAB
Fs = AB F; = ABAABABA etc.

Many equivalent building rules have already been found [SL87] for Fibonacci generations F,:

1. recurrent: Fo=B, F1=A, F,=F, 1F, o,
2. deflation (substitutional): Fy=B, F,(A,B)=F,_1(AB,A),
3. analytical: Fr=A1Ay... Ay, with the following definition of the objects A;:

o A for |(j+1)7| —|j7]
Bi = { B for |(j+1)r| - i)

The formula for the Fibonacci lattice point positions is known [LS86] 2z, = tg[n + (ta —
tg)/tp - |[Tn]]. The golden mean 7 = @ ~ 0.618 is the “magic number” of this sequence.
Further, there are fyri1 (far) layers A (B) in the Mth generation, respectively, where the

Fibonacci numbers are fy; = far o+ fmo1, f1 =0, fo = 1.

L,
0.

From the recursion rule 1. immediately follows the recursion relation for the multilayer
transfer matrix (3.65) for the Fibonacci multilayer of the Mth generation

MML — MML,M
MFib,l _ MA _ PAQA(PA)—l : MFib,Q - MB = PBQB (PB)—l ’

where P, g = P12 and P4 s = Pn,n+1. This matrix formalism provides a numerically rapid and
still fully dynamical calculation procedure valid in the whole angular range. The reflectivity
curve of the Fibonacci multilayer of the 13th generation is shown in Fig. 3.12.

The recursion relation 1. can also be applied to the calculation of the reflected amplitudes
by means of the recurrent formulation of the single-reflection approximation (3.80b). If the
Fibonacci generations are chained, then

FFib.M _ pFib,M-2 | pFib,M—1 ef'ichib’M72 . (3.127)
The phase shift over a Fibonacci stack of the Mth generation is explicitly

@M — i qoata + far - 4oBtB - (3.128)

Finally, the calculation has to take into account the vacuum-multilayer and multilayer-substrate
reflectivities separately. Then the reflectivity amplitude becomes

Fib,M

RSRA = (thAM+2 - tAM+2,AM+1) + FrieM T tas e " (3-129)

The objects A are defined to be A or B, thus the Fresnel coefficients are between layers A and
B (t4,B = —tB,4), vacuum and layer B (v, p), layer A and substrate (r4).

Both the dynamical (3.126) and single-reflection (3.129) expressions enable us to calculate
numerically the profile of the reflectivity curve of a finite Fibonacci multilayer. Since the diffrac-
tion spectrum of a Fibonacci lattice is quasiperiodic [SL87], we expect similar properties in
the specular reflectivity as well. Being interested in establishing the general properties of the
reflectivity profile, mainly the peak positions, we will use the kinematical theory (Sec. 3.5) to
characterize the reflectivity curve of the infinite Fibonacci multilayer. We proceed similarly to
the method we used in [MHKP95]. Moreover, the kinematical wave vector transfer @, is a
real quantity and therefore our results remain valid for both possible arrangements of the layer
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sequence, which means that the stacking sequence can be parallel or antiparallel to the growth
direction.

The Fibonacci lattice is self-similar and the use of the deflation building rule 2. allows the

decomposition of the Fibonacci lattice F into two sublattices F 4, Fp

sublattice F4: F =|AB|A|AB|AB|A|AB[A|AB[A]...

sublattice Fp: F =[A|[BAA[BA[BAA[BAA[BA]...
The sublattice F 4 is the Fibonacci lattice of groups of layers and , and the sublattice Fpg
is the Fibonacci lattice of groups of layers and . This represents the self-similarity
(scale-invariance) of the Fibonacci lattice in direct space. Consequently, the lattice positions of
the particular layers A, B are

Zan = taln+tp/ta-|mn]] (3.130)
Zzpn = ta+ (tp+ta)n+ta/(ta+tp) |n]] (3.131)

and except for the different length scales these relations are the same as the Fibonacci lattice
positions z,. Further, we will need to evaluate the discrete Fourier transform S(k,da,dg) =
S, e 2, =dg[n+ (da —dp)/dp - |7n]]. This has already been worked out using different
methods (the modulated phase method has been established by Levine and Steinhardt [LS84]),
the cut and projection method by Zia and Dallas [ZD85] and Elser [Els86]. The resulting formula
reads

1 Dpy
S(k,da,dp) = ™ > sinc$ e /2 §(k — k) (3.132)
pq

where the maxima positions are k,, = 2m(p/7 + ¢q)/d and the phase ®,, = 2mq — kp,(da — dp).
Here p, g are integers and the lattice period is d = d4 + 7dB.
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Figure 3.12. X-ray reflectivity curve of the 13th generation of the Fibonacci superlattice (substrate GaAs,
layer A is 42 A thick GaAs, layer B is 25 A thick AlAs). The reflectivity peaks according to the formula
(3.140) are labelled by two integers p, q.
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Let us use the formula (3.113) and split the summation over layers A and B into separate

groups
FFib,OO = 14 Z e*inZAn + tp Z e*inZBn
n,layers A n,layers B
= T4 S(Qz, ta+1tp, tB) +tB S(Qz, 24 +tp,ta + tB) e 1Q:ta (3.133)

In other words, this decomposes the reflectivity into the reflectivity from the sublattices F 4 and
Fp, respectively. Applying (3.132) to both sublattices, their reciprocal space maxima

tpq = kpg(ta+tp,ta) =2r(p+q7)/tan (3.134)
Doa = kpaRtattpita+ip) =7QL,, = QL (3.135)

are rescaled by the golden mean 7. The period t4p = t4+7tg. This represents the self-similarity
of the diffraction pattern in reciprocal space. Since the particular phases

2

A _
q)pq_d

(gta — ptp) , ol = —rol, | (3.136)
are scaled by the golden mean as well, the final formula for the reflectivity amplitude (3.133) of

the infinite Fibonacci multilayer reads

FFib,OO(QZ) :Z F;;ib,oo . 5(Qz _ Qz,pq) (3.137)
pq
) A i *'in, pta A i
F;(‘;b,oo _ 'CA(th,pq) sinc %e‘iq}ﬁq n tB(Qm—i,p)—T_ t phap sinc T(I)pqeir(b;‘q (3.138)
A A B

Compared to the structure factor of the periodic lattice (3.122) that of the Fibonacci multilayer
(3.138) exhibits a modulation by an additional periodic function sinc (z) = sin(z)/xz. The cut
and projection method shows that this is caused by the projection of a periodic lattice in the
higher-dimensional space (two-dimensional for the Fibonacci lattice [Els86]) into a quasiperiodic
lattice in a lower-dimensional space (one-dimensional for the Fibonacci lattice).

Previously, we have found that the kinematical theory is not accurate enough near the critical
angle, but a good coincidence is achieved by replacing the vacuum momentum transfer (), by
the momentum transfer in the averaged multilayer

_ QzAla+q.BtBT
(q:) = m :
AB

(3.139)

This substitution is perfectly adequate in the infinite Fibonacci multilayer as it has been demon-
strated in X-ray diffraction theory using the semi-kinematical approximation [MHKP95]. Then
the relation describing correctly the peak positions is

(o =~ (p +q7) . (3.140)

tAB

Two main features revealing the quasiperiodic nature of the studied structure come out from
this approach. Firstly, two indices (integers p, q) are needed to describe all peak positions and
because of the irrational number 7 these peaks form dense set in the reciprocal space. Secondly,
the discrete Fourier transform is a sum of -peaks as was the case of the periodic lattice (we say
that the Fourier transform of the Fibonacci sequence has atomic spectral measure). Further, the
reflectivity of a finite multilayer, given by the convolution of the Fourier transform of the infinite
lattice and the shape function of a finite multilayer, is proportional to the multilayer thickness.
This leads to the so-called volume-square intensity scaling. This is another important property
of quasicrystalline lattices. On the other hand, there are aperiodic lattices whose discrete Fourier
transform cannot be evaluated for an infinite lattice or which is not a sum of J-functions. Then
the intensity in each reciprocal space point scales differently when the lattice size is changed
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[AGY95]. For example, the Thue-Morse sequence is automatic and not quasiperiodic, and its
Fourier transform has singular continuous measure [Kol94, AT94, PCA95].

A dynamical calculation of the reflectivity of the Fibonacci multilayer of the 13th generation
is shown in Fig. 3.12. Near the critical angle the intensity is nearly unity and the single-
reflection approximation is no longer appropriate. The reflectivity curve has to be calculated
dynamically and the thickness dependence of the reflected intensity of the Fibonacci multilayer
can be studied. As the multilayer thickness increases, the width of all peaks decreases and new
low-intensity peaks appear. The most intense peaks near the critical angle become saturated
or grow very slowly, whereas the low intensity kinematical peaks grow according to thickness
squared.

3.7 Conclusion

In this chapter different theories for the reflectivity calculation from planar multilayers have
been dealt with. Their formulae have been presented and they were thoughtfully discussed.
Therefore T hope the reader will find the enclosed “road-map” over the theories, Fig. 3.13, more
useful than another textual summary.
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Figure 3.13. A “road-map” of our theories and their approximations for the reflection from planar
multilayers. The symbols T and R stand for the transmitted and reflected wavefields, respectively.
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Résumé

Dans le précédent chapitre, nous avons étudié la réflectométrie sur une multicouche a interfaces
parfaitement planes. En réalité, les processus de croissance des films sont compliqués, avec
un caractere aléatoire et il en résulte des imperfections structurales. Comme la réflectivité
des rayons X est sensible au profil de I'indice de réfraction, nous allons considérer deux sortes
d’inhomogénéités : la rugosité d’interface et l'interdiffusion.

Une interface entre deux couches est une surface mathématique entre les matériaux consti-
tuant les couches. Les atomes qui se déposent frappent au hasard la couche déja formée. Comme
leur mobilité est limitée et que beaucoup d’autres parametres influencent la croissance des films,
celle-ci n’est pas homogene sur toute la surface de la couche. En conséquence, des interfaces
parfaitement planes ne peuvent pas étre obtenues et la modulation de I'interface réelle entre les
couches par rapport a une interface idéale se traduit comme une rugosité.

Pour ces raisons, il est indispensable d’incorporer la rugosité, c’est a dire le caractére aléatoire
des interfaces, dans le calcul de la réflectivité.

La réflectivité spéculaire ne peut pas distinguer entre l'influence de la rugosité et celle
de linterdiffusion. Nous pouvons toutes les représenter par une méme rugosité quadratique
moyenne et une largeur d’interdiffusion moyenne. Cependant, I'interdiffusion latérale homogene
ne diffuse la radiation que dans la direction spéculaire. Par contre la rugosité d’interface, aléa-
toire, diffuse 'onde incidente en produisant une diffusion diffuse.

Le travail préliminaire a effectuer avant le calcul de la réflectivité sur des échantillons a
interfaces rugueuses est de décrire ces propriétés statistiques. Nous commencons donc ce chapitre
par I'étude des propriétés statistiques d’interfaces rugueuses simples et de la corrélation entre
les différentes interfaces d’une multicouche. Nous montrons comment des interfaces rugueuses
modifient localement 1’épaisseur d’une couche. Nous utilisons les deux théories, dynamique
et cinématique, pour calculer I'intensité spéculaire sur une interface et sur une multicouche
rugueuses. Nos calculs conduisent au facteur de décroissance exponentielle bien connu pour les
coefficients de Fresnel. Nous utilisons ce modele pour interpréter les courbes expérimentales de
réflectivité obtenues sur des couches sandwich ou sur des multicouches périodiques.

La rugosité inhomogene latéralement et aléatoire produit une diffusion diffuse incohérente.
Nous utilisons 'approximation de ’onde déformée de Born pour calculer quantitativement cette
intensité diffusée. Nous démontrons les caractéristiques de la diffusion diffuse sur une carte de
I'intensité mesurée dans 1’espace réciproque pour une multicouche périodique.
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4.1 Introduction

In the previous chapter we have studied reflection from a multilayer with flat interfaces. However,
the sample growth is a complicated process with a certain amount of randomness, and therefore
it introduces structural imperfections. Since the X-ray reflectivity feels the profile of the index of
refraction, we will consider inhomogeneities of two kinds: interface roughness and interdiffusion.

An interface between two layers is a (mathematical) surface between the two materials con-
stituting both layers. Deposited atoms impact randomly on the surface of the layer already
grown. Since their mobility is finite and many other conditions influence the layer growth, the
layer does not grow constantly in all places of the layer surface. Therefore perfectly flat inter-
faces cannot be achieved and the modulation of the actual interface between the layers with
respect to the ideal interface is referred to as roughness.

For these reasons it is indispensable to incorporate the roughness, i.e., the random character
of the interfaces, into the reflectivity calculation.

The influence of the interface roughness and of the interdiffusion is indistinguishable in the
specular reflectivity. Both can be characterized by the same root mean square roughness and
a mean interdiffusion width. However, a laterally homogeneous interdiffusion does not scatter
the radiation into other than the specular direction. On the other hand, statistically random
interface roughness produces diffuse scattering.

The preliminary task before the reflectivity calculation of samples with rough interfaces is
the description of the randomness. Therefore we start this chapter by studying the statistical
properties of single rough interfaces and of the correlation between different interfaces of a
multilayer. We show how the rough interfaces change locally the layer thickness. We use
both the dynamical and kinematical theories for calculating the specular intensity from a rough
interface and from a rough multilayer. Our calculation leads to the well-known exponential
diminution factors that decrease the value of the Fresnel coefficients. We use this model to fit
experimental reflectivity curves of sandwich and periodic multilayers.

Laterally inhomogeneous random roughness produces diffuse (incoherent) scattering. We
use a distorted-wave Born approximation to calculate quantitatively the scattered intensity.
We demonstrate all the features of the diffuse scattering on the measured map of a periodic
multilayer.

4.2 Statistical properties of rough interfaces

4.2.1 Description of a single rough interface

In the previous chapter we have dealt with multilayers with perfectly flat interfaces, thus having
the interface coordinates constant, z;(r|) = z;. Now let us take into account randomly rough
interfaces, where z;(r)) is no more constant. We describe the actual profile of a rough interface
by the displacement U;(ry) with respect to the mean interface (Fig. 4.1)

zj(r”) :Zj-l-Uj(’I"”) . (4.1)

The displacement U; is random with zero mean, (U;) = 0. The random character of U; is
described by the probability distribution function [Hol96]

w; (U) = %/dr 5(U; () ~U) (4.2)

which describes the probability of finding a point on the interface at the distance U from the
mean interface regardless of the lateral position r (§(z) is the Dirac distribution, S is the area
of integration). The dispersion of this function

o5 = \J(U2) = \// 40w, (U7) U2 (4.3)
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is called the root mean square (rms) roughness [CN76]. The rms roughness is a main character-
istics of a rough interface. Further, the probability distribution function is related to the mean
coverage of the plane at the distance U from the mean interface [LC84]

U
0,(U) :/0 dU w;(U) = %/dr”H(U—Uj(P)) .

(4.4)

The Heaviside function H(U) has been introduced on page 41.
Finally, we introduce the characteristic function of the probability distribution [Spi93]

Xt (Q) = (e719U) = / 40wy (U7) =9V

(4.5)

which is the Fourier transform of the distribution function w;.
It has been found that a gaussian distribution function satisfactory characterizes the inter-

faces of many samples [PC93]

1 . .
w;i(U) = —— e U127

Vamoj

(4.6)

The full-width at half maximum of this distribution is 20;4/2In2. The characteristic function
of the gaussian probability distribution is gaussian as well

XUj(Q) = @2

/ Uj(r) J

zj(my))

4l

/o c; (N

Uj(r))

(c)

(4.7)

! /\\Zj—l

Cjj-1(rymy) /= Uj(ry), Uj-1(r))")

I N /

Y N

Uj(ry)

(d)

Figure 4.1. Definition of the displacement U;(r|) of a rough interface z;(r) (a). Rough interfaces and the
layer thickness fluctuations (b). Correlation function of a single interface (c) and a correlation function

of two interfaces (d).
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The probability distribution function w;(U) describes the point properties of a random
interface since it does not depend on the lateral position 7. A random interface (as any
random function) is further characterized by the distribution functions of correlation of the
heights of different points lying on the interface. Therefore we define the pair distribution func-
tion w(U,U") = w(U(r)), U(r|’|)) that determines the correlation properties between two points
U(ry), U(r|’|) [Man82].! Let us suppose that the rough interface is homogeneous and statistically
isotropic (i.e., the rough interface is described by the same set of the correlation functions over
the irradiated sample area). Then the pair correlation function of two points T, r"‘ depends only
on their distance Ary = 7 — r|’|, so that w(U,U’) = w(U(r)),U(r| + Ar|)) does not depend on
7. The pair probability function of a gaussian interface is given by [Hol96]

w0 1 U? + U = 2UU'K (r) — 1) ws)
w(U,U") = exp . 4.8
27r02\/1—K2(r||—r"‘) 2‘72[1_K2(TH_TH)]

The dimensionless correlation coefficient K (r — r"‘) = 5 C(r — r"‘) is proportional to the
correlation function of the rough interface [SSGS88]

C(r| — r|'|) = (U(rH)U(r"‘)) . (4.9)
The characteristic function of the pair distribution function of gaussian interfaces is

oo (Q, Q) (€ i(QU~— QIU/)> _”2(Q2+Q’2)/2 eQQ'C(r”—r"‘) . (4.10)

The choice of the correlation function is of crucial dependence on the sample concerned. We
expect that a suitable correlation function satisfies the following two requirements: the heights
U at the same point are perfectly correlated, thus K(0) = 1, and two points far away are not
correlated, thus K(oc) = 0. It has been found that the most suitable function depending on
three parameters only follows from the fractal description of random surfaces [Man82], and that
correlation function reads [SSGS88]

Ci(r, ) = {Us(r)) - Us(r[)) = o e” (n=riire)™ (4.11)

Here &; is the in-plane correlation length of the j-th interface and h; is connected with the fractal
dimension of the interface by relation D; = 3—h;, 0 < h; < 1. Modelling the random interfaces,
we see that h; describes how smooth or jagged the interface is. Values of h; approaching 1
produce smoothly varying interface (h; = 1 for Gaussian surface), while small h; produces very
jagged interface.

4.2.2 Description of rough interfaces in a multilayer

So far we have dealt with the correlation properties of a simple interface only. A multilayer is
formed by a sequence of layers that have been grown one after another. Therefore, the profile of
an interface depends to a certain extent on the interface profiles of the underlaying layers. The
correlation properties between different interfaces of a multilayer are discussed in this section.

Similarly to a single interface (4.8), the gaussian probability distribution function of two
interfaces 7, k is [Hol96]

(4.12)

1

{ Uz U? UK,
eXp{ s —
QWJ]Uk\/l ’PH — 'PH) 2[1 — Kjk]

2T T T T
g o 00

w]k(U U

!The pair correlation function is required for the calculation of the mean of any function a(U,U"): (a(U,U")) =
(a(U(r)),U(r|))) = [dU [dU" a(U,U") w(U,U").
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(a) (b) ()

Figure 4.2. Schematic representation of interface roughness in multilayers: (a) independently rough
interfaces (uncorrelated roughness), (b) perfectly correlated (identical, replicated, conformal) roughness;
(c) partially correlated roughness.

The (pair) correlation function of two interfaces j, k calculated at two lateral points T, r"‘ is

Cir(my — 7)) = ojorKjp(r) — r|) = <Uj(7’u)Uk(1°|'|)> : (4.13)

We suppose different interfaces, j#k, since the correlation function of a single interface C; (r”) =
Cj(r) has been studied in the previous section. The correlation function depends considerably
on the multilayer growth [JMP92, dBLW95].

The experimental conditions determine how each growing layer replicates the interface profile
of its lower interface and how the intrinsic roughness comes out. A general formula comprising
both phenomena [SSK93, Hol96] writes the interface displacement

Uj(r) = hj(r) + Ut (r) @ aj(r)) = hy(r) + /drﬁ Ujii(r]) aj(r) —r|) - (4.14)

Here hj(ry) is the intrinsic roughness of the jth interface. The replication function a;(r)
corresponding to the growth of the (j+1)th layer can be chosen so that it covers three possible
types of roughness propagation:

1. independently rough interfaces, Fig. 4.2(a): no replication is present (the growth process
has “no memory”), thus a;(r|) =0,

2. identical roughness, Fig. 4.2(b): the intrinsic roughness is zero (h;(r) = 0) except for the
substrate interface. Each interface above the substrate replicates perfectly the substrate
interface profile, thus a;(r)) = d(r|). The case a;(r) # d(r|) (not shown in the figure)
leads to the smoothening of the substrate roughness, i.e., roughness decreases towards the
free surface,

3. partial replication, Fig. 4.2(c): both the intrinsic and replicated roughness contributions
are non-zero. This is the most general case given by Eq. (4.14).
4.2.3 Root mean square roughness and the thickness fluctuations

In this section we look how the fluctuations of the interface profiles (i.e., the rms roughness)
and the layer thickness fluctuations are related. In a rough multilayer, the actual thickness is a
local quantity (Fig. 4.1(b))

ti(ry) = zj(ry) — zj—1(r)) =t + Us(r) = Uj—1(my) (4.15)

where the ideal layer thickness is t; = (z;(r|) — z;-1(r|)) = (t;(m)). The root mean square
fluctuation of layer thickness

(0t5) = ((t; = (t;))%) = ((Uj = Uj=1)?) = 0 + 051 = 2C;j-1(0) (4.16)
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depends on the root mean square roughnesses of the surrounding interfaces as well as on their
vertical correlation C} ;j_1(0).

In the case of independently random rough interfaces, Fig 4.2(a), the thickness fluctuations
are simply

(0t3) = 0% + 05 . (4.17)

The identical (perfectly correlated, conformal) roughness, Fig. 4.2(b), is the other marginal
case of the roughness distribution. The thickness of all layers is laterally constant in spite of the
non-flat interfaces copying the rough substrate interface.

Finally, let us suppose the intermediate case, Fig 4.2(c), and let the layer thickness be a
random quantity, ¢;(r) = ¢; + D;(r). The interface profile

4l
zi(m) = 2 + Uj(r)) = zipa(m) — tia(m) = 28 + Un(r) = > () (4.18)
=N
then gives the interface displacements
Uj(r)) = zj(rm) — 2z = (zj11(r)) — 2j41) — (i1(m) — tj1)
1
= Ujsi(r) = Djpa(my) = Un(r) = > Dj(ry) - (4.19)
=N

From this follows that the rms roughness increases from the substrate interface towards the
sample surface by

j+1
o} =0k + > _(D}). (4.20)
=N

For constant thickness fluctuations £€2 = (D?) it simplifies to the well-known relation [HB94]
oF = oy + (N —5)&*. (4.21)

Both the above formulae hold for increasing roughness, where the layer thickness fluctua-
tions increase the roughness imposed by the substrate interface oy, or, if the layer thickness
fluctuations are zero, then the layers copy perfectly the substrate interface. The third case,
when the substrate roughness is diminished by the deposited layers, is experimentally found as
well.2 The general model (4.14) describes also this case of partial replication without intrinsic
roughness. It has been shown in Ref. [Hol96] that the rms roughness depends on the lateral
correlation length.

4.3 Specular reflectivity from a rough multilayer

4.3.1 Dynamical calculation

Now let us calculate how the rough interfaces influence the reflected intensity. Since the rough-
ness changes the local layer thickness, the matrix calculation procedure (3.61) requires to change
the propagation matrices (3.57) accordingly. Their phase term then becomes

Dj(m) = etk () — D, (kS W (r)= U1 () (4.22)

2This relates to samples where the substrate roughness or that of the buffer layer is large (Sec. 4.4.3). This
roughness is then smoothen by the subsequent growth.
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The propagation matrix of a layer bounded by rough interfaces turns into the product of three
diagonal matrices that describe the propagation through the layer with averaged thickness and
through the imperfect region, respectively,

QD () = Uj—1 (=kD, r)) QW (kD) Uy (KD, 7)) (4.23)
e—ik;U]‘(’l‘”) 0
uj(kza 'PH) = < 0 eiszj(T”)) (424)

Further, we regroup the matrices in the sequence (3.61) so that the displacement matrices U; of
the same interface j are associated together with the corresponding boundary matrix P; ;1

M(’PH) = ... Q(J)(T“)'P]lflj+1 Q(ﬂ'l)(r”) .

= Uj 1(—k£j), ’I’H)Q(j)u]'(kgj), 1"”) P;?j-H Uj(—kgj—i—l), T||)Q(j+1)uj'+1(kgj+l), 1"”) R

= Q] ’]+1(’I’H)Q(j+1) e . (425)

After reordering, the boundary matrix describing the transition through the rough interface j
became random

Pigwi(r) = UED, r) P U (KT )

1 ( (k(]) k(]+1)) (,,,”) d 71(k(J)+k(]+1)) (,,.))
= ]
id ,—i(—

k(]+1) k(])) (,,,”) o (k(J-H) k(])) (,,.H) (426)

ad

G

The reflectivity amplitude of a multilayer, given by Eq. (3.62), has to be statistically averaged

over the irradiated sample area, or equivalently, over the profile distribution of all interfaces.

The averaged fraction of two random functions a(z),b(x) can be approximated by a fraction of
their means

a\ _ a(z)wx . <a)+5a($)wx x’*“@ (5b2)_(5a5b>
()= | iy v@ e = [ Gy v =~ [” GE <a><b>] (4]

where we defined da = a — (a), db = b — (b). In the case of small roughness we can neglect the
second order contributions and approximate the reflectivity (3.62) by [PC93, Hol96]

[ Mx\ (M)
e (M) ) oo

Averaging the transfer matrix of the whole multilayer then separates to the averaging of the
boundary matrices

<./\/l(1"||)> = Q(j) <Pj j+1(r\\)) Q(j+1) (Pj+1 j+2(7"||)>. ..
N
- H i())) H Pij+1(m)) QU (4.29)

The statistical averaging of the boundary matrices is straightforward and it expresses them by
the characteristic function of the probability distribution

oy L[ (R RE) g (K (430
J,J+1\T] t}d tljd X, (_kg]) . k£]+1) XU; kg]+1) _ k_g])

This matrix is symmetric for the usual case of symmetric Fourier transforms of the distribution
functions and the averaged boundary matrix simplifies into the form analogous to the case with
flat interfaces (3.51)

_1 1 Ty
Pige1 =y <tj 1) ; (4.31)
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where the Fresnel coefficients corrected for the roughness [VV84] are

o XU (k£j+1)+k£j))

fi
s 1
t, = ¢4 —
J J G+ _ )
XUj (kz 7kz )

=
(4.32)

Supposing a gaussian distribution function of the roughness profile we find the well-known
relations (see, [CN76], for instance)

id kPRI g gD g2

T, = rt e =t. e
i 15 i (4.33)
. () _G+)N\2 2 :
R id (ks —kz )ioi/2
t; = tj e it

Not only the gaussian distribution functions, but also other types (e.g., symmetric exponential,
pillbox) are used and their choice can lead to a better fit of a measured data [Spi93]. However,
the differences are small and since we cannot verify the atom distribution directly, we will further
use the gaussian distributions.

We underline that the roughness influences the specular reflectivity only by a change of the
value of the Fresnel coefficients and therefore the procedure of the specular reflectivity calculation
described in Sec. 3.4.4 remains still valid using the above substitution (4.32).

Since the vertical components of the wave vectors are nearly the same in all layers, the
transmission is not substantially influenced by the roughness. However, the reflectivity coefficient
is diminished exponentially by the rms roughness and the diminution factor is sometimes called
the static Debye-Waller factor in correspondence with the form of the Debye-Waller factor in
X-ray diffraction [CowT75].

The roughness can crucially change the interference between different layer stacks. If the
roughnesses of two interfaces are not close, then the amplitude reflected from one interface is
much stronger than the other and their interference is diminished. This explains the different
sensitivity of the specular curve of a single-layered sample on the surface and interface rough-
nesses (i.e., on the roughnesses of the vacuum/layer and layer/substrate interfaces, respectively),
Fig. 4.3. If the interface roughness is large, then this reflected wave is weak and the interfer-
ence term of this wave and the wave reflected by the surface decreases, which results in smaller
amplitude of the oscillations. In the opposite case, where the surface roughness is large, the
amplitude of the wave reflected by the surface is weak. The amplitude of the wave reflected
by the interface is decreased by the absorption of the wave transmitted through the layer and
therefore the whole reflectivity curve is diminished with respect to the ideal case of perfectly flat
interfaces. Similar arguments will be used later for the discussion of the reflectivity by rough
gratings, Sec. 5.9.2.

4.3.2 Kinematical calculation

In the above section we calculated the specular reflectivity under the presence of rough interfaces
by means of the dynamical theory. In order to be complete and show another diminution factor
found in the literature, we will make use of the kinematical theory now. The kinematical Fresnel
coefficient is given by the integral (3.108) and for random interface it reads

in ZKQ * —iQ,
oit(r) = 0 / dU [x; H(U = Uj(r))) + xj+1 HU;(r) = U))] e "¢V
K2 ) . )
— @ (X] _ Xj+1) e—ZQ;U]‘(’I‘”) — tkln,ld e—ZQ;U]‘(’I‘H) . (434)

Averaging this we find

(kin) = t?in,id (e7iQ:Usy = t;sin,id o Q203/2 (4.35)
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Figure 4.3. Simulation of the specular scan for different root mean square roughnesses and diminution
factors (tungsten 200 A layer on a sapphire substrate). (a) Dynamical “rapid” damping factor. From
upper to lower curve: without roughness, interface roughness 5 A, surface roughness 5 A, both surface
and interface roughnesses 5 A. Surface roughness yields a faster decay of the reflectivity, while interface
roughness attenuates the peaks. (b) Different damping factors. Surface roughness 12 A and interface
roughness 3 A calculated for the kinematical “slow” roughness (lower curve), dynamical “rapid” roughness
(middle curve) and without roughness (upper curve).

This expression is close to that found by Névot and Croce [CN76] for “slow” roughness (slowly
modulated roughness with small slopes, large correlation length)

(eNC) = ¢id @)%z (4.36)

We can see that the only (but important) difference encountered in the kinematical theory
is the use of the vacuum wave vector transfer @), instead of that in the corresponding layer qgj ),
The “rapid” roughness reported by Névot and Croce takes the form (4.33), and it corresponds
to the small correlation lengths.

Since there are two different formulae for the specular reflectivity diminution, for “slow”
and “rapid” roughnesses, it is clear that there should be a connection between them depending
on the lateral correlation length. This has been found by de Boer [dB94, dB95], who used the
DWBA of the second order and has shown how the diminution depends on the lateral correlation
length.

We plotted the reflectivity curve using both the rapid and slow diminution factors in Fig. 4.3.
We find that for angles of incidence much larger than the critical angle the diminution effects
are the same, but measured below the critical angle, where q£2) is purely imaginary, both de-
pendencies considerably differ. In non-absorbing case the factor (4.36) always diminishes the

specular curve, but the factor (4.33) does not influence the reflected intensity since the product

qu?) is purely imaginary.

4.4 Specular reflectivity measurements

In this section we apply the theoretical formulae calculating the reflectivity curves to reveal
the structural parameters of some samples from the experimental data. Firstly, we discuss the
geometrical effects encountered in the specular reflectivity measurements: the intensity drop in
the near-zero angular region due to the finite beam size and the smoothening effect of the beam
divergence.

Then we present specular reflectivity measurements of two kinds of samples: of a multilayer
with three different layers and of a periodic multilayer. In both cases we discuss the fitting of
the experimental curves.
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4.4.1 Instrumental factors in the specular reflectivity measurements

Effects of the instrumental functions on the measured curves affecting the measured specular
reflectivity curves are found during each measurement, and therefore they are well-known (see,
[DB92a, GVS93], for instance). Since we were encountering these effects during our work as
well, we are going to explain them now. The first geometrical effect discussed below is employed
during the sample alignment procedure. The second effect of the primary beam divergence
applies mainly for thick multilayers and for divergent beams, and it does not play any role in
the experimental curves of the samples discussed in Secs. 4.4.2 and 4.4.3.

Geometrical effect on the specular curve

Comparing the experimental and theoretical specular curves, a geometrical effect in the angular
region close to the zero angle of incidence has to be taken into account. This effect is caused by
the finite beam size b, and sample length L, Fig. 4.4. For small angles of incidence w, the whole
sample surface baths in the beam and only a part of the primary intensity corresponding to the
perpendicular projection of the sample surface is reflected (situation (b)). When the sample is
rotated and the angle of incidence w increases to a certain value wp, then the whole beam is
reflected by the whole sample surface (position (c)). For the angles of incidence larger than wp
the incoming beam illuminates the central part of the sample whose size decreases for increasing
angle of incidence. From the geometry shown in the figure it follows that the cover angle wr
satisfies
. by 4.37

sinwp = I, (4.37)
The reflected intensity below this angle is diminished with respect to the ideal reflectivity pro-
portionally to the incidence angle

Rlw<wr) = 2= Rid() = S pid() ~ . Rid() | (4.38)

bs sinwg WF

The reflected intensity for angles larger than wg is not influenced. Graph (e) shows the situation
for two cases: wr = 0.23° and 0.69° (this corresponds to a sample length 5 mm and beam sizes
of 20 pm and 60 pm, respectively).

specular reflectivity
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angle of incidence [deg]

? oot @028 0069
< e _\Lw_> wE
(c) (d)

Figure 4.4. Different positions (a)—(d) of the sample (the black rectangle) in the primary beam influence
the measured specular curve (e). The black circle denotes the centre of rotation (the goniometer axis).
Below the cover angle wr, only a part (in grey) proportional to L_ of the primary beam size b, is
reflected, see (a)—(b). Above the cover angle, the whole beam is reflected, see (c)—(d). Larger beam size
b, increases the integrated primary intensity, however, in the same time the cover angle wp shifts to
larger angles (e), which decreases the intensity measured below wr with respect to the ideal curve.
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From the dependence (4.38) it follows that the correct geometrical arrangement as well as
the primary intensity should be known even in the specular reflectivity measurement. The lack
of this knowledge for the cover angle larger than the critical angle may bring uncertainty into
the fitting since it would not be possible to determine whether the intensity fall (dashed curve)
is due to the primary intensity lower than the actual one (this intensity drop would apply for
the whole specular curve), or due to this geometrical effect (the diminution takes part only up
to the cover angle).

On the other hand, the positions (a)—(c) are used in the procedure of the sample adjustment,
i.e., after the sample is mounted on the goniometer head and when its correct position and zero
angle have to be found. In this adjustment routine, we place the detector in the direct beam
and scan the profile of the primary beam that passes above the sample surface. Then we are
displacing the sample in the beam and rock it in order to find the position where the detector
signal is half of the primary intensity and when rocking the sample around this zero position
the detector signal decreases linearly. The position w = wp then corresponds to the position
where no more intensity comes to the detector. As in the other methods of sample alignment,
the correct setup has to be verified by the position of the reflected beam (2w = 26 on each point
of the specular curve).

Divergence of the primary beam

Let us suppose that the primary beam falling on the detector
sample has the divergence wg, Fig. 4.5. This depends Isp

on the divergence after the source and the reflection Q slit
curve of the monochromator and it can be cut by slits; 20p

it is measurable during the alignment procedure. The

output divergence is defined by the acceptance angle

of the detector window 26p, or by the input reflection Figure 4.5.

curve of an analyzer crystal if the measurement is done on a triple axis diffractometer. Let
us suppose the former case, i.e., a double crystal diffractometer with large input divergence
(i.e., a graphite monochromator) and an open detector preceded by a thin slit of width s_.
Then 20p = arctg s_/lsp, where lgp is the sample-slit distance. The intensity collected by the
detector is

R(w) = / " 400 RA(AD) Rw + AG) . (4.39)

,GD

where R is the profile of the intensity of the primary beam and R is the theoretical reflectivity
curve of the sample. Therefore, the effect of divergence integrates the reflectivity curve over a
small region around the measured point w thus producing smoothening of the theoretical curve.

This effect is noticeable only if the divergence is greater than the period of the thickness
oscillations on the specular curve. Supposing the slit width 100 ym and the sample-slit distance
30 cm, the slit acceptance 0.019° corresponds to the thickness oscillation period for the sample
thickness t = A/46p = 2300 A, so that the calculation of the smoothening would not be neces-
sary for samples thinner than at about 500 A, because the reflected intensity does not change
considerably within the integration region in (4.39).

Let us note that the use of sufficiently large angular acceptance of the detector slit is desirable
because it brings more intensity thus reducing the measuring time and improving the statistics
of low-intensity points.

4.4.2 TbFe, sandwich multilayer

In this section we present the determination of the structural parameters of a sandwich system
(see the inset in Fig. 4.6), based on the fitting of the specular reflectivity curve. The sam-
ple F19 concerned belongs to the series of samples where a thin magnetic layer, TbhFey in this



4.4 Specular reflectivity measurements 63

case, is deposited on a tungsten buffer layer carried by a sapphire (Al;O3) substrate and cov-
ered by a chrome capping layer. The samples have been prepared by laser ablation deposition
(LAD, known as the pulsed laser deposition (PLD) technique as well) [Gra94] in Laboratoire
Louis Néel, Grenoble, where this original method is being developed since 1992. It has been
shown that this method is very successful for the epitaxial growth of multilayers consisting of
transition metals and rare earths, like Fe, Gd, Cr, W [CGL*93, Mik93b, Gra94, GRC'94] as
well as for intermetallic compounds and alloys, including Y,Co, [Rob95, RMC*95] or ThFes.
The magnetic properties of these multilayers are intensively examined, namely for the effects
of magnetostriction, giant magnetoresistance and magnetic coupling. Since these properties de-
pend considerably on the sample structure determined by the growth conditions, the sample
characterization by means of non-destructive X-ray measurements is of great importance.

The reflectivity measurement of the sample F19 has been performed at the beamline BL.23 in
L.U.R.E. (Laboratoire d’Utilisation du Rayonnement Electromagnétique, Université Paris-Sud,
Orsay), using the wavelength 1.54 A. The measured specular scan, shown in Fig. 4.6, has been
used in order to fit the layer thicknesses and interface roughnesses. In the fitting procedure, we
stepped in the following way.

Using the nominal values of the layer thicknesses we estimated the reflectivity curve up to
the mean critical angle because the reflectivity is not sensitive to the layer roughnesses in this
angular region (this has been already discussed). Then we put in the roughnesses and fit the
tail of the reflectivity curve. Afterwards, the total thickness has been estimated by means of
the period of the oscillations. Finally, we tuned all the parameters in order to achieve the best
coincidence of the measured and simulated curves as possible. When changing the values of the
roughness of the sapphire substrate and the thickness and roughness of the tungsten layer above,
we followed the results of fitting the tungsten/sapphire single-layered samples [Mik93b]. It has
been found in the mentioned work, as well as in the previous studies of the sapphire substrate,
that for these samples the usual sapphire substrate roughness is about 3 A and the roughness of
the deposited tungsten layer increases by about 5-6 A per 100 A of layer thickness. The fitted
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Figure 4.6. Measurement (points) and the fit (full curve) of the specular reflectivity curve of the sample
F19, whose structure is schematically shown in the inset figure.
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values of the F19 sample 04, = 2+ 1 A, oy = 19.7+£1 A and the tungsten layer thickness
346 + 4 A coincided with our predictions. Finally, we have seen that it is not possible to fit the
specular curve by supposing a stack of three layers only. A modified profile of Cr layer density
near the surface had to be involved. Since we knew that Cr gets oxidized when exposed to the
air, we introduced a superficial layer with the density half of the Cr density. This setup led
to the fit plotted in Fig. 4.6. The thickness and the roughnesses of the ThFe, layer have been
determined to be 48 +2 A and 9.4 4+ 1 A, respectively, those of the chrome layer 505 + 3 A and
22 + 1 A, and the additional layer thickness was 30 A. The thickness of the ThFey layer has
been furthermore deduced from the vibrating sample magnetometer (VSM) measurement and

the values estimated by both X-ray and magnetic experiments coincided.

4.4.3 NDbSi periodic multilayers

The sample discussed in the previous section was a sandwich mul-
tilayer consisting of three nominal layers only. In the present section
we show a series of measurements and fits of periodic Si/Nb multi-
layer with 20 periods. There is a Si substrate with a very thick SiOs
buffer layer and an aluminium layer of different thicknesses giving
rise to different roughness profiles of the interfaces of the periodic
multilayer deposited on it, Fig. 4.7. The sample producer (Slovak
Academy of Science, Bratislava) has a main interest of growing these
layers in order to study the superconducting properties. The reflec-
tivity measurements have been performed by Dr. Kubéna (Masaryk
University, Brno) using a double-crystal diffractometer (with double
Ge(111) diffraction on the first crystal Ge(111)) with copper X-ray
tube.

Figure 4.7.

20 periods

In the fitting procedure, we stepped in the following way. Firstly, we verified that the
number of periods N=20 coincide to the predicted number, since there are N—2=18 subsidiary

maxima between two subsequent main maxima (Bragg peaks of the multilayer).

However,

we should stress that this rule need not be valid in each region of the reflectivity curve if
roughness is taken into account, because big roughness can diminish the corresponding Fresnel
coefficient in such a way that the interference between distant interfaces is destroyed. Further,
the multilayer period can be established by fitting the positions of the superlattice peaks as well
as by taking the position of the critical angle into account (3.124). The envelope of the main
maxima is determined mainly by the ratio of the layer thicknesses. The substrate and the buffer
layer roughnesses influence mainly the far tail of the reflectivity curve, whereas the roughness
distribution propagating up the layers determines the peak widths. The profiles between the

main maxima are sensitive to the buffer layer thickness.

The series of samples consisted of specimens with different Si and Nb layer thicknesses grown
on an Al buffer layer with thickness of either 200 A or 2000 A. The Al layer is deposited in order
to produce a rough bottom interface of the periodic Si/Nb stack and this roughness increases
for thicker Al layers. The roughness distribution in the periodic multilayer can be described by
two following functions. Either, we keep the roughnesses of the interfaces of Si and Nb constant

(model of the constant roughnesses)

0j = ONb/Si or Si/Nb »

or we suppose that the roughness grows from the substrate to the vacuum by

_ 2 A2
0 = \/UNb/Si or Si/Nb T 1 Ao,

where n; is the number of layers between the substrate and the jth interface (cf. Eq. (4.21)).

The fit enabled us to distinguish between both roughness propagations.

The periodic sequence in sample DOB has been grown on an Al 200 A layer. Fitting the
measured curve (Fig. 4.8(a)) we have found that the constant roughness model suits better to
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Figure 4.8. Measurements (points) and fits (full and dashed curves) of the specular reflectivity curves of
the Nb/Si samples. (a) measurement and fit of the sample DOB, (b) comparison of the measurements on
samples D29A and D29B. Fit of the experimental curves of the sample D29B using constant roughness
(c) and increasing roughness (d) models.

this sample. The samples D29A and D29B had the same nominal Nb and Si layer thicknesses.
The sample D29A is grown on a 500 A thick Al layer and sample D29B on a 2000 A thick layer.
The comparison of the measured curves (b) shows that the period of oscillations of the sample
D29B is greater than that of the other sample, thus applying the reciprocity between the real
and the reciprocal (or angular) space, the period of the sample D29A is larger.

Further, the Bragg peaks of sample B are diminished after the 5th peak which expresses a
big roughness introduced by the thick Al layer. Figures (c) and (d) show fits using the constant
and increasing roughness models, respectively. In the case of the constant roughness model (c),
all the Bragg multilayer peaks are of the same width which do not correspond to the observed
situation. In the model of increasing roughness the interference in layers near the vacuum is
diminished with respect to the deeper interfaces. This effect changes the peak widths and it
explains well most satellites.

4.5 Incoherent scattering: Distorted-wave Born approximation
calculation

In the previous sections we have calculated the specularly reflected intensity from a multilayer
with rough interfaces. For the calculation we used both the dynamical and kinematical theories.
In the former case, we calculated the specular reflectivity amplitude by the matrix formalism of
the reflectivity from planar MLs and we averaged it over the random interface profile. A similar
averaging has been used in the kinematical theory as well.

A randomly rough interface reflects the incident intensity into all directions thus producing
diffuse or incoherent scattering. Calculation of the scattered wavefield is possible by both
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the dynamical and kinematical theories. The dynamical theory is applied mainly in classical
optics [BS63] or in the scattering of radio waves [AK83]. The Maxwell equations were used to
calculate the scattering from a multilayer with slightly rough interfaces in [BW70, Ste89] or liquid
surfaces [DB92b], and the solutions have been reduced to single-scattering formulae. The Born
approximation of the kinematical theory has been applied as well [WB88, PSKL93]. However,
this does not cover the dynamical effects, and thus it is not possible to cover the many important
features found in X-ray non-specular scattering, like the enhancement of diffuse scattering near
the critical angle (Yoneda wings [Yon63]) due to refraction, or resonant diffuse scattering [HB94]
due to multiple scattering.

The distorted-wave Born approximation (DWBA) has been found a good compromise be-
tween the kinematical and dynamical theories which well explains most dynamical effects encoun-
tered in diffuse scattering and makes it easy to take the statistics of randomly rough interfaces
into account. This scattering theory is known from quantum mechanics [Sch68, Dav69]. It has
been first applied to X-ray scattering for the calculation of grazing-incidence X-ray diffraction
[Vin82]. Then it was used in the calculation of X-ray reflectivity, both specular and diffuse: for
a substrate with rough surface by Sinha et al. [SSGS88], the generalization to layered samples
follow soon by Holy et al. [HKO"93]. Then this method has been developed to scattering from
multilayers with correlated interfaces [HB94, dBLW95] which explained the modulations on the
diffuse scans found experimentally [Kor91]. Further it has been employed for the reflectivity from
liquid surfaces [SSHO92], organic multilayers and Langmuir-Blodgett films [DB92b, PBMM94]
or in neutron reflectometry [Pyn92]. Higher-order DWBA has been formulated as well. The
second-order corrections have shown dependence of the diminution factor of the specular reflec-
tivity on the lateral correlation length [dB94, dB95]. DWBA is also used for the calculation
of the non-coplanar diffuse scattering measured in the new out-of-plane experimental mode
[SMP94, SMP.J94].

4.5.1 Distorted-wave Born approximation

The formulation of the DWBA comes from quantum mechanics, where the scattering process is
described by the differential cross-section [Dav69]. The cross-section stands for the probability
of the transition between two states (incoming and outgoing wavefields). The intensity reflected
by the sample is given by its integration over the acceptance window of the detector. The
main advantage of the DWBA is that it can provide an approximate relation for the scattering
cross-section instead of solving the wave equation exactly.

We treat scattering from a multilayer with rough interfaces as a system represented by the
wave equation (3.12) in the form used already in the kinematical theory (3.91)

(A+K*) E(r) =V(r)E(r) . (4.40)
The multilayer potential is according to (3.93)
V(r)=K*(1—n*(r)) = —K*x(r) (4.41)

and it is random due to the interface imperfections. The scattering cross-section from the
incident wave into an eigenstate of the former wave equation

(da) _ <\Tl2|2>av w.42)

Q0 1672

is given in terms of the scattering matrix element 7o, which depends on the scattering potential
V(r) [Dav69]. Because of its randomness, the square of the modulus of the matrix element T’
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Figure 4.9. Definition of the perturbing potential V) and of the wave vectors ki, ki, ks, k5 in both
the real (a) and reciprocal (b) spaces. Four scattering processes encountered in the DWBA of the first
order are characterized by the wave vector transfers qo = —ky — ky (process T1yT»), ¢t = —ky — ki (11T>),
@ =—ky— k| (T'T2), g3 = —kj — k| (R1R>) (layer indices were omitted for brevity).

has to be statistically averaged and the cross section separates into the coherent and incoherent
parts [SSGS88]

(3%) - <3_g>c * <Z_§Uz>1 (4.43)

do | (T12) 0 |2
<d_9>c = Dt (4.44)

do < | Thy — (Th2),, ‘2 > V (T12)
( > av . (4.45)

), ~ 1672 ~ 16n?

We have defined the covariance of random quantities a, b
V) = (la’)ay — [(a)ar|’ (4.46)
V(a,b) = <ab*>av - <a>av<b*>av . (4.47)

Therefore there are two main steps in the calculation of the cross-section. Firstly, the matrix
element T79 has to be formed and then its statistical average and covariance have to be evaluated.

The distorted-wave Born approximation is a perturbation theory that approximates the
scattering matrix element 772 of a system in the case when its potential V' (r) can be considered
as a superposition of two components

V(r)=Vid(r)+ VP(r). (4.48)

The ideal potential V9 acts as a “strong” potential, while the potential VP is a weak perturba-
tion. In the studied case of multilayers with rough interfaces, we choose V¢ to be the potential
of an ideal multilayer with perfectly flat interfaces with VP being the perturbation due to the
real interface profiles, see Fig. 4.9.

The ideal multilayer with V9 constant in each layer is described by the wave equation

(A + KY)E'Y(r) = Vid(r)E(r) , (4.49)
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which can be solved exactly (Sec. 3.4.4). Let us choose this ideal multilayer as the undisturbed
system and employe its plane wave solutions as the eigenstates of the DWBA [SSGS88, HKO*93].
We work with the following two independent eigenstates 1, 2 of the wave equation

. . , NTAC)) ; +1.(7)
E11d(,,,) — ‘E11d> — e”“lllrll [Tl(ﬂ)ezklfz(z—zjﬂ) + jo)e—zklj,z(z—zjﬂ)}
i ) " () ik ‘ G)e k9" ‘ (4-50)

The eigenstate Eid is the state of the true incoming wave, Fig. 4.10. The second eigenstate
Eid is chosen to be time-inverted, i.e., the primary wave with unit amplitude is emitted by the
multilayer and the reflected wave is the wave incoming on it.

As we can see, each eigenstate is a superposition of two plane waves, whose particular wave
vectors are

k) = (kb)) K = (e, —k)

| , | . (4.51)
k) = (ko b)) K = (e, —kS))

The parallel components are opposite and ki, > 0,ko, > 0, Fig. 4.10. An equivalent form to
Eq. (4.50) is

|Eid> _ eikl(j)r Tl(j)efikgfgz]‘+1 + eikl(j)’r jo)eik§{22j+l
, . ‘ , (4.52)
(Eid| = ik Téj)efikgfzzjﬂ 1 eikr jo)eikg{;zjﬂ _

The amplitudes TI(JQ) Ry% of the transmitted and the reflected beams, respectively, for the
states 1 and 2, are calculated with respect to the bottom layer interfaces, Sec. 3.4.4.
Let us further denote the incoming plane wave

Ey(r) = eHor (4.53)
The DWBA approximates the matrix element by [Sch68, SSGS88]
Tio = (EY|V|Eo) + (EY|VP|EY) . (4.54)

Therefore the calculation of the cross sections (4.44)-(4.45) requires the evaluation of the co-
herent and incoherent terms

(Tioby = (ESVYIEg) + ((BYVPIEY)) (4.55)

av
V(1) = V(B VIED) . (4.56)
This we will treat separately in the following two subsections, whereas now we express the matrix

element (Fid|VP|Eid).
We can see that the perturbation potential is non-zero only near the interfaces (Fig. 4.9)

0 for z < zj(m) < zj and z; < z;(r)) < 7,
V) — i+ for zj(r) > 2> 2; .

kl ‘Eid) — Ein kl, k, <E12d — (Eout)*
2 k2

Figure 4.10. Schematic drawing of the eigenstates corresponding to the incoming and outgoing wavefields.
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Thus we can decompose the perturbation over individual interfaces [HB94]

=2

N
<E1d|V1d|E1d — Z E1d|Vp Eld = Z Wg (4.58)
j=1 J=1

Let us calculate the contribution W; of the rough interface j. We employ the approximation
[SSGS88] of replacing E'4U+1) by E'4U) in the region zj(r)) < z < z; and E'40) by EidU+1)
in the region z; < z < 2;(r). Then

W; =(ES Ve Eidy = (Vp’(j) —Vp’(j“)) X (4.59)
TOTD £ (— ) 1+ RO RY FD (—g) +
T RY FD (— q) + ROTI FO (—g) +
TEHDTEH) £0)( g4y 4 RUHD RGHD FU) (L gl4D) |
T1(j+1) (a+1)]_—J(rJ)( q(]+1))+R(]+1) (]+1)f_(|_)(_q2(j+1))}

3

where the Fourier transform of “hills” on particular sides is

() G e Un)
Fl(q) = //Sdr”/O dU e~*907 H(+Uj(r)))
. —iq:U _
= // dry e M i H(+Uj(r))) . (4.60)
S

—1q;

Since both eigenstates consist of two plane waves, their matrix element for VP decomposes
into four terms containing 71T}, T) Re, R1T> and Ry Ry (Fig. 4.9). These are the four particular

scattering processes with wave vector transfers ql(]) = (—ky — lequ]l )

T, : qéj) = — (k) + &) RiRy : qPEj) = —(k" + k)
) =~ =~ + ki)
(4) () (4) (4) (4) () (4.61)
T1R2: qu = —(kQJ +k1]) RlTQ: q2] = —(kQJ +k13 )
off =~ =~ ~ k)

() ©)) ()

Note, that all the momentum transfers g;”’ have the same lateral component q’ Further, ¢,
is negative, i.e., it corresponds to the wave emerging from the layer towards the vacuum.
4.5.2 Calculation of the coherent reflectivity

The matrix element of the coherently scattered wave consists of two terms (4.55). The calculation
of the first term, which describes the scattering of the vacuum plane wave by the potential of
an ideal multilayer, is straightforward [SSGS88]

(BY' |V Eo) = 2iK. R (ki) S 0K, Koy - (4.62)

The delta function expresses the reflection law (Sec. 3.4.1). We have denoted the sample area
S = LgL,, where L, L, are the lateral sample dimensions. From this the amplitude of the
specularly reflected wave follows

R=R+ <<Ei2d\Vp|Ei1d)> /2K,S . (4.63)
av

Since the reflection law holds in the specular scan, then k; = —ki, k| = —ky and thus
qo: = —q3, = —2k,, i, = g2, = 0, and Ty = Ty, Ry = Ry. The perturbation matrix
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Figure 4.11. Comparison of dynamical and DWBA calculations of the specular reflectivity curves. (a) Si
substrate with 8 A surface roughness, (b) C/Si single-layer system with 10 A/7 A roughnesses.

element ((Eigd\Vp\Eild»av is calculated by averaging the relation (4.58). Terms (W}),  contain
the averaged Fourier transform (4.60)

<]—'(ij)(q)>av - // dry e~ 1 /dUwJ el H(£Uj(r))) - (4.64)
S

_Zqz
0

The result can be written in the form [SSGS88, HKO 193]

<ﬂ(3)(0)>av = 1k 8040 (4.65)
(F@), = L]t -] 550, (460

where ,uft is the averaged roughness displacement on a particular side of the interface. We have
defined the partial Fourier transform

. 00 .
Ul(q,) = / dU e "=V ;(U) H(£U) . (4.67)
—o0
The Heaviside function has been defined on page 41.

Since we mostly work with symmetric probability distribution functions, w(U) = w(-U),
then Uy (¢q.) = U_(—¢.). For gaussian w(U) the numerical calculation of this Fourier transform
is efficiently performed by the help of the Dyson function.?

Finally, the reflectivity amplitude of a multilayer with rough interfaces is explicitly written
[HKO"93]

Re = R + T Z 2y { —2i (TR + 10TV RETY)
. [(Tl(j))QUJ(rj)(qgj)) — jo))ng)*(qgﬁ)} /g (4.68)

+ [P PO 0 - (REDPOP )] fa 0

Reflectivity curves calculated by this formula for a single surface and a single-layered sys-
tem are shown in Fig. 4.11. We have compared these curves with the dynamical calculation
(Sec. 4.3.1). We can see that the coincidence of both dependencies is good up to a certain angle.

3The Dyson function is defined by wp(z) = % I e Hiez,

function can be found in mathematical tables [GR63].

Precise rational approximation of this
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For larger angles of incidence DWBA fails, since the actual wavefield in the rough multilayer
differs substantially from that within the ideal layer the eigenstates of which have been used in
the approximation of the matrix element.

4.5.3 Diffuse scattering

The cross section of the incoherent diffuse scattering is given by (4.45) so that the calculation

of the covariance V (TP) has to be performed. Using the properties of the covariance* we get

N
> w; Zv )+ Y 2Re V (W), W) . (4.69)
j=1

j>k

Recalling the definition W; = (EX|VP|Eld) we find that the diffuse scattering has two main
components. The first one is the diffuse scattering created by the roughness of single interfaces
and it is expressed by the first sum in the above equation. The correlation between different
interfaces leads to non-zero covariancies and it gives rise to the second component of the diffuse
scattering.

The form of W is given by Eq. (4.59), therefore it includes the covariancies

Qi = Qit(glith, gty =y (f:(tj)(qéerl))’f-ik)(qT(LkJrl))) (4.70)
(G+1) (k+1)
= dRe ‘R Y (giam: Ui(0) o—ign:" "Ur(R))
ngzjl inz+1 // ( )

The indices 7, k enumerate the interfaces, m,n count the scattering processes 0...3. Supposing
the gaussian pair probability function (4.12), this turns into

Qi = m o~ 310707 +a32 0] // dRe 'UR eqnfl)qﬁkz“) Cik(R) _ 1) (4.71)
mz “dnz

Our experiments are performed without resolution in the ¢ direction (the detector or slit window
is long in this direction). The cross section is integrated over the ¢ direction and we use

; 2mS « . (G+1) (k+1)*
/dy Q-z]llcn — m 67%[Qm,, J+Qn?,0']%} /dx e*“]zz (e%ij an+ C k(:E) _ 1) . (472)
gmz "qnz

The amount of necessary calculation can be reduced by help of the following properties.

Firstly, an = ki *. The Q% mm are real. F‘urther for a smgle interface j=Fk it holds @}, =

— i _ i i* Al ) — % — i*
Q33, = W30, W1 = Wags Q217 Q32 f 28: (002 °= be31 = a0 = -
For dlfferent 1nterfaces j # k we can ﬁnd Q Q33, QJ Q30, Q{ QQQ, Q] Q21a Qw =

Q237 Q Q327 Q Q317 Q

The ﬁnal formula for the covariance of a multilayer with uncorrelated rough interfaces reads
2
v (5) =K e = {
Qo [T + [RiRo?] + Q) [[RiT* + Ty Ro?] +
2Re {Q?ﬁ [T\ T5(Ti Ro)* + RiRo(TaR1)*] + Qhy [MTa(ToRy)* + Ry Ro(TiRs)*] +

Qly TiTo(R1Ry)* + Q7 TlRQ(TQRl)*}} )
(4.73)

“Namely V (a +b) =V (a) +V (b) + V (a,b).
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The upperscript of all T and R are j in the “upper”-hill approximation, j+1 in the “down”-hill
approximation.

The calculation of the term ) ik Y (W;, W},) that is added in the case of correlated roughness
is straightforward and it will not be shown here. It has been published for the first time in [HB94]
and the detailed discussion can be found in [HBB95, Hol96].

The numerical evaluation of the integral (4.72) has to be treated carefully, since it is a
Fourier transform of an oscillating and decreasing complex function. Its convergence depends
considerably on the fractal coefficient h, Eq. (4.11). For two values of h, namely h = 1 (the gaus-
sian profile) and h = 0.5, the exponential can be developed into a Taylor series and integrated
analytically. For other values of A the integral has to be calculated by an adequate numerical
method, where the combination of the Filon and Simpson methods [GR63] was found to be the
most satisfactory.

Finally, we relate the formula for the cross-section to the measured intensity [HKO™'93]

d
1(61,60) = e / <d—;> 40 + F(61,05) Rupec (1) | - (4.74)
I

detector slit

The integration of the incoherent contribution ranges over the angular acceptance of the detector
(see page 62) in the plane of incidence, and over the slit size in the ¢ direction with the relation
(4.72) replacing (4.71). The function F'(6,62) describes the transmission of the coherent part
of the beam into the detector staying near the specular beam. Therefore this is a trapezoidal
function given by the convolution of the shape functions of the incoming beam and of the detector
slit. Then

1(91, 02) = Iinc

201 min(Ly/Ly,beama 1) do(601,05)
K max(sin 6y, wr) /dqy dQ s + F(01,02) Rspec(61)|

(4.75)

where wr is the cover angle (4.37).

The structure of the relation (4.73) seems to be quite complicated. It can be simplified if
the reflectivity amplitudes R, Ry are small. Then the prevailing term is that proportional to
the product of the transmission function |T175| and

) 4
V(W) ~ K nf—nZ | MTel Q) - (4.76)

Another approximation which is found adequate in the case of small roughness develops the
exponential term in (4.72) into a Taylor series. Combining both approximations, we get the
final formula of the covariance in the semi-kinematical approximation [SSGS88|

V(W) 208 K* [n? —n2,|? |TO T2 o (00070 /dx ™07 O () . (4.77)

From this formula we can see that the diffuse intensity is proportional to the transmission func-
tion given by the product of 77 and T5. These transmission functions have maxima at the critical
angle of total external reflection (Fig. 3.10) of the incoming and outgoing waves, respectively,
which theoretically confirms the effect of the Yoneda wings found experimentally [Yon63]. Fur-
ther, the scattered intensity is proportional to the Fourier transform of the correlation function
C;(z) [SSGS88] as it is known in the kinematical theory of X-ray diffraction [AKK™*74].
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Figure 4.12. Simulations of the contribution of the diffuse scattering into the specular scan (the upper
figure). Calculation of the rocking w-scans (in the middle) and detector 26-scans (the lower figures) of
a sample for different root mean square roughnesses and the correlation length ¢ = 2000 A (left) and
for different lateral correlation lengths and rms roughness o = 10 A (right). The fractal coefficient h
equals 1.
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4.6 Reflectivity map of a periodic multilayer

In the previous section we worked out the theoretical treatment of specular and non-specular
reflectivity from rough multilayers based on the distorted-wave Born approximation. We have
shown how the interface imperfections influence the coherent specular scan and how they cause
diffuse scattering, which is distributed in reciprocal space. We presented numerical simulations
of the specular, rocking (w) and detector (26) scans of a layered sample with uncorrelated rough
interfaces. The simulations of these scans can be used to reveal the structural parameters by
fitting the experimental data of a measured sample.

A good qualitative analysis comes out from the measurement of the whole reflectivity map.
Therefore we present our measurement of a periodic multilayer with correlated interfaces. The
sample is a periodic sequence of bilayers of Si and Nb grown N = 10 times on a Si substrate. A
fit of the experimental data gives the bilayer period 88.5 A and the Si/Nb thickness ratio 0.52.
The high quality of the sample has been confirmed: the substrate roughness 6.7 A is replicated
by the upper interfaces and it decreases towards the free surface.

We have performed the measurement on the beamline D23 at synchrotron in LURE, Univer-
sité Paris-Sud. The incoming radiation with the wavelength 1.54 A was collimated by Si(111)
double diffraction. The scattered radiation was measured by a detector installed behind a
single-diffraction Ge(111) analyzing crystal. Fig. 4.13 shows both the angular and reciprocal
space representation of the measured reflectivity map. Each map contains 231 w-scans with
more than 15 600 points. The maps are plotted by my program pm3d.

Now let us qualitatively describe the map. The bright rod at @, = 0 (or w = 26/2) is the
specular scan broadened in the Q. -direction by the resolution function (the convolution of the
finite beam with the slit width produces the function F'(6;,6:) according to (4.74)). The small
intense spots on the specular scan are the Bragg peaks of the periodic multilayer. Less intense
spots between them are the subsidiary mazima of the thickness oscillations.

Interface roughness gives rise to diffuse scattering, which fills the reciprocal space everywhere
between the limiting Ewald spheres of the incoming and exit beams (Fig. 2.3), respectively. The
correlated roughness excites the Bragg sheets passing through the multilayer Bragg peaks. The
Bragg sheets are curved due to refraction giving them the shape and the name of “bananas”
[HB94, HBB95].

Further, higher intensity Ewald spheres passing through each multilayer Bragg peak are dis-
tinguishable within the region of the first three Bragg sheets. This effect has a purely dynamical
origin and it is explained by the concept of multiple scattering (Umweganregung) [HB94]. The
spheres raise up at the maximum of either Ry (maximum intensity of the incident transmitted
plane wave) or Ry (maximum intensity of the outgoing plane wave) in (4.73). Intense Bragg-
like peaks of resonant diffuse scattering are found at these intersections, where both reflectivity
amplitudes R and Ry are maximal.

The Yoneda wings [Yon63], for which the angle of incidence or exit equals the critical angle,
lie on the circles inclined from the “limiting Ewald spheres” by the critical angle, thus they
represent the Bragg-like peaks of the zeroth order. Since there is weak intrinsic roughness
except at the substrate interface, the measurable intensity of the Yoneda wings is localized on
the bananas only. The Yoneda wings corresponding to the Nb material (Hgb = 0.40°) can
be observed as the end-points of the bananas, whereas the Yoneda wings of the Si material
(621 = 0.22°) are not resolved.



4.6 Reflectivity map of a periodic multilayer 75
Angular NbSi fish

300000

-

1

angle of incidence w [°]
25 35 4.5

15

0.5

0.6 1 1.4 18 22 2.6 3 3.4 3.8 4.2 4.6 5

detector angle 20 [°]

Figure 4.13. The Angular (above) and The Reciprocal (below) Space Sharks (The Reciprocal Ocean,
LURE bay, Paris, 1994). X-ray fishermen have found these fishes by use of a special superlattice net and
by help of the non-specular reflection of sun rays by the ocean surface. We kindly ask the reader not to
touch the picture in order to avoid contamination by the diffuse scattering.

The detailed discussion and the explanation of the features we find on this measured reflectivity
map is presented in Sec. 4.6.
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Résumé

Dans ce chapitre nous nous intéressons a la diffusion des rayons X réfléchis sur des réseaux
de multicouches (voir fig. 5.1). Ainsi, nous étudions la distribution de I'intensité diffusée au
voisinage de l'origine dans I'espace réciproque pour une onde incidente rasante. La plus grande
partie de ce travail concerne des réseaux latéralement périodiques. La généralisation a d’autres
réseaux, avec une transformée de Fourier discréte de la structure latérale (par exemple quasipéri-
odique), sera brievement discutée. Par la suite nous utiliserons I'abréviation MLG (multilayer
grating) a la place de ”réseaux de multicouches périodiques latéralement”.

Notre but est de développer plusieurs théories adaptées a ce calcul et de les comparer : la
théorie cinématique, I'approximation de 'onde déformée de Born et la théorie de la diffusion
dynamique. Nous indiquerons les différentes approximations qui ont été faites dans ces théories
ainsi que leurs aspects communs.

La périodicité latérale uni-dimensionnelle, principale caractéristique d’un réseau de multi-
couches, est traitée dans ces trois théories au moyen de la transformée de Fourier de la sus-
ceptibilité. Nous résolvons 1’équation d’onde dans le cas d’une périodicité latérale. Ainsi nous
pouvons formuler ces théories de la méme fagon que celle bien connue de la diffraction des rayons
X par les cristaux qui utilise, pour résoudre 1’équation d’onde, I'idée similaire de la symétrie de
translation tri- dimensionnelle.

Dans la premieére partie, nous mentionnons les publications parues sur le theme de ce chapitre.
Ensuite nous traitons les caractéristiques de base des réseaux et leur réseau réciproque. Nous
introduisons la notation utilisée par la suite.

Dans les paragraphes suivants, nous présentons les diverses théories en commencant par la
théorie cinématique. Nous résolvons I'intégrale de diffraction cinématique par la méthode de la
phase stationnaire, procédure déja utilisée pour la réflectivité sur des multicouches planaires.
La théorie cinématique ne considére que les processus a une seule diffusion et ne prend pas en
compte les effets de réfraction et d’absorption. Néanmoins, les résultats obtenus montrent les
principaux caractéres de la diffusion par des réseaux : une onde incidente plane est dispersée en
un éventail d’ondes planes. C’est un processus de diffraction, basé sur la réflexion spéculaire.
Les composantes latérales des vecteurs d’onde des ondes diffusées (diffractées) different de celles
de I'onde incidente par le caractére uni-dimensionnel du vecteur du réseau réciproque. Nous
représentons les processus de diffusion dans ’espace réciproque au moyen de la construction
d’Ewald. Nous montrons un moyen pour généraliser les coefficients cinématiques de réflexion de
Fresnel.

L’approximation de 'onde déformée de Born (DWBA) sera traitée ultérieurement comme une
méthode de perturbation plus élaborée. Nous avons utilis¢ DWBA pour le calcul de la diffusion
diffuse sur des interfaces rugueuses dans des multicouches planes. On croyait jusqu’a présent que
Papproximation DWBA n’était valable que dans le cas de potentiels faiblement perturbés, c’est
a dire de rugosités faibles. Cependant, nous montrons que cette méthode s’applique aussi au
calcul de la réflectivité sur des réseaux. Notre discussion portera essentiellement sur le domaine

de validité de DWBA.

La théorie dynamique de la réflexion sur des réseaux de multicouches lamellaires a déja été
traitée par divers auteurs. Dans le paragraphe suivant, nous présentons une revue de ces travaux.
Dans ce travail, nous développons une théorie dynamique de la réflexion des rayons X sur des
réseaux en nous inspirant du formalisme de Darwin-Laue utilisé dans la théorie dynamique de
la diffraction des rayons X par des cristaux. Notre formalisme est connu en optique ; c’est la
méthode modale des valeurs propres : nous prenons comme solution a I’équation d’ondes une
onde plane semblable aux ondes de Bloch & une dimension, nous résolvons la valeur propre
et nous appliquons les conditions aux limites aux interfaces de MLG. Ceci sera réalisé par un
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formalisme matriciel. Le principal avantage de cette présentation de notre théorie est de garder
la méme notation que pour la réflexion sur des multicouches planes ; ceci montre les liens existant,
pour la réflectivité, entre tous les types de structures. En particulier, ce formalisme nous permet
d’introduire une matrice généralisée de la matrice des coefficients de Fresnel.

Cette théorie entierement dynamique est utilisée pour des calculs numériques. Cependant,
les équations de cette théorie rigoureuse sont trop lourdes pour pouvoir étre discutées de fagon
qualitative. Awussi, nous formulons la théorie dynamique avec des approximations de diffu-
sion multiple. Ces approximations sont appliquées dans des régions ou les effets dynamiques
I’emportent. Notre approche consiste & introduire I’approximation & deux ondes, comme dans la
diffraction dynamique des rayons X par les cristaux. Nous discuterons aussi le cas de la diffusion
non- coplanaire quand le faisceau incident devient presque parallele a la direction des fils des
réseaux.

Dans le paragraphe suivant, nous présentons la discussion sur ces théories, les simulations
numériques associées et nous les comparons sur 'exemple particulier suivant : un réseau de
surface avec une largeur de fil moitié de la période (8000 A). Nous montrons que les tiges de
troncature d’ordre impair sont fortes et que la plupart des profils peuvent étre expliqués par
les deux théories, dynamique et DWBA. Par contre, les tiges de troncature d’ordre pair sont
interdites dans toutes les théories de diffusion unique ; le calcul a besoin de tenir compte de
la diffusion multiple et seulement le traitement dynamique est approprié. Nous avons fait des
simulations numériques pour déterminer le nombre d’ondes nécessaire dans les approximations
a ondes multiples de maniére a obtenir les intensités diffusées avec une précision suffisante.

Nos théories et leur formalisme dans le cas de réseaux périodiques s’appliquent aussi bien
a certains réseaux apériodiques, principalement aux réseaux dont la transformée de Fourier du
profil latéral a une forme discréte. En particulier, nous étudions qualitativement la carte de
réflectivité attendue pour un réseau quasi- périodique de Fibonacci. Nous discutons brievement
comment appliquer ces théories au calcul de la réflectivité par des réseaux avec des fils non
rectangulaires mais trapezoidaux.

Les calculs ci-dessus considérent des réseaux de multicouches parfaits. Cependant, comme
dans le cas des multicouches planaires, les interfaces peuvent présenter des défauts. Nous faisons
la distinction entre la rugosité sur les parois verticales des fils des réseaux et celle, horizontale, des
interfaces. Nous utilisons notre formalisme matriciel de la théorie dynamique et nous montrons
I'influence de ces rugosités sur I'intensité diffusée. Notre approche est ainsi une généralisation
de la réflection sur des multicouches planaires rugueuses ; cependant, dans le cas des réseaux,
nous n’avons pas trouvé de traitement matriciel correct dans la littérature ou le plus souvent la
rugosité est prise en compte par les facteurs cinématiques classiques d’atténuation exponentielle.

Dans la derniére partie de ce chapitre, nous présentons les mesures expérimentales et 1’ajus-
tement des parametres structuraux d’une multicouche avec trois périodes et demie avec la
derniére partiellement gravée en réseau.
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5.1 Introduction

In this chapter we will deal with X-ray scattering from multilayer gratings (see Fig. 5.1) in
reflection geometry. This means that we study the intensity distribution near the origin of
the reciprocal space for grazing incidence of the incoming wave. The main part of this work
is devoted to laterally periodic gratings. The generalization to other gratings with a discrete
Fourier transform of the lateral structure (e.g., quasiperiodic gratings) is also briefly discussed.
We further use the name of a multilayer grating (MLG) for laterally periodic multilayer gratings,
if it is not explicitly stated otherwise.

Our aim is to develop and compare different theories suitable for this calculation. This
comprises the kinematical theory, the distorted-wave Born approximation and the dynamical
scattering theory. We point out different approximations involved in these theories as well as
their common features.

The principal characteristic of a multilayer gratings, the one-dimensional lateral periodicity,
is involved in all the three treatments by means of the Fourier transform of the susceptibility. We
solve the wave equation for this case of lateral periodicity. Thus we can formulate the presented
theories in the way of the well-known X-ray diffraction theories for crystals, which use a similar
idea to solve the wave equation in the crystal with a three-dimensional translation symmetry.

In the first section, we review the work published by other authors on the topic of this
chapter. Then we deal with the basic features of the gratings and their reciprocal lattice. We
introduce the notation used afterwards.

In the following sections we present the theories, starting by the kinematical theory. We solve
the kinematical diffraction integral by means of the stationary phase method similarly to our
procedure for the reflection from planar multilayers. The kinematical theory includes only single-
scattering processes and it does not include the refraction and absorption effects. Nevertheless,
the results obtained show the general features of the scattering from gratings: one incoming
plane wave is spread into a fan of plane waves. That is a diffraction process, based on specular
reflection. The lateral components of the wave vectors of the scattered (diffracted) waves differ
from that of the incoming wave by the one-dimensional reciprocal grating vector. Therefrom
follows the famous grating formula. We represent the scattering process in reciprocal space by
means of the conventional Ewald construction. We show a way to generalize the kinematical
Fresnel reflection coefficients.

The distorted-wave Born approximation (DWBA) as a more elaborate perturbation method
is treated afterwards. DWBA has been used in the X-ray reflectivity from planar multilayers for
the calculation of the diffuse scattering from rough interfaces. It was believed until now that the
DWBA is valid only for small perturbing potentials, e.g., small interface profile displacements
(small roughnesses). However, we show the applicability of this method to the calculation of
the reflectivity from gratings too. Therefore the main point of our discussion of the DWBA
concerns the range of its validity.

The dynamical theory of reflection from lamellar multilayer gratings is treated by many au-
thors. The review is presented in the following section. In this work, we develop a dynamical
scattering theory of X-ray reflection from gratings, taking pattern from the Darwin-Laue for-
mulation of the dynamical theory of X-ray diffraction from crystals. Our formulation is known
in optics as the modal eigenvalue method: we find a plane wave solution of the wave equation
as the one-dimensional Bloch waves, we solve the eigenvalue problem and apply the boundary
conditions at the MLG interfaces. This will be performed by the matrix formalism. The main
advantage of our presentation of the theory in this work is that we keep the same notation as
for the reflection from planar multilayers, which depicts the links to the reflectivity from both
structure types. As a particular result, this will allow us to introduce a matrix generalizing the
matrix of the Fresnel coefficients.

This fully dynamical theory is used for numerical calculations. However, the equations of
this rigorous theory are rather cumbersome for being discussed in a qualitative way. Therefore
we formulate multiple-beam approximations of the dynamical theory. These approximation are
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Figure 5.1. A sketch of a multilayer grating with a fan consisting of four diffracted reflected waves.

employed in the regions where the dynamical effects prevail. Our new approach consists of
introducing the two-beam approximation, similarly to the two-beam case of X-ray dynamical
diffraction by crystals. We discuss also non-coplanar scattering in the geometry where the
incident wave falls (nearly) parallel to the wires.

The discussion of these theories, together with numerical simulations and their comparison
is presented in the subsequent section. As a particular example we take a surface grating with a
wire-to-period ratio 0.5 and a period of 8000 A, which was a characteristic sample of the series
of the samples we worked with. We show that the odd order truncation rods are strong, and
most parts of their profile can be well explained by both the dynamical theory and the DWBA.
In contrary, the even truncation rods are forbidden by all the single-scattering theories, the
calculation needs to deal with a multiple scattering and thus only the dynamical treatment is
appropriate. We use the numerical simulation to determine the number of interacting wavefields
needed in the multiple-beam approximations in order to obtain the scattered intensities with a
sufficient precision.

Our theories and their formalism for the periodic grating can be applied for certain aperiodic
gratings as well, mainly to the gratings where the lateral profile has a discrete Fourier transform.
In particular, we study qualitatively the expected reflectivity map of a quasiperiodic Fibonacci
grating. We briefly discuss how to use the theories in order to calculate the reflectivity by
gratings with non-rectangular wire shapes (trapezoidal gratings).

The calculations above considered perfect multilayer gratings. However, as it was the case
of the planar multilayers, the interfaces between the materials can be imperfect. We distinguish
between the side wall roughness of the grating shape and the interface roughness of the horizontal
interfaces. We use our matrix formalism of the dynamical theory and we show how these
roughnesses influence the scattered intensity. Thus our approach is a generalization of the
reflection from rough planar multilayers; however, for the case of gratings, we have not found a
correct matrix treatment in the published literature where mostly the roughness is involved by
supposing the usual exponential kinematical damping factors.

In the final part of this chapter we present a measurement and fit of the structural parameters
of a multilayer grating with three-and-a-half partially etched periods.
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5.2 Review of the published work

Simple surface gratings and multilayer gratings have achieved scientific and practical applications
mainly in optical or electronic devices. Multilayers and gratings are the microstructures used
as optical elements for most of this century, mainly for the soft X-rays and ultraviolet spectral
domains. Joining of these two optical microstructures to form combined microstructures greatly
enhances both the throughput and the resolution attainable in soft X-ray and extreme ultraviolet
optics [Bar89]. Diffraction gratings are well known for their high spectral resolution. Compared
to a simple surface grating, the multilayer gratings generate higher diffraction orders, thus higher
efficiencies. Optimum efficiency is obtained when the geometry for a certain grating order is
such that the multilayer Bragg relation is fulfilled (the grating formula). Lamellar multilayer
gratings are also applied in X-ray spectroscopy as spectral analyzers [KLCT96].

There are also interests in studies of structured multilayers, which are laterally non-periodic.
The so-called Bragg-Fresnel optics have been developed recently for X-ray optics [Erk90] and
stratified Fresnel linear zone plates are being used as X-ray optical elements [SA93, ASB*94].
In semiconductor physics, the quantum wires (and quantum dots as well) are partially based on
layered surface gratings [WV91, TRL192a].

The X-ray scattering techniques, being the non-destructive methods, are advantageously
employed for the structural characterization of the gratings. Both X-ray reflection (XRR) and
X-ray diffraction (XRD) experiments are performed, the latter for the crystalline samples.

In the theoretical approaches, X-ray diffraction applies the three-dimensional crystal lattice
periodicity to the wave equation, and the additional artificial lateral periodicity is treated after-
wards. In X-ray reflection this one-dimensional periodicity is the main characteristics applied
directly for solving the wave equation.

Scattering theories of different complexity are involved in the calculation of the intensity
scattered from multilayer gratings (MLGs), ranging from fully dynamical to simple kinematical
ones. Within the XRR the kinematical and dynamical theories have been used, in XRD also
the distorted-wave Born approximation (DWBA) has been applied. Let us now review these
theories.

Kinematical theories

It is possible to solve the wave equation by means of the Green functions and develop the
expression for the scattered wavefield into a Born series [SA93]. Cutting this series after the
first iteration we get the first Born approximation or the kinematical theory. The kinematical
diffraction integral is mostly calculated using the Fraunhofer approximation [BTS*95, KLC196].
However, the resulting amplitude of the scattered wave depends on the sample size as it is
the case of the conventional kinematical XRD by small crystals. This leads to the simple
explanation of the reflectivity map, mainly the peak positions by means of the grating formula
[PAWL*91]. However, the main disadvantage of such a formulation is that the sample size has
to be smaller than the first Fresnel zone, which is not fulfilled for laterally large multilayers
(Sec. 3.5). This approach is also improper for comparing analytically the intensities calculated
by the kinematical and dynamical theories: the intensity calculated by the kinematical theory
increases quadratically with the sample dimension, whereas the dynamical theories apply the
boundary conditions and use the Fourier transform for laterally infinite structures, and not for
small samples. We overcome this problem by applying the stationary phase method to the
calculation of the kinematical diffraction integral, which will furthermore enable us to clearly
relate the obtained reflectivity coefficients to the classical Fresnel coefficients.

Dynamical theories

In 1907, Rayleigh [Ray07] studied the optical reflectivity from periodic gratings. In his theory the
scattered wavefield consists of “pseudo-periodic” waves. These waves were introduced into X-ray
diffraction from crystals by Ewald [CJK92], they are used in solid state physics as Bloch waves
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[AM76], and they are known by mathematicians also as the solution of the Floquet theorem
[SIMP91].

In a modern review Maystre [May84] presented rigorous vector theories of diffraction gratings
for optics. He discussed the validity of the Rayleigh hypothesis [Ray07], i.e. the validity of the
Rayleigh expansion inside the grating. For X-rays, the scalar theories are sufficient (page 21).
They are also discussed in the above mentioned work. The formulae for the Rayleigh coefficients
(so-called B,,) are integral equations. In the X-ray region, they have been applied by Tolan et
al. [TKB192, TVST95, TPBK95] to calculate the scattering amplitude by a trapezoidal surface
grating.

Unfortunately, the integral equations have to be integrated numerically. Therefore another
type of theories calculating the scattering from gratings has been developed—the dynamical
matriz methods. We will employ them in the rest of this work and we show how they allow
us to explain the scattering phenomena.

The dynamical matrix methods calculate the Fourier components of the scattered wavefield
(i.e. the Rayleigh coefficients) separately in different layers. The wavefields are then coupled at
the horizontal interfaces by applying the boundary conditions. A convenient matrix formalism
similar to the Abeles method [Ab50] is used for this task by all the authors.

Most of the work has been done on rectangular periodic gratings. Considering the non-
periodic gratings, the dynamical matrix theory has been employed for the calculation of the
reflection from stratified Bragg-Fresnel gratings [SA93]. Attention is paid also to gratings with
trapezoidal and triangular wire shapes [Nev94].

We distinguish two types of dynamical matrix theories, depending on how they calculate the
scattered wavefields inside the “structured” (etched, see Fig. 5.2) layer (for rectangular gratings)
or along the vertical direction z (for any grating profile):

The differential method numerically integrates the differential wave equation (e.g. by means
of the Runge-Kutta method). Neviere [Nev94] used the differential method for a grating
with triangular wire shapes, Erko et al. [EVV 193] used this method also for a rectangular
grating.

The modal method calculates the wavefield in the whole laterally structured layer. We dis-
tinguish two types of modal theories, depending on how they calculate the wavefield inside
a structured layer:

The eigenvalue method the periodic susceptibility in the layer is expanded into a Fourier
series and the wavefield is developed into Bloch waves. The solution of the wave equa-
tion is transformed into an eigenvalue problem, which gives the wave vector compo-
nents and the Fourier coefficients of the scattered waves. This method has been used
for etched gratings [MVV™94] as well as for multilayer mirrors modulated with a
transverse acoustic wave [AEM92].

It is this approach, the modal eigenvalue dynamical matrix method, which we will
further use as the “dynamical theory” in the present work.

The point matching method solves the wave equation inside the two homogeneous
parts of the structured layer. The wavefields in both wires are coupled by applying
the boundary conditions on the side walls. This leads to a transcendental dispersion
equation for the wave vector components of the diffracted waves [LG85, SITMP9I1].
The wavefield is then Fourier transformed in order to get the Fourier coefficients of
the scattered wavefield.

A comparison of the modal and differential methods for multilayer grating efficiencies has
been published [MVV*94]. The authors have found a good agreement of the calculated curves
for gratings with lateral period between 4 and 10 pm and CuK, radiation. (In the present work
we are mainly interested in short period gratings with a period at about 1 ym and smaller and
wavelength of about 1 A).
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However, a comparison between the modal and differential methods has not been done for
the interesting case of a strong dynamical interaction. Such an interaction can be achieved
when the incident beam falls parallel to the wires, see Fig. 5.4(d). In this work we present the
calculation for this case (Sec. 5.7.3) by means of the eigenvalue method and we address the
problem of comparing it with the point matching method for future studies.

Rough gratings

Most theoretical works about gratings consider perfect samples, whereas rough gratings have
not attracted much attention. Further, all the studies of imperfect gratings were limited to the
rough interfaces. They neglected the side wall roughness due to the etching process itself.

Erko et al. [EVV 193] assumed that the reflectivity losses are equally distributed in all the
diffracted orders, therefore they empirically proposed a correction in the form of a classical kine-
matical Debye-Waller damping factor exp(— K202 sin? #) which they applied to the dynamically
calculated intensity of a perfect grating. The 6 is the scattering angle and o is an effective
grating roughness.

Tolan et al. [TPBK95] included the roughness by averaging the Rayleigh-Mayster B,,, coef-
ficients. Their damping factors were similar to the dynamical “rapid” Névot-Croce factors, cf.
Eq. (4.33).

In the present work, we introduce the roughness of both the side walls of the grating shape
and of the horizontal interfaces of a multilayer grating in the framework of the dynamical matrix
approach as well as of the kinematical theory.

X-ray diffraction theories

This review of the published matter on the gratings would not be complete without comprising
the theories of X-ray diffraction from crystalline gratings.

In general, X-ray diffraction dynamical multiple-beam scattering theories [Cha84] are rather
complex, numerically difficult and they do not provide an easy relation between the formulae
and the calculated map of the scattered intensity. Therefore we usually restrict the approach
to multiple-beam scattering. For the region near reciprocal lattice points, the two-beam case is
mostly employed. Further, Taupin [Tau64] and Takagi [Tak69] derived equations that describe
diffraction by non-ideal crystals. They lead to the so-called semi-kinematical approximation,
which is adequate for diffraction by multilayers [Spe81, BHL86], or periodic quantum wires
[HTK'93]. The kinematical theory has been used in the calculation of diffraction by periodic
gratings [TRLT92b, TRL"92a], surface gratings [TPBK94], for polystyrene films deposited on
laterally structured surfaces [TVST95] and it has been employed for a theoretical treatment of
a quasiperiodic grating [Mik95]. The distorted-wave Born approximation is also used, and it is
reviewed separately below. The kinematical theory with the stationary phase method has been
employed for diffraction by planar multilayers as well [Mik95, Hol96] and the similarity to the
semi-kinematical approximation has been addressed.

In the present work on reflection from lateral gratings, some ideas coming from the X-ray
diffraction theories for crystals have been found stimulating;:

e the representation of the scattering phenomena in the reciprocal space by the Ewald con-
struction,

e developing the dynamical multiple scattering theory into a two-beam case and studying
the single-scattering processes,

e making use of the kinematical theory as well as
e of the distorted-wave Born approximation.

We will show that we succeeded to reformulate the matrix eigenvalue method into the two-beam
approximation, very similar to the two-beam case of the dynamical X-ray diffraction. Further,
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we have achieved to calculate the scattered intensity by means of the kinematical theory using
the stationary phase method.

Distorted-wave Born approximation

Perturbation theories are often involved in the scattering calculations. The distorted-wave Born
approzimation (DWBA) is successfully employed in the calculation of scattering from rough and
imperfect multilayers [SSGS88, HKO 193], as we have already discussed in Sec. 4.5. On the other
hand, DWBA is also found advantageous for the calculation of scattering from perfect structures
[Vin82, Dos87]. It has been successfully applied to calculate grazing incidence diffraction (GID)
by multilayers [HB94, BG95]. DWBA of the second order enabled to explain all features on a
XRD pattern of multilayer surface gratings [GBM™93, BG95], where the authors have found
the effects of a dynamical interaction of the wavefields in the partially etched grating and the
underlying multilayer.

Despite these results in XRD and GID, it was believed that in the reflectivity experiments the
DWRBA is applicable only in the case of small roughness, and it cannot be employed to calculate
the reflection from a grating, which can be considered as a big perturbation [TPBK95]. In the
present work we discuss that it is possible to use the DWBA for most parts of the truncation
rods, except for the known regions where the strong dynamical interaction between different
truncation rods becomes important.

Zj—1
2 Itf
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d¥) =lq dl(;j) =(1- F(j))d

Figure 5.2. (a) Sketch of a multilayer grating. There is a homogeneous layer (e.g., a buffer layer) deposited
on the substrate, covered by two structured layers and a capping layer. The system exhibits the lateral
periodicity d. The incident beam K and the fan of specularly reflected (Kgy) and diffracted (K}, ) beams
are schematically shown. (b) Notation of the variables describing one structured layer. (c) Sketch of a
multilayer grating consisting of three layers with unique side walls. (d) Sketch of a trapezoidal multilayer
grating.
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5.3 General characteristics of multilayer gratings

In this section we introduce the common notation of variables and functions used in this chapter.
A three-dimensional view of a rectangular multilayer grating is presented in Fig. 5.1. The
whole multilayer is characterized by the lateral periodicity d in the direction . The grating
is homogeneous in the gy direction, therefore it is sufficient to draw 2d section of the gratings,
Fig. 5.2. The most usual cases of the wire profiles are the rectangular (Fig. 5.2(a) and (c)) and
trapezoidal (d) gratings.

The multilayer grating consists of N layers deposited on the substrate. The numbering of
the layers and interfaces follows the convention introduced in Fig. 3.5. The jth layer (thickness
tj) is bounded by two interfaces j and j + 1, the z-coordinate of the jth interface is z;. The
sample dimensions are denoted L, and L, and its surface area S = L;L,.

Two layer types can occur in the MLG. There are homogeneous layers, e.g., a buffer or a
capping layer, and structured layers, whose structure is periodic along the axis & with the lateral
periodicity d. Each period consists of two parts (blocks, wires) al’) and b¥). We denote their

susceptibilities X((Ij),xl(,j) and their widths d,(lj) =T0) g, dl()j) =(1- F(j)) d with 0 < TW < 1.

The lateral periodicity d is a characteristic property of
the multilayer, x(7) = x(r + d &). The reciprocal lattice
of a periodic grating is shown in Fig. 5.3. It consists of
truncation rods equidistantly distributed in the reciprocal

space -
Qu
2 s -—
hp =@,  hm=—-m, (5.1) 0 B
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where m is integer.

. . Figure 5.3. Sketch of the reciprocal
Let us consider a structured layer. We develop its sus-

ceptibility into the Fourier series

x(z,z) = th(z) ethe (5.2)
h

lattice of a periodic grating.

1 [d/2 4
W@ = g [ dox@z)et (5.3)
dJ_q

For brevity we omit the index j in the variables related to a layer j. Within the rectangular
MLG, Fig. 5.2(c), both side walls separating the a and b materials are unique and I'; =T for
all layers j. We choose the origin or the coordinate system in the middle of the material a, thus
X_p equals xp.

We introduce the shape function Q,(r) of the material a in the layer. It equals unity inside
the material a and it is zero elsewhere, see Fig. 5.2(b). The susceptibility is

X(x,2) = xaQa(2, 2) + x5 (1 = Qa(z, 2)) (5.4)

and its one-dimensional Fourier transform is

n(z) = {5 [Xada(2) + xpdp(2)] = xp + (Xa — Xp) da(2)/d  for h =0, (5.5)

(Xa - Xb) Qozh(z) for h #0.

The Fourier coefficients €, are calculated similarly to (5.3). We can see that d,(z)/d is the
coverage of the material a at level z.
Further we define the three-dimensional Fourier transform €,(q) of the shape function Q,(r)

Qu(q) = /dr Qq(r)e " . (5.6)
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In comparison to the definition (5.3), we find useful to define the Fourier transform (5.6) so that
it integrates over the whole layer and it is not normalized to its volume.

Since the wires a are distributed periodically, their shape function can be given as a convo-
lution of the shape function of one period Qg,1(r) (defined on the interval —% <z< %) with a
periodic arrangement of J-functions

Qo(r) = Qa1 (r) @ Y 6(z —nd) . (5.7)
The Fourier transform
- 47'( S -
Qa(q) = 7 Qal(Qzan) : 5(%; - hm) 5(Qy) = E Qal(Qz,Qz) Z 5qz,h ' 6qy,0 (58)
hm:%’m h:%’m

is represented in reciprocal space as the reciprocal lattice (i.e., the truncation rods (¢, = hp,))
modulated by the Fourier transform of the shape function of one wire Qg;.

With respect to the future application in multilayer gratings, the Fourier transform Qg1 is
naturally defined with respect to the lower interface of the structured layer z; (see Fig. 3.5(a),
t; is the layer thickness)

i /2
ngl)(qI,Qz) = / . /d/2 de o (a27+q:(2-25))
ij
d/2 ‘
= / dz/ de (r —zjz)e—l(qzxﬂzz) ) (5.9)
£ /2

Therefore these Fourier coefficients in a multilayer grating will be the same for structured layers
of the same type, i.e., they will not have different phases depending on the thickness of the whole
multilayer.

Further, we define the area (i.e., the cross-section in the plane (&, 2)) of one period Vg, = dt
(t = t; is the layer thickness), and V, = Q41(0,0) t(]) dz fd/2 dz Q4 (7) gives the area of the
wire a, which equals d,t for a rectangular gratlng The area of the wire b is Vy = Vg — Vg,
which becomes dt for a rectangular grating.

; ; () — v
We define the coverage of the layer 5 by the material a as 05"’ = Ve
Explicitly for a rectangular grating, the Fourier transforms of the quantities defined above
are!
d hmd

Qan,, g“ sinc ——= = T'sinc (['mmn) (5.10)

~ hood. ettt — 1 igzl _

Qal(hmaqz) = d, sinc ma 67 = anhm 67 . (5'11)

19z 14z

We recall that h,, = 2r/d - m according to (5.1).
We note that the Fourier coefficient gy, falls as 1/m. Further we can see that if the ratio
1/T' = d/d, is integer, then the Fourier transforms are zero if m is multiple of 1/T.

The wavefield excited by the incident plane wave Ei,.(r, K) = Ege'K", with the vacuum
wave vector K = (K, K,, K,), obeys the wave equation (3.12)

(A+K)E(r)=V(r)E(r), V(r)=—-K2x(r). (5.12)

As in the previous chapters, the vacuum wavelength is A and K = 27/A. The crystal polariz-
ability x and the potential V are zero in vacuum and complex in a medium.

The main task of our theories is to determine the intensities and directions of the scattered
waves propagating above the sample surface by solving the wave equation for this case of a
one-dimensional lateral periodic grating (5.2)—(5.3).

1 = sin(z)

sinc () -
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5.4 Kinematical theory

In this section we formulate the kinematical theory for the scattering by a multilayer grating.
We will make use of the results of Sec. 3.5, where we dealt with the reflectivity from planar
multilayers.

There we derived the kinematical integral (3.97). In the present case of a MLG, the suscep-
tibility is a periodic function (5.2). Therefore the reflected amplitude on the sample surface is
modified to

E,(r=0) = Z gnat @ i (5.13)
r\""— - Xh |T‘I| 0e€é . .

Let us join the exponential terms and introduce the lateral wave vector

Ky = Kjj+ h = (Kps, Ky, 0) Kny = Ky +h . (5.14)
Now we can separate the contribution of different Fourier components

E.(r=0,K) = > Ey(K) (5.15)
h

mE) = g, / 4 x(2) €5 Up (2, K, (5.16)

Up (2, K) //dx dy — eKnattKyy+K]|r]) //dr — i KnyrytKirl) (5.17)
where |r| = /22 + y? + 22.

The integral (5.17) is of the same form as the integral (3.102), which we have already solved
exactly (i.e., without the restriction to the Fraunhofer approximation) using the stationary phase

method. Similarly to (3.104) we get

omi
Up(z, K) = 2= ¢iKn:2 (5.18)
Khz
and
Ky = \JK? = (K}, + K2) . (5.19)

The latter equals the z-component of the diffracted wave vector (KhH, +K},,) with the parallel
component given by (5.14) and with the length K. Thus the end-points of the diffracted wave
vectors lie on the Ewald sphere (Fig. 5.5).

The diffracted-reflected waves are plane waves with the wave vector

K, = Ky — Kj.2 (5.20)

and the amplitude

.K2 .
/dth(z) i(KntK2)z — g ;Kh /dth(z) e Q=7 (5.21)
z

The incident wave is scattered by the periodic grating into a fan of diffracted waves, see
Fig. 5.1. The wave vector transfer of the diffraction

Qn=K,-K=h— (K, +K,)z

5.22
th = _(Khz + Kz) ( )

is constant over the whole MLG since we used the vacuum incoming plane wave as the eigenstate
entering the Born approximation.
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Figure 5.4. Sketch of the lateral real (a) and reciprocal (b)—(d) spaces. The azimuthal angle ¢ changes
the “effective” grating period d(¢) and it diverges when the incident beam is parallel to wires. Reciprocal
space drawings illustrate the (lateral) Bragg law (5.23) for different azimuths.

If we write the above equation in the parallel coordinates, we get the (lateral) Bragg law

KhH = K” +ha (5.23)

shown schematically in Fig. 5.4. Rewritten for the coplanar geometry this leads to the conditon
A

cos Oy, —cosw = 2m> (5.24)

where 6, is the exit angle of the diffracted-reflected wave K} and w is the angle of incidence.
From the X-ray diffraction point of view, this grating formula is equivalent to a single Laue
condition [AKK™*74, Pin78, SIMP91].

Considering the specular scan (truncation rod m=0) the kinematical integral (5.21) is the
same as that in the reflectivity (3.105). Therefore the specular intensity of the MLG is exactly
that of the averaged multilayer, since xo(z) is the laterally averaged susceptibility.

Let us now deal with the non-zero truncation rods (TR m, m#0, experimentally measurable
as non-specular scans). Since the Fourier transform of the susceptibility is constant in each layer
J (for an arbitrary wire shape), then the integral (5.21) turns into the summation formula

.K2 ) '
By =Eyq— Y F) e i, (5.25)

We call Ffsj) the structure-geometric factor of layer j. For a rectangular grating it becomes

() e 't —1

B =xi =5 (5.26)
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The above formula is very similar to the formula of the kinematical diffraction by crystalline
layers (cf. the previous discussion for planar multilayers on page 42). This is because the bulk
of the grating (i.e., the lateral distribution of the susceptibility) contributes to the scattering,
whereas on reflection from planar multilayers the scattering is only due to the susceptibility
change at flat interfaces.

We can easily reformulate the expression (5.25) into a relation acting in the “interface”
spirit of the SXR from planar multilayers, see Eq. (3.113). We put the expression (5.26) for the
structure factor F into the equation (5.25) for Ej, and separate the two sums

B, = B K? ix(j) (e7i Q21 — ¢=1Qnz2)
—2Kn:Qnz 1= h
N
N
= E Ztlﬁ”; e~ Q=241 (5.27)
j=1
We introduced the Fresnel reflection coefficient of kinematical diffraction of an interface j
—2Kp.Qhn.
For the case of specular reflection (h = 0, Qg, = —2Kj,), this perfectly coincides with the

kinematical Fresnel reflection coefficient (3.114) for the reflectivity from planar multilayers.

This generalized Fresnel coefficient for the reflection from gratings is proportional to the
difference of the Fourier coefficients of the susceptibilities of the two subsequent layers, and
inversely proportional to the Z component of the scattering vector and of the wave vector of the
diffracted wave.

Finally, the reflectivity amplitude is Ry, = Ej/Ej and the sample reflectivity defined as the
ratio of the energy fluxes is

(5.29)

A graphical representation of this scattering phenomena by means of the Ewald construction
is shown in Fig. 5.5. The diffracted wave vectors lie on the Ewald sphere K of the incident wave
where it intersects the grating truncation rods. If a TR crosses the Ewald sphere at two points,
then a pair of diffracted waves is excited. The diffracted-reflected wave propagates above the
sample surface and the diffracted-transmitted wave propagates below the surface.

When we will further say that “an incident wave is scattered into a truncation rod h”, then
we mean that for a given incident wave there is a diffraction process characterized by the lateral
wave vector transfer h.

For a certain angle of incidence the Ewald sphere touches a given positive TR m™?* in one
point only (m™?* = 42 in Fig. 5.5). This is the “starting point” of a @,-scan, and according to
page 15 this “starting angle” equals

Wh max = V/ 2hmmax [K = \/2xm™max /d . (5.30)

We summarize that an incident plane wave creates a finite fan of diffracted (scattered) waves
with real vacuum wave vectors Kj,, because there is a finite number of truncation rods inside the
Ewald sphere of the incident wave. The TRs outside the Ewald sphere correspond to vacuum
evanescent waves which cannot be measured. The condition of K}, being real is expressed by
the inequality

K*— (Kj, +K})>0. (5.31)
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Figure 5.5. Reciprocal space representation and the Ewald construction for the scattering by a multilayer
grating (coplanar geometry). The reciprocal space of the MLG consists of truncation rods distributed
equidistantly along @),. For a given wavelength the intensity distribution along certain parts of truncation
rods can be explored; the dashed parts of the truncation rods are not accessible in coplanar reflection
geometry (vacuum evanescent waves). For clarity, we drawn only 24 truncation rods inside the large sphere
K1, of diameter 2K . In a real case, there should be thousands of them (since 2K /(27 /d) ~ d/\ ~ 103)
and the angle of incidence should be at about one degree.

We denote the number of excited truncation rods by D. Since the above condition can be
rewritten as

Ky +h| < /K2~ K2, (5.32)

then the truncation rods of the lowest and of the highest order are?

miit = [ — (/K2 — K7 + K) /]

(5.33)
mm =] (K2 - K7 - K,) /d]
and the dimension
D = m™n 4 ypmax 4] (5.34)

For a rectangular grating consisting of a single layer (i.e. a surface grating) the amplitude
of the wave scattered into the TR h is

iK? @)

_ithzt2 _ 1
2K, (xy~ — X,(JQ)) [ sinc (I'm) S ——

_ithz

*Function |z| returns the largest integer smaller or equal to z, and [z] returns the smallest integer equal to
or larger than z.

Ey,, = Eq (5.35)
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Figure 5.6. Ewald construction of the kine- K

matical theory illustrating the scattering from \
the incident-transmitted to the diffracted-
reflected wave. Similar figures drawn for the
DWBA as well as for the two-beam approxi-

mation of the dynamical theory are drawn in
Figs. 5.7 and 5.10, respectively. Q.

and its reflectivity

IS

R —
hm iK, K,

I'? sinc?(I'mm) (t2)? sinc? % . (5.36)

From this follows that the maxima in the @), direction are at the positions @), , = QT”p (so-called
thickness oscillations, see page 36). When this is combined with the lateral diffraction condition
Q| = hy,, then peaks in the reciprocal space are expected at

2 2
Qmngm:&—l-%pi. (5.37)

In the coplanar geometry, the above condition provides two equations connecting the angle
of incidence wy,;, and the exit angle of a diffracted-reflected wave 6,

2 2w

5% (€08 Oppp — COSWipp) = —m (5.38a)
2 2
Tﬂ (sinbpp + sinwy,y) = %Tp (5.38b)

which yields the grating formula [SIMP91, PAWL"91, KLC'96]

t A At
7 CoSWmp = %pQ + Y7 m? (5.39)

psinwmy —m

for the maxima of the angle of incidence. Similarly the maxima for the exit angle are

A, M

t
psin by, +m - cosﬂmp=2—tp + o m. (5.40)

d

Within the kinematical theory the peak positions are equidistant in both directions @,
and @, of the reciprocal space, see Fig. 5.8(a). The kinematical theory does not take the
refraction into account. In order to explain the positions of the experimentally found maxima,
the kinematical theory would have to be “corrected” for this effect. This is not necessary in the
dynamical theory nor in the DWBA, where the refraction is naturally involved.
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5.5 Distorted-wave Born approximation

In this section we calculate the intensity scattered by a multilayer grating by means of the
distorted-wave Born approximation (DWBA) of the first order. Therefore we solve the wave
equation (5.12) with the periodic potential V(r) = V(r + d&). We suppose a grating with flat
interfaces and walls (no roughness), and therefore the incoherent cross section (4.45) is zero. We
deal with the coherent scattering term (4.44), which needs the calculation of the matrix element
(4.54).

The DWBA method requires the splitting of the scattering potential into the ideal and
perturbing potentials (4.48), V(r) = Vi4(r) + VP(r). In homogeneous layers, including the sub-
strate, we choose the ideal potential equal to the potential of the layer, therefore the perturbing
potential is zero there. In structured layers we choose as the ideal potential V9 the potential of
a virtual planar multilayer, where V¢ is constant within each layer. The perturbing potential
is VP =V — Vid,

The main objection against the usage of the DWBA for the calculation of the reflectivity
from gratings [TPBK95] was that the perturbing potential V'? is large, i.e., it is non-zero in large
volume of the grating. However, in this work we will show that this is not the main obstacle
and that the choice of the eigenstates determines the correct results. By comparing the DWBA
to the dynamical theory and its two-beam approximation we will determine the regions of the
validity of the DWBA.

The choice of V¢ determines our set of eigenstates. Two independent eigenstates (given
by (4.50) or (4.52)) are required for the DWBA calculation. They are superpositions of the
transmitted (7') and the reflected (R) plane waves. We follow our convention (pages 34 and 68)
concerning the phases of the transmitted TI(JQ) and of the reflected REJ% waves to be zero at the
lower interface of a layer j, zj_1 < z < 2j. The perpendicular wave vector components of these
eigenstates follow the spherical dispersion relation (3.11)

kY = \/KQ(H(”)2 — (ki + k7)) =12, (5.41)

This means that the wave vectors are corrected for refraction in an averaged medium.
Now we will consider some general properties of the perturbing potential

VP(r) = V(r)=V'4r) = (Vo= V') Q0(r) + (Vy = V) (1 = Qa(r))
= (Vo= V) + (Vo = V3) Qu(r) . (5.42)

The Fourier transform of the perturbing potential VP(q), and the Fourier transform over
one period, V}’(q), are calculated similarly to (5.8) and (5.9).

At this point we have to propose the value of the ideal potential V4 given by the general
form (5.42). There are three natural possibilities:

1. V'd shall be the laterally averaged layer potential

: VaVa + ViV, Va
Vid= 20T — Vot (V= Vi) o= = Vi + (Vo — V3) 0 - (5.43)
Vab Vab
This leads to the perturbing potential
VP = (Vo = V) [Qalr) — 4] - (5.44)

2. Vid is equal to the potential of the material b, thus V14 = Vj. This gives the perturbing
potential

VP = (Va - Vb) Qa(r) . (545)
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Figure 5.7. Ewald construction of the four k! —ky
scattering processes T1T5 ( wave vector trans-
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namical theory are drawn in Figs. 5.6 and 5.10,

3. Vid is equal to the potential of the material a, thus V4 = V,,. This gives the perturbing
potential

VP = —(Vy — Vi) Qa(r) . (5.46)

Now we evaluate the matrix elements (4.54). The matrix element
Vis = (B3 |V'|Ey) = 2iK, - R(K) - S0k, k, (5.47)

is the same as that given by (4.62), where R4 is the specular reflection amplitude by the virtual
undisturbed multilayer.
The matrix element of the perturbing potential is

N
W = (ES|VPEY) = W), (5.48)
7j=2

— Tl(j)TQ(j)‘}-p,(j)(_qéj)) + jo)Réj)f/p’(j)(—qéj)) +
TRV (—af7) + BPTIVO) (— ) (5.49)
The three-dimensional Fourier transform of the perturbing potential Vp’(j)(—q) is calculated
according to (5.6) or (5.8).
Finally we comment on the one-dimensional Fourier transform (5.2) of the perturbing po-
tential. We prefer to express it by the Fourier series of the shape function. Alternatively, it can

be developed into the Fourier series of the susceptibility. Both representations are equivalent
and for the ideal potential being the averaged layer potential we will find

VP = —K*(x(r) — x0(2)) = =K* Y _ xne”
h0
= _KQ(Xa - Xb) Z Qah eih
h0

(5.50)
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5.5.1 Specular scan
In the specular scan it holds

q3: = —Qo, and Qoz =iz =92z = @3z = q1z = Q2 =0

in each layer. Then the contribution of one structured layer is
W = 1010 (i) + BB VPO (—g) +

L N (5.51)

Tl(J)RéJ)Vp,(J)(O) + Rgﬂ)TQ(J)Vp,(J)(O) .

Let us make the choice of the ideal potential V9 now. Firstly, let us use the perturbing
potential according to the rule 1., Eq. (5.44). Then W) simplifies since

72(0,0) = (V, — Vi) [/ dr Qu(r) — Qa(O)} ~0 (5.52)

and the scattering processes Ty Ry and R1T» do not contribute to the matrix element (5.51) of
the specular reflectivity.

Now let us consider a rectangular grating, which is a special case of a grating with the shape
function Q,(r) = Q4(z) Q4 (2). Here the contribution of the terms T1T» and R; Ry is proportional
to

VP(0,9:) = (Vo = Vb)

d/2
/ / dz Q,(z) — d9a] /dz Qu(z)e™ % =0 . (5.53)
—d/2
From this it follows that the choice 1. of the ideal potential corresponding to a virtual multilayer
with the susceptibility averaged in the layers does not contribute to the perturbation term in the
specular reflectivity, W) = 0. Consequently, the specular reflectivity amplitude of the grating
equals the reflectivity from the laterally averaged multilayer.

If we choose the undisturbed system according to the possibilities 2. or 3., then the Fourier
transform of the perturbing potential for the specular reflectivity scattering processes is non-zero
and the contributions of the four scattering processes are proportional to (V, — V;) Qa(O, 0or +
), and the perturbation term will influence the specular reflectivity curve. Since it is preferable
to calculate the whole specular curve dynamically, we will further prefer the form (5.44) of the
perturbing potential. We note that this will not influence considerably the intensity of the non-
specular truncation rods, since it is proportional to the potential contrast +(V, — V}) and the
differences would be attributed to the eigenstates (amplitudes and phases).

Finally, making use of the choice 1., the amplitude of the specular reflectivity by a rectangular
grating is

R¥* = RY(K) (5.54)

and that of a general (e.g., a trapezoidal) grating is

RSpec — Rid(K) + 22;{ Z(Va(j) _ Vb(]))
: (J)
. - . . e Yo tj -1
‘Tl(])‘Q Q,(f)(OaQ(()])) — i) —— (5.55)
—1qg tj
ON
D2 [ @) 0. _oy _po) €0 —1
‘Rl ‘ <Qa (07 qO ) Va —’iq(j)t‘ '
0 "7

We recall that the potential contrast is proportional to the difference of the susceptibilities or
the refractive indices, V, — Vi = —K?(xa — X0) = 2K2(0a — 6p)-

For most samples, the susceptibility (the index of refraction) of the averaged grating layer
is higher (lower) than that of the substrate, respectively. Therefore we observe a “dip” in
the specular reflectivity curve [TPBK95], see Fig. 5.20(b), at the critical angle of the averaged
grating, which is between the zero angle of incidence and the critical angle of the substrate.
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5.5.2 Non-specular scans

The potential contrast (V, — V},) Qu(7r) describes the grating profile and we will treat it as a
perturbation. Since the contrast is zero in homogeneous planar layers, these layers do not
contribute to the non-specular reflectivity by a matrix element. Therefore we will now calculate
the matrix elements of the structured layers.
The matrix element of a structured layer j is given by (5.49)
WO = S, Vi) 83,0 Y b [Tf”Tz‘” O (~a”) + B RY ) (—a5”) +
h (5.56)

TR 8 ) ¢ BT 0o

According to the discrete Fourier transform (5.8), this allows excitations of separate truncation
rods m with the lateral wave vector transfer

2
Qhypo= (Ko — Ki)y =hpy = % -m, m integer. (5.57)
This is a result we have got also from kinematical theory and the stationary phase method,

Eq. (5.22).
The amplitude of each scattered wave excited by the incident wave is

1

Fn = %K, d

N
SV - v [Tf”Té” OF) (~h.—qil)) + RYRY OF) (=h, —dl)) +
7j=2

TR 800 (o) + ROTE 0 (-, )

(5.58)
For a rectangular grating with unique side walls this takes the form
2 N ‘ ‘
Ry, = ! T sinc(T'm) (ng) — ng))
2Ky, ;
7j=2
() ()
: ) tj _ 1 . 4,3 tj _ 1
TI(J)TQ(J) ¢ ——+ ng)RgJ) ¢ ——+ (5.59)
0 4,3
(1) ()
. —1q; t] — ]_ . —q, t] — ]_
RgJ)TQ(]) € —5 4 Tl(J)RgJ) € —5
1G9 —g,
The reflectivity of the grating is
Ky,
Ry = |Rp|* == 5.60
n=Bal” 57 (5.60)

The scattering by each layer contributes to the amplitude of the scattered wave by four
terms, characterized by the pre-factors T1T, R1 Ry, T1 Ry and RiT5, which are weighted by the
Fourier transform of the shape function, Egs. (5.56)-(5.59). We discuss the contributions of the
four elements later in Sec. 5.7. Meanwhile, we recall that the reflectivity amplitudes are mostly
small and therefore we estimate that the 7175 term prevails. This is the primary scattering
process between k; and ks, see Fig. 5.7. Omitting the terms proportional to the reflectivity
amplitudes Ry, Ry we get a “semi-kinematical” approximation of the scattered amplitude

m - )b, o) 07

eiiq((J]z)tj -1

()

: THTH) (5.61)
—igt

) T'0) sine(T'mr)
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The intensity scattered by a single layered (surface) grating calculated semi-kinematically be-
comes

2

K K4 _ 2 —1iqozt -1
Ry = |Rp|> =22 = Xa = X0|" 1o ¢ TTy|% . (5.62)

Kz 4Kthz

sinc?(I'm)

_Z'QOz

From this follows that the grating formula has to be reformulated for the interior of the
averaged layer. Then the maxima are found at positions
2m

—qoz,p = +(k02 + khz)p = 7 P, (5.63)

in accordance with relation (3.88). From this also follows the necessity of correcting the grating
formula for the averaged refractive index of the grating [SIMP91, PAWL191, KLC"96]. This
leads to the “curved” (i.e. not equidistant in @, vs. @,) peak positions as shown in Fig. 5.8(b).

The comparison of the relations (5.59) and (5.62) to both the kinematical formula and the
dynamical calculation is the subject of the discussion in Sec. 5.7.

Tmn
-1 [T-
\\ //

\__/

\}/

o Q.

_Qz (b) (C) _Qz

A \1\

N s N L
AN / AN /
Nd N
\V/ \V,

Figure 5.8. Reciprocal space maxima of a laterally periodic grating etched into a surface grating or into
a periodic multilayer. The reciprocal space maxima of the grating lie on the truncation rods and that
of the multilayer on sheets passing through the “Bragg peaks” or the thickness fringes on TR 0. The
main reciprocal space maxima lie on the intersections. The sheets are parallel to the (), axis in the
kinematical treatment (a), whereas they are curved in the DWBA (b) and dynamical (c) calculations due
to refraction. We note that a similar phenomenon is known in diffuse scattering from correlated periodic
multilayers producing “bananas” of resonant diffuse scattering [HB94]. In addition, the subfigure (c)
illustrates the interaction between simultaneously excited TRs which is taken into account within the
dynamical theory.
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5.6 Dynamical theory

In this section we formulate the matrix dynamical theory for the scattering by a periodic multi-
layer grating. Firstly, we solve the wave equation within one structured layer. Then we couple
the wavefields of different layers at their interfaces by means of the boundary conditions. The
two-beam case, the two-beam approximation and multiple-beam approximations of the dynam-
ical theory will be developed and their results compared.

5.6.1 Wavefields and the dispersion relation

Let us solve the wave equation in a structured medium, i.e., in a medium characterized by a
lateral periodicity d. Since the susceptibility x(r) is periodic in the direction &, its Fourier
transform (5.3) is discrete and we can substitute it into the wave equation (3.12) or (5.12). We
get

(A+K?) BE(r)+ K*Y xne"- E(r) =0 (5.64)
(A + K21+ x0)) B(r) + K23 xne™ - B(r) =0 (5.65)
h#0

This procedure of using the properties of the translation symmetry from the beginning of solving
the wave equation or the Schriodinger equation is known as the Ewald concept [CJK92, LMD96],
because the mathematical form of the wavefield propagating in a periodic medium and fulfilling
the above equation has been found by Ewald in his dynamical theory of diffraction in crystals.
Later it was applied by Bloch in solid state physics (the Bloch theorem [AM76]). It is also
referenced as the Floquet theorem in the case of one-dimensional periodicity [STMP91].

This Ewald solution E(r) is a superposition of plane waves

E(r) = ZEh e!hemtho) N " it [y (2) = eV Y~ et B (2) (5.66)

h h
khe = kx +h. (5.67)
Introducing the variables
the wave equation decomposes into a set of differential equations for each Fourier component h
d?Ey(
Kz Ba(2) + d; + K> Ey(2)xn =0 (5.69)
9,97h

We interprete rj, as the z-components of the diffracted-transmitted wave vectors (kpg, ky, £n2)
which fullfill the dispersion equation (3.11) (cf. the kinematical expression (5.19)).
We solve Eq. (5.69) by choosing the particular solutions as the plane waves

Eh,n(z) = eikmz Eh,n s (5.70)

where n enumerates the particular solutions. The set of equations [AEM92]

(Khe = k2n) Enn + K” Z EgnXxn—g=0 (5.71)
9.97h

is obtained for each component h. The above equation can be conveniently rewritten using the
matriz formalism

[A - kfni} B,=1, (5.72)
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R K2, EKPxon KX on ) E hn
A= K2x, K2, K%y, , E,=|Eyn \ (5.73)
K*xan K?xn ki, Enn

where T is the unity matrix, 0 is column vector of zeros. The matrix form of (5.72) shows that
the differential wave equation (3.12), (5.65) has been transformed into an eigenvalue problem.

Now let us combine the particular solutions in order to express the whole wavefield in the
structured medium (structured layer). We can see that the solution of this equation gives unique
amplitude Ej, ,, for both k,,,. Therefore we further let £,,, > 0 and get two sets of the particular
solution

E}tn(z) =M By, E), . (z) = e ket gy (5.74)

The physical meaning is that each diffracted wave occurs simultaneously as a pair of the
diffracted-transmitted (k,,) and diffracted-reflected (—k,,) waves.
The solution of the wave equation is a linear combination of the particular solutions [STMP91]

Ep(z) =) [T,z Enn(2) + Ry, E;,,xz)} =Y (Th e + Ry e %) By (5.75)

n n

where we denoted the coefficients of the linear combination by T}, R,,. Taking the simplest case
of n =1 we get

En(z) =T e*1* By + R e™*= 17 F (5.76)

which is exactly the form (4.52), with Ej,; = 1 being the eigenvectors of (5.72). Therefore we
relate the amplitudes T),, R, with respect to the lower layer interface and get the final form

Eh(z) — Z [eik;n(z—zj+1) T, + e-ikzn(Z—Zj-{—l) R, Eh,n , (5_77)

n

where n goes over all the particular solutions of Eq. (5.69).

Eq. (5.71) can be better understood if it is rearranged into the form

Y Eonxng - (5.78)

Eh,n k'2
hz 9,97h

Each component Ej, (i.e., the particular wavefield corresponding to the truncation rod h) is given
by the sum over contributions of the other excited waves E, weighted by x;_,. We have shown
this schematically in Fig. 5.9. The vector h—g is the momentum transfer between the TRs g and
h. The amplitude of Ej, ,, is proportional to the resonance factor kQKfQ Since the amplitude
E}, ,, has to be finite, then sy, # k.. Therefore the dispersion relation for the diffracted waves is
not the Ewald sphere. Such a phenomena is known in the dynamical theory of X-ray diffraction
(the end-points of the wave vectors lie on the dispersion surface [Pin78, AEM92, MVV*94]).

Since the series (5.2) and (5.66) are infinite, the dimensions of A and E,, are infinite too. This
cannot be handled numerically and a reasonable restriction to a finite number D of scattered
and interacting waves has to be undertaken. We choose the number of waves in the numerical
calculation so that the amplitudes Ej of the TRs of interest are approximated with a given
precision.

The restriction to D interacting pairs of waves (each pair consists of the transmitted and
reflected wave) determines the dimension D of the particular matrix A, thus the eigenvalue
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Figure 5.9. Schematic drawing of the dynamical scattering processes. In the fully dynamical theory (a),
the truncation rod h is excited by the multiple scattering from all the other truncation rods, as given by
(5.78). (b) In the two-beam case (and the two-beam approximation, see Sec. 5.6.4), the truncation rod h
is excited by the zeroth TR, which means we calculate it as a single-scattering interaction between the
incident wavefield and the wavefield diffracted to the TR h. (c) In the multiple-beam approximation only
a specified set of the TRs around the TRs h and 0 contribute essentially to the amplitude of the TR h.
Here the approximation of the first order is shown which calculates dynamically the scattering into the
given TR h as the dynamical interaction between TRs h—1,h, h+1 and —1,0, 1. If the Fourier coefficient
xr = 0, then the direct single-scattering process 0 — h is not allowed, i.e., it does not contribute to
the amplitude of the wavefield h. Then the multiple-scattering processes (we show 0 — 1 — h or
0 — h—1 — h) are of decisive importance.

problem can be solved numerically. The numerical calculation is further simplified in the case
X_h = Xp- Then the matrix A is symmetric, and in a non-absorbing medium it would be real.

The solution of Eq. (5.72) gives D wave vector components k,, forming column vector Ez,
and D associated column eigenvectors E, forming the matrix E. The vectors F, are unique
except for a multiplicative constant (see (5.72)), allowing us the choice E, , =1 for each n.

In the following section we denote for each layer j the column vectors of T),, R,, k., by
T(j), R(j), kgj), respectively. 122” is the diagonal matrix of the eigenvalues k,, and EU) is the
corresponding eigenvector matrix. The dimension of these vectors and matrices is D.

5.6.2 Boundary conditions

In the previous part we have found the form of the wavefield in a structured layer being a series
of plane waves (5.66) and (5.77). In order to find the coefficients TT(Lj), RY which determine the
value of the excitation of the particular solution, we have to connect the wavefields in the layers
with the wavefields in the vacuum and in the substrate. We will make use of the convenient
matrix formalism similar to the Abeéles method [Ab50] as it is used for this task by all the
authors (see [SJTMP91, Nev94] for instance).

The boundary conditions provide the relations coupling the wavefields and their derivatives
at the interfaces as we have already treated in Sec. 3.4.1. Let us apply them in order to connect
the wavefields of two neighbouring layers j and j 4 1 at their common interface j at z = z;. In
the present calculation we will closely follow the matrix formalism we used in the reflectivity
calculation, see sections 3.4.3 and 3.4.4.

Since the equality between wavefield amplitudes and normal derivatives holds at each point
(z,y,zj) of each interface j, the conditions for the undetermined coefficients T,EJ ), R,(lj ) can be
expressed by the matrix relation (cf. (3.47) and (3.56))

[ FG) . . F+1)
G [T Z e+ L oG+
pU (ﬁ“’) =pU QU <}?U+1>> . (5.79)
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The boundary matrices PY) are

, EW) EO)
) = , ,
P = <E(a‘) k9 _p6) gD (5.80)
for structured layers and
: I I
pU) = <jo) _jo)> (5.81)

for homogeneous layers (including both the vacuum and substrate, cf. (3.48)). The propagation
matrices Q) connect the amplitudes of the waves between the bottom and top interface of a
layer (cf. (3.56) and (3.57))

. QUi+ 0
Qm:( . Q(j)_> , (5.82)

QUW)* are diagonal matrices with the diagonal vector

2. (7) 4, 0. (7). 2. (7)o,
(ﬁkutﬂ R eﬂFZkv,ztﬂ) (5.83)

for structured layers, and
(. . eij(—j%,ztf , eij‘(){gtf , eﬂ”mtf, . ) (5.84)
for homogeneous layers. The dimension of matrices P and Q is 2D.
Introducing the transfer matriz of layer j (cf. (3.63))

NI6) = pU) . QU) . (PU))1 | (5.85)

the vacuum (index v) and the substrate (index s) waves are coupled by the transfer matrix of
the whole multilayer M

N (5.86)

o (o1 TT ) . ps = (M Mm)
M = (P) ]1;[21\/[ P _(M21 N )

We employ two additional conditions. Firstly, the substrate is semi-infinite, therefore re-
flected waves are not excited in it (ﬁs = 6) Secondly, there is only one beam incident on the
sample, therefore T is zero vector except for the element corresponding to h = 0, which is
unity, Tv = (0,...,0,1,0,...,0). Then the amplitudes of the reflected waves (measured in the
vacuum, above the sample surface) are

RY = My - M- TV . (5.87)

In other words, vector R is the column vector of the matrix (1\7[21 : 1\7[1_11) corresponding to the
column of h = 0. This can be considered as a generalization of the simple relation (3.62).
The reflected intensity of the wave & is |R}|? and the reflectivity of the grating is

2 Khz
K,

Rp = |Rp| (5.88)

In summary, we expressed the problem of the scattering from a ML.G by a matrix formalism,
which is very similar to the matrix formalism we used in the reflectivity calculation, Secs. 3.4.3
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and 3.4.4. However, the matrices employed here are of higher order and the eigenvector matrices
EU) are calculated by the present procedure.

Finally, let us make a comment on the numerical implementation of the matrix calculation.
In this calculation, these matrix operations are used: multiplication, eigenvalue problem and
matrix inversion. Since the matrix multiplication is an algorithmically straightforward process,
we can encounter only two numerically difficult points: the eigenvalue problem (5.72) and the
matrix inversions (5.85) and (5.87). We have found that the solution of the eigenvalues and
eigenvectors as well as the inversion of the matrix of the eigenvectors are numerically stable.?
However, the calculation of the evanescent waves in a thick multilayer can lead to numerically
singular matrix My;. This follows from the exponential terms in (5.83) or (5.84), which are very
large for imaginary k, and thick layers (large ¢;). This very large number can propagate in the
matrix multiplication and cause the numbers in the corresponding column in Mj; to becomes
very large compared to the other matrix elements. Then the numerical inversion will fail. We can
avoid this problem by either of two methods. Firstly, we can calculate the transfer matrix of the
whole multilayer from the vacuum (in 42z direction) and stop the calculation in the layer where
the transmitted waves are sufficiently weak. Secondly, we can calculate the transfer matrix of
the whole MLG and then apply the following trick. We demonstrate it for a matrix My, where
M;p are large numbers and M, are about unity (1 <k <D, 1 <j < D). Using the identity

My, My ... Mp
Mll _ Moy Moy ... Msp
Mpy Mps ... Mpp
My, My ... Mip/Mpp 1 0 ... 0
My Me o MapMpp | [0 1 0 (5.89)
Mpi Mpo 1 0 ... O Mpp
the inverse matrix is
1 0 ... 0 My My ... Mp/Mpp\
(Mll)_lz o 1 ... 0 My My, ... Mop/Mpp . (5.90)
0 ... 0 1/Mpp) \Mpy Mpy ... |

The elements of the latter matrix are of the same order and the numerical inversion runs without
problems.

Similar procedure can be applied in presence of more evanescent waves, i.e., for more huge
columns present in M;;. Then the inversion of M;; is given by the product of diagonal matrix
and a matrix to be inverted.

5.6.3 Relation to the Fresnel coefficients

In this section we reformulate the above matrix method based on layer transfer matrices in
such a way that the new approach will make use of the matrices of the Fresnel-like coefficients.
This means that we show how we can switch from the bulk-like approach of M) matrices
to the interface-like approach of Aj;. Later we will show the advantage of this interface-like
representation for studying the reflectivity from gratings with rough interfaces. We recall that
we dealt with both matrix approaches in the dynamical theory of the reflection from planar
multilayers, Sec. 3.4.4.

3My program is written in C++. It employs the matrix libraries from the source code of program octave,
where the blas and lapack routines are used. Program octave is a Matlab-like clone and it is free software
(distributed under the GNU General Public License).
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Let us reexpress Eq. (5.79) so that it includes directly the matrix of the transition through
an interface j (cf. (3.50)—(3.51)) and, consequently, the N; matrices (cf. (3.58)—(3.59))

70) Fl+)

(ﬁu)) = Nj(ﬁml)) (5:91)
Ny = Py QU (5.92)

Pijn = (PU)TIpU+h (5.93)

We rewrite the boundary matrix (5.80) so that the matrices of eigenvectors and of wave vectors
are separated

(5.94)

BV
(( 0) (1330))1)' (5.95)

(T &) ((EDT o BO+HD 0 I I
Pii+1 =35 | T 0 (&)U 0BG (RYHD gD

<T" ’f”) . (5.96)
Pj Tj
the form of which corresponds formally to the “interface matriz” of the Fresnel coefficients

(3.51) for an interface of a planar multilayer.
We introduced these matrices of dimension D

Ry
<
I
N\
0> =
S <
=
'S
|
esilest
S <
NM
~__—
I
s
>
S
=
S (e}
~__
N\
B >
NM
|
s =
S
~__—

X 1. o L
=3 [Ej,j+1+ (k9) " By kg’“)}

R 1. v .

hi = 3 [Ej,j+1 — (k)7 By kg’“)} (5.97)

B = (E(j))—l EU+D

Since the matrices Ez are diagonal, the matrix elements are calculated as simply as

1 : ‘
Tjmn = 5 (Ej,j+1)mn (1 + k,gj,r—zl_l)/kg,}n)

1

| | (5.98)
pimn = 5 (Bjj1)mn (1 - kgﬁ”/k%) :

If we introduce the matrix of generalized Fresnel transmission and reflection coefficients %j,fj
with the elements

0 2k4),
j,mn - -
10 .
() (j+1) :
o kz,m - kz,n
jmn = -
Ko+ kU
(compare (3.52)) then we can rewrite the former relations
1 . A 1
Tjmn = (Ej,j+1)mn : — T = Ej’j+1 ® =
tjmn t
: (5.100)
Lj,mn

N T
_ . A =TF. . J
Pimn = (Ejj+1)mn - y > pj =B 0.
J,mn £
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We defined the matrix operations a ® b and 2 as the element-by-element multiplication and
division operations, respectively. The meaning of the matricial Fresnel coefficients is the follow-

()

ing. A transmission coefficient 7; ,,,,, corresponds to the transmission of the wave k5, (in layer
7) through the interface j into the wave kg{:l) in layer j+1.

Let us consider the special case of an interface separating two homogeneous layers. There
is no lateral diffraction in these layers, therefore E(), EG+1) and Ej’j+1 are unity. The matrices
7; = t; and p; = t; are diagonal and their elements correspond to the Fresnel coefficients

according to the “classical” Fresnel formulae (3.52)

K4

Fazhy 0 0
RO G| KR
t= o = k) kU
kzj) + kzj—l—l) 0 k(}%—kkg;l) 0
0 0
" (5.101)
a1 0 0
) o1 () DORTERS. |
b= o - ..
), (G 0 e S
ke + ks PR
0 0

The matrices Rz, t and t are diagonal and therefore we have used the properties of the algebraic
operations on the class of these matrices. These operations are similar to those on real numbers
(commutativity of the multiplication, k=1 = 1/1;, etc.).

This reformulation of the approach of the interface matrices M) we dealt with in Sec. 5.6.2
turns into the formalism of the N; = P; ;41 QU+1) matrices we preferred for planar multilayers
in Sec. 3.4.4. Therefore the transfer matrix M = H]/\/} of the whole multilayer grating can
be computed either by means of the bulk-related formalism using the matrix M of Eq. (5.86),
which is analogous to (3.64)—(3.65), or by the interface-related formalism using the matrices A;
in direct analogy to (3.61).

5.6.4 Two-beam case and multiple-beam approximations of the dynamical
theory

In the fully dynamical theory formulated above, the interaction of an “infinite” number (i.e.,
the number of TRs intersecting the Ewald sphere) of diffracted wavefields is taken into account,
Eq. (5.71). However, not all the truncation rods produce strong diffracted wavefields. For
example, the diffraction orders h # 0 are weak in a surface grating for angles of incidence and
exit above the critical angle. Therefore only a small number of truncation rods can be considered
in the (numerical) calculation.

In this section we propose a two-beam approximation of the dynamical theory of reflection
from gratings, quite similar to the so-called two-beam case of the dynamical theory of X-ray
diffraction by crystals [AKK*74, Pin78]. The differences between these two methods can be
found in the reciprocal space. In XRD, the usual experimental conditions are such that the
Ewald sphere passes through or near only one reciprocal lattice point (Bragg peak), and the
other reciprocal lattice points are so far that the case of the multiple-beam scattering can be
neglected. However, in the former case the Ewald sphere always intersects many truncation rods
of the reciprocal lattice of the periodic grating, see Fig. 5.5. What we can expect is that for
large-period gratings the TRs are near, thus their dynamical interaction is increased, whereas
for small-period gratings the TRs distances are larger and the dynamical interaction is smaller.

The two-beam approximation follows from the dynamical theory of reflection treated above.
We suppose that the fan of the dynamically interacting wavefield consists of two truncation rods
0 and h # 0. We are going to show that in this case the matricial equations can be reduced into
simple analytical formulae.
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h 0

Figure 5.10. Ewald construction of the dy- \
namical interaction acting in the two-beam K, —k
approximation of the dynamical theory among

h

the incident-transmitted, incident-reflected,
diffracted-transmitted and diffracted-reflected o

waves. Similar figures drawn for the kine- D 0o

matical theory as well as for the DWBA are

drawn in Figs. 5.6 and 5.7, respectively. We

notice that the DWBA considers only the k> —k|
a:

interaction between the incident-transmitted
and incident-reflected waves and between the
diffracted-transmitted and diffracted-reflected
waves, and not among all four waves.

The two truncation rods 0 and h # 0 form two pairs of interacting wavefields: the transmitted
and reflected incident waves (h = 0) and the transmitted and reflected diffracted waves (h # 0).
The calculation will be therefore equivalent to the (D'=2)-beam case of the dynamical theory.

According to (5.77), these two interacting wavefields inside the structured layer are

Ey (z) = eikzo(z—zj) ToEoo + e—ikzo(z—zj) RoEyo + eikzh(z_zj) ThEgp + e_ikzh(z_zj) RyEq
Eh(Z) — e’ik;o(zfzj) TOEh 0 + efikzo(zfzj) ROEh 0 + e’ikzh(zfzj) ThEh h + e*’ikzh(zfzj) RhEh b
(5.102)

where we conveniently enumerated the beams by n = 0, h instead of the usual enumeration of the
particular solutions n = 1,2 used in the dynamical theory above. Then the matrix formulation
of the wave equation (5.72), supposing x, = x—j for simplicity, reads

2 12 2
Ko — kzn K Xh EO;" _
< K’xh  Kj = k§n> <Ehn> =0 (5:103)

This leads to the quadratic dispersion relation for k2,
(g = k2 (5, — k) = K'xG, = 0. (5.104)

In comparison with the similar equations of the two-beam case of the dynamical X-ray diffrac-
tion* the present one is mathematically more simple. The unknown wave vector components
(eigenvalues) k,, occur only on the matrix diagonal. This is because in the not-strongly asym-
metric Bragg-case of the X-ray diffraction from crystals the net planes more or less parallel to
the surface are diffracting (diffraction by bpg;, ! # 0). In the present case of XRR the lateral
grating diffracts the wavefields by by, [ is small. Therefore the present interpretation is closer
to the grazing-incidence X-ray diffraction than to the conventional one.

“This dispersion equation, written in the usual notation [AKK™ 74, Pin78], comes from the matrix equation

K=k Ox-ukd\ (Do _,
Cynk: K2—k2)\Dy) ="

thus it is (k* — k3)(k* — ki) — C®XnXx—nkoki = 0.
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We solve the dispersion relation and get

1
kég = 5[53+n§i(53—n§) 1+w§] (5.105a)

s (1 = (~Eq,
By = (th>’ Eh_< h ) (5.105b)

1
Eyp = o [,/1+w,2l—1] (5.105¢)

2K?
wp = (5.105d)
2 2
ko — K
We note that
ke — Ky = h(2ky + h) (5.106)

and the roots k.o and k,;, of the quadratic equation (5.105a) must have either the real part
positive (real transmitted waves), or the imaginary part negative (evanescent waves).

The variable wy, depends further on the incidence wave vector component kg, i.e., wp(ky).
Let us notice that defining y;, = 1/w;, we can rewrite Eq. (5.105¢) into the equivalent form

Eop = — [yh —sgn(yn) \/1+ y,%] ; (5.107)

which is similar to the well-known expression for the two-beam case of dynamical XRD for
c) = Dy, /Dy in the Laue case of diffraction [Pin78]. This we can understand by a simple
consideration: in the present case, the lateral wave vector transfer h is much smaller than the
lateral component K| of the scattered wave vectors, therefore all waves are diffracted forward
(see Fig. 5.4) as in the Laue case of diffraction.

The solution of the dispersion relation can be approximated if

2K?  |xa— x0T _ 4K?
h(2ky +h) hdy/2 ~ h2d(2K, + h)

[wn| = 2K |xu| 5§ — k5| Xal (5.108)
is small. For typical values of the parameters of interest (namely A\ ~ 1 A, d < 10* A,
Ixa| £ 1079), this value depends considerably on the orientation of the sample with respect
to the incident beam. There can be two marginal cases:

1. The incident beam makes large angle with the wires, K, ~ K > h, thus it can be (nearly)
perpendicular to the wires (Fig. 5.4(b)—(c)). Then

2K?2 -
m |Xa| ~

d _
wy, = — Ixal % 10 r (5.109)

The approximate relations of the two-beam case are

K4X2
k2, = Ki4+—52h (5.110a)
’ (k5 — 7)
K4X2
k2, = Ki— 520 (5.110b)
’ (K5 — #7)
Wh K2
E = — = ‘ . 5.110
0h 2 Iﬁ?% — H}QL Xh ( C)
2. The incident beam is (nearly) parallel to the wires (Fig. 5.4(d)), K5 =~ h. Then
2
[ SN AR
’U)h - m |Xa‘ ~ m |Xa| ~ 10 . (5].].].)
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The approximate relations of the two-beam case are

2 2
By = 00 er h o K2, (5.112a)
2 2
k2, = @_Kah (5.112b)
1
Eoy, = sgn(wp) — — =~ =+1. (5.112¢)
Whp,

In the case 1., the amplitude of the diffracted wave Ey; is proportional to the resonance
factor and to the susceptibility. Therefore it is a small number and this wave is weak. In the
case 2., both eigenvalue amplitudes Ey, of the incident wave and Eyj, of the diffracted wave are
of the same absolute value |+ 1|, therefore there is a strong dynamical interaction between them.

We can see that the value of wy, (k) conditions the applicability of the two-beam approxima-
tion for a given truncation rod h, angle of incidence w (and for azimuthal angle ¢ in non-coplanar
geometries). For choosing the value of the threshold we can take the value w;, = 0.01 at which
Eop, 18 2% of Eyg, therefore

|lwp (k)| < 0.01 (5.113)

is the condition of the validity of the two-beam approximation (TBA).

Usually the strongest TRs are the TRs 41, therefore if this condition holds for them, it holds
for the other TRs as well since wy, falls as h~2. We verified numerically that this is a good choice:
for the surface grating discussed in Sec. 5.7 the wy_, equals 0.012 and the single-scattering is
found adequate for TRs m with |m| < 3 and for larger angles of incidence on the TRs +1; for
the measured MLG (Sec. 5.10) the wp,, equals 0.009 and the single-scattering theories (i.e.,
the two-beam approximation as well as the DWBA) give the same results as the dynamical
higher-order multiple-beam approximations.

The reflectivity amplitude on the top surface of a multilayer grating is obtained by applying
the boundary conditions. Most easily we calculate the scattered intensity by using the matrix
formalism, as described in Sec. 5.6.2, for the matrix dimension D = 2.

We find that under the TBA validity condition, the contributions of the TRs +h to the
TR 0 cancel each other. This follows from the analysis of Eq. (5.78): x4 equals x_,, whilst
the amplitudes E, o are inversely proportional to g, so that E,qg = —E_, and the sum of the
g and —g terms goes away. We can illustrate this phenomena by an “effective, mean field of the
truncation rods” in reciprocal space, which causes the DWBA® to give the same results as the
multiple-beam dynamical theory as we will show later by numerical simulations.

However, this cancelling will not occur in large period gratings where the TBA is not valid
and E,, are no more inversely proportional to g. We will come back to this point later in the
discussion in Sec. 5.7.

For a mesoscopic grating there are thousands (= d/)) of simultaneously excited TRs, Fig. 5.5.
Within the two-beam approximation we calculate the intensity of all the diffracted waves as a
two-beam case, i.e., as a pair interaction of the incident (A = 0) and the scattered (h # 0)
wavefields. This is shown schematically in Fig. 5.9(b) and 5.10. The two-beam approximation
is correct if the intensity of the diffracted waves is weak and when the dynamical interaction
with the other diffracted waves g # h, see Eq. (5.78) and Fig. 5.9(a), is small. Therefore TBA
can be used in the case 1. (K, > h), but not in the case 2. (K, = h), i.e., when the incident
wave is nearly parallel to the wires.

®In our convention, the DWBA, as well as the kinematical theory and the TBA, is a single-scattering theory
because of calculating the scattering between two TRs only. However, all these theories differ in the approach for
choosing the eigenstates and in solving the boundary conditions at the interfaces.
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The accuracy of this approximation should be numerically checked by comparing it to the
fully dynamical calculation. This we will discuss for the simple case of a surface grating in
Sec. 5.7.

The main advantage of the two-beam approximation is that we are able to analyze the
analytical formulae of the amplitudes of the wavefields and of the wave vectors. These relations
are not easy to see in the fully matricial dynamical theory. The other advantage of the two-beam
approximation lies in the numerical calculation of the intensity profile of the diffracted waves.
The use of TBA enables us to transform the problem of solving the dynamical theory with one
matrix of order D into a procedure of solving (D—1) times the dynamical two-beam case (D'=2),
which is numerically much faster.

However, TBA fails for the calculation of the amplitudes of wavefields of the TRs with zero
Fourier coefficients of the susceptibility, x; = 0, since Eg, = 0 in this case. This is for example
the case of the rectangular grating with the ratioI' = d,/d = 1 : 2 and even truncation rods (h is
even). In this case the wavefield E}, is not excited directly by a single-scattering from the incident
wavefield (scattering by h) since this contribution within the two-beam case is proportional to
Xn/h and thus it is zero. Now also the weak contributions of the multiple diffraction from
the other excited truncation rods play a role. Mathematically, we have to take into account
the terms g # 0 in (5.71) and therefore we introduce the multiple-beam approzximations.
The zeroth order of this approximation is the two-beam approximation. In the higher orders p
we calculate the given Fj, as the dynamical interaction of the wavefields whose contribution is
proportional up to xp,xp. Therefore we take the wavefields of the two stripes of the truncation
rods (Fig. 5.9(c)): from the TRs around 0 (their amplitude is proportional to x,/9 2 Xxp, but
the contribution is approximately xs—4 = Xp+1) and from the stripe around the TR h (their
amplitudes are x,/g ~ xn+1/h and their contributions are superior to x;).

Explicitly in the approximation of the first order, we calculate the given E} as the dynamical
interaction of the wavefields whose contribution is proportional up to x1xp. Therefore we use
Ey 1,En, Ep1, E_q, Ey and Eq, and this is the siz-beam approzimation. If, for example, all
even xj, are zero, then the approximation of the second order would take all terms up to x3 into
account, thus the waves of TRs h—3,h—1,h,h+1,h+3, —3,—1,0,1,3, which leads to the ten-
beam approzimation. In the graphical representation in Fig. 5.9(c), the first order approximation
is drawn as the interaction of the wavefields of TRs h — 1,h,h + 1 and —1,0,1. In general,
multiple-beam approximation of order p leads to the (4p + 2)-beam approzimation.

The accuracy and convergence of these higher-order multiple-beam approximations should
be verified by the numerical calculation that compares them to the dynamical calculation, i.e.,
to a multiple-beam approximation of very large order.

Finally let us make a remark on the terminology used. We denoted by the “two-beam ap-
proximation” the scattering when two truncation rods 0 and h are simultaneously excited, giving
rise to four waves, see Fig. 5.10. Although the names of “two-truncation-rod case” or “four-wave
case” could be used, we prefer the “two-beam approximation” due to the correspondence to the
X-ray diffraction theory from crystals. The latter theory uses the name of “two-beam case” for
historical reasons, though in this conventional case there are two transmitted and two diffracted
waves excited on both sides of the Ewald sphere for both ¢ and 7 polarisations, i.e., there are
16 waves.

5.7 Discussion of the reflectivity from a perfect rectangular sur-
face grating

In this section we discuss the theories treated earlier and we compare the analytical formulae
as well as the results obtained by a numerical simulation. We study a simple surface grating,
i.e., a MLG with one structured layer deposited on a substrate. On a GaAs substrate (, =
1.455 - 107° +434.195 - 107) there are GaAs wires of width d, = 4000 A distributed with the
lateral periodicity d = 8000 A. The layer thickness is t = ¢, = 3000 A. The wavelength is
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1.54 A, the critical angle of GaAs is 0.309° and that of the averaged layer is 0.309°/v2 =
0.219°. The Fourier coefficients (5.3) with x, = 0 are x, = Xa Qan. The formula (5.10) for
' = d,/d = 1/2 gives the averaged layer susceptibility xo = % Xa- The odd coefficients are

Qan,, = (1/mn) (=1)"/2] and the even coefficients are zero. The reciprocal grating vector is
2rr/d =7.85-10"* A-L.

The choice of the period d is given according to the series d = 8000 A
. . . . a—— -
of samples we dealt with (so-called quantum wires with period dy = dy = 4000 A$ I
around 1 pm). We stress in the beginning that these are short g
>.\

period gratings for which all theories we are presenting here
are adequate. This will not be necessary the case of large pe-
riod gratings of d 2 10 pum, where truncation rods are close
together and the single-scattering approximations are no more
valid (cf. the validity of the two-beam approximation given by Figure 5.11. Sketch of a surface
the condition (5.113)). grating.

The comprehensive diffraction pattern is represented as the reciprocal space map of the scat-
tered intensity in Fig. 5.12. It consists of the main (specular) truncation rod m = 0 (the specular
reflectivity) around which the truncation rods of non-zero orders are distributed equidistantly
in the @, direction. Due to the choice of ' = 1/2 we expect that the even truncation rods
(except for the zeroth TR) disappear in the calculations where only single scattering processes
are considered (kinematical theory, DWBA of the first order, two-beam approximation)—we
say that these TRs are kinematically forbidden. This feature will underline the necessity of the
dynamical theory or of higher-order approximations of the dynamical theory.

GaAs

5.7.1 Intensity of the diffracted waves

In this section, we discuss the properties of the non-zero truncation rods, i.e., the intensity profile
measured along the non-specular TRs. We start the discussion by the odd truncation rods and we
show that our theories can describe the intensity pattern under several limitations. Therefore
we will determine their regions of validity, i.e., the multiple-scattering regions, illustrated in
Fig. 5.12. Afterwards we show that only the dynamical theory can explain the profile of the
kinematically forbidden even-order TRs because of their multiple scattering origin.

The following discussion is devoted mainly to the coplanar scattering geometry when the
incident beam is perpendicular to the wires. The non-coplanar case when the incident beam is
parallel to the wires is discussed separately in Sec. 5.7.3.

We note that the (), dependence of the intensities of the opposite TRs +m and —m are
the same. However, the plots with respect to the angle of incidence are different. The negative
TRs are every time excited because they are always crossed by the Ewald sphere of the incident
wave, see Fig. 2.2. However, the positive TRs are being excited one after another when the angle
of incidence increases, Fig. 5.20(b). This explains the angular shifts of the first three positive
truncation rods in Fig. 5.15.

Dynamical theory and multiple-beam approximations

We start the discussion with the dynamical theory since it provides the exact solution. Firstly,
let us briefly summarize how we deal with the numerical calculation. We calculate the wave
vectors in the vacuum and in the homogeneous layers (substrate including) for a given incident
wave. We form the matrix A (5.73) and by solving the eigenvalue problem (5.72) we get the wave
vectors and their relative amplitudes in the structured layers. Then the layer transfer matrices
M) are created (5.85) and from the transfer matrix of the whole MLG (5.86) the amplitudes
of the scattered waves is obtained (5.88).

The dynamical nature of the scattering (i.e., the expression of the multiple scattering) is
found in both basic equations (5.72) and (5.78) we derived from the wave equation. Firstly
the matrix relation (5.72) stores together all the amplitudes in a single matrix and therefore
all these amplitudes are interdependent. In the second alternative expression (5.78) we can see
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Figure 5.12. Reciprocal space map of the intensity scattered by the surface grating considered in the
discussion. This comprehensive view combines the schematic reciprocal space representation of the grating
truncation rods (cf. Fig. 5.5) with the intensity profile of the separate scans, Figs. 5.13-5.14 and with the
annotation of regions with two-beam scattering and multiple-beam scattering. We show in the discussion
that the dynamical theory and the DWBA (single-scattering “effective field” theory) can calculate the
intensity of the strong truncation rods, whereas the single-scattering two-beam approximation is valid
(with a given precision) above the critical angles of the grating materials of the incident and/or exit wave.
The most intense is the main truncation rod 0 (the specular scan) starting in the origin of the reciprocal
space by an intense plateau of the total external reflection (TER). The other truncation rods start on
the Ewald sphere K; and Ky, respectively (Fig. 5.5). The odd order TRs are of high intensity and they
exhibit periodic oscillations in @), cf. Fig. 5.13. The “dynamical” even order TRs are of low intensity and
their oscillations are no more equidistant, cf. Fig. 5.14. The coherent truncation rods (§-function profile
in the @, direction) have been enlarged to a certain finite width (using the so-called “truncation-rod”
algorithm of my plotting program pm3d). In an experiment, non-zero intensity between the truncation
rods would be measured because of the incoherent diffuse scattering, and further the truncation rods
would be enlarged by the resolution function of the measuring diffractometer [HM96].
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that each amplitude can be expressed as a sum of the contributions of the other TRs. The
individual contributions are proportional to the Fourier transform of the susceptibility and it is
demonstrated graphically in Fig. 5.9. The dynamical behaviour is observed in (5.78) because
each amplitude on the right-hand side is again a sum of the contributions of the other waves,
and so on.

The former method of (5.72) is very convenient for numerical simulations. The latter (5.78)
is useful for describing the scattering by means of the excitations of truncation rods and of the
wavefield propagation because the intensity of the most intense TRs can be predicted by the
two-beam approximation, Sec. 5.6.4.

The Fourier transform xj drops with 1/h (Sec. 5.3), thus the contribution of distant TRs
for a given TR h decreases, see (5.78). Within the TBA we have shown that E}, is proportional
to xn/h. Therefore, there are two regions of strong contributions to Ej. The first includes the
TRs around the main truncation rod 0, the other one contains the TRs around A, Fig. 5.9(c).

Let us choose one particular truncation rod m # 0 (diffraction by the lateral vector hy,, =
2m/d - m). The wavefield corresponding to this TR is excited through the interaction of many
scattering processes (5.78). The primary scattering process is the scattering by h from the
primary beam (g = 0) to that TR. Other scattering processes are multiple diffractions of the
other diffracted waves (g # 0) as we have shown in Fig. 5.9(c). If the amplitudes of the other
diffracted waves are smaller or comparable to the amplitude of the chosen TR, and they are all
small with respect to the amplitude of the primary beam, then only a small number of interacting
waves can affect the scattered amplitude E}, substantially. The limiting case is described by the
two-beam approximation, in which the intensity of a non-specular truncation rod is determined
(with a given precision) only as the interaction of the primary waves and those diffracted waves
corresponding to h.

As we already stated, the dynamical theory gives exact solutions and therefore it would be
preferable to use it every time. However, the applicability of the matricial dynamical theory is
limited by the efficiency of the numerical calculation.’

The matrix order is given by the number of interacting waves D being proportional to d/A.
For d/\ > 1 the numerical calculation is easy, but as in our case d/A = 8000 A/1.54 A, the full
dynamical calculation covering all the real TRs within and the evanescent TRs near the Ewald
sphere of the incident wave would not be numerically possible. Fortunately, not all waves are
very strong and approximations of the dynamical theory are valid in this case. Instead of taking
all those thousands of TRs, only several dozens of TRs from the region near to the origin of
the reciprocal space are taken into account. Their number was chosen by testing the numerical
convergence required for a given precision. The computer program was written in a way, which
allowed us to investigate the dynamical interaction for arbitrarily selected TRs separately.

We have already discussed the two-beam approximation (TBA) on the basis of two-beam
case. We have shown that it can be applied for “nearly” coplanar scattering, i.e., K, > h. Its
validity has been further supported by the small value of the susceptibility for X-rays, xo ~ 107°.

The diffracted wave amplitude in the structured layer (5.110¢) is approximately

K2

Ey ~
b ok h

d XA 1 m
Xh=35- (=1)lm/2l (5.114)

We can see that the amplitudes Ej, of the diffracted waves in a layer drop as x,/h =~ h~2, thus
the intensity of these waves in the layer decrease as h™*.

The calculation speed of the numerical implementation of the TBA is high since the wave
vectors as well as the amplitudes are analytically expressed (sets of Egs. (5.105a)—(5.105¢) and
(5.105a)—(5.110c)) and the boundary conditions are calculated using 2 x 2 matrices. The devia-

SUnfortunately, no computer will ever be rapid enough for infinite matrices. Therefore we have to optimize
our programs or algorithms, or find a physically approved approximation.
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Figure 5.13. Calculations by the dynamical theory, multiple-beam approximation and the DWBA give
the same intensity of the odd truncation rods for the discussed surface grating and the coplanar scattering
geometry. (a) The graph of the TRs -1, -3, =5, —7 and -9 (diffracted intensity vs. angle of incidence) for
the region around the critical angles. (b) The graph of the TRs —1, -3 and -5 (shifted down by 0, 1 and
3 decades, respectively), the intensity being plotted vs. the perpendicular wave vector transfer @) ,.
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Figure 5.15. Intensity of the positive truncation rods +1, +2 and +3 (dynamical calculation).

tions of the wave vector components with respect to the kinematically calculated ones (including
refraction)
ko — Ko = kgo_ﬁgo _ K4X}21 ~ K4X}21 ~ K4X¢21 ~ d|Xa|2
? kywo+ ko h(2ky + h)(kyo + K20)  kzhkso  keh3d%ko,  A?m3sinw
(5.115)

are of the order of 107°. Thus we can conclude that the wave vectors, resulting from the eigen-
value solution, correspond to those calculated “kinematically with the refraction correction”,
ko, and Kp,. Further this proved that the eigenstates of the DWBA, which we have chosen
according to the virtual planar multilayer, are suitable.

The intensity of the odd order TRs are shown in Fig. 5.13, of the even order TRs in Fig. 5.14.
The intensity profiles of the TR —1 calculated either by the TBA (dynamical interaction between
TR -1 and TR 0), or as a multiple-beam scattering among TRs —1,0,4+1 (TR +1 is evanescent in
the plotted region) slightly differ, Fig. 5.16. This shows that the TR +1 influences the intensity
of TR —1 for the angle of incidence around the critical angles, so that the interaction with the
TR +1 is important. However, we can see that the differences are very small: the curves of
both calculations are shifted not more than 0.002° (value of a very good experimental precision),
whereas the maximal difference in the intensities is lower than 4%. For angles of incidence below
the critical angle of the averaged medium (0.219°) as well as for angles of incidence much larger
than the critical angle of the wires (0.309°) both curves coincide. The same behaviour can be
found on the intensity profiles of the other odd TRs too, Fig. 5.16.

Therefore there are two scattering regions on each odd TR (see the graphical representation
in Fig. 5.12): the multiple-scattering region for the angle of incidence between the critical
angles, and the single-scattering region elsewhere. The value of wy, (0) for the TRs +1 is 0.012,
which slightly exceeds the threshold for the validity of the TBA (5.113). This demonstrates
that the condition of the validity of the TBA (5.113) is an approximation only: this condition
considers the scattering between the TRs inside a structured layer, but not the enhancement of
the transmission function at the critical angles.

The value of wy, (5.109), which determines the “size” of the multiple-scattering region de-
pends on xod/A. Therefore we find many samples for which the multiple-scattering region can
be neglected. This is e.g., the case of the 1.3 ym InP/GalnP MLG measured for the wavelength
0.7114 A (Sec. 5.7) because of wavelength dependence of the susceptibility xo ~ A2.

However, we already stated that TBA cannot be used if x; is zero (or very close to zero
compared to xi), i.e., for even TRs in the considered example. These truncation rods are
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“kinematically forbidden”. This happens because the contributions of the scattering from the
primary beam (proportional to Ey) to TR h is weighted by x;,. If we want to avoid the use of the
full dynamical calculation, we have to find a multiple-beam approximation of a sufficient order
whose diffraction curve would correspond to the dynamical curve. In the case of the considered
surface grating we have found numerically that approximation of the third order, i.e., 14-beam
approximation, can be used instead of the full dynamical calculation.

Distorted-wave Born approximation

The distorted-wave Born approximation is a perturbation method. We used the DWBA of the
first order and we derived the formula (5.59) for the intensity of the beam corresponding to
the TR m. Each structured layer contributes to the amplitude of the scattered wave by a sum
of four scattering processes, describing the interaction between the transmitted and reflected
incident and diffracted beams, Fig. 5.7. The magnitude of those four contributions for the TR
—1 is plotted in Fig. 5.17. The strongest contribution is that of the 7175 process. In the case
of the negative TRs, the scattering process RyT, influences the reflectivity around the critical
angle because of the maximum of Ty at the critical angle. The other two processes, RoT; and
R1 Ry, are of small amplitude and their contributions to the scattered intensity are negligible.
For positive truncation rods, the contributions of R1T5 and RoT; change their roles.

The final formula (5.59) of the DWBA calculation gives a clear description of the features
on the diffraction curve. Since the scattering process T17Th between the incident-transmitted
and diffracted-reflected waves mostly prevails (the reflectivity amplitudes are small: Ty, T, >
R1, Ry), the intensity profile is determined mainly by this primary scattering process. The depen-
dence of 71 and T5 on the angle of incidence gives rise to the increase of the scattered intensity at
the critical angle (of the averaged grating—given by the choice of the ideal potential), Fig. 3.10.
This region corresponds to the so-called Yoneda wings in the diffuse scattering [Yon63]. The
oscillations on the truncations rods are caused by the oscillating term [exp(—ig,ot) — 1]/(—iq.0)
in Eq. (5.59).

Approximating |T1T,| = 1 for large angles of incidence, the equivalence of the DWBA (5.59)
and the two-beam approximation (5.110c) for large angles of incidence can be analytically demon-
strated. Consequently, the numerical simulations show that the TBA slightly differs with respect
to the DWBA and to the dynamical theory in the region of the critical angles. The differences
between the TBA, DWBA and the dynamical theory increases for large period gratings. The
numerical calculation shows that the DWBA can be accurately applied for a GaAs surface grat-
ing up to the period of 2 pm, where from the multiple-scattering features start to be important.
Fig. 5.18 shows what is the difference between the calculation by the DWBA and by the multiple
scattering among TRs -3, ... ,+3 for a GaAs grating with the period of 5 pm.

Further, we find that homogeneous layers do not contribute to the intensity of the diffracted
waves by a matrix element, only by influencing the amplitudes T' and R.

Finally we should note that we used the DWBA of the first order, where only the single
scattering process from the incident to the diffracted eigenstates is involved. The amplitude
of the diffracted wave of the primary scattering process is proportional to xp. Similarly to
the two-beam approximation, distorted-wave Born approximation of the first order cannot be
used for calculating the intensity of the kinematically forbidden TRs with zero xj. This can
be overcome by applying the DWBA of a higher order. The DWBA of the second order would
be sufficient for determining the intensity of the kinematically forbidden TRs, because they are
excited through scattering from the other strong TRs.

The main objection in the literature against the usage of DWBA for the calculation of the
reflectivity from gratings was that this perturbing potential is large. This objection is natural
if the DWBA is applied for the diffuse scattering calculations in which case it is shown that
DWBA breaks down for larger roughnesses (above > 20 A). However, near a rough interface
the scattered wavefield is “random”, therefore the eigenvectors taken from the laterally averaged
multilayer differ strongly from the actual wavefield and their usage in the DWBA is no more
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around the critical angles. [1] TR 0 calculated dynamically as the interaction between the TRs 0 and +1
(thin right-hand curve), between —1 and 0 (thin left-hand curve) and —1,0,+1 (or more TRs) as the thick
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solid curve, which also coincides with the DWBA calculation. Note the scale of the graph: the angular
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Figure 5.17. The DWBA calculation and the contribution of the four scattering processes to the intensity
of the truncation rod —1. (a) Contribution of the additive terms of T1T>, T1 R2, R1T> and Ry Rs, see
(5.58)—(5.59). The region around the critical angle of the averaged layer is enlarged in figure (b). The
contributions denote the respective terms in (5.56) and in their counterparts in (5.58) and (5.59). C(T1T»)
represents the term TiTs Qal(—ql), etc. The contribution of the process RiT> on the total sum is
significant and therefore the “semi-kinematical” calculation (i.e. the calculation using the T)T» term
only, see (5.62)) is not sufficient. Figure (c) shows the absolute values of the amplitudes Ty, Ry, Ts, and

R, at the lower interface of the grating.

appropriate. In the present case of perfect grating structures it shows that the eigenstates of a
virtual planar multilayer with laterally averaged potential is a very good choice and therefore the
DWBA gives correct results even though the perturbing potential acts in large grating volume
(we recall that the grating layer thickness is 3000 A).

Kinematical theory

We have shown that the kinematical theory without the restriction to the Fraunhofer approxi-
mation can qualitatively explain some features of the reflectivity from multilayer gratings. The
kinematical diffraction integral is equivalent to the first Born approximation with the eigen-
states given by the vacuum plane waves (cf. the DWBA treated above, where the base states
are wavefields of the averaged ML). Since the refraction effects are not involved in this theory,
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Figure 5.18. Calculation of the TR 0 (left) and the TR —1 (right) for a GaAs surface grating with the
period d = 5 um, wavelength \ = 1.54 A, by means of the dynamical theory (full curve) and by means
of the DWBA (dashed curve).

it cannot explain quantitatively the intensity profile for angles of incidence comparable to the
critical angles of the grating materials.

For angles of incidence much greater than the critical angles, the influence of the reflection
at interfaces plays a smaller role: the elements of the matrix of generalized Fresnel coefficients
(5.99) approach the kinematically calculated Fresnel diffraction coefficients (5.28). The period
of the oscillations on a truncation rod approaches that calculated dynamically for larger angles
of incidence, Fig. 5.19.

Similarly to the other single-scattering theories, the kinematical theory cannot calculate the
intensity of the kinematically forbidden even-order TRs of the discussed surface grating.

Nevertheless, from the approach used by the kinematical theory we get a simple overview
of the scattering phenomena. Namely, the Ewald construction, shown in Fig. 5.5, is of general
importance. Further, the scattered amplitude is proportional to the Fourier transform (in the 2
direction) of the (lateral) Fourier coefficient of the susceptibility xj, which gives a good estimate
where to expect the peak positions—and this is what the grating formula is about.

intensity of TR -1

==,
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Figure 5.19. Comparison of the kinematical and the dynamical calculation of the truncation rod —1.
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5.7.2 Specular reflectivity

So far we discussed the intensity of the diffracted waves. Now let us concentrate on the specular
intensity, which is the intensity profile along the zeroth truncation rod (TR 0). The specular
reflectivity curve of the considered surface grating is presented in Figs. 5.20 and 5.21.

The curves calculated by the dynamical theory, multiple-beam approximations and DWBA
coincide, except for a narrow dynamical region on the DWBA curve, which we are going to
explain in more details below. They are identical to the reflectivity curve for an averaged layer
(with 6 = %6G3As) on the substrate as calculated by the dynamical theory of reflectivity from
planar multilayers, Ch. 3.

The dynamical theory in the one-beam case (D = 1) calculates the scattering only as the
propagation of the pair consisting of the incident transmitted and reflected waves. The trans-
mitted and reflected waves in each layer are coupled at interfaces and the corresponding matrix
elements depend on the averaged susceptibility xo. Therefore this leads to results identical to
the dynamical X-ray reflectivity from an averaged planar multilayer (Sec. 3.4.4 and 3.4.5). This
is also the result of the DWBA calculation because of the choice of the eigenstates.

Using the full dynamical theory for ML.Gs, thus the case when D > 1 and (lateral) diffractions
by h # 0 occur, the other TRs are interacting with the TR 0. In Fig. 5.16 we can see that
the interaction with both the TRs +1 has to be taken into account even when the TR +1 is
evanescent in the region w < 1.12°. This again recalls that the contributions of the wavefields
(eigenvectors of the dispersion relation) of opposite TRs cancel each other. However, the specular
curves coming from the interaction between TRs 0 and 1, and TRs 0 and -1 differ (Fig. 5.16)
because the wavefield diffracted in the grating has to come out through the interfaces, and both
diffracted-reflected waves of TRs +1 make different angles with the interfaces, which changes
their reflection and transmission functions (the generalized Fresnel coefficients).

Another dynamical region of multiple scattering is found near the angle of incidence at which
the wavefield of the TR +1 becomes real (this is schematically shown by circles in Fig. 5.8).
In this case the diffracted-transmitted wave has a maximum and it can eventually influence
the specular beam by taking some of its energy away, cf. the transmission function 7775 in the
DWBA. We can see in Fig. 5.21 that only the TR +1 is so strong near the critical angle of its
outgoing beam that it enhances and modulates the specular reflectivity curve profile. We can
find this feature in the dynamical theories, including TBA, in which the interaction between
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Figure 5.20. The specular reflectivity curves (the main truncation rod) of the discussed GaAs surface
grating (period 8000 A, T = 0.5, thickness 3000 A; wavelength 1.54 A). (a) Comparison of the dynamical
and the kinematical calculations. (b) Specular curve calculated by the dynamical theory in large angular
region. This figure illustrates the fall-down of the intensity of the specular curve and its intensity at the
angles at which the positive truncation rods arise (denoted by the enumerated arrows); cf. Fig. 5.22 too.
The critical angles of the GaAs material and of the averaged medium are shown by arrows.
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Figure 5.21. The specular reflectivity curves of the discussed GaAs surface grating. (a) Region of the
specular reflectivity curve (the upper thick curve) near the angle of incidence where the first truncation
rod (TR +1) appears (the wavefield of TR +1 becomes real). The intensity of the TR +1 (shifted down
5-times and represented by the dashed curve) is strong in the region of the maximum of the transmission
function and it takes away energy from the incident transmitted beam, which influences the intensity of
the specularly reflected beam. The lower thick curve is the dynamical calculation without the interaction
with the first TR. (b) Same as (a), but for the third truncation rod (TR +3). Its intensity (dashed curve)
is low compared to the intensity of the incident transmitted beam. Therefore it does not influence the
other truncation rods nor the specular one (the thick curve).

TR 0 and TR +1 is involved in the calculation. However, the calculations which do not take the
interaction between these two TRs into account (i.e., DWBA and the dynamical theory without
TR +1 7), lead to the reflectivity curve of the averaged planar multilayer. In the region far from
this narrow “dynamical” region the reflectivity curve coincides perfectly with that calculated
according to the formulae in Sec. 3.4.5 for the averaged multilayer. We note that this dynamical
effect diminishes when the grating side walls are rough (Sec. 5.9.1) so that the amplitude of the
TR +1 is reduced.

I have already noted that in my program for the numerical simulation of the dynamical theory the TRs
dynamically interacting can be arbitrary chosen. For example, we can calculate the dynamical theory using all
available TRs, only non-positive or non-negative TRs, or a subset of them. The “dynamical theory without
TR +1” means the dynamical calculation considering many TRs except for the specified TR +1.
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Figure 5.22. Dependence of the angle of incidence Wit = \/2m/(d/\), see Sec. 2.3, at which the positive
truncation rods +1, ... ,+8 arise, with respect to the ratio of the period d and the wavelength . The bold
vertical bar on the left-hand side represents the conditions of the discussed SG (d = 0.8 um, A = 1.54 A),

that on the right-hand side the conditions of the measured MLG (d = 1.3 um, A = 0.7114 A).

Further, it has been shown by the two-beam approximation that the amplitudes of the
diffracted waves are of the order of x,/h, Eq. (5.110c). For X-rays the sum of the contributions
of the h # 0 TR is small (except for the TR +1) thus the influence of the total (integrated)
non-specular reflectivity on the specular reflectivity amplitude is negligible if the amplitude of
the stronges TR is negligible too (i.e., out of the region where the TR +1 is strong).

Let us note that the diffracted TRs make much more impact on the TR 0 profile if they are
closer together (in reciprocal space), i.e., for grating period much larger than the discussed one,
or when the effective grating period is enlarged by the azimuthal rotation, which is the subject
of the treatment in the following section. Further, in visible light optics the susceptibilities xp,
are not small (the index of refraction is substantionally greater than unity) and the specular
reflectivity is changed substantially.

For short period gratings the DWBA calculation accurately coincides with the multiple-
beam dynamical approximation (the effect of the “effective” field of the TRs). For large period
gratings, the multiple-scattering effect plays an important role. The specular reflectivity curve
of a GaAs surface grating is well approximated up to a period of 2 um (for the wavelength
1.54 A), the differences become important for a period of 5 um, which is shown in Fig. 5.18.

The reflectivity curve calculated by the kinematical theory shows exactly the same behaviour
as that discussed for non-specular scans and for the specular reflectivity from planar multilayers,
page 42. This we have demonstrated by comparing the “interface” Fresnel coefficients (3.114)
and (5.28) for h = 0. Therefore we briefly summarize the main features: the intensity, given by
(5.36) is inversely proportional to K2 (since h = 0), and therefore it diverges around the zero
angle of incidence. There is no region of total external reflection—this effect has been already
attributed to the choice of the vacuum base states. The refraction corrections to the wave vector
in the averaged medium k, calculated by the dynamical theories become small for large angles
of incidence and the dynamical Fresnel coefficients approach their kinematical limit, therefore
the dynamical curve approaches the kinematical one.

5.7.3 Azimuthal angle dependence

Up to now we discussed the reflectivity from a grating in the geometry where the incident
beam was perpendicular to the wires. When we rotate the sample about its surface normal
(azimuthal scan ¢), the effective period changes as d(¢) = d/ cos ¢, see Fig. 5.4(a). According
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to Fig. 5.4(b)—(d), we can see that the sample’s reciprocal lattice rotates in reciprocal space and
the scattering is non-coplanar, but it still preserves its forward-scattering character (the “Laue
case”). We have found that the dynamical theory is well adapted for the case K, > h, and we
determined a condition for applying the two-beam approximation. From this it follows that the
multiple-beam interaction among TRs becomes important for a grating with a large period as
well as for a rotated short period grating with larger effective period.

In this section we briefly discuss the case when the incident beam is nearly parallel to the
wires, i.e., the azimuthal angle ¢ is near to 90°. From this follows that the & component of
the incident wave vector K, ~ K cos ¢, defined by expression (2.1a), is smaller than the lowest
order reciprocal vector of the grating hy.

We calculated numerically the intensity distribution for the surface grating treated in this
discussion. Maps of the intensity dependence on the azimuthal and incidence angles for TRs 0
and -1 are shown in Fig. 5.23. For the calculation of these TRs, we have found that for a
precision better than 1073 at least the 11-beam dynamical theory, i.e., calculation including
dynamical scattering among TRs -5, ... ,4+5, has to be used. For calculating the intensity of
even order TRs +2, at least the 15-beam dynamical theory (TRs -7, ... ,+7) is necessary. Let
us note that the angular separation of the diffracted waves of two neighbouring TRs is at about
0.01°.

The diffracted waves in this scattering geometry are strong and the scattering has to be
calculated dynamically, i.e., as a multiple interaction among many TRs. This need for the
multiple-scattering interaction coincides with the condition of the validity of the two-beam
approximation (see Sec. 5.6.4 and Egs. (5.113) vs. (5.111)).

The necessity of the multiple-beam dynamical interaction can be understood from the 2d
reciprocal space construction in Fig. 5.4(d). If we enlarge this 2d picture into the true 3d
reciprocal space by adding the @), axis perpendicular to the paper sheet, then the grating TRs
are perpendicular to the paper sheet and they cut the Ewald sphere of the incident wave in points
whose (), coordinates are very close for the neighbouring TRs. In the real space representation,
all the diffracted waves are confined in the grating wires and in the grooves between them, since
they make an angle of incidence with the side walls smaller than the critical angle.

5.8 Other grating structures

Up to now we were concerned with discussion of the reflectivity from rectangular periodic grat-
ings. This section we devote to the treatment of scattering by other types of lateral gratings,
namely rectangular quasiperiodic gratings and trapezoidal periodic gratings.

5.8.1 Quasiperiodic gratings

Our previous discussion has been focused on scattering by a laterally periodic grating, which
represents an artificial 1d crystal with periodic lattice. Now let us treat the reflectivity pattern
from a grating with lateral quasiperiodic lattice we have proposed earlier [Mik95]. As a particular
example we suppose a (lateral) Fibonacci lattice introduced in Sec. 3.6.2. A sketch of a lateral
Fibonacci grating is shown in Fig. 5.24(a).

In Sec. 3.6.2 we discussed the reflectivity from a Fibonacci multilayer grown in direction 2.
We used the general properties of the Fibonacci lattice, namely its discrete Fourier transform
with the peak positions described by two integers and filling densely the whole 1d reciprocal
space. These results can be applied directly also for the present case of a Fibonacci grating,
i.e., the Fibonacci lattice in the & direction where the wires a, b are positioned according to the
Fibonacci sequence. Figure 5.24(b) shows the reciprocal space of this structure. It consists of
an infinite number of truncation rods which are enumerated by two integers p,q. A truncation
rod (p, q) resides at lateral position hy,, = 2Tﬂ(p + q7)&, where the lattice period is d = d, + 7dj,.
Since the golden mean 7 is an irrational number (p. 46), the truncation rods are found in every
point of the axis ).
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Figure 5.24. (a) A sketch of a Fibonacci grating. (b) Its reciprocal space is a set of truncation rods
whose position h,, = 27”(17 + q7)& are determined by two integers p,q. Because the golden mean 7 is an
irrational number, a truncation rod is found in every point of the axis Q).

In the calculation of the intensity of the scattered waves, we proceed similarly to our approach
of periodic gratings. The only difference (cf. Sec. 5.3) is that the Fourier coefficients are indexed
by hpe instead of the equidistant hj,,. Then all the calculations by the kinematical theory,
distorted-wave Born approximation, dynamical theory and the two-beam approximation can
be used without any change, just using hy, instead of hy, and xp,, instead of xp,. Some
“implementational” problems could be encountered in the dynamical theory, since the matrices
would be infinite because the Ewald sphere crosses an infinite number of TRs. However, from the
Fourier transform of the Fibonacci sequence [SL87] we know that the largest Fourier components
are those with small p, ¢ (cf. Fig. 3.12) and therefore most of the TRs will be of very low intensity.
For the same reason, there would be only few truncation rods distinguished on an experimental
w-scan.

We have shown earlier that the amplitude of a wave scattered by @ calculated by the
kinematical theory, distorted-wave Born approximation and the two-beam approximation is
proportional to the modulus of the Fourier transform of the susceptibility, E, ~ xn(q-) ~ x(q),
where ¢ = h.2 Thus for establishing the general properties of a reflectivity map (we mean
the truncation rod positions and the peak positions, i.e., the “grating formula”) of a grating
with any structure we can use the Fourier transform approach used in the kinematical theory
of X-ray diffraction.® Let us suppose a grating where the material b is vacuum, and the wires
of the material a are layers of a multilayer. The susceptibility of the grating can be split into
the susceptibility of the multilayer x,.., shape function of one wire ,; and the distribution
function of the wires xq4(z) = >, d(z — z,). Here z, is the position of the nth wire (it can be a
periodic, quasiperiodic or any other sequence). The susceptibility of the grating is given by the
convolution

Xgrating(r) = Qa(IE,Z) . XML("') = [Qal(xaz) 'XML(T)] ® Xd(x) . (5116)
The scattered amplitude is proportional to its Fourier transform (denoted by the star)
Xgrating(q) = [251(q2,¢2) ® X3w.(@)] 'X;(Q:E) . (5.117)

According to the rule for the wire distribution, the intensity in the ¢, direction in reciprocal
space is modified. We can see that the Fourier transform of the wire distribution is discrete
and therefore it determines the lateral positions ¢y, of the truncation rods—they are found

®In the kinematical theory, ¢ is the vacuum wave vector transfer Q. In the DWBA it is the wave vector
transfer of a particular scattering process, cf. (5.56).

9The kinematical theory of X-ray diffraction shows that the diffracted amplitude is proportional to the Fourier
transform of the electron density. The Fourier transforms of the electron density p; and of the susceptibility x(h)
are proportional [AKK'74].
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in the discrete maxima g;m of the Fourier transform xj(g;). The Fourier transform of the
susceptibility profile of the multilayer in the 2 direction determines the positions of the maxima
along g,. The Fourier transform x3,; (g) of the profile of one wire 2%, determines the modulation
(an envelope function) of the scattered amplitude and it may lead to extinction of some TRs,
thus the dynamical calculation has to be involved. This we have shown earlier on the particular
case of a surface grating with I' = 0.5.

From this discussion a prediction of the structure of the reflectivity map of any grating sample
can be predicted. For example, a Fibonacci grating etched into a Fibonacci multilayer will exhibit
a quasiperiodic arrangement of truncation rods along ¢, and quasiperiodically arranged maxima
along ¢,; in a rough approximation the scattered map will be the product of figures 5.24(b) and
3.12. However, to our knowledge such a sample has not been produced until now.

5.8.2 Trapezoidal gratings

So far we have discussed the scattering from gratings with rectangular wire shapes, Fig. 5.2(c).
Let us now briefly discuss how to calculate reflection by gratings with other wire shapes, notably
with trapezoidal shapes, Fig. 5.2(d).

The gratings with non-rectangular shapes have been treated by different methods. The inte-
gral formulae for Maystre’s coefficients B, [May84] have been applied by Tolan et al. [TPBK95]
to calculate the scattering amplitude by a trapezoidal surface grating. Neviére [Nev94| used the
differential matrix method for the calculation of the reflectivity by a grating with triangular
wire shapes.

In the present work, the kinematical theory and the DWBA have been formulated in such
a way that it is easy to deal with any grating shape. In the kinematical theory, the reflectivity
is given by the integral (5.21) which calculates the Fourier transform of the Fourier coefficient
X1 (z) along the vertical direction 2. We already provided the formula for the rectangular grating
(5.25), and the generalization for other grating shapes is straightforward.

The DWBA calculation is easy as well, because the perturbing potential (5.42) is conveniently
described by means of the grating shape function Q,(7), Fig. 5.2(b). The specular reflectivity
from rectangular wires was found to correspond to the reflectivity of the averaged multilayer,
Eq. (5.54), because of the choice of the ideal potential. The reflectivity of a grating with another
shape is modified by additive terms proportional to the Fourier transform of the wire shape
profile, Eq. (5.55). The profiles of the non-zero truncation rods (5.58) contain directly the Fourier
transforms of the wire shape function, which are weighted by the amplitudes 7175, T Ro, ... of
the four scattering processes acting in the DWBA of the first order.

Within the dynamical matrix method presented,
we can employ the wire shape by the usual approach
of calculating the reflectivity from a layer with varying
refractive index. We cut the grating into thin (virtual)
layers, Fig. 5.25, approximate the trapezoidal shape
in each layer by a rectangular shape, and apply the
dynamical calculation for such a multilayer grating.
Then the transfer matrix of the trapezoidal grating
(5.85) will be approximated by the product of the transfer matrices of the virtual layers, M(?) =
IL M@ and we expect this product will converge to the transfer matrix of the trapezoidal
grating calculated by the differential method. Consequently, this stratifying method will take
into account the averaged vertical profile of the index of refraction as well as the varying ratio
I'(z) = dg(a)/d, whereas the effect of the slopes of the side walls is neglected. We expect that
the slope of the side walls plays a negligible role, because the waves propagating in the grating
fall on the side walls under very large angle (with respect to the critical angle), and therefore
their refraction on these walls can be neglected (the kinematical limit).

Figure 5.25.
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This extension of the dynamical theory for trapezoidal shapes seems to be a good approx-
imation for large slopes (20°-90°), which are present in common MLGs. This approximation
could be tested by comparing it to the calculation by the differential method.

Further, this method of virtual layers can be used also in the DWBA to compare the precision
of the calculation of the perturbation in the averaged wavefield of the whole trapezoidal grating
to the calculation of the sum of the perturbations in the smaller trapezoids of virtual layers.

5.9 Rough gratings

In the previous part we dealt with scattering by perfect multilayer gratings. We have supposed
that the grating period is constant all over the sample and that the boundaries separating the
different materials are perfectly flat. In this section we will have a look how the structural
imperfections of a grating influence the scattered intensity.

Obviously, the grating imperfections can be of two types: macroscopic and microscopic. The
main macroscopic imperfection is a fluctuation of the grating period d over the sample area.
However, when the mask for the etching of the grating structure is fabricated by means of an
optical method (i.e., by optical holography), then the wire period is given by the wavelength
used and consequently it is constant over the sample surface. Therefore we will further deal
with two microscopic imperfections: rough side walls and rough lateral interfaces.

We will calculate the influence on coherent scattering and we will not deal with the incoherent
(diffuse) part. Namely, we do not calculate the profile of w-scans or 20-scans. We suppose that
there are only coherent truncation rods, enlarged by the instrumental function.

5.9.1 Rough side walls

Let us suppose that the side walls, i.e., the walls separating the materials a and b in each layer,
are rough. In this section we make the calculation for a single structured layer, therefore we will
further omit the layer indices. The positions of the side walls of the nth wire are nd+d,/2+U(r),
where the displacement U is a random quantity. The theories we used earlier for the calculation
of the scattered intensity make use of the Fourier coefficients of the susceptibility (5.3) or of the
shape function of the material a (5.5). In the present case of a rough MLG, we use the averaged
values (xp) and (Qg,,) instead. This is because we have shown that in the single-scattering
theories the reflectivity amplitude is proportional to these Fourier coefficients. For the fully
dynamical theory, this seems to be a reasonable approximation.

The zeroth Fourier component of the susceptibility is its averaged value in the layer, therefore
it does not change in the presence of rough side walls.

The averaging of the Fourier components €2, for h # 0 gives

da [2+U , —ihdq /2 [ ,—ihU\ __ ihdq/2 [,—ihU
Q) — <1 / dmm>=%[e (emihV) — eifde/2 (=ih0)]

d J_d, 24U —ih
— da . dah —thU\ _ oid —thU
= - sine— <e > = Q5 <e > . (5.118)

We denoted the Fourier transform of the shape function on the undisturbed system by Qid.
We assume a gaussian distribution function of the side wall roughness characterized by the root
mean square roughness ¢,,. The updated Fourier coefficients are

—  ,id —h202/2
{Xn) Xh o " B (5.119)
<Qah> = Qah e w .

We can see that the rough side walls diminish the intensity of the non-zero truncation rods.
In the single-scattering approximation the amplitude of the diffracted wave of the truncation
rod h decreases by a constant value e~"*7%/2 which makes the higher-order truncation rods less
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observable. However, in order to achieve a noticeable decrease of the intensity, the factor hoy,
should be at about unity and therefore o, 2 d/4. For a realistic example of a grating with
the periodicity of 1 pum it means that the intensity of the first TR is changed noticeable for a
roughness of several hundreds of Angstroms.

5.9.2 Rough interfaces

Let us consider the roughness of the interfaces separating adjacent layers of a MLG. We will
proceed similarly to the approach used in the calculation of the specular reflectivity from a
rough planar multilayer, and we use both the dynamical (Sec. 4.3.1) and kinematical (Sec. 4.3.2)
theories.

We describe each rough interface (Sec. 4.2.1) by the displacement Uj;(r), see (4.1). We
suppose a unique probability distribution function over the interface, which means that we do
not distinguish between possibly different statistical properties of the interfaces on top of the a
and b materials. Therefore we characterize the roughness of an interface j by a single root mean
square roughness o; and not by means of two separate roughnesses (e.g., 04, 0p;)-

Rough interfaces and the dynamical matrix theory

The rough interfaces cause layer thickness fluctuations which influence the phase terms (5.83)-
(5.84) of the propagation matrices QU) (5.82). According to relations (4.22)-(4.24), the phase
matrix becomes random

QW () = Uj—1 (—kD, v)) QW (kD) Uy (KD, 7)) (5.120)
_ (U (k) 0
Uj(kz, ’I"H) = ( 0 Z/{(j)f(kz, ’I")) . (5.121)

Here UW)E (L, r|) are the diagonal matrices with the diagonal vector
(ejFing Ui(m) eqtikéj,z uitri) . ’e:Fik‘([z,)zUj(mO) (5.122)

for structured layers, and similarly for homogeneous layers.

The amplitude of the reflected waves is given by (5.87), which has to be averaged over the
interface displacements. We employ the approximation (cf. (4.27))

(R = (Ntgy - N T e (Nhoy ) - (<1\7[11>>_1 T (5.123)

In the present formalism we use the same notation as in the dynamical theory of reflection
from planar multilayers, therefore we can directly apply the reordering of the matrix sequence
according to (4.25). Then the averaged transfer matrix of the whole multilayer reads (cf. (4.29))

M(r))) H i(m) HPml rp)) QUTY (5.124)

=

We rename the ideal matrices P; ;41 in (5.93) to Pid

it and put

Pig1(r) = Ui (D, 7)) P U (K9 ) (5.125)

Averaging the boundary matrix is straightforward. It leads to the form where the elements of
the ideal matrix are multiplied by the characteristic function of the probability distribution xp;
(as usual, we use the gaussian distribution function (4.7))

7ty K= K] [l (e + K9]

(Pjj+1(r))) = | |
[0 X0y (RS = K] [ xR — B

(5.126)
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Figure 5.26. Intensity of (a) the odd truncation rod —1 and (b) the even truncation rod —2 (b) of the
surface grating according to Sec. 5.7 having rough interfaces. (a) Intensity of TR —1. From the upper to
the lower curve: without roughness, interface roughness 12 A, surface roughness 12 A, both roughnesses
12 A. (b) Intensity of the TR —2. From the upper to the lower curve: without roughness, surface roughness
12 A, interface roughness 12 A, both roughnesses 12 A. The explanation of the opposite order of the curves
corresponding to the surface and interfaces roughnesses with respect to their order in the odd TR -1 is
given in the text.
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This relation is analogous to (4.30). However, in the present case the matrices %]i-d, [)ijd are not
diagonal and an analog of some “corrected Fresnel coefficients”, as it is possible in (4.32), does
not exist except for an interface between two homogeneous layers.

We explain the roughness influence in the following way. Rough interfaces change the inten-
sity profile along the @,-direction. From the last matrix relation we deduce that the transmission
coefficients lying on the diagonal 7,,,, are not substantionally influenced, since k,(g) ~ k%“) for
larger angles. The damping of the off-diagonal terms 7,,,, m # n, depends on the “vertical
distance” of the wave vectors |k, ., — k,|. The damping of the reflectivity elements p,,, is
much stronger, since the decrease is given by a static Debye-Waller-like factor in the argument

of the vertical wave vector transfer |k, + kzn|°.

Numerical calculation of the specular reflectivity shows that it behaves similarly to the
specular reflection from rough laterally averaged planar multilayers. For a simple case of a
surface grating the surface and interface roughness acts as shown in Fig. 4.3(a). Numerical
results demonstrating the influence of the roughness on the diffracted intensity are shown in
Fig. 5.26 for the surface grating discussed in Sec. 5.7. We can see that the diffraction curves are
sensitive to a roughness of several Angstroms, as in the case of the reflectivity curves of planar
multilayers.

Let us discuss the order of the curves for rough and flat surface/interface, i.e. what is the
intensity for a given angle of incidence depending on the roughness of different interfaces. For the
odd TR -1 their order is as that of the specular reflectivity, Fig. 5.26, because the odd TRs are
excited by the direct scattering process from the TR 0. Larger surfaces roughness decreases the
fall-down of the intensity of TR —1. Larger interface roughness decreases the amplitude of the
wavefield of TR —1 confined in the layer, therefore it decreases the amplitude of the oscillations.
The order of the intensities for both roughness combinations is opposite for the even TR —2.
This is because the diffracted wavefield of an even TR is excited by a double-scattering process
inside the layer. The diffracted-reflected wave of the TR -2 coming from the interior of the layer
is less reflected back if the surface roughness is large, and therefore its intensity is higher. The
diffracted-reflected wave of TR —2 falling on the bottom side of the flat surface is considerably
reflected back for an incidence angle below the critical angle and therefore the intensity measured
above the surface is smaller.

Rough interfaces and the kinematical theory

The position z(r) of a rough interface is random (4.1), and therefore Eq. (5.27) has to be
averaged

N
(En(r)) = <E0 Ztl,j“; eithZj+1(r)>
=1

N
By Y (dhin(r)) emi@enn (5.127)
7=1

The Fresnel reflection coefficient of kinematical diffraction corrected for the roughness of an
interface j is

(dhn(r)) = i) (e 0 iy (@Qne) (5.128)
For the gaussian probability distribution function (4.7) we get explicitly
(ehin(r)) = efin o=@/ (5.129)

Similarly to the specular reflectivity from rough planar multilayers (Egs. (4.35) and (4.36)) we
get the kinematical damping factor depending on the z component of the vacuum scattering
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vector (Debye-Waller form of the diminution). This is different from the dynamical theory where
the correction depends on the 2 components of the wave vectors in both neighbouring layers,
Eq. (5.126) vs. (4.33). The different behaviour of MLG interface roughness as calculated by the
dynamical and kinematical theories is therefore similar to that shown in figure 4.3.

This kinematical damping factor is similar to that empirically assumed by Erko et al
[EVV 93]

Iy = Iy - e K’o7sin”0 (5.130)

for Iy calculated dynamically. They characterized the grating by a single effective roughness o
and used an effective wave vector transfer K sin @ instead of the scattering wave vector Qp,.

5.10 Experiment

In this section we present the reflectivity measurement on _d=1.362 ym
a multilayer grating whose structure is presented in Fig. 5.27.
There are three and a half periods of the bilayer Gag.47Ing 53As
(nominal thickness 500 A) and InP (nominal thickness 300 A)
grown on a InP substrate. The uppermost period is etched.

This creates a bilayer grating sitting on multilayer with two mp {300 A
. GalnAs $ 500 A
and a half periods.
We performed the reflectivity measurement of this sample InP substrate

at the Optics Beamline D5 in the E.S.R.F. (European Syn-
chrotron Radiation Facility, Grenoble), using a high-resolution
triple-axis diffractometer, Fig. 5.28. The radiation was mono-
chromatized by a single-reflection on a Si(111) crystal posi-
tioned on the first goniometer. The sample was mounted on the second independent goniome-
ter. The intensity of the scattered radiation was measured by a scintillation counter mounted
after a Si(111) analyzer crystal, both placed on the third independent goniometer. The angle of
incidence w was changed by simple rotation. For measuring the outgoing radiation at certain
scattering angle 26, a more complicated movement was needed. Firstly, the analyzer crystal as
well as the detector had to be rotated. Because of the distance between the second and third
goniometers and the finite size of the analyzer crystal, the whole third goniometer had to be
moved so that the measured scattered beam always arrived at the analyzer crystal. And finally,
the beam between the sample and the analyzer had to pass through a slit, employed in order
to discriminate the analyzer streak. Therefore the arm carrying the slit and a lead tube (to
avoid the diffuse scattering from the air) had to be moved as well. In order to make the whole
movement automatically, we wrote several macros for the spec software running the whole mea-
surement. We implemented the macros in very convenient way, so that we could measure in any

Figure 5.27. Schematical drawing
of the sample RG505B4.
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Figure 5.28. A sketch of the diffractometer at the Optics Beamline at the E.S.R.F.
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given point in reciprocal space, or perform any reciprocal space scan. The tests showed very
good mechanical precision of the whole equipment.

The sample was mounted with its surface vertical, and the incident wave was perpendicular
to the wires. Table 5.1 contains the lattice parameters of the compounds and the index of
refraction and the critical angle for the wavelength X = 0.7114 A used.

Table 5.1. Lattice parameters and refractive indices for the wavelength 0.7114 A.

material lattice parameter d=1—-n=—x/2 critical angle 6¢
InP 5.8688 A 2.837-107% +46.311-108 0.1365°
Gag.47Ing 53As 5.8680 A 3.284-1076 +41.554 - 1077 0.1468°

Firstly, the w-scans have been measured in order to find the positions of the truncation
rods. We could resolve the specular truncation rod and the 1 truncation rods, Fig. 5.29. From

the angular positions of the £1 TR peaks we calculate the reciprocal space positions of these
truncation rods

2 _
Hoop T (0050.595° — c0s0.105°) = £4.61-10~* A™" (5.131)
0.7114 A

with the precision of +2- 1079 A~1. From this follows the grating period

d=2r/|QF| = (1.362 4 0.005) pm. (5.132)

We can see that the truncation rods are very thin in the w-direction. The full width at
half-maximum (FWHM) is 0.006°, which can be verified by calculating the resolution function
of the triple-axis diffractometer [HM96]. Thus for measuring the intensity along the “top” of
the truncation rod we needed the precision of 0.001°. Therefore we studied the truncation rods
by measuring a narrow mapping around them: at each theoretical position (Q,, @,) on the TR
we made a small w-scan and we have taken the maximal intensity of this scan.

1000
TR0 at 0.35°
FWHM=0.006°
TR -1 at 0.104° TR +1:at 0.594°
FWHM=0.006° FWHM=0.0055°
100
10 Il Il Il H PN W
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5.29. w-scan for 20 = 0.7° of the sample RG505B4 which cuts the truncation rods -1, 0 and +1.
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Figure 5.30. Intensity of the measured truncation rods —1, 0 and +1 vs. the angle of incidence.

The measured intensity of truncation rods vs. the angle of incidence is shown in Fig. 5.30. If
we plot the TRs as @,-scans, then the curves of the opposite TRs +1 will coincide (within the
experimental precision).

We have theoretically investigated the influence of the dynamical effects of multiple scattering
on the sample reflectivity, using firstly the nominal structural parameters of the measured MLG
and later the fitted values. We have found that the multiple and single scattering calculations
(i.e., the dynamical theory, TBA and DWBA) provide the same curves except in a small region
around the critical angles on the specular scans, where TBA slightly differs (with a precision
better than 1072) from the other calculations. Thus it was possible to fit the experimental
curves by using any of these theories.

Consequently, we fit the specular curve Fig. 5.31, just as a specular reflectivity curve from a
laterally averaged multilayer and the intensity of the TR +1 Fig. 5.32 by the dynamical theory
with roughness. We have got a qualitative coincidence of the measured and simulated curves.
The peak positions are well estimated, differences are in the intensities of some peaks. Because
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Figure 5.31. Fit of the specular scan of the sample RG505B4.
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Figure 5.32. Fit of the intensity of the truncation rod +1 of the sample RG505B4.

of the complex structure of the multilayered grating sample, it is not so easy to find a “perfect”
fit as we have shown earlier for planar multilayers.

The values of the structural parameters obtained from both fits are the following. The layer
thicknesses were found very close to the nominal values: tp,p = (290 £ 8) A and tgamas =
(503 + 8) A. The estimated interface roughnesses were (5 & 3) A. The ratio of the wire width
and the grating period I' = d4/d = 0.66 £ 0.03.

The coincidence of the data fitted by both the specular and diffracted truncation rods verified
that the fitted parameters from both fits are consistent. If this were not the case, it would mean
that these structural parameters correspond to a false “local minimum” on the surface of fitted
parameters and the fit should be remade.

It has been found earlier in X-ray diffraction that the etched grating acts as a transmission
grating [GBM*93, BG95] for the scattering from the multilayer below the etched part. Therefore
we numerically examined the influence of the multilayer below the grating on the intensity of the
truncation rods. We have found that the presence of the ML affects considerably the specular
curve—the specular curve is sensitive to all layers in a multilayer. Further, the ML below the
grating increases the second peak behind the Yoneda-like wing on the TRs £1 with respect to
a grating without the underlying multilayer. Increased number of periods of this ML does not
influence the diffracted wavefield in the MLLG substantially due to the extinction in the first two
bilayers below the grating, and therefore the intensity of non-zero TRs is not sensitive for more
than two periods of the underlying multilayer for these angles of incidence.

Further we found that the intensity of the truncation rod is not sensitive to the roughness
of the grating side-walls below several hundreds of Angstroms. In order to be sensitive to this
roughness, we would have to measure the scattered intensity in the geometry where the incident
beam is parallel to the wires. In this case the scattering is no more coplanar and it requires
another experimental arrangement. The measurement in this scattering geometry is promising
and it will be studied in the future.

5.11 Conclusion

Different theories for the calculation of the X-ray reflection from multilayered gratings have been
dealt with in this chapter. Since their formulae have been presented and thoughtfully discussed,
I enclosed a “road-map”, Fig. 5.33, which presents schematically an overview of the propagation
of the approximations in the discussed theories. I hope the reader will enjoy it more than another
textual summary.
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Conclusion

Dans ma these, j’ai traité la théorie de la réflectivité des rayons X et je I'ai appliquée a I'étude
de multicouches de plusieurs types :

1. multicouches planaires avec diverses séquences d’empilement (monocouche, périodique,
quasipériodique),

2. multicouches rugueuses,

3. réseaux de multicouches (multicouche avec une structure latérale).

Le but de ma these était de développer et de présenter plusieurs théories dans un formalisme
unique tout en les raccordant aux théories de diffraction des rayons X. Les théories que j’ai
discutées sont :

1. la théorie cinématique,
2. Papproximation de I'onde déformée de Born,
3. la théorie dynamique,

4. diverses approximations de la théorie dynamique (approximation & une réflexion unique,
approximation & deux ondes et approximation & diffusion multiple).

Ces théories ont été comparées a la fois par leurs expressions analytiques et par des simula-
tions numériques. J’ai décrit les régions ou elles sont en bon accord et celles ou elles different.

De plus, j’ai démontré 'utilité des simulations numériques pour l'ajustement des mesures
expérimentales. Ceci m’a permis de déterminer les parametres structuraux des échantillons
étudiés dans les laboratoires.

La premiére partie de la thése a été consacrée a la représentation de la diffusion dans I'espace
réciproque. J’ai décrit les relations entre les mouvements angulaires expérimentaux et les balaya-
ges correspondant dans I’espace réciproque. J’ai appliqué ces formules dans la programmation
des mouvements des moteurs des goniometres utilisés au synchrotron.

Ensuite, j’ai analysé la réflectivité spéculaire sur des multicouches planaires. Tout d’abord
j’al formulé la théorie cinématique. J’ai calculé l'intégrale de diffraction par la méthode de la
phase stationnaire, dont la validité n’est pas limitée a la premiere zone de Fresnel, contrairement
a l'approximation de Fraunhofer couramment employée dans les traitements cinématiques. J’ai
formulé la théorie dynamique habituelle de la réflectivité et j’en ai déduit 'approximation de la
réflexion unique. J’ai comparé les coefficients de Fresnel dynamiques et cinématiques.

La théorie cinématique et I'approximation de la réflexion unique étaient utilisées avec succes
pour le calcul de la réflectivité par une multicouche quasipériodique de Fibonacci. En appliquant
les théorémes fondamentaux de la physique des quasicristaux, j’ai montré que la courbe de
réflectivité présente une autosimilarité et que deux entiers sont nécessaires pour décrire les
positions des pics.

J’ai aussi analysé la réflectivité spéculaire et non spéculaire des rayons X sur des multicouches
rugueuses. J’ai utilisé les propriétés statistiques d’interfaces aléatoirement rugueuses pour cal-
culer la réflectivité avec les théories cinématique et dynamique. J’ai appliqué ces simulations
lors de I'ajustement avec les courbes expérimentales obtenues sur des multicouches “sandwich”
ou périodiques. J’ai traité brievement le processus de la diffusion diffuse sur des multicouches
rugueuses et j’ai utilisé 'approximation de I'onde déformée de Born (DWBA) pour faire une
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analyse quantitative. J’ai présenté les principaux caractéres de la diffusion diffuse incohérente
sur une carte des mesures effectuées sur une multicouche périodique.

L’essentiel de ce travail concerne la réflexion des rayons X sur des réseauz de multi-
couches. J’ai résolu ce probleme en utilisant chacune des trois théories : la théorie cinématique,
Papprozimation de l'onde déformée de Born et la théorie dynamique rigoureuse. La théorie dy-
namique a été traitée dans le cadre de la méthode modale & valeurs propres dans un formalisme
matriciel. Comme cas limite de la théorie & une seule diffusion, j’ai formulé et discuté de fagon
approfondie 'approximation a deuz ondes. La théorie cinématique a été traitée par la méthode
de la phase stationnaire.

Ces trois théories ont été formulées dans un seul formalisme général. Ceci facilite leur dis-
cussion et leur comparaison. Cela me permet de généraliser les coefficients de Fresnel impliqués
dans la réflexion spéculaire conventionelle sur des multicouches planaires au cas de la diffraction
latérale. Dans la théorie cinématique, on exprime ces coefficients de réflexion de Fresnel selon
la diffraction cinématique, tandis que, dans la théorie dynamique, la “matrice d’interface” de
ces coefficients a été généralisée. De plus, j’ai montré que le formalisme utilisé dans toutes ces
théories est valable non seulement pour les réseaux périodiques, mais aussi pour le calcul de la
réflexion sur des réseaux plus compliqués tels les réseaux quasipériodiques de Fibonacci.

Mon intérét s’est porté principalement sur les réseaux & courte période (environ 1 pm)
mais j'ai aussi discuté brievement des réseaux a plus grande période. La discussion détaillée
a été faite sur un réseau de surface (SG pour surface grating) de période d = 8000 A avec un
rapport fil/période du réseau égal a 1/2 ; la longueur d’onde utilisée était 1.54 A. En gardant ces
valeurs en mémoire, j’ai comparé ces théories aussi bien analytiquement que numériquement. Le
traitement proposé m’a permis de séparer les effets de la diffusion unique de ceux de la diffusion
multiple :

e Les régions a diffusion unique (“two-truncation rod” regions) ont été déterminées comme
étant celles ou les calculs par la théorie dynamique, ’approximation & deux ondes et DWBA
coincident :

— la plus grande partie du profil des fortes tiges de troncature (truncation rods), inter-
dites cinématiquement pour des angles d’incidence éloignés des angles critiques des
matériaux des réseaux,

— la totalité du profil des fortes tiges de troncature autorisées cinématiquement pour
un réseau remplissant les conditions de validité de 'approximation & deux ondes (cas
du réseau mesuré),

— la plus grande partie du profil des fortes tiges de troncature calculé par DWBA.

e Les cas fortement dynamiques ou on doit considérer la diffusion multiple parmi les nom-
breuses tiges de troncature et ou les théories de diffusion unique font défaut :
— le profil d’intensité des faibles tiges de troncature, interdites cinématiquement (tiges
de troncature diffractées d’ordre pair),

— l'intensité diffusée dans la géométrie ou le faisceau incident devient paralléle aux fils.

e Les régions de diffusion multiple, ou les théories de diffusion unique donnent toujours des
résultats approximatifs et ot on doit tenir compte de l'intéraction multiple entre plusieurs
tiges de troncature :

— pres de I'angle d’incidence pour lequel le champ d’onde de la premiere tige de tron-
cature devient réel,

— pour les tiges de troncature fortes dans la région des angles critiques calculés avec
I’approximation & deux ondes.



141

Le principal avantage de la présente approche est la représentation des régions de validité des
approximations de diffusion unique (théorie cinématique, DWBA et I'approximation a deux on-
des). J’ai démontré que dans 'approximation & deux ondes et dans DWBA, amplitude diffusée
dans un processus de diffusion primaire (la diffusion simple entre 'onde incidente transmise et
londe diffractée et réfléchie) est proportionnelle & la transformée de Fourier de la susceptibilité.

Cette proportionnalité a aussi été le résultat du traitement par la théorie cinématique.
Cependant cette théorie, équivalente & la premiére approximation de Born, ne tient pas compte
de Veffet de la réfraction qui est d’importance primordiale dans la réflectivité des rayons X.

La DWBA employée au premier ordre tient compte de la réfraction aussi bien que des
principaux caracteres de la théorie dynamique. Cette DWBA a été trouvée adaptée au calcul
de l'intensité des tiges de troncature non interdites et mesurables, ce qui accrédite la légitimité
de la méthode DWBA pour les réseaux comme exemple de “rugosité énorme”. Ceci confirme
I'utilité potentielle de cette méthode pour étudier la diffusion par des couches désordonnées (par
exemple des couches en ilots). De plus, j’ai analysé les régions ou les effets dynamiques de la
diffusion multiple 'emportent et ou la théorie dynamique complete de DWBA d’ordre supérieur
doit étre utilisée.

De maniére a introduire dans les calculs les imperfections structurales existant dans des
réseaux de multicouches, j’ai étudié également la diffusion par des réseauz de multicouches
rugueuses. J'ai considéré a la fois la rugosité de coté des fils des réseaux et la rugosité d’interface
dans la théorie dynamique de formalisme matriciel et dans la théorie cinématique ; la générali-
sation de la rugosité dans DWBA est alors directe.

Dans la théorie dynamique, j’ai trouvé que les éléments de la “matrice d’interface” doivent
étre multipliés par la fonction caractéristique de la distribution de la probabilité de la rugosité
d’interface. Ceci est similaire aux “matrices d’interface” des coefficients de Fresnel introduites
pour les multicouches planaires.

Dans la théorie cinématique, la rugosité d’interface agit comme le facteur d’atténuation
cinématique de Debye-Waller sur les coefficients de Fresnel de la diffraction cinématique. Les
formules analytiques déduites permettent de prévoir 'influence de la rugosité sur l'intensité
diffusée ce qui a été vérifié par simulation numérique. La rugosité des cotés a été introduite
dans I'approximation de processus de diffusion simple en faisant la moyenne latéralement des
coefficients de Fourier de la susceptibilité.

Enfin, j’ai utilisé les simulations numériques pour I'ajustement des parameétres structuraux
d’un réseau de multicouche InP/GalnAs partiellement gravé.

Perspectives scientifiques des méthodes de réflexzion des rayons X. La technique de la réflex-
ion des rayons X est de nos jours utilisée fréquemment et avec succes pour la caractérisation
structurale de différentes sortes d’échantillons en multicouches. Les investigations récentes par
XRR ont eu lieu dans les domaines suivants :

e les fonctions de corrélation d’interface dans des échantillons avec différents types d’interfa-
ces aléatoires,

e les multicouches avec des interfaces en terrasses, obtenues par exemple lors de la croissance
sur des substrats inclinés,

e des échantillons avec une structure latérale :

— avec une structure presque parfaite (réseaux de multicouches, fils et points quan-
tiques),
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— avec de grandes imperfections, tels les échantillons avec des couches discontinues en
ilots.

En particulier, je propose d’étudier, par la réflectivité des rayons X, les réseaux de multi-
couches qui ont fait I’'objet d’un grand intérét dans ce travail :

e La discussion a ici montré le degré de validité et les limites de DWBA au premier ordre. De
maniére & élargir 'application de DWBA aux régions ou les effets de la diffusion multiple
Pemportent (tiges de troncature interdites cinématiquement), cette méthode peut étre
étendue au deuxiéme ordre.

e La DWBA pourrait étre employée pour calculer la diffusion diffuse incohérente sur des
réseaux imparfaits en utilisant soit

— les états propres d’une multicouche planaire moyennée latéralement, dans la limite
des régions de validité discutées dans ce travail,

— les états propres donnés par la théorie dynamique.

e La technique de la réflectivité non coplanaire peut permettre ’acces a la partie de ’espace
réciproque non accessible dans la réflectivité coplanaire. La théorie dynamique modale des
valeurs propres, présentée ici, permet de traiter la diffusion non coplanaire. Cependant,
la cohérence entre la théorie modale d’approche des valeurs propres et la méthode de
couplage pour le cas fortement dynamique quand l’onde incidente devient parallele aux
fils, n’a pas encore été théoriquement confirmée.
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Conclusion

In my thesis I have dealt with the theory of the X-ray reflectivity. I have applied it to the
study of the following types of multilayered samples:

1. planar multilayers with various stacking sequences (single layer, periodic, quasiperiodic),
2. rough multilayers, and

3. multilayer gratings (multilayers with a lateral structure).

My aim was to develop and present several theories together using one unified formalism
while pointing out the links with the X-ray diffraction theories. The theories discussed are:

the kinematical theory,
the distorted-wave Born approximation,

the dynamical theory, and

- W o

various approximations of the dynamical theory (single-reflection approximation, two-
beam and multiple-beam approximations).

These theories have been compared by their analytical expressions as well as by numerical
simulations. T discussed their regions of good coincidence as well as their differences.

Further, I demonstrated the use of numerical simulations to fit measured data. This allowed
me to reveal structural parameters of the samples we analyzed in our laboratories.

The first part of the thesis has been devoted to the representation of scattering in reciprocal
space. Here, the relations between the angular movements during an experiment and the ap-
propriate scans in reciprocal space have been described. These formulae have been applied by
programming the motor movements of the goniometers for synchrotron measurements.

Further I discussed the specular reflectivity from planar multilayers. Firstly, the kinematical
theory has been formulated. T calculated its diffraction integral by the stationary-phase method,
whose validity is not restricted to the first Fresnel zone contrary to the Fraunhofer approximation
mostly employed in calculating the kinematical treatments. Further, the usual dynamical theory
of reflectivity has been formulated, from which I derived the single-reflection approximation.
Dynamical and kinematical Fresnel coefficients have been compared.

The kinematical theory and the single-reflection approximations were successful especially for
the calculation of the reflectivity pattern of a quasiperiodic Fibonacci multilayer. By applying
the fundamental theorems from the physics of quasicrystals I have shown that the reflectivity
curve exhibits a self-similarity and two integers are needed to describe the peak positions.

Furthermore, specular and non-specular X-ray reflection from rough multilayers has been
discussed. The statistical properties of randomly rough interfaces have been employed in the
specular reflectivity from both the kinematical and dynamical theories. T applied the simulations
in fitting the experimental curves for sandwich multilayers and periodic multilayers. Further
diffuse scattering from rough multilayers has been briefly discussed and the distorted-wave Born
approximation (DWBA) employed for quantitative analysis. I presented the main features of
incoherent diffuse scattering on a measured map from a periodic multilayer.

The main contribution of this work treats X-ray reflection from multilayer gratings. I solved
this problem using the kinematical theory, the distorted-wave Born approximation and the rig-
orous dynamical theory. The dynamical theory has been treated in the framework of the matrix
modal eigenvalue method. The multiple-beam approximations have been derived from the dy-
namical theory. As a limiting case of a single-scattering theory I formulated and thoroughly
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discussed the two-beam approzimation. The kinematical theory was treated by the stationary
phase method.

All three theories have been formulated within one general formalism. This made their
discussion and comparison easier and transparent. It allowed me to generalize the Fresnel
coefficients involved in conventional specular X-ray reflection from planar multilayers for the
lateral diffraction case. In the kinematical theory, they were expressed by Fresnel reflection
coefficients of kinematical diffraction, whereas in the dynamical theory the “interface” matrix
of Fresnel coefficients has been generalized. Further I have shown that the formalism used in
all the theories is suitable not only for periodic gratings, but also for calculating the reflection
from more complicated quasiperiodic Fibonacci gratings.

My main interest has been devoted to short period gratings (period d =~ 1 pm) and wave-
lengths around 1 A, but also larger period gratings have been briefly discussed. A detailed
discussion was performed for a short period surface grating (SG, d = 8000 A) with the wire to
period ratio one half and for a wavelength of 1.54 A. The theories have been compared analyti-
cally as well as numerically bearing these values in mind. The proposed treatment enabled me
to separate the single scattering and the multiple (dynamical) scattering effects.

e The single-scattering (“two-truncation rod” scattering) regions, where the calculation by
the dynamical theory, two-beam approximation and the DWBA coincide, were determined:

— most of the profile of the strong truncation rods (kinematically non-forbidden) for
angles of incidence outside the critical angles of the grating materials (the discussed

SG),

— the whole profile of the strong truncation rods for a grating fulfilling the conditions
of validity of the two-beam approximation (the measured multilayer grating),

— most of the profile of the strong truncation rods calculated by the DWBA.

e Strongly dynamical cases, where multiple-beam scattering among many truncation rods
has to be involved and where the single-scattering theories fail:

— the intensity profile of the weak, kinematically forbidden truncation rods (non-zero
even order truncation rods for the discussed SG),

— the intensity scattered in the grazing incidence geometry where the incident beam
falls parallel to the wires.

e Multiple scattering regions, where the single-scattering theories give still approximate re-
sults and where the multiple interaction between several truncation rods has to be consid-
ered:

— near to the angle of incidence for which the wavefield of the TR +1 becomes real,

— in the region of the critical angles for the strong truncation rods and the calculation
by the two-beam approximation.

The main advantage of the presented approach is the presentation of the regions of validity
of the single-scattering approximations (kinematical theory, DWBA and the two-beam approx-
imation). T demonstrated that within the two-beam approximation and the DWBA the scat-
tered amplitude of the primary scattering process (the single scattering between the incidence-
transmitted and the diffracted-reflected waves) is proportional to the Fourier transform of the
susceptibility xp.

This proportionality was also the result of the treatment by the kinematical theory. However,
this theory, equivalent to the first Born approximation, does not include the effect of refraction,
which is of major importance in X-ray reflectivity.

The first order DWBA employed includes the refraction as well as the main features of the
dynamical theory except for a small known region of strong interaction with TR +1. This
DWBA has been found adequate for calculating the intensity of the measurable non-forbidden
truncation rods, which confirms the legitimacy of the DWBA for gratings as an example of a “big
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roughness”. This confirms the potential usability of this method for the studies of scattering by
randomly structured layers (e.g., island-layer structures). In addition, I discussed the regions
where the dynamical effects of multiple scattering prevail and where the full dynamical theory
or the DWBA of higher order have to be employed.

In order to include the structural imperfections of real multilayer gratings into the calculation,
I studied scattering from rough multilayer gratings too. 1 have considered both the “side wall”
roughness of the grating shape and “interface” roughness into the matrix dynamical formalisms
as well as into the kinematical theory, from which the generalization of the roughness into the
DWBA is straightforward.

In the dynamical theory, I have found that the elements of the “interface” matrix have to be
multiplied by the characteristic function of the interface roughness probability distribution. This
is similar to the “interface” matrices of Fresnel coefficients introduced for planar multilayers.

In the kinematical theory, the interface roughness acts as the kinematical Debye-Waller
damping factor on the Fresnel coefficients of kinematical diffraction. The derived analytical
formulae allowed the roughness influence on the scattered intensity to be predicted, which was
verified by the numerical simulation. The side wall roughness was introduced under the ap-
proximation of single-scattering processes by averaging laterally the Fourier coefficients of the
susceptibility.

Finally, the numerical simulations have been applied to fit the structural parameters of a
partially etched InP/GalnAs multilayer grating.

4

The scientific perspectives of the X-ray reflection methods. X-ray reflection is nowadays
frequently and successfully applied to the structural studies of different kinds of multilayered
samples. Topics of recent investigations by this technique are:

e interface correlation functions of samples with different types of random interfaces,
e multilayers with terraced interfaces, e.g., multilayers grown on miscut substrates,
e laterally structured samples

— with nearly perfect structure (multilayer gratings, quantum wires and dots),

— with large imperfections, like the samples with non-continuous island-like layers.

In particular, we propose the following studies of the X-ray reflectivity from multilayer
gratings, to which a great deal of this report has been devoted to.

e The discussion here has shown the degree of validity and the limits of the first order
DWBA. In order to extend the application of the DWBA also for the regions of prevailing
effects of multiple scattering (the kinematically forbidden truncation rods), this method
could be expanded into the second order.

e The DWBA could be advantageously used to calculate the incoherent diffuse scattering
from imperfect gratings, using either

— the eigenstates of a laterally averaged planar multilayer with the restriction to the
regions of validity discussed in this work,

— the eigenstates given by the dynamical theory.

e The non-coplanar reflectivity technique can overcome the limitation of the accessible re-
ciprocal space for the coplanar reflectivity. The presented matrix dynamical theory using
the modal eigenvalue approach has been shown to cope with the non-coplanar scattering.
However, the consistency of the eigenvalue and the point matching approaches for the
strongly dynamical case when the incident wave falls parallel to the wires has not yet been
theoretically confirmed.
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Abstract (English)

The X-ray reflection from planar and structured multilayers is presented using different
theoretical approaches. The scattering phenomena studied are the specular reflection from
planar multilayers with various stacking sequences (single layer, periodic, quasiperiodic),
the diffuse scattering from rough multilayers, and the scattering from surface gratings and
from multilayer gratings. The theories employed for the calculation are: the kinematical
theory, the distorted-wave Born approximation, the dynamical theory and various approxi-
mations of the dynamical theory (the single-reflection approximation, the two-beam approx-
imation and the multiple-beam approximation), developed in one unified formalism. This
unified formalism enables all these theories to be discussed and compared in a consistent
and methodological way. Numerical calculations are applied to fit the experimental curves
in order to reveal the structural parameters of miscellaneous types of layered samples.

Abstract (francgais)

La réfléctivité des rayons X par des multicouches planaires et structurées est présentée en
utilisant différentes approches théoriques. Les phénomenes de diffusion étudiés sont : la
réfléctivité speculaire par des multicouches planaires ayant diverses séquences d’empilement
(monocouche, périodique, quasipériodique), la diffusion diffuse de multicouches rugueuses,
et enfin la diffusion par des réseaux de surface et par des réseaux de multicouche. Les théories
employées pour les calculs : la théorie cinématique, 'approximation de 'onde déformée de
Born, la théorie dynamique, et plusieurs approximations de la théorie dynamique (approxi-
mation a une réflexion unique, approximation a deux ondes et approximation a diffusion
multiple), sont développées dans un formalisme unique. Ce formalisme permet de discuter
et de comparer toutes les théories d’'une maniere solide et méthodologique. Les calcules
numérique sont appliqués pour 'ajustement des courbes expérimentales pour mettre en
évidence les parametres structuraux des divers systémes multicouches.

Abstrakt (¢esky)

Rentgenova reflektivita rovinnych a strukturovanych multivrstev je prezentovana za pou-
ziti riznych teoretickych postupt. Diskutovany jsou nasledujici typy rozptylu: spekuldrni
reflektivita rovinnymi multivrstvami s rtiznou sekvenci vrstev (monovrstva, periodickd ¢
kvaziperiodicka posloupnost vrstev), difuzni rozptyl od drsnych multivrstev, a koneéné roz-
ptyl vrstevnatymi miizkami. Teorie pouzité pri vypoctech — kinematickd teorie, Bornova
aproximace porusenych vin, dynamick4 teorie, a rizné aproximace dynamické teorie (apro-
ximace jediného odrazu, dvouvlnnd aproximace a aproximace vicendsobného rozptylu) —
byly vyvinuty v jednotném formalismu. Tento formalismus umoznuje diskutovat a porovnat
vSechny tyto teorie v jednotném a metodologickém stylu. Numerické vypocty byly pouzity
pfi simulovani experimentélnich kiivek pro nafitovani strukturnich parametri vzork.




