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Preface to the second editionI am very pleased that my thesis has encountered high attention by X-ray re
ectivity fans; nearlyone hundred copies have been distributed since March 1997 until July 1999. Since there are nomore paper copies available and the micro�che version is not so much attractive, I decided torelease the postscript version of the thesis on my web page so that anybody interested can printit.This version di�ers from the original version from March 1997 in the following:� the preface you are currently reading has been added,� few typos from the �rst version of the thesis have been corrected (see the web page of thethesis for their list),� abstracts on the last page have been added.I would like to mention the following two notes here:� The grating truncation rods are called just \truncation rods (TR)" in this thesis, whilein our later publications they are called \grating truncation rods (GTR)" in order todistinguish them from \crystal truncation rods (CTR)".� The Fresnel coe�cients for rough multilayer gratings with gaussian roughness are dampedby a simple exponential form similarly to those for planar multilayers | see P. Mikulík andT. Baumbach, X-ray re
ection by rough multilayer gratings: Dynamical and kinematicalscattering, Phys. Rev. B 59, 7632 (1999).Enjoy well the reading!Petr MikulíkBrno, November 1999e-mail: mikulik@physics.muni.czRelated web pages:my personal page: http://www.sci.muni.cz/~mikulik/web page of the thesis: http://www.sci.muni.cz/~mikulik/Thesis/web page of my publications: http://www.sci.muni.cz/~mikulik/Publications.html
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Chapter 1
Introduction





5IntroductionLes progr�es récents dans les techniques de croissance ont rendu possible l'élaboration de struc-tures de faible dimensionalité telles que les �lms minces (multicouches planaires), les structuresmésoscopiques et les nanostructures (réseaux périodiques latéralement et en multicouches, �lset points quantiques). Ces matériaux trouvent des applications en électronique et en optique.L'optimisation des procédés de fabrication et la compréhension des propriétés physiques deces échantillons nécessitent des méthodes d'analyse structurale non destructives. Complémen-taires aux méthodes directes de sondes locales, comme la microscopie ¸ force atomique, les tech-niques de di�usion élastique des rayons X permettent de sonder localement l'espace réciproque,fournissant ainsi des informations sur les propriétés statistiques des param�etres structurauxmoyennés sur de grands volumes d'échantillon.De nos jours, le développement des méthodes de di�usion des rayons X est favorisé parl'avancée technologique considérable des équipements comme les dispositifs ¸ cristal multiplequi permettent d'obtenir une bonne précision dans l'espace réciproque. En plus des sources derayons X conventionnelles ou ¸ anode tournante, courantes dans les laboratoires, les nouvellessources de radiation synchrotron tr�es intense ont permis l'étude d'objets de basse dimensionalité¸ faible pouvoir de di�raction ainsi que les processus de di�usion di�use de faible intensité.En plus du domaine dynamique accru de l'intensité mesurée et d'un faisceau tr�es parall�ele,les synchrotrons permettent aussi d'ajuster la longueur d'onde et de changer le contraste desconstituants de l'échantillon.La ré
ectivité des rayons X (XRR), spéculaire et non spéculaire, est une méthode pra-tique pour l'étude structurale des multicouches cristallisées ou amorphes. Elle est sensible ¸la distribution de l'indice de réfraction dans l'échantillon. La ré
ectivité étudie la di�usion ¸petits angles autour de l'angle critique de ré
exion totale et fournit la carte de distributionde l'intensité di�usée au voisinage de l'origine du réseau réciproque. Ainsi la technique XRR,pour l'étude des propriétés cristallines est complémentaire des diverses méthodes de di�rac-tion de rayons X comme la di�raction conventionnelle symétrique et asymétrique, la di�ractionfortement asymétrique plus élaborée et la di�raction en incidence rasante.Le présent travail est consacré ¸ l'étude par ré
exion des rayons X de multicouches planairesou structurées latéralement.En premi�ere approximation, l'intensité di�usée par un échantillon est proportionnelle aucarré du module de la transformée de Fourier de la densité électronique. A partir du réseau del'intensité mesurée, on peut déduire le pro�l de la densité électronique et par suite les propriétésverticales (épaisseurs de couches) ou latérales (rugosités, corrélations dans les interfaces oustructure latérale des couches) caractérisant les multicouches. Aussi la technique XRR estutilisée non seulement pour l'étude des multicouches planaires classiques, mais permet ausside révéler les propriétés de di�érentes sortes d'échantillons latéralement structurés comme lesréseaux ou de multicouches déposées sur des substrats inclinés ou de couches avec des structuresen �̂lots.J'ai développé plusieurs approches pour traiter les théories de la ré
ectivité des rayons X etrésoudre l'équation d'onde par di�érentes méthodes. La principale approche s'apparente ¸ cellesde l'optique dans le visible avec pour changement un indice de réfraction voisin de 1 dans lecas des rayons X. Les autres traitements viennent de la di�raction des rayons X par les cristaux(la théorie cinématique de la di�usion) et de la mécanique quantique (l'approximation de l'ondedéformée de Born).Les théories dynamiques donnent des solutions rigoureuses aux probl�emes étudiés. Cepen-dant, elles ne sont habituellement pas bien adaptées pour une compréhension physique qualita-tive des résultats calculés. Pour cette raison, je développe plusieurs théories approchées de XRR



6 Chapter 1: Introductionqui expliquent facilement les phénom�enes de di�usion et fournissent des algorithmes de calculrapides numériquement. Mais les régions de validité des approximations considérées doivent êtredéterminées.Les théories de di�usion des rayons X étudiées dans ce travail comprennent la théorie cinéma-tique, l'approximation de l'onde déformée de Born, la théorie dynamique et diverses approxima-tions de la théorie dynamique, comme l'approximation ¸ une ré
exion unique, l'approximation¸ onde multiple et l'approximation ¸ deux ondes.Dans les di�érentes théories faites, les auteurs utilisent des notations di�érentes rendant ainsidi�cile une comparaison directe entre les di�érentes approches théoriques. Aussi l'originalité dece travail est de traiter di�érentes théories dans un formalisme unique qui permet, d'une mani�eresolide et phénoménologique, l'étude, la comparaison et la discussion des régions de validité detoutes les théories traitées. Par exemple, j'ai montré que les coe�cients de Fresnel, bien connusdans la ré
ectivité optique sur des multicouches planaires, ont leurs équivalents dans la théoriecinématique et peuvent être généralisés dans le cas de la ré
ectivité sur des réseaux. Je montreaussi l'avantage d'un formalisme matriciel dans les théories dynamiques. En�n j'introduis dansla XRR le concept de la représentation graphique des phénom�enes de di�usion au moyen de laconstruction d'Ewald.Maintenant, je vais bri�evement exposer le plan de cette th�ese. Tout d'abord je fais un rappeldes caract�eres fondamentaux de l'espace réciproque, avec les formules de correspondance entreles rotations angulaires e�ectuées durant les mesures et les balayages associés dans l'espaceréciproque.Ensuite, je traite la ré
ectivité spéculaire sur des multicouches planaires. Je développe lathéorie dynamique habituelle ¸ partir de laquelle l'approximation ¸ une di�usion unique estdéduite. La théorie cinématique est traitée ensuite par la méthode de la phase stationnaireet les coe�cients de ré
exion de Fresnel qui sont déduits sont comparés ¸ ceux de la théoriedynamique. J'applique ces théories pour expliquer la courbe de ré
ectivité spéculaire d'unemulticouche quasipériodique de Fibonacci.Dans le chapitre suivant, j'étudie la ré
ectivité spéculaire et non spéculaire sur des multi-couches planaires rugueuses. Les interfaces planes traitées dans le précédent chapitre dans lesthéories dynamique et cinématique sont reformulées de mani�ere ¸ tenir compte des propriétésstatistiques des interfaces rugueuses de fa�con aléatoire. J'ai appliqué ceci pour l'ajustementdes courbes expérimentales. J'ai traité aussi la di�usion di�use en employant l'approximationde l'onde déformée de Born. Les principaux caract�eres de la di�usion di�use incohérente sontbri�evement présentés par des mesures.La principale partie de ce travail est consacrée ¸ l'étude de la ré
ectivité des rayons X surdes réseaux de multicouches. A l'aide du formalisme et de la notation précédemment intro-duits, je résouds le probl�eme par la théorie cinématique, l'approximation de l'onde déforméede Born et la théorie dynamique exacte. Les approximations de l'onde multiple et en particu-lier l'approximation ¸ deux ondes ont été déduites de la théorie dynamique. J'ai comparé cesthéories de fa�con analytique et numérique essentiellement dans le cas de réseaux ¸ courte pério-de. Le but est de montrer dans quelles conditions les théories approchées de di�usion uniquedonnent des résultats corrects, et dans quelles régions les e�ets dynamiques de di�usion multi-ple l'emportent. Aussi l'intérêt principal d'une telle étude méthodologique est pour les théoriesde di�usion elles-mêmes et non pas pour l'optimisation de la structure des échantillons en vued'applications particuli�eres.En�n, j'ai traité la di�usion par des réseaux rugueux. Les imperfections de structure quiexistent dans les réseaux de multicouches sont prises en compte, y comprises la rugosité desinterfaces et celle des parois des réseaux. Le formalisme proposé est capable d'intégrer facilementces e�ets ¸ la fois dans les théories dynamique et cinématique.



7IntroductionRecent progress in the growth techniques makes it possible to fabricate low-dimensionalstructures, like thin �lms (planar multilayers), mesoscopic structures and nanostructures (lat-eral surface and multilayer gratings, quantum wires and quantum dots). These elements �ndapplications in electronic and optical devices.Optimization of the fabrication process and the physical understanding of the samples re-quires non-destructive structural studies of the samples produced. Complementary to the directlocal probing methods (i.e., AFM microscopy), the X-ray elastic scattering methods probe lo-cally the reciprocal space, thus providing information about the statistical properties of thestructural parameters averaged over a large volume of the sample.Nowadays, the development of X-ray scattering methods is encouraged by advanced technicalequipment being widely available, like the multiple crystal arrangements enabling good precisionin reciprocal space to be obtained. Further, complementary to the conventional or rotatinganode laboratory sources, new high-intensity synchrotron radiation sources are advantageouslyinvolved in studies of low-dimensional objects whose di�raction power is small, as well as inthe studies of low-intensity di�use scattering. In addition to the improved dynamical rangeof measured intensity and highly parallel beam, synchrotrons also provide the possibility ofwavelength tuning, thus changing the contrast of the sample constituents.X-ray re
ectivity (XRR), including both the specular X-ray re
ection (SXR) and non-specular X-ray re
ection (NSXR), is conveniently applied for the structural studies of bothcrystalline and amorphous multilayer samples. It is sensitive to the distribution of the refractiveindex in the sample. It studies the scattering at small angles around the critical angle of totalexternal re
ection, and it maps the distribution of the scattered intensity around the originof the reciprocal space. Thus XRR is complementary to miscellaneous X-ray di�raction meth-ods, namely the conventional symmetric and asymmetric X-ray di�raction, the more elaboratehighly asymmetric di�raction, and the grazing incidence di�raction, which study the crystallineproperties.The present work is devoted to the X-ray re
ection studies of multilayered samples, eitherplanar or laterally structured.In a rough approximation, the intensity scattered by a sample is proportional to the squareof modulus of the Fourier transform of the electron density. Thus the electron density pro�lecan be deduced from the measured intensity pattern, and subsequently the vertical properties(layer thicknesses) as well as the lateral properties (roughnesses and correlation properties ofinterfaces or lateral layer structure) characterizing multilayers can be determined. ThereforeXRR is now being applied not only to the usual planar multilayers, but also to reveal theproperties of various kinds of laterally structured samples, for instance gratings, multilayersgrown on inclined substrate surfaces or layers with random island structures.Several approaches for treating the theories of X-ray re
ectivity are developed, solving thewave equation by various methods. The main approach comes from the usual optics of visiblelight, which is modi�ed for X-rays since the index of refraction is near unity. The other treat-ments proceed from X-ray di�raction from crystals (the kinematical theory of scattering) andfrom quantum mechanics (the distorted-wave Born approximation).The dynamical theories give rigorous solutions to the studied problems. However, theyare usually not well suited for a qualitative physical understanding of the calculated results.Therefore I develop several approximative theories for XRR that explain easily the scatteringphenomena and provide rapid algorithms for numerical calculation. On the other hand, theregions of validity of the approximations involved have to be determined.



8 Chapter 1: IntroductionIn particular, the X-ray scattering theories studied in this work comprise the kinematical the-ory, the distorted-wave Born approximation, the dynamical theory and various approximationsof the dynamical theory, like the single-re
ection approximation, the multiple-beam approxima-tion and the two-beam approximation.Apart from the use of di�erent approximations, also di�erent notation is used by variousauthors, making a direct comparison of the theoretical approaches di�cult. Therefore, oneparticular aim of the present work is to treat di�erent theories using a uniform formalism thatwill enable the regions of validity of all treated theories to be studied, compared and discussedin a consistent and methodological way. For example, I show that the Fresnel coe�cients,well-known from the optical re
ectivity from planar multilayers, have their counterparts in thekinematical theory, and that they can be generalized in the case of re
ectivity from gratings.I also show the advantage of the matrix formalism for the dynamical theories. In addition, Iintroduce into XRR the concept of the graphical representation of the scattering phenomena bymeans of the Ewald construction.Now I brie
y outline the structure of the presented thesis. In the �rst part, I deal with thebasic characteristics of the reciprocal space. Relations providing the connection between theangular rotations during an experiment and the appropriate scans in the reciprocal space areprovided.Further, the specular re
ectivity from planar multilayers is discussed. The usual dynamicaltheory is developed, from which the single-re
ection approximation is derived. The kinematicaltheory treated by the stationary-phase method is discussed afterwards and the derived kinemat-ical Fresnel re
ection coe�cients compared to the dynamical ones. The theories are applied toexplain the specular re
ectivity curve of a quasiperiodic Fibonacci multilayer.Specular and non-specular X-ray re
ectivity from rough planar multilayers are studied inthe following chapter. Both the dynamical and kinematical theories for 
at interfaces treatedin the previous chapter are reformulated in order to cover the statistical properties of randomlyrough interfaces. The application to �tting the experimental curves is demonstrated. Thedi�use scattering is dealt with as well, for which the distorted-wave Born approximation isemployed. The main features of the incoherent di�use scattering are brie
y presented from themeasurement.The main part of the work is devoted to the study of X-ray re
ectivity from multilayergratings. Following the general formalism and notation introduced in the previous chapters, theproblem is solved by the kinematical theory, distorted-wave Born approximation and rigorousdynamical theory. Multiple-beam approximations, mainly the two-beam approximation, arederived from the dynamical theory. These theories are compared analytically and numerically,addressing mainly the short period gratings. The aim is to show the conditions under whichthe approximate single-scattering theories give correct results, and which are the regions wheredynamical e�ects of multiple scattering prevail. Therefore the main interest of such a method-ological study is given to the scattering theories themselves, and not to the optimization of thesample structure for particular applications.The scattering from rough gratings is treated afterwards. The real structural imperfectionsof multilayer gratings are taken into account, comprising the roughnesses of the interfaces andof the side walls of the grating shapes. The proposed uni�ed formalism enables these e�ects tobe easily incorporated into both the dynamical and the kinematical theories.
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10 Chapter 2: Exploring reciprocal spaceRésuméDans ce chapitre nous nous intéressons ¸ la notion d'espace réciproque et ¸ la géométrie desexpériences de di�usion des rayons X. Nous dé�nissons les angles qui décrivent l'orientation dufaisceau incident et des vecteurs d'onde di�usés par rapport ¸ l'échantillon mesuré. Au coursd'une expérience, nous faisons varier l'orientation du faisceau incident et des vecteurs d'ondedi�usés par rotations de l'échantillon et du détecteur, montés sur un goniom�etre. Nous donnonsles formules de correspondance entre les angles et les coordonnées dans l'espace réciproque.Nous tra�cons l'intensité di�usée par l'échantillon en fonction du vecteur de di�usion, dif-férence entre le vecteur d'onde incident et le vecteur d'onde di�usé. Nous obtenons ainsi unecarte dans l'espace réciproque de l'intensité di�usée.Nous utilisons la construction d'Ewald, tr�es utile pour une représentation des conditions dedi�usion dans l'espace réciproque, pour tracer les vecteurs d'onde impliqués dans ces processus.Elle nous permet de comprendre comment la géométrie coplanaire des expériences nous limitela zone d'exploration possible de l'espace réciproque, pour une longueur d'onde donnée.



2.1 Introduction 112.1 IntroductionIn this chapter we deal with the notion of the reciprocal space and with the geometry of X-ray scattering experiments. We introduce the angles describing the orientation of the incidentand scattered wave vectors with respect to a measured sample. Running an experiment, wechange the orientation of the incident and exit wave vectors by rotating the sample and thedetector on the goniometers. The reciprocal space is explored in scans related to the goniometermovements. We provide useful formulae for the transition between the angular and the reciprocalspace coordinates.We plot the intensity scattered by the sample versus the scattering vector, which is thedi�erence of the scattered and incidence wave vectors. This gives us a reciprocal space map ofthe scattered intensity.We use the Ewald construction as a very convenient tool to represent the scattering conditionsin the reciprocal space by tracing the wave vectors involved in the scattering processes. Italso shows how the re
ection geometry of the experiment limits the accessible region of thereciprocal space that can be explored in coplanar scattering geometry by a radiation with agiven wavelength.2.2 Reciprocal space and angular representationsLet us suppose a typical X-ray scattering experiment, Fig. 2.1. An incident monochromaticplane wave propagating with the vacuum wave vector K1 irradiates the sample surface. Thedetector measures the intensity scattered into a directionK2. Since we suppose elastic scatteringprocesses, the lengths of both wave vectors are the same, jK1j = jK2j = 2�=�, where � is thevacuum wavelength. For a given wavelength, the scattering process K1 ! K2 is characterizedby the scattering vector (or the wave vector transfer) Q = K2 �K1.If we plot the wave vectors in real space, Fig. 2.1, then they show us the direction of propa-gation. We note that the dimension of the real space are metres [m], whereas the dimension ofwave vectors are reciprocal metres (or more frequently for X-rays, reciprocal Angstroms [�A�1]).Therefore we naturally plot wave vectors in reciprocal space as it is shown in Fig. 2.2. Thereciprocal space drawings allow us a very illustrative and convenient graphical representationof the phenomena of the propagation of the scattered waves. The idea of the reciprocal spacehas been introduced by Ewald in the early stage of the dynamical theory of X-ray di�raction[CJK92].The scattering geometry is given by the angles which the incident and exit wave vectorsmake with a given coordinate system. We deal with the experiments on layered and laterallylarge samples. Therefore we choose the coordinate system of the real space so that the axesx̂ ; ŷ are parallel to the sample surface and the axis ẑ is the inner surface normal, Fig. 2.1.Similarly we choose the coordinate system of the reciprocal space. The waves (i.e., the re
ectedand di�racted-re
ected waves in our terminology) that can be experimentally measured in there
ectivity experiments (in the so-called Bragg geometry) propagate above the sample surface.Therefore they are scattered from the transmitted wave by the wave vector transfer Q havingthe negative component Qz. For this reason we plot the reciprocal space drawings with the axis�Qz pointing up (parallel to the outward surface normal).The coordinates of the incident wave vector are given by the angle of incidence �1 and theazimuthal angle '1 (Fig. 2.1)K1 = (K1x;K1y ;K1z) = K(cos �1 cos'1; cos �1 sin'1; sin �1) : (2.1a)Similarly, the outgoing wave vector coordinates areK2 = (K2x;K2y ;K2z) = K(cos �2 cos'2; cos �2 sin'2; � sin �2) : (2.1b)If the sample is laterally homogeneous, the scattering acts only in the plane of incidence (de�nedby K1 and the surface normal n) and it is convenient to omit the ŷ components ('1 = '2 = 0)
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Figure 2.1. Real space representation of a scattering experiment. (a) De�nition of the angle of incidence�1 and the azimuth '1 of the incident wave K1. (b) Sketch of an experimental arrangement in thecoplanar geometry (here a triple-axis di�ractometer). The setup of source, monochromator, slits, andthe wavelength determines the direction of the incident wave K1. The setup of the slits, analyser anddetector de�nes the direction of the exit beam K2, those intensity is measured. Q is the wave vectortransfer and 2� is the scattering angle.which are zero. This scattering geometry is called the coplanar geometry and it allows us todeal with the x̂ and ẑ components only, Fig. 2.1(b),K1 = (K1x;K1z) = K(cos �1; sin �1) (2.2a)K2 = (K2x;K2z) = K(cos �2; � sin �2) : (2.2b)In the most part of this report we work in the coplanar geometry because of dealing withthe laterally homogeneous samples. The need of the third coordinate ŷ will arise in the non-coplanar re
ection geometry in the study of the scattering from laterally inhomogeneous samples(gratings, Ch. 5).The scattering vector Q of the scattering process K1 ! K2 isQ = K2 �K1 = K(cos �2 � cos �1; sin �2 + sin �1)= 2K sin(2�=2)�sin �1 � �22 ; � cos �1 � �22 � (2.3)and its length is jQ j = 2K sin(2�=2), where 2� is the scattering angle, Fig. 2.1(b).The scattering process is described by any pair of the variables Qx; Qz; �1; �2. The reversedrelations transforming Q into the pair (�1; �2) are�1 = atan Qx�Qz � asin jQ j2K�2 = atan Qx�Qz + asin jQ j2K : (2.4)Now we discuss which part of the reciprocal space can be explored by X-rays with a givenwavelength, Fig. 2.2. We plot the end-point of the incident wave vector K1 at the origin O of thereciprocal space. The beginning point S is given by the angle of incidence and the wavelength�. If we plot the exit wave vector from the point S, then its end-point has to lie on the Ewald
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Qx! = �1
Ki K

K1
K2

2��2 Q KS
K!�Qz Kf KL

S
OFigure 2.2. Coplanar scattering geometry drawn in a two-dimensional section of a three-dimensionalreciprocal space.sphere K with the radius K = 2�=�. We note that the intersection of the Ewald sphere with theplane of incidence is now the \Ewald circle". However, we keep the name of the \Ewald sphere".A change of the angle of incidence moves the point S along the sphere KS and the end-point ofthe scattering vector along K!. A change of the detector position changes the scattering angle2� and it moves the end-point of K2 along the Ewald sphere K. For re
ection experiments,the angles of incidence and exit have to be positive, therefore we cannot go below the limitingEwald spheres Ki and Kf , for which the angle of incidence and exit is zero, respectively. Further,the maximal wave vector transfer appears for K2 = �K1 and therefore we cannot explore thereciprocal space beyond the sphere KL of the diameter 4�=�.The accessible region of the reciprocal space that can be explored in the coplanar geometrywith a radiation with �xed wavelength is shown in Fig. 2.3 by the shaded area. This is shownin a coplanar case; for a true 3d picture of I(Qx; Qy; Qz) we should imagine that the circlesare spheres. The X-ray re
ectivity method, which is studied in the present work, explores theintensity distribution around the origin O of the reciprocal space. The collected data, i.e., theintensity vs. the reciprocal space coordinates, we call reciprocal space mapping of the scatteredintensity. In this work, these two-dimensional maps (see Figs. 4.13, 5.12, 5.23 for instance) areplotted by the program pm3d written by the author of this thesis.1Since the index of refraction of X-rays is close to unity, X-ray re
ectivity experiments takeplace near the origin of reciprocal space, where the angles of incidence and exit are small. Thewave vector transfer is approximatelyQ � K ( (�21 � �22)=2; �(�1 + �2) ) = K (�2�(2� � 2!)=2;�2�) (2.5)and it is small compared to the incidence and exit wave vectors jQ j � K = jK1j = jK2j.The reversed relations under this small-angle approximation are�1 = �Qz2K + Qx�Qz ! = �Qz2K + Qx�Qz�2 = �Qz2K � Qx�Qz 2� = �QzK : (2.6)1It is available at the WWW page http://www.sci.muni.cz/~mikulik/. This program is free software and itis distributed under the GNU General Public License.
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O XRD (Laue) QxFigure 2.3. Reciprocal space of a crystalline sample. The shaded region is accessible in the coplanargeometry for a �xed wavelength. The abbreviations refer to di�erent X-ray scattering techniques availablefor exploring di�erent parts of the reciprocal space: XRR (X-ray re
ectivity), XRD (X-ray di�raction),HAXRD (highly asymmetric X-ray di�raction), GID (grazing-incidence X-ray di�raction, a non-coplanartechnique).We describe the scattering geometry in the \angular space" either by the pair of the incidenceand exit angles �1; �2 or by the pair of the incidence and scattering angles ! � �1; 2� = �1+ �2.The latter pair is preferred when performing the experiments, and the incidence angle is referredto the sample or rocking angle, while the scattering angle is referred to the detector angle (theangle between the primary beam and the line sample|detector). Another convention employedmainly in non-coplanar scattering geometries uses the notation of �i; �f instead of �1; �2.2.3 Experimental scans in the reciprocal spaceWhen we perform an experiment, we change the di�ractometer setup in order to change the angleof incidence and the scattering angle. Most of the movement is done by rotating goniometerswith sample, monochromator and analyzer crystals or slits mounted on them. According toa motor movement, we drive in the reciprocal space along a one-dimensional scans, i.e., alonga certain path. Fig. 2.4 shows some typical scans passing through an arbitrary point in thereciprocal space.Running an experiment, we have direct access to the following elementary angular movementsof the di�ractometer setup:!-scan (rocking scan). We rock the sample keeping the detector position 2� �xed. The mea-sured points lie on the circle along the origin of the reciprocal space.In the coplanar re
ection geometry, the measured points can �ll the region of ! 2 [0; 2�].In X-ray re
ectivity, this scan goes nearly parallel with the Qx-scan. The !-scan crossesa truncation rod Qx (i.e., the line parallel to the axis Qz at given Qx) at ! = 2�2 +asin Qx2K sin(2�=2) , which approximates to ! = 2�2 + QxK 2� for small angles.2�-scan (detector scan). We �x the sample position at ! and rotate the detector. The pointson the 2�-scan lie on inclined Ewald sphere with the origin in the beginning of the vectorK1.In the coplanar re
ection geometry, this scan starts at the position 2� = ! and ends atthe intersection of the Ewald sphere K and the limiting Ewald sphere Ki, Fig. 2.2.



2.3 Experimental scans in the reciprocal space 15The 2�-scan crosses a truncation rod Qx for 2� = ! + arccos (cos! +Qx=K), whichapproximates to 2� = ! +p!2 � 2Qx=K for small angles.�-scan (azimuthal scan). We rotate the sample about its surface normal. Fig. 2.4 would berotated about the Qz axis.Combining the elementary angular rotations we can perform the common reciprocal spacescans:specular scan. We change both the angle of incidence and the detector angle keeping theirratio 2�=! = 2 �xed. This scan starts at the origin of the reciprocal space and it exploresthe intensity along the axis Qz.Qx-scan. We change both the angle of incidence and the detector angle keeping the componentQz of the wave vector transfer constant.In the coplanar geometry, the starting point of this scan follows the condition (K�jQxj)2+Q2z = K2, therefore it starts at Qx = ��K �pK2 �Q2z�. In the half-space Qx < 0 theangular positions of the starting point are (!; 2�) = (0; asin�Qz=K), on the side Qx > 0they are (�1; �2) = (asin�Qz=K; 0). For small angles this approximates to (!; 2�) =(0;�Qz=K) for Qx < 0 and (!; �2) = (�Qz=K; 0) for Qx > 0.Qz-scan. We change both the angle of incidence and the detector angle while keeping Qx ofthe wave vector transfer constant.In the coplanar geometry, the starting point of this scan follows the condition (K�jQxj)2+Q2z = K2, therefore it starts at jQzj = p2KjQxj �Q2x. In the half-space Qx < 0 theangular positions of the starting point are (!; 2�) = (0; acos (1 + Qx=K)), on the sideQx > 0 they are (�1; �2) = (acos (1 � Qx=K); 0). For small angles this approximates to(!; 2�) = (0;p�2Qx=K) for Qx < 0 and (!; �2) = (p2Qx=K; 0) for Qx > 0.o�set scan. This scan is a line in the reciprocal space pointing towards the origin. We performthis scan by going from an angular o�set !=2� 6= 1=2 with the step of �!=�2� = 1=2.o�set scan �Qz

Qx! = �1 Q 2�-scan
Qz-scanspecular scan Qx-scan

�22�
OK1

K2 !-scan

Figure 2.4. Drawing of the reciprocal space scans.
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18 Chapter 3: X-ray re
ectivity from planar multilayersRésuméDans ce chapitre, nous traitons les processus fondamentaux qui interviennent dans la ré
ectivitéspéculaire des rayons X sur des échantillons avec des interfaces parfaitement planes. En partantdes équations de Maxwell, nous en déduisons l'équation d'onde, la relation de dispersion et lessolutions des ondes planes. La présentation de ces résultats de base bien connus nous a permisd'établir un formalisme général que nous utiliserons dans tout ce travail pour des approchesthéoriques plus sophistiquées. Ensuite, nous nous intéressons ¸ l'indice de réfraction des rayonsX, param�etre du matériau qui détermine toutes les expériences de di�usion.Dans la partie suivante, nous étudions les théories applicables au calcul de l'amplitude de laré
ectivité. A partir des conditions de continuité entre les ondes ¸ l'interface, nous obtenons lesexpressions des deux lois de base de l'optique : la loi de la ré
exion et la loi de Snell. Nous enfaisons une représentation graphique au moyen de la construction d'Ewald. La dérivation de cesformules conduit aux coe�cients de Fresnel. La faible valeur négative de la susceptibilité est laprincipale cause de la di�érence existant entre l'optique X et l'optique classique (dans le visible) :la ré
ectivité totale externe a lieu pour tous les matériaux, les coe�cients de Fresnel diminuantbrutalement au-dessus de l'angle critique ; aussi l'intensité ré
échie n'est mesurable que dans ledomaine des faibles angles d'incidence (mesurés par rapport ¸ la surface des échantillons).Nous formulons alors la théorie dynamique de la ré
exion sur des matériaux en strates aumoyen de formalismes de matrices et de récurrence. Nous obtenons aussi les formules des ampli-tudes des champs électriques de l'onde ¸ l'intérieur de la multicouche ; nous verrons leur impor-tance plus tard dans l'approximation de l'onde déformée de Born. Les principaux avantages duformalisme matriciel introduit dans ce chapitre seront démontrés dans l'étude de la ré
ectivitépar des réseaux en multicouches o�u nous pouvons généraliser les coe�cients de Fresnel, initiale-ment dé�nis pour la ré
exion sur des interfaces planes. Nous trouvons que dans le cas o�u lesintensités ré
échies sont faibles, la théorie dynamique peut être remplacée par l'approximationd'une ré
exion simple. Cette approximation calcule l'amplitude de l'onde ré
échie comme lasomme des contributions des ondes di�usées une seule fois ¸ chaque interface, de telle sortequ'elle calcule de fa�con dynamique la ré
ectivité ¸ chaque interface mais néglige la di�usionmultiple entre les di�érentes interfaces.Dans la partie suivante, nous résolvons l'équation d'onde au moyen de la théorie cinéma-tique habituelle dans la di�raction des rayons X. Ensuite, nous calculons la ré
ectivité pourdes multicouches homog�enes et de grandes largeurs avec une approche de calcul di�érente del'approximation de Fraunhofer qui n'est pas utilisable. Cette méthode de phase stationnairetransforme l'intégrale cinématique de di�raction de volume (équivalente au principe de Huygensen optique) en une intégrale de chemin le long du parcours classique du faisceau ré
échi dansl'échantillon. Cependant, la théorie cinématique est équivalente ¸ la premi�ere approximation deBorn. Aussi, cette théorie cinématique ne tient pas compte de l'e�et de la réfraction, de grandeimportance dans la ré
ectivité des rayons X. Ceci est en désaccord avec la di�raction des rayonsX sur des multicouches, o�u la réfraction entrâ�ne seulement un petit décalage par rapport auxpositions cinématiques de Bragg.Dans la derni�ere partie de ce chapitre, nous comparons ces théories au moyen de traite-ments analytiques et de simulations numériques. Nous réalisons la comparaison sur deux sortesd'échantillons : une multicouche périodique et une multicouche de Fibonacci. Tout d'abord, nouscalculons la ré
ectivité sur une multicouche périodique simple. En utilisant une approche tout¸ fait inhabituelle pour décrire la séquence périodique des couches par la terminologie employéedans la physique des quasicristaux, nous préparons l'étape suivante du calcul de la ré
ectivitésur une multicouche de Fibonacci. La séquence des couches de cette multicouche est quasipéri-odique et une description analytique du pro�l de la ré
ectivité n'est pas facile. Aussi, nousutilisons l'approche que nous avons déj¸ développée pour la di�raction par des multicouches deFibonacci et nous montrons que nous sommes capables de calculer la transformée de Fourier dela distribution de l'indice de réfraction et de trouver une formule analytique pour les positionsdes pics.



3.1 Introduction 193.1 IntroductionIn this chapter we deal with the basic phenomena of the specular X-ray re
ection (SXR) fromsamples with perfectly 
at interfaces. We start with the Maxwell equations from which we derivethe wave equation, dispersion relation and the plane wave solutions. By presenting these basicand well-know results we establish a general formalism which we will keep in the whole workfor more sophisticated theoretical approaches. In the second part of the general introductionwe discuss the refractive index of X-rays as a material parameter determining all the scatteringexperiments.In the next part we study the theories applicable to the calculation of the specular re
ectivityamplitude. We apply the boundary conditions for an interface between two layers and formulatetwo basic laws of optics, the law of re
ection and the Snell's law. We represent them graphicallyby means of the Ewald construction. We derive the formulae for the Fresnel coe�cients. Thesmall negative value of the susceptibility causes the main di�erence of X-ray optics with respectto the usual (visible) one: total external re
ection of X-rays occurs for all materials, the Fresnelcoe�cients fall down quickly above the critical angle and therefore the re
ected intensity ismeasurable only for small angles of incidence (measured with respect to the sample surface).Then we formulate the dynamical theory of X-ray re
ection from layered structures by meansof both the matrix and recurrent formalisms. We provide formulae also for the amplitudes of thewave�elds inside the multilayer, from which we will make use later in the distorted-wave Bornapproximation. The main advantage`s of the matrix formalism introduced in the present chapterwill be demonstrated mainly in the study of the re
ectivity by multilayered gratings, where wecan generalize the Fresnel coe�cients, originally de�ned for the re
ection from smooth interfaces.We �nd that for small re
ected intensities the dynamical theory can be replaced by the single-re
ection approximation. This approximation calculates the amplitude of the re
ected wave asa sum of contributions of the waves scattered once at each interface, so that it calculates there
ectivity at each interface dynamically, but neglects the multiple scattering between di�erentinterfaces.In the next section we solve the wave equation by means of the kinematical theory usual in X-ray di�raction. Since we calculate re
ectivity from a homogeneous and laterally large multilayer,we cannot use the Fraunhofer approximation and therefore we employ a di�erent calculation ap-proach. This stationary phase method transforms the volume kinematical \di�raction" integral(equivalent to the Huygens principle known in optics) into the path integral along the classicalpath of the re
ected beam in the sample. The kinematical theory is equivalent to the �rst Bornapproximation employing the vacuum plane waves as the eigenstates. It does not contain thee�ect of refraction, which, however, is of major importance in X-ray re
ectivity. This is di�erentto the X-ray di�raction from multilayers, where the refraction causes only a \small" shift in theBragg position.In the �nal part of this chapter we compare these theories by means of both the analyticaltreatment and numerical simulations. We perform the comparison for two kinds of samples: aperiodic multilayer and a Fibonacci multilayer. Firstly, we calculate the re
ectivity from a simpleperiodic multilayer. By using a quite unusual approach of describing the periodic layer sequenceby the terminology of the physics of quasicrystals we prepare the next step of calculating there
ectivity from a Fibonacci multilayer. The layer sequence of this multilayer is quasiperiodicand an analytical description of the re
ectivity pro�le is not easy. Therefore we employ anapproach we developed earlier for the di�raction on Fibonacci multilayers and we show that weare able to calculate the Fourier transform of the refractive index distribution and to �nd ananalytical formula for the peak positions.



20 Chapter 3: X-ray re
ectivity from planar multilayers3.2 Wave equationX-rays are electromagnetic radiation. Their propagation can be described by the Maxwell equa-tions, similarly to the visible optics [Kni76, BW93]. Combining the following two equationsrotE = �@B@t ; rotH = @D@t (3.1)with the material relationB = �0�rH (3.2)(we note we use the SI system of units), we getrot rotE(r ; t) = ��0�r(r) @2D(r ; t)@t2 : (3.3)This di�erential equation connects the electric �eld intensity E(r ; t) and the electric displace-ment D(r ; t). Since we study stationary scattering processes, the time dependence is expressedas E(r ; t) = E(r)e�i!t and D(r ; t) = D(r)e�i!t (this choice of the sign follows the quantum-mechanical notation). Further, using the material relation D(r) = �0�r(r)E(r) we getrot rotE(r) = K2�r(r)�r(r)E(r) ; (3.4)where the vacuum wave vector length isK = !c = 2�� : (3.5)The fundamental of the X-ray scattering is the scattering by the individual electrons, which iskinematical (see the de�nition of the structure factor [AKK+74, Pin78]). The X-ray re
ectivitydepends on the electron density averaged over large volume, comparable to the volume of theunit cell, and therefore the wave feels only the macroscopic changes of the electric permitivity[Hol96]. This allows us to approximate divD = �(r) divE(r) � 0. Let us assume that �r = 1,which is mostly valid for the X-ray region. Then (3.4) is transformed into the vectorial waveequation(4+K2�r(r))E(r) = 0 : (3.6)Introducing here formally the index of refraction n(r) and the wave vector length in the mediumk(r) n(r) = p�r(r) (3.7)k(r) = n(r)K (3.8)the wave equation is transformed to(4+ k2(r))E(r) = 0 : (3.9)Its solution in a homogeneous medium ��r(r) = const� on a class of plane wavesE(k ; r) = E0(k) eik(r)r (3.10)provides the dispersion relationjk(r)j2 = k2(r) : (3.11)Therefore, the dispersion relation has an in�nite number of solutions and the end-points of wavevectors of all allowable waves lie on the sphere K with diameter k = nK, Fig. 2.2, which we callthe Ewald sphere.



3.3 Refractive index 21Electromagnetic waves are transversal, i.e., the amplitudeE0 is perpendicular to the directionof the propagation k [AKK+74, BW93]. The sample surface de�nes the unique plane in theisotropic vacuum and therefore the vector E0 can be decomposed into two polarization stateswith respect to this plane. The component of E0 lying in the plane parallel to the sample surfaceis called �-polarization. The perpendicular component is called �-polarization and it lies in theplane of incidence (the plane determined by the incidence wave vector and the surface normal).Bearing in mind that the sample is laterally homogeneous, then from symmetry considerationsit follows that in the re
ection process both components are scattered independently. Thereis no transition between the � and � polarizations for �r � 1 and the scattering is coplanar,i.e., the wave vector of the scattered wave lies in the plane of incidence. Then the vectorialwave equation reduces to a scalar wave equation. The �-polarization components of E0 afterand before re
ection make an angle 2� and the amplitude of the scattered wave is diminishedby cos(2�). The �-polarized E0 component remains perpendicular to the plane of incidence.Studying X-ray re
ectivity in the low angular region only, cos(2�) � 1 and polarization e�ectsplay no role. Therefore the vectorial wave equation reduces to a scalar wave equation that isthe same for both polarizations. It can be represented by any of the equivalent forms(4+K2�r(r) ) E(r) = 0(4+K2n2(r)) E(r) = 0 (3.12)(4+ k2(r) ) E(r) = 0 :The previous discussion on the transition from the vectorial to scalar wave equation was basedon qualitative symmetry considerations. The validity of this result can be veri�ed by means ofthe rigorous application of the boundary conditions for both � (transversal electric, TE mode)and � (transversal magnetic, TM mode) polarizations separately [BW93, Hol96].Finally, a particular plane wave solution in a homogeneous medium isE(r) = E0 eikr : (3.13)Therefore the total wave�eld in a homogeneous medium can be expressed by a superposition ofplane waves e�ikr . In the most general case, it can be written as a superposition of transmitted(t) and re
ected (r) wavesE(r) = ZZ dkk E(kk; r) = ZZ dkk �Et(k) ei(kkrk+kzz) +Er(k) ei(kkrk�kzz)�= ZZ dkk eikkrk �Et(kz) eikzz +Er(kz) e�ikzz� : (3.14)We made explicit use of the dispersion relation (3.11) that determines the third componentkz =qk2 � k2x � k2y of the wave vector k� = (kx; ky ;�kz) if two other components (kx; ky) = kkare known. According to the sample symmetry, we choose the parallel direction rk as parallelto the sample surface.The intensity of a wave is I(k) = jE(k)j2. Then the sample re
ectivity is de�ned [Pin78] asthe ratio of the energy 
uxes of the scattered E(k) and incoming wave Einc(k inc)R(k inc) = ���� E0Einc ����2 � ���� kzkincz ���� : (3.15)3.3 Refractive indexIn the previous section we described the propagation of an electromagnetic wave in a homo-geneous medium by means of the Maxwell equations. We characterized formally the materialby the index of refraction n(r), see (3.7), depending on the position. However, from classical



22 Chapter 3: X-ray re
ectivity from planar multilayerselectrodynamics [Fey64] we know that the index of refraction depends on the interaction of themedium with the electromagnetic wave and therefore it depends also on the wavelength � of theincident wave. We can now write the relations (3.7),(3.8) explicitly including the wavelengthdependencek(r ; �) = n(r ; �)K (3.16)n2(r ; �) = �r(r ; �) : (3.17)The electric permittivity �r is unity in vacuum. The electron susceptibility (polarizability) �(�)is introduced [Cow75]�r(r ; �) = 1 + �(r ; �) : (3.18)X-ray scattering is the scattering of electromagnetic waves by electrons. The polarizability isproportional to the electron density �(r) [Pin78]�(r) = �rel�2� �(r) = �4�relK2 �(r) : (3.19)The classical electron radius rel = 14��0 e2melc2 = 2:8179 � 10�15 m characterizes the amplitude ofwave scattered by one electron in the forward directionE(r ; t) = relr E0(0; [t]) ; (3.20)where E0 is the amplitude of the incoming wave and the brackets [ ] denote the retarded value.The wave scattered in the forward direction by an atom with Z electrons isE([r ; t]) = f � relr E0(0; t) ; (3.21)where f = Z is the atomic scattering factor. In a crystal it equals the zeroth order Fouriertransform of the electron density of the unit cell. In classical electrodynamics, the scatteringfactor is a real function. However, the electromagnetic waves cause atomic excitations. TheHönl dispersion corrections [Hö33] take the absorption and the inelastic scattering into accountf = Z + f 0 + if 00 : (3.22)These corrections are calculated by means of relativistic quantum mechanics and for the commonwavelengths they are tabulated in the International Tables for X-Ray Crystallography [oC92]. Acomplementary source of information are the Henke tables [HGD93].1 Henke tables cover f 0 andf 00 for the atoms with atomic number Z between 1 and 92 in the energy region 30 eV{30 keVand they are based on a compilation of the available experimental measurements and theoreticalcalculations. The wavelength dependence of the dispersion correction is shown in Fig. 3.1 forAs and Ga atoms.Finally, the electron susceptibility (polarizability) of a material having M atoms in theelementary cell (volume Vel) is�(�) = �rel�2� MPm=1 fm(�)Vel ; fm = Zm + f 0m(�) + if 00m(�) : (3.23)From the above discussion follows that the scattered intensity of a crystal is wavelengthdependent. Some materials (e.g., GaAs/GaInAs) have nearly the same susceptibilities for theusual X-ray tube radiation (e.g., the CuK� spectral line). Measurable contrast in the re
ectivitycurves can be achieved using the wavelength dependence of the dispersion corrections for di�erent1They are available on the Internet at ftp://xray1.physics.sunysb.edu



3.3 Refractive index 23Table 3.1. Refractive indices and critical angles for the wavelength CuK�1 (1.540562 �A). The \AlAs onGaAs" states for an AlAs layer grown on a GaAs, where the elementary cell has tetragonal distortion.The calculation has been performed by the program abrefr. This program is available at the WWWpage of the author of this thesis, http://www.sci.muni.cz/~mikulik/ and it is distributed under theGNU General Public License.material � = 1� n = ��=2 critical angle �CAlAs 1:062 � 10�5 + i 2:933 � 10�7 0.264�AlAs on GaAs 1:065 � 10�5 + i 2:940 � 10�7 0.264�Cr 2:120 � 10�5 + i 2:176 � 10�6 0.373�Fe 2:248 � 10�5 + i 2:890 � 10�6 0.384�GaAs 1:456 � 10�5 + i 4:198 � 10�7 0.309�Ge 1:454 � 10�5 + i 4:164 � 10�7 0.309�sapphire 1:268 � 10�5 + i 1:473 � 10�7 0.288�Si 7:577 � 10�6 + i 1:755 � 10�7 0.223�TbFe2 2:262 � 10�5 + i 3:366 � 10�6 0.385�W 4:602 � 10�5 + i 3:746 � 10�6 0.550�Y2Co17 2:158 � 10�5 + i 2:848 � 10�6 0.376�atoms (Fig. 3.1). Here the use of synchrotron radiation is advantageous because it enables oneto tune the wavelength to the absorption edges of particular atoms.The susceptibilities of some commonly used materials for are presented in Table 3.1 forCuK�1 wavelength (� = 1:540562 �A). We notice that they are of the order of 10�5 and thereforen = p� =p1 + � � 1 + �2 : (3.24)
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Figure 3.1. Wavelength dependence of the dispersion corrections f 0 and f 00 for Ga and As atoms. SinceZGa = 31 and ZAs = 33, these corrections are of high importance near the absorption edge (at about1 �A).



24 Chapter 3: X-ray re
ectivity from planar multilayersSince the phase velocity of X-ray in medium is higher than in vacuum, then the refractiveindex of X-rays is smaller than 1 and the susceptibility � is negative. Introducing a deviationparameter �n = 1� � ; � = ��2 (3.25)then facilitates calculations.Finally, we make a brief note on the optical re
ection of neutrons. The wave function ofneutrons scattered by an atom ful�ls [Sea89] (r ; t) = br  0(0; [t]) ; (3.26)where the neutron scattering length b is tabulated for common materials. Comparing thisequation with (3.21) we �nd that all the relations for X-ray optical re
ectivity remain valid forneutrons as well if we replace the X-ray scattering length (f � rel) by b. Contrary to X-rays,neutron scattering length b is not related to Z and it can be positive as well as negative. Themain advantage of neutron re
ectometry lies in the sensitivity to the magnetic properties ofexplored materials.3.4 Dynamical theory of X-ray re
ectionIn the previous section we studied the propagation of X-rays in a homogeneous medium. Further,we will study the X-ray re
ectivity from a multilayered system. A planar multilayer (Fig. 3.5)is formed by a stack of layers deposited on a thick substrate. The problem to solve now is to�nd the wave�elds �rstly in each layer and secondly on the top of the multilayer.3.4.1 Boundary conditionsLet us study the transition of a wave through the interface j separating two adjacent layersj; j +1 (Fig. 3.2). The general solution of the dispersion equation (3.11) is given by (3.14). Theunknown coe�cients Ejt;r(kjz) = Et;r(kz ; z) are constant in each homogeneous layer j. From theMaxwell equations the boundary conditions can be derived [BW93]. They provide relations to
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Figure 3.2. Wave vectors interacting at one interface shown in the real (a) and reciprocal (b) spaces.This geometry corresponds to angle of incidence greater than the critical angle (cf. Fig. 3.3(b)).



3.4 Dynamical theory of X-ray re
ection 25connect the wave�elds in two adjacent layers j; j+1 separated by the interface j. The continuityrelations of the amplitudes of electric intensity at the interface requireXs=t;r ZZ dk (j)k 0 E(j)s ei(k(j)k 0rk�k(j)z 0z) =Xs=t;r ZZ dk (j+1)k 0 E(j+1)s ei(k(j+1)k 0rk�k(j+1)z 0z) (3.27)and the continuity of the normal derivativesXs=t;r(�1)ZZ dk (j)k 0 k(j)z E(j)s ei(k(j)k 0rk�k(j)z 0z) =Xs=t;r(�1)ZZ dk (j+1)k 0 k(j+1)z E(j+1)s ei(k(j+1)k 0rk�k(j+1)z 0z) : (3.28)The summation s goes over the transmitted ((t); +kz) and re
ected ((r); �kz) waves. The twoequations above can be rewritten into the equivalent formZZ dkk eikkrk�E(j)t (k(j)z )eik(j)z z +E(j)r e�ik(j)z z�E(j+1)t (k(j+1)z )eik(j+1)z z �E(j+1)r (k(j+1)z )e�ik(j+1)z z� = 0ZZ dkk eikkrk�k(j)z E(j)t (k(j)z )eik(j)z z � k(j)z E(j)r e�ik(j)z z� k(j+1)z E(j+1)t (k(j+1)z )eik(j+1)z z + k(j+1)z E(j+1)r (k(j+1)z )e�ik(j+1)z z� = 0 :(3.29)Since this equation has to be ful�lled at each point rk of the interface, the boundary condi-tions separate into independent equations for each lateral component kk given by the term inparenthesis, which are formally (lateral) Fourier coe�cients of the wave�eld E(rk; z). Thereforethe interface decomposes the total wave�eld into separate groups of lateral Fourier componentscorresponding to the same lateral wave vector component kk. Further it shows that if at leastone of the waves E(j)t;r ; E(j+1)t;r propagates in the medium, then it gives rise to the other threewaves with the same lateral wave vector component kk. Thus we get the well-known law [BW93]of the conservation of the lateral (tangential) wave vector componentsk (j)t;k = k (j)r;k = k (j+1)t;k = k (j+1)r;k ; (3.30)which becomes for ky = 0k(j)t;x = k(j)r;x = k(j+1)t;x = k(j+1)r;x : (3.31)This way we formulated two principles that determine the propagation of rays in a medium:the dispersion relation (3.11) for the wave vectors in a homogeneous medium and the tangentialcondition (3.30) for the wave vectors at an interface. We combine both into a graphical rep-resentation in reciprocal space, similar to the Ewald construction used in X-ray di�raction. Inparticular, we draw the Ewald construction for a vacuum-layer interface (Fig. 3.3) and formulatetwo basic laws of the optical re
ectivity [BW93].



26 Chapter 3: X-ray re
ectivity from planar multilayersLaw of re
ectionFrom the dispersion equation it follows that the end-points of two wave vectors drawn fromthe same point in reciprocal space lie on the Ewald sphere (with diameter K (nK) in vacuum(medium), respectively). The specular condition relates the lateral components of the wavevectors kk of both waves Et ei(kkrk+kzz) and Er ei(kkrk�kzz) to be the same. Therefore theirperpendicular wave vector components �kz di�er in sign only and the angle of re
ection equalsthe angle of incidence �1. This phenomenon is called the law of re
ection and in Fig. 3.3(a) werepresent it graphically in reciprocal space by means of the Ewald construction.Snell's lawThe tangential conditions applied to both layers givek (j)k = k (j+1)k ; (3.32)thus the wave vector components in the coplanar case arek(j)x = k(j+1)xk(j+1)z =r(n(j+1)K)2 � jk (j+1)k j2 =q(k(j)z )2 + ((n(j+1))2 � (n(j))2)K2 : (3.33)Since kx = k(j) cos �(j) = Kx = K cos �1, the equivalent angular condition known as Snell's lawholds n(j) cos �(j) = n(j+1) cos �(j+1) = cos �1 : (3.34)These two laws are known from classical optics [BW93]. Now we propose to discuss Snell'slaw by the Ewald construction for a vacuum-layer interface j = 1 (n(1) = 1; n(2) = n < 1),Fig. 3.3. The incoming vacuum wave K de�nes the origin S of the vacuum Ewald sphere Kvac.Its lateral component (i.e., projection into a plane parallel to the surface) Kx has to be thesame for the wave propagating in the medium n too. Because of this conservation of the lateralcomponents, the end-point of the wave vector of the wave excited in the medium has to lie atthe intersection of the surface normal drawn from the end-point of K and the Ewald sphere K.Since nK < K, three distinct cases may happen:1. Two tiepoints T+; T� and therefore two waves are excited in the medium n: the trans-mitted kt and the re
ected kr waves, Fig. 3.3(b). Geometrical relations between the wavevectors then lead to Snell's law (3.33).2. One tiepoint TC is excited on the Ewald sphere K, Fig. 3.3(c). The transmitted wave E(2)tpropagates parallel to the surface k(2)z = 0. This happens at certain vacuum incidenceangle �1 = �C . The conditionscos �C = n (3.35a)�C � p2Re � =p�Re� (3.35b)kC = Kp1� n2 � Kp2� (3.35c)hold and �C (kC) are called the critical angle (critical wave vector) of total externalre
ection, respectively.
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Figure 3.3. Graphical representation of the basic laws of re
ectivity by means of the Ewald construction.The vacuum Ewald sphere is Kvac, that of the layer with the refractive index n is K and n is the innersurface normal. Figure (a) represents the law of re
ection. Snell's law is demonstrated in �gures (b){(d),where the angle of incidence �1: (b) is above the critical angle �C ; (c) equals the critical angle; (d) isbelow the critical angle. In the latter case the lateral component of k is larger than the radius of theEwald sphere of the medium and the condition k2z = (nK)2 � k2x gives rise to the evanescent wave withpurely imaginary kz-component of the wave vector (if photoelectric absorption is neglected).



28 Chapter 3: X-ray re
ectivity from planar multilayers3. For angles of incidence below the critical angle the surface normal n does not cross theEwald sphere K and therefore no real solution exists in the material n. The tiepoint Ti isgiven by the intersection of n with the Qx axis, Fig. 3.3(d). In the medium, the lateralcomponent kx exceeds the admissible real wave vector length nK which gives rise to animaginary vertical wave vector component kz. Therefore the wave vector in the mediumis complex and the condition of the conservation of the tangential components Eq. (3.32)is valid for both real and imaginary parts of wave vectors independently. The imaginarycomponent kz represents exponential damping of the wave in the medium in the directionperpendicular to the surface. This wave is called an evanescent wave.We explain our method of plotting the imaginary part of the wave vector k in Fig. 3.3(d)in the following way. The lateral component kx is real and it is given by the segment ATi.The length of the wave vector in the medium is nK and therefore its end-point B lies onK while the beginning point is A. From the relation k2z = (nK)2 � k2x it follows that ATiis the hypotenuse and AB, BTi are the other sides of the right angle triangle ABTi. ThenjTiBj is the length of the imaginary part kz of the vertical component of the wave vector.Moving the point B into the point C on the axis Qz we get Im k = TiC.Let us write the relation between the vacuum incidence angle ! = �1 and the angle � = �(2)and kz in the medium explicitly. From Eq. (3.34) for the case of small angles follows� =p!2 � 2� =q!2 � �2C : (3.36)The z component of the wave vector iskz =pK2z � 2�K2 =qK2z � k2C ; (3.37)where in both cases the critical values �C and kC are complex. Further we can see that forangles above the critical angle (! � �C) these approximations hold:Re � � ! � �2C2! +O(�4C=!3) (3.38)kz � Kz + iKz Im � � k2C2Kz +O(k4C=K3z ) : (3.39)Therefore for larger angles of incidence the wave vector in the medium approaches the vacuumvector and refraction corrections are negligible.3.4.2 Penetration depthThe amplitude of the plane wave propagating in a homogeneous medium (3.13) can be reex-pressedE(r) = E0 e� Im (kz)z � ei(kkrk+Re (kz) z) (3.40)and therefore the z-dependence of the intensity isI(z) = jE(z)j2 = I(0) e�2 Im (kz) z : (3.41)The penetration depth � is de�ned [BW93] as the depth at which the intensity drops 1=e times,I(�) = (1=e) � I(0), thus� = 12 Im (kz) : (3.42)
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Figure 3.4. Angular dependence of the penetration depth of tungsten for the wavelength CuK�1(1.540562 �A). Tungsten is used as a capping layer for magnetic �lms [GRC+94]. Since it is a heavyelement, its critical angle �C = 0:550� is superior to the critical angle of the underlying materials. There-fore for small angles of incidence the evanescent wave propagating in a thick W layer damps substantiallythe intensity of the wave�eld propagating in the underneath layers.First of all we can see that for larger angles of incidence ! � �C (2kz � kC) the penetrationdepth is inverse of the linear absorption coe�cient ��(!��C) = 1� = 12Kz Im � : (3.43)Using the angular notation, the penetration depth is alternatively expressed as�(!) = h2K Im �(1� �)p!2 � 2��i�1 (3.44)�(!��C) = 1� = 12K! Im � : (3.45)The angular dependence of the penetration depth is shown in Fig. 3.4. We note that in thenon-absorbing case the penetration depth grows to in�nity above �C . This is mostly the case ofthe neutron re
ectivity [Sea89, Zab90].The sensitivity of the penetration depth on the angle of incidence ! is of crucial importancefor near-surface structure studies. Increasing the angle of incidence the transmitted wave pene-trates more deeper and reveals information about atoms more distant from the sample surface.In addition to the X-ray optical re
ectivity other X-ray scattering techniques (strongly asymmet-ric X-ray di�raction [Hä76, HNCM88, AM90, HBB95], X-ray 
uorescence [dBLH94, Bru86] andgrazing-incidence X-ray di�raction [MEC79, AAS84, BdB86, RP90, SPB95, BTPH95]) makeuse of this surface sensitivity.3.4.3 Fresnel coe�cientsThe propagation directions of the transmitted and re
ected waves in the re
ection processfrom a single interface have been determined in the previous section. Let us now calculate theamplitudes of the corresponding wave�elds at the position z = zj of an interface j separatinglayers j and j+1. The indices refer to our numbering of interfaces and layers in a multilayer,



30 Chapter 3: X-ray re
ectivity from planar multilayersz2
zN
z1
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Figure 3.5. Sketch of a multilayer presenting the notation used in the text (a). Two particular examplesof deterministic multilayers, a periodic multilayer with 4 periods and a quasiperiodic Fibonacci multilayerof the 5th order are shown in �gures (b) and (c), respectively.Fig. 3.5. Applying the boundary conditions (kk=const) the integrand of (3.29) turns into thesystem of equationsE(j)t + E(j)r = E(j+1)t + E(j+1)rk(j)z E(j)t � k(j)z E(j)r = k(j+1)z E(j+1)t � k(j+1)z E(j+1)r . (3.46)This can be expressed by means of a convenient matrix formalism (similarly to the Ab�eles matrixformalism [Ab50]):P(j) � ~E(j)(zj) = P(j+1) � ~E(j+1)(zj) : (3.47)The boundary matrix of layer j is de�ned byP(j) =  1 1k(j)z �k(j)z ! ; �P(j)��1 = 12k(j)z  k(j)z 1k(j)z �1! ; (3.48)and the amplitudes are represented by the column vector~E(j)(z) =  E(j)t (z)E(j)r (z)! =  E(j)t eik(j)z zE(j)r e�ik(j)z z! : (3.49)The wave�eld on the bottom side of the upper layer j is determined by the wave�eld in theupper part of the layer j + 1~E(j)(zj) = Pj;j+1 � ~E(j+1)(zj) (3.50)Pj;j+1 = (P(j))�1 P(j+1) = 1tj �1 rjrj 1� : (3.51)



3.4 Dynamical theory of X-ray re
ection 31E�t = t0E0Er = rE0
E0z E�r = r0E0Et = tE0E0

Figure 3.6. The Fresnel coe�cients determine the re
ection and transmission amplitudes of the wavespassing through an interface. Irradiating the interface from the opposite side, they are related by r = �r0and 1 + rr0 = tt0.The \interface" matrix Pj;j+1 describes transition through the interface separating layers j andj + 1. Its elements are the Fresnel re
ection and transmission coe�cients [BW93]rj =  E(j)rE(j)t !E(j+1)r =0 = k(j)z � k(j+1)zk(j)z + k(j+1)ztj =  E(j+1)tE(j)t !E(j+1)r =0 = 2k(j)zk(j)z + k(j+1)z : (3.52)The graphical representation of their meaning is shown in Fig. 3.6.In optics, the Fresnel coe�cients are mostly written by the equivalent angular expressions.Within the approximation sin � � �, adequate in X-ray optics, we writerj = �(j) � �(j+1)�(j) + �(j+1)tj = 2�(j)�(j) + �(j+1) : (3.53)Further, for angles much larger than the critical angle the approximate formulae (3.39) giverj � (k(j+1)C )2 � (k(j)C )24K2z = (k(j+1)C )2 � (k(j)C )2Q2z = K2 ��(j) � �(j+1)�Q2ztj � 1 ; (3.54)where the vacuum wave vector transfer Q = K2 �K1 = (0; 0; Qz), Qz = �2K1z. The approxi-mate value t = 1 means that the transmitted wave is not diminished by the re
ection process anddynamical extinction plays no role. The re
ected intensity depends on the momentum transferby the power lawjrj2 � Q�4z ; (3.55)which is similar to Porod's law in small-angle scattering [Gui63].3.4.4 Re
ection from a multilayerIn the preceding part we calculated the amplitudes of the waves acting in a re
ection process bya single interface. Let us now calculate the re
ection by a multilayer consisting of N interfaces,Fig. 3.5. The boundary conditions, either (3.47) or (3.50), couple the wave�elds of two adjacentlayers j; j + 1 at interface j (at z = zj). The wave�eld inside the layer j (i.e., for zj�1 � z �zj) is described by the column vector (3.49). Because both components are plane waves, the



32 Chapter 3: X-ray re
ectivity from planar multilayersamplitudes between the lower interface j+1 and the upper interface j are coupled by the phaserelation~E(j+1)(zj) = Q(j+1) � ~E(j+1)(zj+1) (3.56)Q(j) =  e�ik(j)z tj 00 eik(j)z tj! � �1=�j 00 �j� : (3.57)The phase matrix Q(j) is called propagation matrix, and tj = zj � zj�1 is the layer thickness.The boundary and propagation matrices allow us to describe the re
ectivity from a multilayerby means of a very convenient matrix formalism. Using Eqs. (3.50) and (3.56), the wave�eldscalculated at the bottom interfaces of two neighbouring layers are coupled by the matrix relation~E(j)(zj) = Pj;j+1Q(j+1) � ~E(j+1)(zj+1) � Nj � ~E(j+1)(zj+1) (3.58)Nj � Pj;j+1Q(j+1) : (3.59)The matrix Nj couples the matrices of the interface j and of the underlaying layer, i.e., it couplesthe wave�elds on the top of interfaces j and j + 1. Afterwards, the vacuum (index v) and thesubstrate (index s) wave�elds are connected by the transfer matrix of the whole multilayer M�T vRv� =M ��T sRs� (3.60)M = NYj=1Nj � �M11 M12M21 M22� ; (3.61)where the product goes over all interfaces. The substrate has in�nite thickness, therefore itsre
ectivity amplitude Rs is zero and its phase matrix Q(N+1) is de�ned to be unity. Finally, there
ectivity amplitude of the whole multilayer isR = Rv = M21M11 : (3.62)In this matrix arrangement we described the wave�elds by connecting them via the matricesNj . This underlines the dominant role the interfaces play in the re
ectivity. However, anequivalent calculation approach oriented to the bulk properties of the layers can be developed.We mention the bulk approach in this place not only because it is used in the X-ray di�raction,but mainly because we will make use of it later in the dynamical theory of re
ectivity gratings(Ch. 5). Let us connect (3.47) and (3.56) and introduce the transfer matrix of layer jM(j) = P(j) � Q(j) � (P(j))�1 ; (3.63)which depends only on the parameters of layer j. Then the multilayer transfer matrix is expressedby M = (Pv)�1 �MML � Ps � �M11 M12M21 M22� (3.64)MML = NYj=2M(j) ; (3.65)where the product goes over all layers (cf. (3.61)).However, we usually suppose that the re
ection is interface-related scattering because thephysical meaning is included in the matrices N . The elements of the multilayer transfer matrixM, given by Eq. (3.61), of the interface transfer matrices Nj and of any stack of Nj have clear
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ER = M21M11 (b)(a)
E�0 = 1

E�T = 1M11
E�R = �M12M11

stack of layerstransfer matrixMtransfer matrixMstack of layers
Figure 3.7. Physical meaning of the elements of a multilayer transfer matrix M. This stack plays a roleof a \generalized" interface, cf. Fig. 3.6.physical meaning. Let us show it denoting any of the before-mentioned matrices byM, Fig. 3.7.If an incident wave E0 comes from above of the multilayer stack (arrangement (a)), then thewave�elds on the upper and bottom sides are related by�E0ER� = �M11 M12M21 M22��ET0 � ; (3.66)wherefrom the stack re
ection and transmission coe�cients followR+ = ERE0 = M21M11T+ = ETE0 = 1M11 : (3.67)If the incident wave comes from the bottom side of the stack (arrangement (b)), then� 0E�T � = �M11 M12M21 M22��E�RE�0 � (3.68)from which the backward stack re
ection and transmission coe�cients are foundR� = E�RE�0 = �M12M11T� = E�TE�0 = 1M11 : (3.69)In the latter formula we made use of the equality (detM) = 1. If this condition is not ful�lled(in the case of rough multilayers, for instance), then T� = (detM)=M11. The amplitudesR+; T+; R�; T� play the role of generalized Fresnel coe�cients of a multilayer stack in thesame manner as the Fresnel re
ection and transmission coe�cients act at a single interface,see Fig. 3.6. Therefore the structure and the physical meaning of those matrices are the same,and with the addition of the associativity of the matrix multiplication it means that the bigmultilayer matrix M can be calculated from whichever stack we prefer.This is of main importance in the calculation of re
ectivity from multilayers where the stack-ing sequence (layer arrangement) is given by a deterministic mathematical rule, see Sec. 3.6.Since the layer sequence in those multilayers is mostly given by a recurrent rule, the correspond-ing matrix sequence (3.61) re
ects this rule in the same way. This makes the matrix approachvery natural and numerically faster compared to the calculation of the whole multilayer matrixlayer by layer.



34 Chapter 3: X-ray re
ectivity from planar multilayersIt follows from the earlier discussion that the matrix approach provides the wave�eld am-plitudes in each layer. We will make use of it in the DWBA calculation (Sec. 4.5), where thesewave�elds in each layer form an eigenstate needed in the DWBA calculation. However, up tonow we put the phase shifts of the waves zero at the origin of direct space (the factor �ikzzappears in the exponent) and it seems to be more convenient to work with amplitudes whosephase shifts are zero at the lower inner interface of the layer. Then we de�ne T (j); R(j) by E(j)t (zj)E(j)r (zj)! =  T (j) eik(j)z (z�zj)R(j) e�ik(j)z (z�zj)! (3.70)and we further use them in the DWBA.Further we note that we generalize T (j); R(j) to the many-beam case in the dynamical theoryof gratings (Ch. 5), where we present them as the coe�cients of the linear combination of theindependent eigenvectors of the matrix solution of the wave equation.Single-re
ection approximation|matrix approachThe dynamical theory gives exact relations for the re
ectivity amplitude. However, as it isthe usual case of dynamical theories, the relations are not quite transparent. Therefore we�nd that in the angular region, where the re
ected intensity is small (compared to unity), it ispossible to simplify these equations and derive a semi-kinematical-like approximation of X-rayre
ectivity. We show that the physical meaning of this approximation is that it sums only thecontributions of the single-re
ection processes, i.e., the total re
ectivity amplitude is the sumof the amplitudes of waves re
ected once by each interface. This is contrary to the dynamicaltheory, which takes into account the interaction of the waves re
ected by all the interfaces, andthe re
ected wave above the sample surface is in dynamical equilibriumwith the wave�eld below.The single-re
ection approximation can be obtained from the dynamical theory supposing theback-re
ection Fresnel coe�cient being zero, r0 = 0, Fig. 3.6.The boundary matrix (3.51) can be written in the alternative matrix formPj;j+1 = 1tj ��1 00 1�+ rj �0 11 0�� � 1tj �Î + rj Î 0� : (3.71)The unity and anti-unity matrices (proportional to the �rst and the third Pauli matrices [Dav69])are de�nedÎ = �1 00 1� ; Î 0 = �0 11 0� : (3.72)They follow the relationsÎ Î 0 = Î 0Î = Î 0 ; Î 0Î 0 = Î ; QÎ 0 = (Î 0Q)T ; (3.73)where Q is a diagonal matrix and the superscript T denotes matrix transpose. Then it is possibleto develop the multilayer matrix (3.61) in the powers of the Fresnel coe�cients rj . Restrictingourselves to the term linear in rj we neglect the multiple scattering processes and the transfermatrix is approximatedM(j) = 1QNj=2 tj 24 NYj=1Q(j) � Î + NXj=1 jYm=2Q(m) � rj � Î 0 NYn=j+1Q(n)35 : (3.74)



3.4 Dynamical theory of X-ray re
ection 35In order to calculate the re
ectivity amplitude (3.62), the matrix elementsM11 = 0@ NYj=1Q(j)1A11M21 = 0@ NXj=1 jYm=2Q(m) rj � Î 0 NYn=j+1Q(n)1A21 (3.75)need to be evaluated. Putting the explicit form of the phase matrix (3.57) into the aboveequations we get for the amplitude of the re
ected waveR = M21M11 = 0@ NXj=1 jYm=2 �Q(m)�2 rj � Î 01A21 ; (3.76)which expands into the explicit formsR = NXj=1 rj j�1Ym=2�2m = NXj=1 rj NYm=2 e2ik(m)z tm = NXj=1 rj j�1Ym=2 e�iq(m)z tm (3.77a)R = NXj=1 rj e�i�j ; �j = j�1Xm=2 q(m)z tm (3.77b)or into the recurrent formR = R(1) ; R(j) = rj +R(j+1) e�iq(j+1)z tj+1 ; R(N) = rN : (3.77c)The wave vector transfer in layer jq(j)z = �2k(j)z (3.78)has been introduced. The phase factor �j = eik(j)z tj has been de�ned in (3.57).The relations (3.77a){(3.77c) give clear evidence why this approach is called the single-re
ection approximation [Hol96]. The incoming wave penetrates into the sample and it passesj�1 layers before being re
ected at the jth interface and after the re
ection process it goes back.The re
ection process changes the amplitude by rj and therefore the re
ection by each interfaceis treated dynamically, applying the correct boundary conditions. The total phase shift on thepassed path is �j =Pj�1m=2 q(m)z tm.The summation in (3.77a){(3.77c) is evaluated going from the interface nearer the vacuumtowards the substrate interface, thus it is optimized for a layer sequence given by a mathematicalrule determining the layers from the top of the multilayer to its bottom. In contrary, themathematical rule determining the layer sequence can be given starting from the substrate tothe vacuum (i.e., in the growth direction). Then it is useful to relate the phase shifts to thesubstrateR = e�i�N F (3.79)and thus de�ne alternative explicit and recurrent relations for FF = 1Xj=N rj eiPNm=j q(m)z tm (3.80a)F = F (j) ; F (j) = �rj + F (j+1)� eiq(j)z tj ; F (N+1) = 0 : (3.80b)These formulae will be used to calculate the re
ectivity by the Fibonacci multilayer in Sec. 3.6.2.



36 Chapter 3: X-ray re
ectivity from planar multilayersParratt formalismThe formula (3.58) enables us to calculate dynamically the amplitudes of both the transmittedand re
ected waves in each layer in the multilayer. However, in many cases the studied sampleconsists of a small number of layers and the primary interest is the calculation of the re
ectedintensity on the top of the multilayer only. Then a faster calculation procedure would be thefollowing one. The recurrent matrix algorithm (3.58) treated earlier can be transformed into arecursion one which couples the re
ectivity amplitude at the bottom layer interfaces by a singlerelationR(j) � E(j)r (zj)E(j)t (zj) = rj +R(j+1) e�iq(j+1)z tj+11 + rjR(j+1) e�iq(j+1)z tj+1 : (3.81)We start the recurrent calculation procedure from the re
ectivity R(N) = rN of the substrateinterface and after evaluating R(j) at all of the upper interfaces the multilayer re
ectivity ampli-tude R = R(1) is known. This recurrent formula well-known in optics [Kni76] has been used �rstin X-ray re
ectivity measurement by Parratt [Par54], together with the approximate relations(3.53).Single-re
ection approximation|Parratt formalismLet us use the Parratt formalism and assume that the re
ected intensities are weak. Then thedenominator in (3.81) can be approximated by unity and the recurrent relation becomes linearR(j) = rj +R(j+1) e�iq(j+1)z tj+1 : (3.82)We �nd that this equation coincides perfectly with the single-re
ection approximation we derivedearlier using the matrix formalism, Eq. (3.77c).Contrary to the rule (3.81), the above linear recurrent relation can be applied e�ciently todeterministic multilayers if explicit or recurrent relations for R(j) in (3.77c) or for the phases�(j) in (3.77b) are known. This will be demonstrated in Sec. 3.6.3.4.5 Single layerLet us study the re
ectivity from a system of a single layer (thickness t2) deposited on a thicksubstrate. The dynamical theory will be used �rst. The multilayer transfer matrix isM = (Pv)�1M(2)Ps (3.83)M2 = P(2) � Q(2) � (P(2))�1 = 12k(2)z �2  k(2)z (1 + (�2)2) (1� (�2)2)(k(2)z )2(1� (�2)2) k(2)z (1 + (�2)2)!= 1k(2)z  k(2)z cos q(2)z t2 sin q(2)z t2i(k(2)z )2 sin q(2)z t2 k(2)z cos q(2)z t2! ; (3.84)where q(2)z = k(2)z t2 and (�2)2 = eiq(2)z t2 . The re
ectivity curve is shown in Fig. 3.8. We can noticethe periodic oscillations, known as the thickness oscillations or the Kiessig fringes [Kie31]. Theyare caused by the �nite layer thickness, i.e., by the periodicity in the matrixM2; the boundarymatrices of vacuum Pv and of the substrate Ps do not contribute to the phase shifts.Calculating the re
ectivity by the approach of the matrices N the transfer matrix isM = N1N2 = 14k(1)z k(2)z �2 � 1 r1r1 1��1 00 (�2)2�� 1 r2r2 1�= 14k(1)z k(2)z �2 �1 + r1r2(�2)2 r2 + r1(�2)2r1 + r2(�2)2 r1r2 + (�2)2� ; (3.85)



3.4 Dynamical theory of X-ray re
ection 37where the Fresnel coe�cients r1; r2 apply to the vacuum-layer and layer-substrate interfaces,respectively. According to (3.62), the re
ectivity amplitude is the same as provided by thesecond iteration of the Parratt formalism (3.81)R = r1 + r2(�2)21 + r1r2(�2)2 : (3.86)Now let us use approximative methods to calculate the re
ectivity amplitude. Within thesingle-re
ection approximation (3.77c) it isRSRA = r1 + r2 (�2)2 = r1 + r2 e�iq(2)z t2 : (3.87)We �nd that the re
ectivity coincides with that calculated by the dynamical theory (Fig. 3.8)except for a small region close to the critical angle of the layer. There the wave is still evanescent,but the imaginary part of the vertical component of the wave vector decreases and the re
ectedintensity is still close to unity.The maxima of the re
ectivity oscillations follow the relation�q(2)z;m = 2�t2 m (3.88)and they are inversely proportional to the layer thickness. However, the measurement is per-formed in the vacuum, therefore neither the reciprocal space maxima�Qz;m =qq2z;m + 4(1� n22)K2 �qq2z;m + 8�2K2 =qq2zm + 4k2C (3.89)nor the angular distribution of maxima (angle of incidence !m)q!2m � �2C = 2�2kt2 m = �2t2 m (3.90)are equidistant due to the refraction.
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Figure 3.8. Re
ectivity from a single tungsten layer (thickness 100 �A) deposited on a sapphire substrate.(a) Dynamical theory (full curve) and the single-re
ection approximation (dashed curve) coincide exceptfor the region near the critical angle of the layer. (b) Re
ectivity calculated by the kinematical theoryis not shifted by the critical angle, and the period of oscillations approaches that calculated dynamicallyas the vacuum wave vector transfer Qz approaches that in the layer q(2)z .



38 Chapter 3: X-ray re
ectivity from planar multilayers3.5 Kinematical theory of X-ray re
ectionIn the previous part we treated the dynamical theory of X-ray re
ection, which solved thewave equation and the boundary conditions exactly. Now we will formulate the kinematicaltheory, which is based on an approximate solution of the wave equation. We will show that thekinematical theory calculates the re
ected �eld as a single re
ection process (as it was the caseof the single-re
ection approximation of the dynamical theory), where all the waves are vacuumplane waves and not waves refracted due to the refractive index distribution in the sample.The wave equation (3.12) in a medium can be rearranged into the form(4+K2)E(r) = V (r)E(r) (3.91)that separates the vacuum wave equation (homogeneous equation)(4+K2)E(r) = 0 (3.92)and the contribution by a scattering potential in the mediumV (r) = (1� �r(r))K2 = �K2 �(r) : (3.93)This di�erential equation can be solved by means of the method of Green functions. The Greenfunction of the homogeneous equation (3.92) is [Dav69]G(r ; r 0) = � 14� eijr�r 0 jKjr � r 0j (3.94)and it represents an outgoing spherical wave in vacuum. The exact solution of the wave equation(3.91) isE(r) = Einc(r) + Z dr 0G(r ; r 0)V (r 0)E(r 0) ; (3.95)where Einc(r) is a solution of the homogeneous equation, i.e., the incident vacuum waveEinc(r) = E0 eiKr : (3.96)Equation (3.95) contains the true wave�eld E(r) on both sides and it can be solved by iterations.Let us restrict ourselves to the �rst iteration (Born approximation of the �rst order [Gui63,Dav69]) by replacing the true wave�eld E(r) under the integral by the incoming wave. Thenthe scattered wave isEr(r) = Z dr 0 �K2�(r 0)4� � eijr�r 0jKjr � r 0j Einc(r 0) : (3.97)Using the relation1� �r = �� = 4�relK2 � = 1� n2 � 2(1 � n) = 2� (3.98)the integral can be transformed into several equivalent representations, includingEr(r) = Z dr 0 (�rel�(r)) eijr�r 0jKjr � r 0j Einc(r 0) : (3.99)This integral is the well-known di�raction integral used frequently in X-ray di�raction [AKK+74,Cow75]. It is equivalent to the Huygens principle used in optics, which gives a clear physicalinterpretation of the integral: a scatterer at r 0 reacts to the incoming wave Einc(r 0) by theresponse function T (r 0) = �rel�(r) by issuing a spherical wave eijr�r 0jKjr�r 0 j . The wave scattered bythe whole crystal is a coherent sum over all the spherical waves from the individual scatterers.



3.5 Kinematical theory of X-ray re
ection 39In the usual kinematical theory of X-ray di�raction [Gui63, AKK+74] the integral (3.99)is solved by replacing the spherical wave in the crystal by a plane wave. This Fraunhoferapproximation is valid for crystals smaller than the �rst Fresnel zone [BW93], thus it cannot beapplied to multilayers with lateral dimension in the order of millimetres. Therefore, we furtherproceed in a way similar to that used in X-ray di�raction from multilayers [Mik93a, HKA+93]where the correspondence to the kinematical approximation of the Takagi-Taupin equations[Tau64, Tak69, Spe81] has been shown.The incoming plane wave Einc(r) = E0 eiKr impinges on a planar multilayer whose structuralparameters depend on the growth direction z. Let us rearrange the integral (3.97) accordingly.The amplitude on the sample surface isEr(r=0) = E0 Z dz �K2�(z)4� �ZZ dx dy 1jr jei(Kxx+Kyy+Kzz+Kjr j) : (3.100)The volume integral can be separated into two partsEr(0) = E0 Z dz �K2�(z)=4�� eiKzz U(z;K ) (3.101)U(z;K ) = ZZ dx dy 1jr jei(Kxx+Kyy+Kjr j) (3.102)with r =px2 + y2 + z2. It follows from the translation invariance of the planar multilayer thatthe scattered plane wave is a plane wave and therefore the integral (3.102) should be solvedanalytically. The integral (3.102) is of the type U(z;K ) = RR dx dy A(x; y) eiT (x;y), where theamplitude A is a slowly varying function and the phase T is a rapidly oscillating function of its
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Figure 3.9. The stationary point S lies on the classical path ASE of the ray going to the observation pointP. Line AS is parallel to the incoming wave vector K and the line SE is parallel to the outgoing wavevector Kr while the law of re
ection holds. The stationary phase method replaces the volume integral(3.100) describing the scattering from all volume elements by the integral of the contributions of thestationary points along the classical path of the outgoing wave, Eq. (3.105).



40 Chapter 3: X-ray re
ectivity from planar multilayersarguments. Therefore U(z;K ) can be solved analytically using the two-dimensional stationaryphase method [AKK+74]. The stationary point S is the extremal point of the phase�@T@x�[xS ;yS ] = 0 ; �@T@y �[xS ;yS ] = 0 :Evaluated it gives[xS ; yS] = ��KxKz z;�KyKz z� : (3.103)We can see that the stationary point lies on the classical path of the beam in the sample(Fig. 3.9), i.e., in the intersection of the path of the incidence and the outgoing waves followingthe law of re
ection.Values of A; T and of the determinant of the second derivatives of T evaluated at the sta-tionary point areT [xS; yS ] = KzzA[xS ; yS ] = 1jrS j = KzKz��@2T@x2 ��@2T@y2 ��� @2T@x@y��[xS ;yS ] = �K2z2r3SKz�2 :ThereforeU(z;K ) = 2�iKz eiKzz (3.104)and the re
ected wave amplitude becomesEr = E0 iK22Kz Z dz �(z) e2iKzz = E0 �iK2Qz Z dz �(z) e�iQzz : (3.105)We have found that the resulting re
ectivity amplitude is proportional to the Fourier transformof the susceptibility pro�le in the growth direction. This feature is similar to all the scatteringcalculations of the kinematical theory as we can see by the comparison with the kinematicaltheory of X-ray di�raction. However, to be more strict, the re
ectivity is non-zero only at theregions where susceptibility changes (i.e., at the interfaces), because the integration method \perpartes" applied to (3.105) givesEr = E0 �K2Q2z �Z 10 dz �d�(z)dz � e�iQzz � ��(z) e�iQzz�10 � (3.106)and the last term is zero.From �gure 3.9, showing the ray propagation along the classical path, and from the resultingFourier transform we �nd the physical meaning of the kinematical theory. The incoming vacuumplane wave propagates through the sample without any refraction and without being absorbed.In each point it excites a re
ected plane wave, so that the law of re
ection holds. However, theamplitude of the incoming wave is not diminished by the re
ection process and therefore thekinematical theory, as well as the single-re
ection approximation, is limited only to the regionsof weak re
ections. If this would not be the case, then the intensity of the transmitted wavewould not be constant, which could be maintained only by a higher-order Born approximation.The stationary phase method is an approximate method that solves the integral (3.100).It approximates the amplitude A(x; y) by its value in the stationary point and integrates theexponential of the phase T (x; y) expanded into the �rst two terms of the Taylor series. However,an analytical solution can be found by means of the decomposition of the Green function (3.94)
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Figure 3.10. Fresnel transmission coe�cient t calculated dynamically and re
ection coe�cients r calcu-lated dynamically and kinematically for a vacuum/sapphire surface and CuK� wavelength (critical angle0.288�).into plane waves,2 which leads to exactly the same result as given by Eq. (3.105) [Hol96]. Toour knowledge the mathematical reason of this perfect coincidence has not yet been given.A similar kinematical calculation approach will be used for the laterally structured multilay-ers (multilayered gratings) in Ch. 5. Now let us apply this kinematical approach to some simplecases.Single interfaceLet us consider the re
ection from an interface separating two media 1,2 with refractive indicesn1 = 1 + �1=2; n2 = 1 + �2=2. The susceptibility pro�le is thus�(z) = �1H(�z) + �2H(z) ; (3.107)where H(z) is the Heaviside function (de�ned by H(z<0) = 0 and H(z>0) = 1) with the Fouriertransform ~H(Qz) = R dz H(z) e�iQzz = 1=iQz . The relative amplitude of the re
ected wave,i.e., the kinematical Fresnel re
ection coe�cient, is given by the Fourier transformrkin � ErE0 = �iK2Qz 1Z�1 dz �(z) e�iQzz = K2Q2z (�1 � �2) = k22C � k21CQ2z : (3.108)As we can see, the kinematical re
ection coe�cient coincides with the dynamical Fresnel coe�-cient calculated for large angles of incidence, see Eq. (3.54). A comparison of both the dynamicaland kinematical Fresnel re
ection coe�cients is shown in Fig. 3.10. We observe that the kine-matical one diverges for small angles of incidence and it is proportional to the di�erence of thescattering potentials V2 � V1 = K2(�1 � �2).2The equality eikrr = i2� RR eikrkz dkx dky, where kz =pjk j2 � k2x � k2y, is proved by the stationary phase methodin [AKK+74]. The analytical proof can be easily obtained putting r = (0; 0; z) (without loss of generality) andintegrating it directly in polar coordinates. We note that the integration region covers the part where kz is realas well as the part where kz is imaginary.



42 Chapter 3: X-ray re
ectivity from planar multilayersMultilayerThe susceptibility of a multilayer is constant in each layer j, thus�(z) = NXj=2 �(j) � [H(z � zj)�H(z � zj+1)] ; (3.109)where j goes over all layers of the multilayer. The integral (3.105) then turns into the sumRkin = K2Q2z NXj=2 �(j) ��e�iQzzj + e�iQzzj+1� = iK2Qz NXj=2 F (j) e�iQzzj ; (3.110)where we have de�ned the structure-geometric factor of layer jF (j) = �(j) e�iQzzj � 1�iQz : (3.111)We �nd this expression very close to our summation formalism of the semi-kinematical X-raydi�raction from crystals [Mik93a, Mik93b, MHKP95] derived from the Bartels et al. formalism[BHL86]. In the formula (3.110), the pre-factor in front of the sum is iK2=Qz and the contribu-tion from each layer is proportional to its susceptibility. In symmetrical XRD, the pre-factor infront of the sum over the structure-geometric factors is iKC=2
h = iK2C=2Khz = iK2C=Qhz,where C is the polarization factor (C = 1 for the �-polarization), and 
h is the direction cosineof the di�racted wave. The structure-geometric factor of the di�raction from a layer is propor-tional to the Fourier transform of the susceptibility. Therefore both XRD and SXR express thesame scattering phenomena of di�raction around a Bragg peak, which for SXR is the origin ofthe reciprocal space, (hkl) = (000).However, in SXR we prefer the \interface" representation of the scattering e�ects. Byexpressing the susceptibility (3.109) as a sum going over the interfaces (similarly to (3.107))�(z) = NXj=1 ��(j+1) � �(j)� H(z � zj+1) : (3.112)Putting this relation into the kinematical di�raction integral (3.105) we get the re
ectivityamplitudeRkin = K2Q2z NXj=1 �(j) h�(j) e�iQzzj � �(j+1) e�iQzzji = NXj=1 rkinj e�iQzzj+1 ; (3.113)where the summation is performed over the interfaces. The kinematical Fresnel re
ection coef-�cient of the jth interface readsrkinj = K2Q2z (�(j) � �(j+1)) = (k(j+1)C )2 � (k(j)C )2Q2z : (3.114)We can see that (3.113) is formally the same relation as the single-re
ection approximation of thedynamical theory of X-ray re
ection, except for the absorption and refraction e�ects, because� we have used the Born approximation of the �rst order that takes only single scatteringprocesses into account,� the vacuum wave vector transfer is applied instead of the actual momentum transfer ineach layer|we utilized the incident vacuum plane wave (3.96) as the �rst estimate in theiterative solution (3.95).A better approximation that would take into account the refraction and absorption e�ects wouldinvolve at least the mean refractive index of the whole multilayer. However, we show in the subse-quent section that these refraction corrections are given by the single-re
ection approximation.Another possibility for going beyond the �rst Born approximation is the calculation by thedistorted-wave Born approximation, which will be employed later.



3.6 Multilayers with the layer sequence given by a deterministic rule 43Single layerThe re
ectivity amplitude (3.113) for a single-layered system (Sec. 3.4.5) givesRkin = rkin1 + rkin2 e�iQzt2 : (3.115)The kinematical re
ectivity curve, Fig. 3.8(b), approaches the single-re
ection approximationof the dynamical theory for Qz � q(2)z , therefore for angles of incidence larger than the criticalangle of the layer material, ! � �WC . Below the critical angle the kinematical Fresnel coe�cientdiverges and so does the kinematically calculated re
ected intensity. This is because of usingthe vacuum plane wave (3.96) as the wave transmitted and scattered inside the sample, and notthe wave with the wave vector inside the material (3.10).3.6 Multilayers with the layer sequence given by a deterministicruleIn this section we study the re
ectivity curves of multilayers whose layer sequence is constructedaccording to a certain mathematical rule. As particular examples we take a periodic multi-layer, which is a well-known type of multilayer, and a quasiperiodic Fibonacci multilayer, whosestructure is not explored so often. The construction rule of the layer sequence (i.e., the ruledetermining how the layers of di�erent materials are arranged above the substrate) is quite easyfor the periodic multilayer, but it is not the case of the Fibonacci multilayer [SL87, Jan92]. Wewill show that the re
ectivity curve of the Fibonacci multilayer is self-similar and we �nd arule determining the peak positions. However, in order to calculate this specular curve and theFourier transform of a quasiperiodic lattice we will make use of the terminology of the physicsof quasicrystals and for more transparency we use it for the construction of both periodic andFibonacci multilayers.Further, the theories of the specular re
ectivity calculation presented earlier will be comparedand discussed and they will be used to characterize the re
ectivity curves of the proposedmultilayers, mainly the peak positions.3.6.1 Periodic multilayerLet us treat the specular re
ectivity from a periodic multilayer consisting of the periodic repe-tition of two building blocks A and B, the A layer being above the substrate (Fig. 3.5(b)). Wederive the dynamical, single-re
ection and kinematical formulae and we perform their compar-ison. We use the single-re
ection approximation to �nd the peak positions and we show thatthey are equidistant in the reciprocal space of the averaged multilayer, but not equidistant inthe vacuum (i.e., the experimental) reciprocal space.We base our calculation approach on the physics of quasicrystals [SL87, Jan92, AG95], whichwill be probably found a little bit cumbersome for such a simple lattice as the periodic one is, butwe will pro�t from this approach in the calculation of the re
ectivity pattern of a quasiperiodicmultilayer in the following section.Firstly we show some mathematical rules determining the sequence of layers A, B of aperiodic lattice. Let us suppose the in�nite periodic latticeP = ABABABABABABAB : : :being the limit of its orders P0m or of its generations PnP1 = AB P01 = ABP2 = ABAB P02 = ABABP3 = ABABABAB P03 = ABABAB etc.We can �nd some equivalent de�nitions of these lattices [Mik95]:



44 Chapter 3: X-ray re
ectivity from planar multilayers1. recurrent: P1=AB, Pn=Pn�1Pn�1, and P0m=P01P0m�1=P2m ,2. the �rst analytical: P1=AB, Pn=(P1)2n�1 and P02m=(P1)2m ,3. de
ation (substitutional): P1(A,B)=AB, Pn(A,B)=Pn�1(AB,AB),4. the second analytical: Pn=�1�2 : : :�2n and P0m=�1�2 : : :�m, where the objects �j areeither A or B according to�j = � A for b(j + 1)=2c � bj=2c = 1 ;B for b(j + 1)=2c � bj=2c = 0 :The function bxc denotes the integer part of x.The layer positions are zAn = tB + tAB (n � 1); zBn = tAB (n� 1), where the lattice period isde�ned by tAB = tA + tB .The recursion rule 1. can be used in the dynamical calculation of the re
ectivity. The matrixsequence (3.65) can be evaluated in the same way as the periodic layer sequence, thus yieldingthe recurrent relationMML;n =MBAMML;n�1 ; MML;1 =MBA =MBMA : (3.116)If the rule 2. is used, then the explicit analytical relation is foundMML;n = (MBA)n : (3.117)Within the approach of the matrices N the re
ectivity from the vacuum and substrate interfaceshave to be treated explicitlyM = (PvBP�1AB) (NBNA)NPAs : (3.118)This matrix calculation method provides numerically e�cient dynamical calculation whichis required for thick multilayers. However, for thin layers the single-re
ection approximationis acceptable and therefore we perform the corresponding calculation now. It will enable us toderive a relation for the peak positions.The phase term in (3.77b) is a sum over the phase terms in layers above the layer j, so that�jA = n�A + (n+ 1)�B ; �jB = n�A + n�B ; (3.119)
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Figure 3.11. X-ray re
ectivity curve of the periodic multilayer (substrate GaAs, 10 periods of 130 �Athick GaAs and 70 �A thick AlAs). The dynamical theory (full curve) is compared to the single-re
ectionapproximation (a) and good coincidence is found except the region close to the critical angle due to thesame reasons as in the case of a single-layered sample, Fig. 3.8. Comparison of the dynamical theory tothe kinematical theory is shown in the �gure (b).



3.6 Multilayers with the layer sequence given by a deterministic rule 45where n is the number of periods between the vacuum and the layer j, n = b j2c. The particularphase shifts are �A = qzAtA and �B = qzBtB. It is convenient to introduce the mean momentumtransfer in the multilayerhqzi = (qzAtA + qzBtB)=tAB : (3.120)Further, the periodic multilayer consisting of M periods has total thickness t = MtAB . Thenthe single-re
ection approximation gives the explicit formula for the re
ectivity amplitudeR = (rvB � rA) +M�1Xm=0[rB + rA ei�B ]e�im(�A+�B) + rAs e�iM(�A+�B)= (rvB � rA) + 1� e�ihqzit1� e�ihqzitAB F + rAs e�ihqzit : (3.121)We de�ned as rA (rB) the Fresnel coe�cients of the interface below the A (B) layer, respectively,and rvB = r1 that of the vacuum/layer B and rAs = rN that of the layer A/substrate interface.The structure factor of one period isF = rB + rA e�iqzBtB = rA(1� e�iqzBtB ) ; (3.122)where we used the identity rj;j+1 = �rj+1;j. From the form of the middle term in (3.121) itfollows that the re
ectivity maxima are distributed equidistantly in the reciprocal space of theaveraged multilayerhqzim = 2�tAB m ; (3.123)whilst they are not equidistant in the angular spaceq!2m � (�21C + �22C)=2 = �2tAB m : (3.124)The main maxima are called Bragg peaks as well, since their positions follow a condition similarto the Bragg formula in X-ray di�raction [Gui63].The maxima of the re
ectivity curve of the periodic multilayer are indexed by one integerm and the amplitude in the maximum is proportional to the number of layers M1� e�ihqzimt1� e�ihqzimtAB =M : (3.125)Finally we note that in this section we have treated the specular re
ectivity from a periodicmultilayer whose main motif consisted of two building layers A, B. The generalization to thecase of more building layers is straightforward, since only the structure factor (3.122) is changedby adding the phase shifts of the additional layers and the Fresnel re
ection coe�cients of theadditional interfaces.3.6.2 Fibonacci multilayerA Fibonacci lattice is a well-known quasiperiodic lattice with very interesting di�raction proper-ties [LS86, Els86]. The X-ray di�raction from the Fibonacci multilayer were frequently analyzed[MBC+85, TMC+86, TKO+90, MHKP95], but the X-ray re
ectivity has not got such attention.Therefore we perform this analysis in the present section.The Fibonacci multilayer, shown schematically in Fig. 3.5(c), consists of two building layersA, B deposited on a substrate according to the rule of the Fibonacci lattice [Jan92]. The in�niteFibonacci latticeF=ABAABABAABAAB : : :



46 Chapter 3: X-ray re
ectivity from planar multilayersis the limit of its generations FnF0 = B F3 = ABAF1 = A F4 = ABAABF2 = AB F5 = ABAABABA etc.Many equivalent building rules have already been found [SL87] for Fibonacci generations Fn:1. recurrent: F0=B, F1=A, Fn=Fn�1Fn�2,2. de
ation (substitutional): F0=B, Fn(A,B)=Fn�1(AB,A),3. analytical: Fn=�1�2 : : :�fk+2 with the following de�nition of the objects �j:�j = � A for b(j + 1)�c � bj�c = 1 ;B for b(j + 1)�c � bj�c = 0 :The formula for the Fibonacci lattice point positions is known [LS86] zn = tB [n + (tA �tB)=tB � b�nc]. The golden mean � = p5�12 � 0:618 is the \magic number" of this sequence.Further, there are fM+1 (fM ) layers A (B) in the Mth generation, respectively, where theFibonacci numbers are fM = fM�2 + fM�1, f1 = 0; f2 = 1.From the recursion rule 1. immediately follows the recursion relation for the multilayertransfer matrix (3.65) for the Fibonacci multilayer of the Mth generationMML =MML;MMFib;M =MFib;M�2MFib;M�1 (3.126)MFib;1 =MA = PAQA�PA��1 ; MFib;2 =MB = PBQB�PB��1 ;where Pv;B = P1;2 and PA;s = PN;N+1. This matrix formalism provides a numerically rapid andstill fully dynamical calculation procedure valid in the whole angular range. The re
ectivitycurve of the Fibonacci multilayer of the 13th generation is shown in Fig. 3.12.The recursion relation 1. can also be applied to the calculation of the re
ected amplitudesby means of the recurrent formulation of the single-re
ection approximation (3.80b). If theFibonacci generations are chained, thenFFib;M = FFib;M�2 + FFib;M�1 e�i'Fib;M�2 : (3.127)The phase shift over a Fibonacci stack of the Mth generation is explicitly'Fib;M = fM+1 � qzAtA + fM � qzBtB : (3.128)Finally, the calculation has to take into account the vacuum-multilayer and multilayer-substratere
ectivities separately. Then the re
ectivity amplitude becomesRSRA = (rv;�M+2 � r�M+2;�M+1) + FFib;M + rA;s e�i'Fib;M : (3.129)The objects �j are de�ned to be A or B, thus the Fresnel coe�cients are between layers A andB (rA;B = �rB;A), vacuum and layer B (rv;B), layer A and substrate (rA;s).Both the dynamical (3.126) and single-re
ection (3.129) expressions enable us to calculatenumerically the pro�le of the re
ectivity curve of a �nite Fibonacci multilayer. Since the di�rac-tion spectrum of a Fibonacci lattice is quasiperiodic [SL87], we expect similar properties inthe specular re
ectivity as well. Being interested in establishing the general properties of there
ectivity pro�le, mainly the peak positions, we will use the kinematical theory (Sec. 3.5) tocharacterize the re
ectivity curve of the in�nite Fibonacci multilayer. We proceed similarly tothe method we used in [MHKP95]. Moreover, the kinematical wave vector transfer Qz is areal quantity and therefore our results remain valid for both possible arrangements of the layer



3.6 Multilayers with the layer sequence given by a deterministic rule 47sequence, which means that the stacking sequence can be parallel or antiparallel to the growthdirection.The Fibonacci lattice is self-similar and the use of the de
ation building rule 2. allows thedecomposition of the Fibonacci lattice F into two sublattices FA, FBsublattice FA: F = AB A AB AB A AB A AB A : : :sublattice FB : F = A BAA BA BAA BAA BA : : :The sublattice FA is the Fibonacci lattice of groups of layers AB and A , and the sublattice FBis the Fibonacci lattice of groups of layers BAA and BA . This represents the self-similarity(scale-invariance) of the Fibonacci lattice in direct space. Consequently, the lattice positions ofthe particular layers A, B arezAn = tA[n+ tB=tA � b�nc] (3.130)zBn = tA + (tB + tA)[n+ tA=(tA + tB) � b�nc] (3.131)and except for the di�erent length scales these relations are the same as the Fibonacci latticepositions zn. Further, we will need to evaluate the discrete Fourier transform S(k; dA; dB) =Pn e�ikzn , zn = dB [n+ (dA � dB)=dB � b�nc]. This has already been worked out using di�erentmethods (the modulated phase method has been established by Levine and Steinhardt [LS84]),the cut and projection method by Zia and Dallas [ZD85] and Elser [Els86]. The resulting formulareads S(k; dA; dB) = 1tB Xpq sinc �pq2 e�i�pq=2 �(k � kpq) ; (3.132)where the maxima positions are kpq = 2�(p=� + q)=d and the phase �pq = 2�q � kpq(dA � dB).Here p; q are integers and the lattice period is d � dA + �dB .
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Figure 3.12. X-ray re
ectivity curve of the 13th generation of the Fibonacci superlattice (substrate GaAs,layer A is 42 �A thick GaAs, layer B is 25 �A thick AlAs). The re
ectivity peaks according to the formula(3.140) are labelled by two integers p; q.



48 Chapter 3: X-ray re
ectivity from planar multilayersLet us use the formula (3.113) and split the summation over layers A and B into separategroupsFFib;1 = rA Xn;layers A e�iQzzAn + rB Xn;layers B e�iQzzBn= rA S(Qz; tA + tB; tB) + rB S(Qz; 2tA + tB ; tA + tB) e�iQztA : (3.133)In other words, this decomposes the re
ectivity into the re
ectivity from the sublattices FA andFB , respectively. Applying (3.132) to both sublattices, their reciprocal space maximaQAz;pq = kpq(tA + tB ; tA) = 2�(p+ q�)=tAB (3.134)QBz;pq = kpq(2tA + tB; tA + tB) = �QAz;pq = QAz;q;p�q (3.135)are rescaled by the golden mean � . The period tAB = tA+�tB. This represents the self-similarityof the di�raction pattern in reciprocal space. Since the particular phases�Apq = 2�d (qtA � ptB) ; �Bpq = ���Aq;p�q (3.136)are scaled by the golden mean as well, the �nal formula for the re
ectivity amplitude (3.133) ofthe in�nite Fibonacci multilayer readsFFib;1(Qz)=Xpq FFib;1pq � �(Qz �Qz;pq) (3.137)FFib;1pq � rA(Qz;pq)tA sinc �Apq2 e� i2�Apq+ rB(Qp+q;p)e�iQz;p+q;ptAtA + tB sinc ��Apq2 e i2 ��Apq : (3.138)Compared to the structure factor of the periodic lattice (3.122) that of the Fibonacci multilayer(3.138) exhibits a modulation by an additional periodic function sinc (x) � sin(x)=x. The cutand projection method shows that this is caused by the projection of a periodic lattice in thehigher-dimensional space (two-dimensional for the Fibonacci lattice [Els86]) into a quasiperiodiclattice in a lower-dimensional space (one-dimensional for the Fibonacci lattice).Previously, we have found that the kinematical theory is not accurate enough near the criticalangle, but a good coincidence is achieved by replacing the vacuum momentum transfer Qz bythe momentum transfer in the averaged multilayerhqzi = qzAtA + qzBtB�tAB : (3.139)This substitution is perfectly adequate in the in�nite Fibonacci multilayer as it has been demon-strated in X-ray di�raction theory using the semi-kinematical approximation [MHKP95]. Thenthe relation describing correctly the peak positions ishqzipq = 2�tAB (p+ q�) : (3.140)Two main features revealing the quasiperiodic nature of the studied structure come out fromthis approach. Firstly, two indices (integers p; q) are needed to describe all peak positions andbecause of the irrational number � these peaks form dense set in the reciprocal space. Secondly,the discrete Fourier transform is a sum of �-peaks as was the case of the periodic lattice (we saythat the Fourier transform of the Fibonacci sequence has atomic spectral measure). Further, there
ectivity of a �nite multilayer, given by the convolution of the Fourier transform of the in�nitelattice and the shape function of a �nite multilayer, is proportional to the multilayer thickness.This leads to the so-called volume-square intensity scaling. This is another important propertyof quasicrystalline lattices. On the other hand, there are aperiodic lattices whose discrete Fouriertransform cannot be evaluated for an in�nite lattice or which is not a sum of �-functions. Thenthe intensity in each reciprocal space point scales di�erently when the lattice size is changed



3.7 Conclusion 49[AG95]. For example, the Thue-Morse sequence is automatic and not quasiperiodic, and itsFourier transform has singular continuous measure [Kol94, AT94, PCA95].A dynamical calculation of the re
ectivity of the Fibonacci multilayer of the 13th generationis shown in Fig. 3.12. Near the critical angle the intensity is nearly unity and the single-re
ection approximation is no longer appropriate. The re
ectivity curve has to be calculateddynamically and the thickness dependence of the re
ected intensity of the Fibonacci multilayercan be studied. As the multilayer thickness increases, the width of all peaks decreases and newlow-intensity peaks appear. The most intense peaks near the critical angle become saturatedor grow very slowly, whereas the low intensity kinematical peaks grow according to thicknesssquared.3.7 ConclusionIn this chapter di�erent theories for the re
ectivity calculation from planar multilayers havebeen dealt with. Their formulae have been presented and they were thoughtfully discussed.Therefore I hope the reader will �nd the enclosed \road-map" over the theories, Fig. 3.13, moreuseful than another textual summary.
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52 Chapter 4: X-ray re
ectivity from rough multilayersRésuméDans le précédent chapitre, nous avons étudié la ré
ectométrie sur une multicouche ¸ interfacesparfaitement planes. En réalité, les processus de croissance des �lms sont compliqués, avecun caract�ere aléatoire et il en résulte des imperfections structurales. Comme la ré
ectivitédes rayons X est sensible au pro�l de l'indice de réfraction, nous allons considérer deux sortesd'inhomogénéités : la rugosité d'interface et l'interdi�usion.Une interface entre deux couches est une surface mathématique entre les matériaux consti-tuant les couches. Les atomes qui se déposent frappent au hasard la couche déj¸ formée. Commeleur mobilité est limitée et que beaucoup d'autres param�etres in
uencent la croissance des �lms,celle-ci n'est pas homog�ene sur toute la surface de la couche. En conséquence, des interfacesparfaitement planes ne peuvent pas être obtenues et la modulation de l'interface réelle entre lescouches par rapport ¸ une interface idéale se traduit comme une rugosité.Pour ces raisons, il est indispensable d'incorporer la rugosité, c'est ¸ dire le caract�ere aléatoiredes interfaces, dans le calcul de la ré
ectivité.La ré
ectivité spéculaire ne peut pas distinguer entre l'in
uence de la rugosité et cellede l'interdi�usion. Nous pouvons toutes les représenter par une même rugosité quadratiquemoyenne et une largeur d'interdi�usion moyenne. Cependant, l'interdi�usion latérale homog�enene di�use la radiation que dans la direction spéculaire. Par contre la rugosité d'interface, aléa-toire, di�use l'onde incidente en produisant une di�usion di�use.Le travail préliminaire ¸ e�ectuer avant le calcul de la ré
ectivité sur des échantillons ¸interfaces rugueuses est de décrire ces propriétés statistiques. Nous commen�cons donc ce chapitrepar l'étude des propriétés statistiques d'interfaces rugueuses simples et de la corrélation entreles di�érentes interfaces d'une multicouche. Nous montrons comment des interfaces rugueusesmodi�ent localement l'épaisseur d'une couche. Nous utilisons les deux théories, dynamiqueet cinématique, pour calculer l'intensité spéculaire sur une interface et sur une multicoucherugueuses. Nos calculs conduisent au facteur de décroissance exponentielle bien connu pour lescoe�cients de Fresnel. Nous utilisons ce mod�ele pour interpréter les courbes expérimentales deré
ectivité obtenues sur des couches sandwich ou sur des multicouches périodiques.La rugosité inhomog�ene latéralement et aléatoire produit une di�usion di�use incohérente.Nous utilisons l'approximation de l'onde déformée de Born pour calculer quantitativement cetteintensité di�usée. Nous démontrons les caractéristiques de la di�usion di�use sur une carte del'intensité mesurée dans l'espace réciproque pour une multicouche périodique.



4.1 Introduction 534.1 IntroductionIn the previous chapter we have studied re
ection from a multilayer with 
at interfaces. However,the sample growth is a complicated process with a certain amount of randomness, and thereforeit introduces structural imperfections. Since the X-ray re
ectivity feels the pro�le of the index ofrefraction, we will consider inhomogeneities of two kinds: interface roughness and interdi�usion.An interface between two layers is a (mathematical) surface between the two materials con-stituting both layers. Deposited atoms impact randomly on the surface of the layer alreadygrown. Since their mobility is �nite and many other conditions in
uence the layer growth, thelayer does not grow constantly in all places of the layer surface. Therefore perfectly 
at inter-faces cannot be achieved and the modulation of the actual interface between the layers withrespect to the ideal interface is referred to as roughness.For these reasons it is indispensable to incorporate the roughness, i.e., the random characterof the interfaces, into the re
ectivity calculation.The in
uence of the interface roughness and of the interdi�usion is indistinguishable in thespecular re
ectivity. Both can be characterized by the same root mean square roughness anda mean interdi�usion width. However, a laterally homogeneous interdi�usion does not scatterthe radiation into other than the specular direction. On the other hand, statistically randominterface roughness produces di�use scattering.The preliminary task before the re
ectivity calculation of samples with rough interfaces isthe description of the randomness. Therefore we start this chapter by studying the statisticalproperties of single rough interfaces and of the correlation between di�erent interfaces of amultilayer. We show how the rough interfaces change locally the layer thickness. We useboth the dynamical and kinematical theories for calculating the specular intensity from a roughinterface and from a rough multilayer. Our calculation leads to the well-known exponentialdiminution factors that decrease the value of the Fresnel coe�cients. We use this model to �texperimental re
ectivity curves of sandwich and periodic multilayers.Laterally inhomogeneous random roughness produces di�use (incoherent) scattering. Weuse a distorted-wave Born approximation to calculate quantitatively the scattered intensity.We demonstrate all the features of the di�use scattering on the measured map of a periodicmultilayer.4.2 Statistical properties of rough interfaces4.2.1 Description of a single rough interfaceIn the previous chapter we have dealt with multilayers with perfectly 
at interfaces, thus havingthe interface coordinates constant, zj(rk) = zj . Now let us take into account randomly roughinterfaces, where zj(rk) is no more constant. We describe the actual pro�le of a rough interfaceby the displacement Uj(rk) with respect to the mean interface (Fig. 4.1)zj(rk) = zj + Uj(rk) : (4.1)The displacement Uj is random with zero mean, hUji = 0. The random character of Uj isdescribed by the probability distribution function [Hol96]wj(U) = 1S Z drk �(Uj(rk)� U) ; (4.2)which describes the probability of �nding a point on the interface at the distance U from themean interface regardless of the lateral position rk (�(x) is the Dirac distribution, S is the areaof integration). The dispersion of this function�j =qhU2j i =sZ dU wj(U)U2 (4.3)



54 Chapter 4: X-ray re
ectivity from rough multilayersis called the root mean square (rms) roughness [CN76]. The rms roughness is a main character-istics of a rough interface. Further, the probability distribution function is related to the meancoverage of the plane at the distance U from the mean interface [LC84]�j(U) = Z U0 dU wj(U) = 1S Z drkH(U � Uj(rk)) : (4.4)The Heaviside function H(U) has been introduced on page 41.Finally, we introduce the characteristic function of the probability distribution [Spi93]�Uj (Q) = he�iQUj i = Z dU wj(U) e�iQU ; (4.5)which is the Fourier transform of the distribution function wj .It has been found that a gaussian distribution function satisfactory characterizes the inter-faces of many samples [PC93]wj(U) = 1p2� �j e�U2=2�2j : (4.6)The full-width at half maximum of this distribution is 2�jp2 ln2. The characteristic functionof the gaussian probability distribution is gaussian as well�Uj (Q) = e�Q2�2j =2 : (4.7)
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4.2 Statistical properties of rough interfaces 55The probability distribution function wj(U) describes the point properties of a randominterface since it does not depend on the lateral position rk. A random interface (as anyrandom function) is further characterized by the distribution functions of correlation of theheights of di�erent points lying on the interface. Therefore we de�ne the pair distribution func-tion w(U;U 0) � w(U(rk); U(r 0k)) that determines the correlation properties between two pointsU(rk); U(r 0k) [Man82].1 Let us suppose that the rough interface is homogeneous and statisticallyisotropic (i.e., the rough interface is described by the same set of the correlation functions overthe irradiated sample area). Then the pair correlation function of two points rk; r 0k depends onlyon their distance �rk = rk � r 0k, so that w(U;U 0) = w(U(rk); U(rk +�rk)) does not depend onrk. The pair probability function of a gaussian interface is given by [Hol96]w(U;U 0) = 12��2q1�K2(rk � r 0k) exp(�U2 + U 02 � 2UU 0K(rk � r 0k)2�2[1�K2(rk � r 0k)] ) : (4.8)The dimensionless correlation coe�cient K(rk � r 0k) = 1�2 C(rk � r 0k) is proportional to thecorrelation function of the rough interface [SSGS88]C(rk � r 0k) � hU(rk)U(r 0k)i : (4.9)The characteristic function of the pair distribution function of gaussian interfaces is�UU 0(Q;Q0) = hei(QU�Q0U 0)i = e��2(Q2+Q02)=2 eQQ0C(rk�r 0k) : (4.10)The choice of the correlation function is of crucial dependence on the sample concerned. Weexpect that a suitable correlation function satis�es the following two requirements: the heightsU at the same point are perfectly correlated, thus K(0) = 1, and two points far away are notcorrelated, thus K(1) = 0. It has been found that the most suitable function depending onthree parameters only follows from the fractal description of random surfaces [Man82], and thatcorrelation function reads [SSGS88]Cj(rk; r 0k) = hUj(rk) � Uj(r 0k)i = �2j e��jrk�r 0kj=�j�2hj : (4.11)Here �j is the in-plane correlation length of the j-th interface and hj is connected with the fractaldimension of the interface by relation Dj = 3�hj , 0 < hj � 1. Modelling the random interfaces,we see that hj describes how smooth or jagged the interface is. Values of hj approaching 1produce smoothly varying interface (hj = 1 for Gaussian surface), while small hj produces veryjagged interface.4.2.2 Description of rough interfaces in a multilayerSo far we have dealt with the correlation properties of a simple interface only. A multilayer isformed by a sequence of layers that have been grown one after another. Therefore, the pro�le ofan interface depends to a certain extent on the interface pro�les of the underlaying layers. Thecorrelation properties between di�erent interfaces of a multilayer are discussed in this section.Similarly to a single interface (4.8), the gaussian probability distribution function of twointerfaces j; k is [Hol96]wjk(U;U 0) = 12��j�kq1�K2jk(rk � r 0k) exp( 12[1�K2jk] "U2�2j + U 02�2k � 2UU 0Kjk�j�k #) :(4.12)1The pair correlation function is required for the calculation of the mean of any function �(U;U 0): h�(U;U 0)i =h�(U(rk); U(r 0k))i = R dU R dU 0 �(U;U 0)w(U;U 0).
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(a) (b) (c)Figure 4.2. Schematic representation of interface roughness in multilayers: (a) independently roughinterfaces (uncorrelated roughness), (b) perfectly correlated (identical, replicated, conformal) roughness;(c) partially correlated roughness.The (pair) correlation function of two interfaces j; k calculated at two lateral points rk; r 0k isCjk(rk � r 0k) = �j�kKjk(rk � r 0k) = DUj(rk)Uk(r 0k)E : (4.13)We suppose di�erent interfaces, j 6=k, since the correlation function of a single interface Cjj(rk) �Cj(rk) has been studied in the previous section. The correlation function depends considerablyon the multilayer growth [JMP92, dBLW95].The experimental conditions determine how each growing layer replicates the interface pro�leof its lower interface and how the intrinsic roughness comes out. A general formula comprisingboth phenomena [SSK93, Hol96] writes the interface displacementUj(rk) = hj(rk) + Uj+1(rk)
 aj(rk) = hj(rk) + Z dr 0k Uj+1(r 0k) aj(rk � r 0k) : (4.14)Here hj(rk) is the intrinsic roughness of the jth interface. The replication function aj(rk)corresponding to the growth of the (j+1)th layer can be chosen so that it covers three possibletypes of roughness propagation:1. independently rough interfaces, Fig. 4.2(a): no replication is present (the growth processhas \no memory"), thus aj(rk) = 0,2. identical roughness, Fig. 4.2(b): the intrinsic roughness is zero (hj(rk) = 0) except for thesubstrate interface. Each interface above the substrate replicates perfectly the substrateinterface pro�le, thus aj(rk) = �(rk). The case aj(rk) 6= �(rk) (not shown in the �gure)leads to the smoothening of the substrate roughness, i.e., roughness decreases towards thefree surface,3. partial replication, Fig. 4.2(c): both the intrinsic and replicated roughness contributionsare non-zero. This is the most general case given by Eq. (4.14).4.2.3 Root mean square roughness and the thickness 
uctuationsIn this section we look how the 
uctuations of the interface pro�les (i.e., the rms roughness)and the layer thickness 
uctuations are related. In a rough multilayer, the actual thickness is alocal quantity (Fig. 4.1(b))tj(rk) = zj(rk)� zj�1(rk) = tj + Uj(rk)� Uj�1(rk) ; (4.15)where the ideal layer thickness is tj = hzj(rk)� zj�1(rk)i = htj(rk)i. The root mean square
uctuation of layer thicknessh�t2j i = h(tj � htji)2i = h(Uj � Uj�1)2i = �2j + �2j�1 � 2Cj;j�1(0) (4.16)



4.3 Specular re
ectivity from a rough multilayer 57depends on the root mean square roughnesses of the surrounding interfaces as well as on theirvertical correlation Cj;j�1(0).In the case of independently random rough interfaces, Fig 4.2(a), the thickness 
uctuationsare simplyh�t2j i = �2j + �2j�1 : (4.17)The identical (perfectly correlated, conformal) roughness, Fig. 4.2(b), is the other marginalcase of the roughness distribution. The thickness of all layers is laterally constant in spite of thenon-
at interfaces copying the rough substrate interface.Finally, let us suppose the intermediate case, Fig 4.2(c), and let the layer thickness be arandom quantity, tj(rk) = tj +Dj(rk). The interface pro�lezj(rk) = zj + Uj(rk) = zj+1(rk)� tj+1(rk) = zN + UN (rk)� j+1Xl=N tl(rk) (4.18)then gives the interface displacementsUj(rk) = zj(rk)� zj = (zj+1(rk)� zj+1)� (tj+1(rk)� tj+1)= Uj+1(rk)�Dj+1(rk) = UN (rk)� j+1Xl=NDj(rk) : (4.19)From this follows that the rms roughness increases from the substrate interface towards thesample surface by�2j = �2N + j+1Xl=NhD2l i : (4.20)For constant thickness 
uctuations �2 = hD2l i it simpli�es to the well-known relation [HB94]�2j = �2N + (N � j)�2 : (4.21)Both the above formulae hold for increasing roughness, where the layer thickness 
uctua-tions increase the roughness imposed by the substrate interface �N , or, if the layer thickness
uctuations are zero, then the layers copy perfectly the substrate interface. The third case,when the substrate roughness is diminished by the deposited layers, is experimentally found aswell.2 The general model (4.14) describes also this case of partial replication without intrinsicroughness. It has been shown in Ref. [Hol96] that the rms roughness depends on the lateralcorrelation length.4.3 Specular re
ectivity from a rough multilayer4.3.1 Dynamical calculationNow let us calculate how the rough interfaces in
uence the re
ected intensity. Since the rough-ness changes the local layer thickness, the matrix calculation procedure (3.61) requires to changethe propagation matrices (3.57) accordingly. Their phase term then becomes�j(rk) = eik(j)z tj(rk) = �j eik(j)z (Uj(rk)�Uj�1(rk)) : (4.22)2This relates to samples where the substrate roughness or that of the bu�er layer is large (Sec. 4.4.3). Thisroughness is then smoothen by the subsequent growth.



58 Chapter 4: X-ray re
ectivity from rough multilayersThe propagation matrix of a layer bounded by rough interfaces turns into the product of threediagonal matrices that describe the propagation through the layer with averaged thickness andthrough the imperfect region, respectively,Q(j)(rk) = Uj�1(�k(j)z ; rk)Q(j)(k(j)z )Uj(k(j)z ; rk) (4.23)Uj(kz ; rk) � �e�ikzUj(rk) 00 eikzUj(rk)� : (4.24)Further, we regroup the matrices in the sequence (3.61) so that the displacement matrices Uj ofthe same interface j are associated together with the corresponding boundary matrix Pj;j+1M(rk) = : : :Q(j)(rk)P idj;j+1Q(j+1)(rk) : : := : : :Uj�1(�k(j)z ; rk)Q(j)Uj(k(j)z ; rk)P idj;j+1 Uj(�k(j+1)z ; rk)Q(j+1)Uj+1(k(j+1)z ; rk) : : := : : :Q(j)Pj;j+1(rk)Q(j+1) : : : : (4.25)After reordering, the boundary matrix describing the transition through the rough interface jbecame randomPj;j+1(rk) � Uj(k(j)z ; rk)P idj;j+1 Uj(�k(j+1)z ; rk)= 1tidj  e�i(k(j)z �k(j+1)z )Uj(rk) ridj e�i(k(j)z +k(j+1)z )Uj(rk)ridj e�i(�k(j+1)z �k(j)z )Uj(rk) e�i(k(j+1)z �k(j)z )Uj(rk)! : (4.26)The re
ectivity amplitude of a multilayer, given by Eq. (3.62), has to be statistically averagedover the irradiated sample area, or equivalently, over the pro�le distribution of all interfaces.The averaged fraction of two random functions a(x); b(x) can be approximated by a fraction oftheir meansDabE = Z a(x)b(x) w(x) dx = Z hai+ �a(x)hbi+ �b(x) w(x) dx � haihbi �1 + h�b2ihbi2 � h�a�bihaihbi � ; (4.27)where we de�ned �a = a� hai, �b = b� hbi. In the case of small roughness we can neglect thesecond order contributions and approximate the re
ectivity (3.62) by [PC93, Hol96]R = �M21M11� � hM21ihM11i : (4.28)Averaging the transfer matrix of the whole multilayer then separates to the averaging of theboundary matriceshM(rk)i = : : :Q(j) hPj;j+1(rk)iQ(j+1) hPj+1;j+2(rk)i: : := NYj=1 hNj(rk)i = NYj=1 hPj;j+1(rk)iQ(j+1) : (4.29)The statistical averaging of the boundary matrices is straightforward and it expresses them bythe characteristic function of the probability distributionhPj;j+1(rk)i = 1tidj 0@ �Uj � k(j)z � k(j+1)z � ridj �Uj �k(j)z + k(j+1)z �ridj �Uj ��k(j)z � k(j+1)z � �Uj �k(j+1)z � k(j)z �1A : (4.30)This matrix is symmetric for the usual case of symmetric Fourier transforms of the distributionfunctions and the averaged boundary matrix simpli�es into the form analogous to the case with
at interfaces (3.51)Pj;j+1 = 1tj �1 rjrj 1� ; (4.31)



4.3 Specular re
ectivity from a rough multilayer 59where the Fresnel coe�cients corrected for the roughness [VV84] arerj = ridj �Uj�k(j+1)z +k(j)z ��Uj�k(j+1)z �k(j)z �tj = tidj 1�Uj�k(j+1)z �k(j)z � : (4.32)Supposing a gaussian distribution function of the roughness pro�le we �nd the well-knownrelations (see, [CN76], for instance)rj = ridj e�2k(j)z k(j+1)z �2j = ridj e�q(j)z q(j+1)z �2j =2tj = tidj e(k(j)z �k(j+1)z )2�2j =2 : (4.33)Not only the gaussian distribution functions, but also other types (e.g., symmetric exponential,pillbox) are used and their choice can lead to a better �t of a measured data [Spi93]. However,the di�erences are small and since we cannot verify the atom distribution directly, we will furtheruse the gaussian distributions.We underline that the roughness in
uences the specular re
ectivity only by a change of thevalue of the Fresnel coe�cients and therefore the procedure of the specular re
ectivity calculationdescribed in Sec. 3.4.4 remains still valid using the above substitution (4.32).Since the vertical components of the wave vectors are nearly the same in all layers, thetransmission is not substantially in
uenced by the roughness. However, the re
ectivity coe�cientis diminished exponentially by the rms roughness and the diminution factor is sometimes calledthe static Debye-Waller factor in correspondence with the form of the Debye-Waller factor inX-ray di�raction [Cow75].The roughness can crucially change the interference between di�erent layer stacks. If theroughnesses of two interfaces are not close, then the amplitude re
ected from one interface ismuch stronger than the other and their interference is diminished. This explains the di�erentsensitivity of the specular curve of a single-layered sample on the surface and interface rough-nesses (i.e., on the roughnesses of the vacuum/layer and layer/substrate interfaces, respectively),Fig. 4.3. If the interface roughness is large, then this re
ected wave is weak and the interfer-ence term of this wave and the wave re
ected by the surface decreases, which results in smalleramplitude of the oscillations. In the opposite case, where the surface roughness is large, theamplitude of the wave re
ected by the surface is weak. The amplitude of the wave re
ectedby the interface is decreased by the absorption of the wave transmitted through the layer andtherefore the whole re
ectivity curve is diminished with respect to the ideal case of perfectly 
atinterfaces. Similar arguments will be used later for the discussion of the re
ectivity by roughgratings, Sec. 5.9.2.4.3.2 Kinematical calculationIn the above section we calculated the specular re
ectivity under the presence of rough interfacesby means of the dynamical theory. In order to be complete and show another diminution factorfound in the literature, we will make use of the kinematical theory now. The kinematical Fresnelcoe�cient is given by the integral (3.108) and for random interface it readsrkinj (rk) = iK2Qz Z 1�1 dU ��jH(U � Uj(rk)) + �j+1H(Uj(rk)� U))� e�iQzU= K2Q2z (�j � �j+1) e�iQzUj(rk) = rkin,id e�iQzUj(rk) : (4.34)Averaging this we �ndhrkinj i = rkin,idj he�iQzUj i = rkin,idj e�Q2z�2j =2 : (4.35)
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Figure 4.3. Simulation of the specular scan for di�erent root mean square roughnesses and diminutionfactors (tungsten 200 �A layer on a sapphire substrate). (a) Dynamical \rapid" damping factor. Fromupper to lower curve: without roughness, interface roughness 5 �A, surface roughness 5 �A, both surfaceand interface roughnesses 5 �A. Surface roughness yields a faster decay of the re
ectivity, while interfaceroughness attenuates the peaks. (b) Di�erent damping factors. Surface roughness 12 �A and interfaceroughness 3 �A calculated for the kinematical \slow" roughness (lower curve), dynamical \rapid" roughness(middle curve) and without roughness (upper curve).This expression is close to that found by Névot and Croce [CN76] for \slow" roughness (slowlymodulated roughness with small slopes, large correlation length)hrNCj i = ridj e�(q(j)z )2�2j =2 : (4.36)We can see that the only (but important) di�erence encountered in the kinematical theoryis the use of the vacuum wave vector transfer Qz instead of that in the corresponding layer q(j)z .The \rapid" roughness reported by Névot and Croce takes the form (4.33), and it correspondsto the small correlation lengths.Since there are two di�erent formulae for the specular re
ectivity diminution, for \slow"and \rapid" roughnesses, it is clear that there should be a connection between them dependingon the lateral correlation length. This has been found by de Boer [dB94, dB95], who used theDWBA of the second order and has shown how the diminution depends on the lateral correlationlength.We plotted the re
ectivity curve using both the rapid and slow diminution factors in Fig. 4.3.We �nd that for angles of incidence much larger than the critical angle the diminution e�ectsare the same, but measured below the critical angle, where q(2)z is purely imaginary, both de-pendencies considerably di�er. In non-absorbing case the factor (4.36) always diminishes thespecular curve, but the factor (4.33) does not in
uence the re
ected intensity since the productQzq(2)z is purely imaginary.4.4 Specular re
ectivity measurementsIn this section we apply the theoretical formulae calculating the re
ectivity curves to revealthe structural parameters of some samples from the experimental data. Firstly, we discuss thegeometrical e�ects encountered in the specular re
ectivity measurements: the intensity drop inthe near-zero angular region due to the �nite beam size and the smoothening e�ect of the beamdivergence.Then we present specular re
ectivity measurements of two kinds of samples: of a multilayerwith three di�erent layers and of a periodic multilayer. In both cases we discuss the �tting ofthe experimental curves.



4.4 Specular re
ectivity measurements 614.4.1 Instrumental factors in the specular re
ectivity measurementsE�ects of the instrumental functions on the measured curves a�ecting the measured specularre
ectivity curves are found during each measurement, and therefore they are well-known (see,[DB92a, GVS93], for instance). Since we were encountering these e�ects during our work aswell, we are going to explain them now. The �rst geometrical e�ect discussed below is employedduring the sample alignment procedure. The second e�ect of the primary beam divergenceapplies mainly for thick multilayers and for divergent beams, and it does not play any role inthe experimental curves of the samples discussed in Secs. 4.4.2 and 4.4.3.Geometrical e�ect on the specular curveComparing the experimental and theoretical specular curves, a geometrical e�ect in the angularregion close to the zero angle of incidence has to be taken into account. This e�ect is caused bythe �nite beam size bx and sample length Lx, Fig. 4.4. For small angles of incidence !, the wholesample surface baths in the beam and only a part of the primary intensity corresponding to theperpendicular projection of the sample surface is re
ected (situation (b)). When the sample isrotated and the angle of incidence ! increases to a certain value !F , then the whole beam isre
ected by the whole sample surface (position (c)). For the angles of incidence larger than !Fthe incoming beam illuminates the central part of the sample whose size decreases for increasingangle of incidence. From the geometry shown in the �gure it follows that the cover angle !Fsatis�essin!F = bxLx : (4.37)The re
ected intensity below this angle is diminished with respect to the ideal re
ectivity pro-portionally to the incidence angleR(!<!F ) = L?bx Rid(!) = sin!sin!F Rid(!) � !!F Rid(!) : (4.38)The re
ected intensity for angles larger than !F is not in
uenced. Graph (e) shows the situationfor two cases: !F = 0:23� and 0.69� (this corresponds to a sample length 5 mm and beam sizesof 20 �m and 60 �m, respectively).
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ωF=0.23° ωF=0.69°Figure 4.4. Di�erent positions (a){(d) of the sample (the black rectangle) in the primary beam in
uencethe measured specular curve (e). The black circle denotes the centre of rotation (the goniometer axis).Below the cover angle !F , only a part (in grey) proportional to L? of the primary beam size bx isre
ected, see (a){(b). Above the cover angle, the whole beam is re
ected, see (c){(d). Larger beam sizebx increases the integrated primary intensity, however, in the same time the cover angle !F shifts tolarger angles (e), which decreases the intensity measured below !F with respect to the ideal curve.



62 Chapter 4: X-ray re
ectivity from rough multilayersFrom the dependence (4.38) it follows that the correct geometrical arrangement as well asthe primary intensity should be known even in the specular re
ectivity measurement. The lackof this knowledge for the cover angle larger than the critical angle may bring uncertainty intothe �tting since it would not be possible to determine whether the intensity fall (dashed curve)is due to the primary intensity lower than the actual one (this intensity drop would apply forthe whole specular curve), or due to this geometrical e�ect (the diminution takes part only upto the cover angle).On the other hand, the positions (a){(c) are used in the procedure of the sample adjustment,i.e., after the sample is mounted on the goniometer head and when its correct position and zeroangle have to be found. In this adjustment routine, we place the detector in the direct beamand scan the pro�le of the primary beam that passes above the sample surface. Then we aredisplacing the sample in the beam and rock it in order to �nd the position where the detectorsignal is half of the primary intensity and when rocking the sample around this zero positionthe detector signal decreases linearly. The position ! = !F then corresponds to the positionwhere no more intensity comes to the detector. As in the other methods of sample alignment,the correct setup has to be veri�ed by the position of the re
ected beam (2! = 2� on each pointof the specular curve).Divergence of the primary beamLet us suppose that the primary beam falling on the slit2�D detectorlSDsample!SFigure 4.5.
sample has the divergence !S , Fig. 4.5. This dependson the divergence after the source and the re
ectioncurve of the monochromator and it can be cut by slits;it is measurable during the alignment procedure. Theoutput divergence is de�ned by the acceptance angleof the detector window 2�D, or by the input re
ectioncurve of an analyzer crystal if the measurement is done on a triple axis di�ractometer. Letus suppose the former case, i.e., a double crystal di�ractometer with large input divergence(i.e., a graphite monochromator) and an open detector preceded by a thin slit of width s?.Then 2�D = arctg s?=lSD, where lSD is the sample-slit distance. The intensity collected by thedetector isR(!) = Z �D��D d�� R1(��) R(! +��) ; (4.39)where R1 is the pro�le of the intensity of the primary beam and R is the theoretical re
ectivitycurve of the sample. Therefore, the e�ect of divergence integrates the re
ectivity curve over asmall region around the measured point ! thus producing smoothening of the theoretical curve.This e�ect is noticeable only if the divergence is greater than the period of the thicknessoscillations on the specular curve. Supposing the slit width 100 �m and the sample-slit distance30 cm, the slit acceptance 0.019� corresponds to the thickness oscillation period for the samplethickness t = �=4�D = 2300 �A, so that the calculation of the smoothening would not be neces-sary for samples thinner than at about 500 �A, because the re
ected intensity does not changeconsiderably within the integration region in (4.39).Let us note that the use of su�ciently large angular acceptance of the detector slit is desirablebecause it brings more intensity thus reducing the measuring time and improving the statisticsof low-intensity points.4.4.2 TbFe2 sandwich multilayerIn this section we present the determination of the structural parameters of a sandwich system(see the inset in Fig. 4.6), based on the �tting of the specular re
ectivity curve. The sam-ple F19 concerned belongs to the series of samples where a thin magnetic layer, TbFe2 in this



4.4 Specular re
ectivity measurements 63case, is deposited on a tungsten bu�er layer carried by a sapphire (Al2O3) substrate and cov-ered by a chrome capping layer. The samples have been prepared by laser ablation deposition(LAD, known as the pulsed laser deposition (PLD) technique as well) [Gra94] in LaboratoireLouis Néel, Grenoble, where this original method is being developed since 1992. It has beenshown that this method is very successful for the epitaxial growth of multilayers consisting oftransition metals and rare earths, like Fe, Gd, Cr, W [CGL+93, Mik93b, Gra94, GRC+94] aswell as for intermetallic compounds and alloys, including YxCoy [Rob95, RMC+95] or TbFe2.The magnetic properties of these multilayers are intensively examined, namely for the e�ectsof magnetostriction, giant magnetoresistance and magnetic coupling. Since these properties de-pend considerably on the sample structure determined by the growth conditions, the samplecharacterization by means of non-destructive X-ray measurements is of great importance.The re
ectivity measurement of the sample F19 has been performed at the beamline BL23 inL.U.R.E. (Laboratoire d'Utilisation du Rayonnement Electromagnétique, Université Paris-Sud,Orsay), using the wavelength 1.54 �A. The measured specular scan, shown in Fig. 4.6, has beenused in order to �t the layer thicknesses and interface roughnesses. In the �tting procedure, westepped in the following way.Using the nominal values of the layer thicknesses we estimated the re
ectivity curve up tothe mean critical angle because the re
ectivity is not sensitive to the layer roughnesses in thisangular region (this has been already discussed). Then we put in the roughnesses and �t thetail of the re
ectivity curve. Afterwards, the total thickness has been estimated by means ofthe period of the oscillations. Finally, we tuned all the parameters in order to achieve the bestcoincidence of the measured and simulated curves as possible. When changing the values of theroughness of the sapphire substrate and the thickness and roughness of the tungsten layer above,we followed the results of �tting the tungsten/sapphire single-layered samples [Mik93b]. It hasbeen found in the mentioned work, as well as in the previous studies of the sapphire substrate,that for these samples the usual sapphire substrate roughness is about 3 �A and the roughness ofthe deposited tungsten layer increases by about 5{6 �A per 100 �A of layer thickness. The �tted
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Figure 4.6. Measurement (points) and the �t (full curve) of the specular re
ectivity curve of the sampleF19, whose structure is schematically shown in the inset �gure.



64 Chapter 4: X-ray re
ectivity from rough multilayersvalues of the F19 sample �sub = 2 � 1 �A, �W = 19:7 � 1 �A and the tungsten layer thickness346� 4 �A coincided with our predictions. Finally, we have seen that it is not possible to �t thespecular curve by supposing a stack of three layers only. A modi�ed pro�le of Cr layer densitynear the surface had to be involved. Since we knew that Cr gets oxidized when exposed to theair, we introduced a super�cial layer with the density half of the Cr density. This setup ledto the �t plotted in Fig. 4.6. The thickness and the roughnesses of the TbFe2 layer have beendetermined to be 48� 2 �A and 9:4� 1 �A, respectively, those of the chrome layer 505� 3 �A and22 � 1 �A, and the additional layer thickness was 30 �A. The thickness of the TbFe2 layer hasbeen furthermore deduced from the vibrating sample magnetometer (VSM) measurement andthe values estimated by both X-ray and magnetic experiments coincided.4.4.3 NbSi periodic multilayersThe sample discussed in the previous section was a sandwich mul-
Si

20 periodsSiO2
: : :AlNbNbSiSiSiNb

Figure 4.7.
tilayer consisting of three nominal layers only. In the present sectionwe show a series of measurements and �ts of periodic Si/Nb multi-layer with 20 periods. There is a Si substrate with a very thick SiO2bu�er layer and an aluminium layer of di�erent thicknesses givingrise to di�erent roughness pro�les of the interfaces of the periodicmultilayer deposited on it, Fig. 4.7. The sample producer (SlovakAcademy of Science, Bratislava) has a main interest of growing theselayers in order to study the superconducting properties. The re
ec-tivity measurements have been performed by Dr. Kubìna (MasarykUniversity, Brno) using a double-crystal di�ractometer (with doubleGe(111) di�raction on the �rst crystal Ge(111)) with copper X-raytube.In the �tting procedure, we stepped in the following way. Firstly, we veri�ed that thenumber of periods N=20 coincide to the predicted number, since there are N�2=18 subsidiarymaxima between two subsequent main maxima (Bragg peaks of the multilayer). However,we should stress that this rule need not be valid in each region of the re
ectivity curve ifroughness is taken into account, because big roughness can diminish the corresponding Fresnelcoe�cient in such a way that the interference between distant interfaces is destroyed. Further,the multilayer period can be established by �tting the positions of the superlattice peaks as wellas by taking the position of the critical angle into account (3.124). The envelope of the mainmaxima is determined mainly by the ratio of the layer thicknesses. The substrate and the bu�erlayer roughnesses in
uence mainly the far tail of the re
ectivity curve, whereas the roughnessdistribution propagating up the layers determines the peak widths. The pro�les between themain maxima are sensitive to the bu�er layer thickness.The series of samples consisted of specimens with di�erent Si and Nb layer thicknesses grownon an Al bu�er layer with thickness of either 200 �A or 2000 �A. The Al layer is deposited in orderto produce a rough bottom interface of the periodic Si/Nb stack and this roughness increasesfor thicker Al layers. The roughness distribution in the periodic multilayer can be described bytwo following functions. Either, we keep the roughnesses of the interfaces of Si and Nb constant(model of the constant roughnesses)�j = �Nb/Si or Si/Nb ;or we suppose that the roughness grows from the substrate to the vacuum by�j =q�2Nb/Si or Si/Nb + nj��2 ;where nj is the number of layers between the substrate and the jth interface (cf. Eq. (4.21)).The �t enabled us to distinguish between both roughness propagations.The periodic sequence in sample D0B has been grown on an Al 200 �A layer. Fitting themeasured curve (Fig. 4.8(a)) we have found that the constant roughness model suits better to
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Figure 4.8. Measurements (points) and �ts (full and dashed curves) of the specular re
ectivity curves ofthe Nb/Si samples. (a) measurement and �t of the sample D0B, (b) comparison of the measurements onsamples D29A and D29B. Fit of the experimental curves of the sample D29B using constant roughness(c) and increasing roughness (d) models.this sample. The samples D29A and D29B had the same nominal Nb and Si layer thicknesses.The sample D29A is grown on a 500 �A thick Al layer and sample D29B on a 2000 �A thick layer.The comparison of the measured curves (b) shows that the period of oscillations of the sampleD29B is greater than that of the other sample, thus applying the reciprocity between the realand the reciprocal (or angular) space, the period of the sample D29A is larger.Further, the Bragg peaks of sample B are diminished after the 5th peak which expresses abig roughness introduced by the thick Al layer. Figures (c) and (d) show �ts using the constantand increasing roughness models, respectively. In the case of the constant roughness model (c),all the Bragg multilayer peaks are of the same width which do not correspond to the observedsituation. In the model of increasing roughness the interference in layers near the vacuum isdiminished with respect to the deeper interfaces. This e�ect changes the peak widths and itexplains well most satellites.4.5 Incoherent scattering: Distorted-wave Born approximationcalculationIn the previous sections we have calculated the specularly re
ected intensity from a multilayerwith rough interfaces. For the calculation we used both the dynamical and kinematical theories.In the former case, we calculated the specular re
ectivity amplitude by the matrix formalism ofthe re
ectivity from planar MLs and we averaged it over the random interface pro�le. A similaraveraging has been used in the kinematical theory as well.A randomly rough interface re
ects the incident intensity into all directions thus producingdi�use or incoherent scattering. Calculation of the scattered wave�eld is possible by both



66 Chapter 4: X-ray re
ectivity from rough multilayersthe dynamical and kinematical theories. The dynamical theory is applied mainly in classicaloptics [BS63] or in the scattering of radio waves [AK83]. The Maxwell equations were used tocalculate the scattering from a multilayer with slightly rough interfaces in [BW70, Ste89] or liquidsurfaces [DB92b], and the solutions have been reduced to single-scattering formulae. The Bornapproximation of the kinematical theory has been applied as well [WB88, PSKL93]. However,this does not cover the dynamical e�ects, and thus it is not possible to cover the many importantfeatures found in X-ray non-specular scattering, like the enhancement of di�use scattering nearthe critical angle (Yoneda wings [Yon63]) due to refraction, or resonant di�use scattering [HB94]due to multiple scattering.The distorted-wave Born approximation (DWBA) has been found a good compromise be-tween the kinematical and dynamical theories which well explains most dynamical e�ects encoun-tered in di�use scattering and makes it easy to take the statistics of randomly rough interfacesinto account. This scattering theory is known from quantum mechanics [Sch68, Dav69]. It hasbeen �rst applied to X-ray scattering for the calculation of grazing-incidence X-ray di�raction[Vin82]. Then it was used in the calculation of X-ray re
ectivity, both specular and di�use: fora substrate with rough surface by Sinha et al. [SSGS88], the generalization to layered samplesfollow soon by Holý et al. [HKO+93]. Then this method has been developed to scattering frommultilayers with correlated interfaces [HB94, dBLW95] which explained the modulations on thedi�use scans found experimentally [Kor91]. Further it has been employed for the re
ectivity fromliquid surfaces [SSHO92], organic multilayers and Langmuir-Blodgett �lms [DB92b, PBMM94]or in neutron re
ectometry [Pyn92]. Higher-order DWBA has been formulated as well. Thesecond-order corrections have shown dependence of the diminution factor of the specular re
ec-tivity on the lateral correlation length [dB94, dB95]. DWBA is also used for the calculationof the non-coplanar di�use scattering measured in the new out-of-plane experimental mode[SMP94, SMPJ94].4.5.1 Distorted-wave Born approximationThe formulation of the DWBA comes from quantum mechanics, where the scattering process isdescribed by the di�erential cross-section [Dav69]. The cross-section stands for the probabilityof the transition between two states (incoming and outgoing wave�elds). The intensity re
ectedby the sample is given by its integration over the acceptance window of the detector. Themain advantage of the DWBA is that it can provide an approximate relation for the scatteringcross-section instead of solving the wave equation exactly.We treat scattering from a multilayer with rough interfaces as a system represented by thewave equation (3.12) in the form used already in the kinematical theory (3.91)(� +K2)E(r) = V (r)E(r) : (4.40)The multilayer potential is according to (3.93)V (r) = K2(1� n2(r)) = �K2�(r) (4.41)and it is random due to the interface imperfections. The scattering cross-section from theincident wave into an eigenstate of the former wave equation� d�d
� = DjT12j2Eav16�2 (4.42)is given in terms of the scattering matrix element T12, which depends on the scattering potentialV (r) [Dav69]. Because of its randomness, the square of the modulus of the matrix element T12
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V p;(j)(r) = V (j+1) � V (j)V p;(j)(r) = V (j) � V (j+1)
�k (j)�2 0; R(j)�2 �k (j)2 ; T (j)�2k (j)1 0; R(j)1k (j)1 ; T (j)1

z
zj(rk)

(a) (b)
zj q (j)3

k (j)1 0
q (j)1qz

q (j)0 qx�k (j)2V p;(j)(r) = 0V p;(j)(r) = 0
q (j)2

k (j)1 �k (j)2 0
Figure 4.9. De�nition of the perturbing potential V p;(j) and of the wave vectors k1; k 01; k2; k 02 in boththe real (a) and reciprocal (b) spaces. Four scattering processes encountered in the DWBA of the �rstorder are characterized by the wave vector transfers q0 = �k2�k1 (process T1T2), q1 = �k 02�k1 (T1T2),q2 = �k2 � k 01 (T1T2), q3 = �k 02 � k 01 (R1R2) (layer indices were omitted for brevity).has to be statistically averaged and the cross section separates into the coherent and incoherentparts [SSGS88]� d�d
� = � d�d
�C +� d�d
�I (4.43)� d�d
�C = j hT12iav j216�2 (4.44)� d�d
�I = D ��T12 � hT12iav ��2 Eav16�2 = V (T12)16�2 : (4.45)We have de�ned the covariance of random quantities a; bV(a) � hjaj2iav � jhaiavj2 (4.46)V(a; b) � hab�iav � haiavhb�iav : (4.47)Therefore there are two main steps in the calculation of the cross-section. Firstly, the matrixelement T12 has to be formed and then its statistical average and covariance have to be evaluated.The distorted-wave Born approximation is a perturbation theory that approximates thescattering matrix element T12 of a system in the case when its potential V (r) can be consideredas a superposition of two componentsV (r) = V id(r) + V p(r) : (4.48)The ideal potential V id acts as a \strong" potential, while the potential V p is a weak perturba-tion. In the studied case of multilayers with rough interfaces, we choose V id to be the potentialof an ideal multilayer with perfectly 
at interfaces with V p being the perturbation due to thereal interface pro�les, see Fig. 4.9.The ideal multilayer with V id constant in each layer is described by the wave equation(� +K2)Eid(r) = V id(r)Eid(r) ; (4.49)



68 Chapter 4: X-ray re
ectivity from rough multilayerswhich can be solved exactly (Sec. 3.4.4). Let us choose this ideal multilayer as the undisturbedsystem and employe its plane wave solutions as the eigenstates of the DWBA [SSGS88, HKO+93].We work with the following two independent eigenstates 1, 2 of the wave equationEid1 (r) = jEid1 i = eik1krk hT (j)1 eik(j)1;z(z�zj+1) +R(j)1 e�ik(j)1;z(z�zj+1)iEid2 (r) = �hEid2 j�� = e�ik2krk hT (j)�2 e�ik(j)�2;z (z�zj+1) +R(j)�2 eik(j)�2;z (z�zj+1)i : (4.50)The eigenstate Eid1 is the state of the true incoming wave, Fig. 4.10. The second eigenstateEid2 is chosen to be time-inverted, i.e., the primary wave with unit amplitude is emitted by themultilayer and the re
ected wave is the wave incoming on it.As we can see, each eigenstate is a superposition of two plane waves, whose particular wavevectors arek (j)1 = (k1k; k(j)1z ) k (j)1 0 = (k1k;�k(j)1z )k (j)2 = (k2k; k(j)2z ) k (j)2 0 = (k2k;�k(j)2z ) : (4.51)The parallel components are opposite and k1z > 0; k2z > 0, Fig. 4.10. An equivalent form toEq. (4.50) isjEid1 i = eik(j)1 r T (j)1 e�ik(j)1;zzj+1 + eik(j)1 0r R(j)1 eik(j)1;zzj+1hEid2 j = eik(j)2 r T (j)2 e�ik(j)2;zzj+1 + eik(j)2 0r R(j)2 eik(j)2;zzj+1 : (4.52)The amplitudes T (j)1;2 ; R(j)1;2 of the transmitted and the re
ected beams, respectively, for thestates 1 and 2, are calculated with respect to the bottom layer interfaces, Sec. 3.4.4.Let us further denote the incoming plane waveE0(r) = eiK0r : (4.53)The DWBA approximates the matrix element by [Sch68, SSGS88]T12 = hEid2 jV idjE0i+ hEid2 jV pjEid1 i : (4.54)Therefore the calculation of the cross sections (4.44){(4.45) requires the evaluation of the co-herent and incoherent termshT12iav = hEid2 jV idjE0i+ DhEid2 jV pjEid1 iEav (4.55)V (T12) = V �hEid2 jV pjEid1 i� : (4.56)This we will treat separately in the following two subsections, whereas now we express the matrixelement hEid2 jV pjEid1 i.We can see that the perturbation potential is non-zero only near the interfaces (Fig. 4.9)V p;(j)(r) = 8><>:0 for z < zj(rk) < zj and zj < zj(rk) < z ;V (j+1) � V (j) for zj(rk) < z < zj ;V (j) � V (j+1) for zj(rk) > z > zj : (4.57)
jEid1 i = Eink1 k2�1 �2hEid2 j = (Eout)�k 01 k 02Figure 4.10. Schematic drawing of the eigenstates corresponding to the incoming and outgoing wave�elds.



4.5 Incoherent scattering: Distorted-wave Born approximation calculation 69Thus we can decompose the perturbation over individual interfaces [HB94]hEid2 jV idjEid1 i = NXj=1 hEid2 jV p;(j)jEid1 i � NXj=1Wj : (4.58)Let us calculate the contribution Wj of the rough interface j. We employ the approximation[SSGS88] of replacing Eid;(j+1) by Eid;(j) in the region zj(rk) � z � zj and Eid;(j) by Eid;(j+1)in the region zj � z � zj(rk). ThenWj �hEid2 jV p;(j)jEid1 i = �V p;(j) � V p;(j+1)�� (4.59)hT (j)1 T (j)2 F (j)� (�q (j)0 ) +R(j)1 R(j)2 F (j)� (�q (j)3 ) +T (j)1 R(j)2 F (j)� (�q (j)1 ) +R(j)1 T (j)2 F (j)� (�q (j)2 ) +T (j+1)1 T (j+1)2 F (j)+ (�q (j+1)0 ) +R(j+1)1 R(j+1)2 F (j)+ (�q (j+1)3 ) +T (j+1)1 R(j+1)2 F (j)+ (�q (j+1)1 ) +R(j+1)1 T (j+1)2 F (j)+ (�q (j+1)2 )i ;where the Fourier transform of \hills" on particular sides isF (j)� (q) = ZZ S drk Z Uj(rk)0 dU e�iq(rk+U ẑ ) H�� Uj(rk)�= ZZ S drk e�iqkrk e�iqzU � 1�iqz H�� Uj(rk)� : (4.60)Since both eigenstates consist of two plane waves, their matrix element for V p decomposesinto four terms containing T1T1; T1R2; R1T2 and R1R2 (Fig. 4.9). These are the four particularscattering processes with wave vector transfers q (j)l = (�k2k � k1k; q(j)zl ):T1T2 : q (j)0 = �(k (j)2 + k (j)1 ) R1R2 : q (j)3 = �(k (j)2 0 + k (j)1 0)q(j)0z = �q(j)3z = �(k(j)2z + k(j)1z )T1R2 : q (j)1 = �(k (j)2 0 + k (j)1 ) R1T2 : q (j)2 = �(k (j)2 + k (j)1 0)q(j)1z = �q(j)2z = �(k(j)1z � k(j)2z ) ; (4.61)Note, that all the momentum transfers q (j)l have the same lateral component q (j)lk . Further, q(j)0zis negative, i.e., it corresponds to the wave emerging from the layer towards the vacuum.4.5.2 Calculation of the coherent re
ectivityThe matrix element of the coherently scattered wave consists of two terms (4.55). The calculationof the �rst term, which describes the scattering of the vacuum plane wave by the potential ofan ideal multilayer, is straightforward [SSGS88]hEid2 jV idjE0i = 2iKzRid(k1)S �K2k ;K0k : (4.62)The delta function expresses the re
ection law (Sec. 3.4.1). We have denoted the sample areaS = LxLy, where Lx; Ly are the lateral sample dimensions. From this the amplitude of thespecularly re
ected wave followsR = Rid + DhEid2 jV pjEid1 iEav = 2iKzS : (4.63)Since the re
ection law holds in the specular scan, then k1 = �k 02; k 01 = �k2 and thusq0z = �q3z = �2kz; q1z = q2z = 0, and T1 = T2; R1 = R2. The perturbation matrix
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Figure 4.11. Comparison of dynamical and DWBA calculations of the specular re
ectivity curves. (a) Sisubstrate with 8 �A surface roughness, (b) C/Si single-layer system with 10 �A/7 �A roughnesses.element 
hEid2 jV pjEid1 i�av is calculated by averaging the relation (4.58). Terms hWjiav containthe averaged Fourier transform (4.60)DF (j)� (q)Eav = ZZS drk e�iqkrk 1Z0 dU wj(U) e�iqzU � 1�iqz H(�Uj(rk)) : (4.64)The result can be written in the form [SSGS88, HKO+93]DF (j)� (0)Eav = �j� S �q ;0 (4.65)DF (j)� (q)Eav = iqz � ~U j�(qz)� 12�S �qk;0 ; (4.66)where �j� is the averaged roughness displacement on a particular side of the interface. We havede�ned the partial Fourier transform~U j�(qz) = Z 1�1 dU e�iqzU wj(U)H(�U) : (4.67)The Heaviside function has been de�ned on page 41.Since we mostly work with symmetric probability distribution functions, w(U) = w(�U),then ~U+(qz) = ~U�(�qz). For gaussian w(U) the numerical calculation of this Fourier transformis e�ciently performed by the help of the Dyson function.3Finally, the re
ectivity amplitude of a multilayer with rough interfaces is explicitly written[HKO+93]RC = Rid + K2q1z NXj=1(n2j � n2j+1)�� 2i�j �T (j)1 R(j)1 + T (j+1)1 R(j+1)1 �+ h(T (j)1 )2U (j)+ (q(j)z )� (R(j)1 )2U (j)�+ (q(j)z )i =q(j)z+ h(T (j+1)1 )2U (j)+ (q(j+1)z )� (R(j+1)1 )2U (j)�+ (q(j+1)z )i =q(j+1)z � : (4.68)
Re
ectivity curves calculated by this formula for a single surface and a single-layered sys-tem are shown in Fig. 4.11. We have compared these curves with the dynamical calculation(Sec. 4.3.1). We can see that the coincidence of both dependencies is good up to a certain angle.3The Dyson function is de�ned by wD(z) = 2p� R10 dz e�z2+2icz. Precise rational approximation of thisfunction can be found in mathematical tables [GR63].



4.5 Incoherent scattering: Distorted-wave Born approximation calculation 71For larger angles of incidence DWBA fails, since the actual wave�eld in the rough multilayerdi�ers substantially from that within the ideal layer the eigenstates of which have been used inthe approximation of the matrix element.4.5.3 Di�use scatteringThe cross section of the incoherent di�use scattering is given by (4.45) so that the calculationof the covariance V (T p) has to be performed. Using the properties of the covariance4 we getV (T p) = V0@ NXj=1Wj1A = NXj=1 V (Wj) +Xj>k 2Re V (Wj;Wk) : (4.69)Recalling the de�nition Wj = hEid2 jV pjEid1 i we �nd that the di�use scattering has two maincomponents. The �rst one is the di�use scattering created by the roughness of single interfacesand it is expressed by the �rst sum in the above equation. The correlation between di�erentinterfaces leads to non-zero covariancies and it gives rise to the second component of the di�usescattering.The form of Wj is given by Eq. (4.59), therefore it includes the covarianciesQjkmn � Qjk(q (j+1)m ; q (k+1)n ) � V �F (j)� (q (j+1)m );F (k)� (q (k+1)n )� (4.70)= Sq(j+1)mz q(k+1)nz � ZZ dR e�iqkR V �e�iq(j+1)mz Uj(0); e�iq(k+1)nz Uk(R)� :The indices j; k enumerate the interfaces, m;n count the scattering processes 0 : : : 3. Supposingthe gaussian pair probability function (4.12), this turns intoQjkmn = Sq(j+1)mz q(k+1)nz � e� 12 [q2mz�2j+q�2nz�2k] ZZ dR e�iqkR �eq(j+1)mz q(k+1)nz �Cjk(R) � 1� (4.71)Our experiments are performed without resolution in the ŷ direction (the detector or slit windowis long in this direction). The cross section is integrated over the ŷ direction and we useZ dy Qjkmn = 2�Sq(j+1)mz q(k+1)nz � e� 12 [q2mz�2j+q�2nz�2k] Z dx e�iqxx �eq(j+1)mz q(k+1)nz �Cjk(x) � 1� : (4.72)The amount of necessary calculation can be reduced by help of the following properties.Firstly, Qjkmn = Qkjmn�. The Qjjmm are real. Further, for a single interface j=k it holds Qj00 =Qj33; Qj03 = Qj30; Qj11 = Qj22; Qj12 = Qj21; Qj01 = Qj32 = Qj�10 = Qj�23; Qj02 = Qj31 = Qj�20 = Qj�13.For di�erent interfaces j 6= k we can �nd Qjk00 = Qjk33; Qjk03 = Qjk30; Qjk11 = Qjk22; Qjk12 = Qjk21; Qjk10 =Qjk23; Qjk01 = Qjk32; Qjk02 = Qjk31; Qjk20 = Qjk13.The �nal formula for the covariance of a multilayer with uncorrelated rough interfaces readsV (Wj) =K4 ��n2j � n2j+1��2�Qj00 �jT1T2j2 + jR1R2j2�+Qj11 �jR1T2j2 + jT1R2j2�+2Re�Qj01 [T1T2(T1R2)� +R1R2(T2R1)�] +Qj02 [T1T2(T2R1)� +R1R2(T1R2)�] +Qj03 T1T2(R1R2)� +Qj12 T1R2(T2R1)��� : (4.73)4Namely V (a+ b) = V (a) + V (b) + V (a; b).



72 Chapter 4: X-ray re
ectivity from rough multilayersThe upperscript of all T and R are j in the \upper"-hill approximation, j+1 in the \down"-hillapproximation.The calculation of the termPj 6=k V (Wj;Wk) that is added in the case of correlated roughnessis straightforward and it will not be shown here. It has been published for the �rst time in [HB94]and the detailed discussion can be found in [HBB95, Hol96].The numerical evaluation of the integral (4.72) has to be treated carefully, since it is aFourier transform of an oscillating and decreasing complex function. Its convergence dependsconsiderably on the fractal coe�cient h, Eq. (4.11). For two values of h, namely h = 1 (the gaus-sian pro�le) and h = 0:5, the exponential can be developed into a Taylor series and integratedanalytically. For other values of h the integral has to be calculated by an adequate numericalmethod, where the combination of the Filon and Simpson methods [GR63] was found to be themost satisfactory.Finally, we relate the formula for the cross-section to the measured intensity [HKO+93]I(�1; �2) = Iinc 24 Zdetector slit� d�d
�I d
+ F (�1; �2)Rspec(�1)35 : (4.74)The integration of the incoherent contribution ranges over the angular acceptance of the detector(see page 62) in the plane of incidence, and over the slit size in the ŷ direction with the relation(4.72) replacing (4.71). The function F (�1; �2) describes the transmission of the coherent partof the beam into the detector staying near the specular beam. Therefore this is a trapezoidalfunction given by the convolution of the shape functions of the incoming beam and of the detectorslit. ThenI(�1; �2) = Iinc �2�Dmin(Ly=Ly;beam; 1)Kmax(sin �1; !F ) Z dqy �d�(�1; �2)d
 �I + F (�1; �2)Rspec(�1)� ;(4.75)where !F is the cover angle (4.37).The structure of the relation (4.73) seems to be quite complicated. It can be simpli�ed ifthe re
ectivity amplitudes R1; R2 are small. Then the prevailing term is that proportional tothe product of the transmission function jT1T2j andV (Wj) � K4 ��n2j � n2j+1��2 jT1T2j2Qj00 : (4.76)Another approximation which is found adequate in the case of small roughness develops theexponential term in (4.72) into a Taylor series. Combining both approximations, we get the�nal formula of the covariance in the semi-kinematical approximation [SSGS88]V (Wj) � 2�S K4 ��n2j � n2j+1��2 jT (j)1 T (j)2 j2 e�(q(j)0z )2�2j Z dx e�iqxxCj(x) : (4.77)From this formula we can see that the di�use intensity is proportional to the transmission func-tion given by the product of T1 and T2. These transmission functions have maxima at the criticalangle of total external re
ection (Fig. 3.10) of the incoming and outgoing waves, respectively,which theoretically con�rms the e�ect of the Yoneda wings found experimentally [Yon63]. Fur-ther, the scattered intensity is proportional to the Fourier transform of the correlation functionCj(x) [SSGS88] as it is known in the kinematical theory of X-ray di�raction [AKK+74].
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Figure 4.12. Simulations of the contribution of the di�use scattering into the specular scan (the upper�gure). Calculation of the rocking !-scans (in the middle) and detector 2�-scans (the lower �gures) ofa sample for di�erent root mean square roughnesses and the correlation length � = 2000 �A (left) andfor di�erent lateral correlation lengths and rms roughness � = 10 �A (right). The fractal coe�cient hequals 1.
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ectivity from rough multilayers4.6 Re
ectivity map of a periodic multilayerIn the previous section we worked out the theoretical treatment of specular and non-specularre
ectivity from rough multilayers based on the distorted-wave Born approximation. We haveshown how the interface imperfections in
uence the coherent specular scan and how they causedi�use scattering, which is distributed in reciprocal space. We presented numerical simulationsof the specular, rocking (!) and detector (2�) scans of a layered sample with uncorrelated roughinterfaces. The simulations of these scans can be used to reveal the structural parameters by�tting the experimental data of a measured sample.A good qualitative analysis comes out from the measurement of the whole re
ectivity map.Therefore we present our measurement of a periodic multilayer with correlated interfaces. Thesample is a periodic sequence of bilayers of Si and Nb grown N = 10 times on a Si substrate. A�t of the experimental data gives the bilayer period 88.5 �A and the Si/Nb thickness ratio 0.52.The high quality of the sample has been con�rmed: the substrate roughness 6.7 �A is replicatedby the upper interfaces and it decreases towards the free surface.We have performed the measurement on the beamline D23 at synchrotron in LURE, Univer-sité Paris-Sud. The incoming radiation with the wavelength 1.54 �A was collimated by Si(111)double di�raction. The scattered radiation was measured by a detector installed behind asingle-di�raction Ge(111) analyzing crystal. Fig. 4.13 shows both the angular and reciprocalspace representation of the measured re
ectivity map. Each map contains 231 !-scans withmore than 15 600 points. The maps are plotted by my program pm3d.Now let us qualitatively describe the map. The bright rod at Qx = 0 (or ! = 2�=2) is thespecular scan broadened in the Qx-direction by the resolution function (the convolution of the�nite beam with the slit width produces the function F (�1; �2) according to (4.74)). The smallintense spots on the specular scan are the Bragg peaks of the periodic multilayer. Less intensespots between them are the subsidiary maxima of the thickness oscillations.Interface roughness gives rise to di�use scattering, which �lls the reciprocal space everywherebetween the limiting Ewald spheres of the incoming and exit beams (Fig. 2.3), respectively. Thecorrelated roughness excites the Bragg sheets passing through the multilayer Bragg peaks. TheBragg sheets are curved due to refraction giving them the shape and the name of \bananas"[HB94, HBB95].Further, higher intensity Ewald spheres passing through each multilayer Bragg peak are dis-tinguishable within the region of the �rst three Bragg sheets. This e�ect has a purely dynamicalorigin and it is explained by the concept of multiple scattering (Umweganregung) [HB94]. Thespheres raise up at the maximum of either R1 (maximum intensity of the incident transmittedplane wave) or R2 (maximum intensity of the outgoing plane wave) in (4.73). Intense Bragg-like peaks of resonant di�use scattering are found at these intersections, where both re
ectivityamplitudes R1 and R2 are maximal.The Yoneda wings [Yon63], for which the angle of incidence or exit equals the critical angle,lie on the circles inclined from the \limiting Ewald spheres" by the critical angle, thus theyrepresent the Bragg-like peaks of the zeroth order. Since there is weak intrinsic roughnessexcept at the substrate interface, the measurable intensity of the Yoneda wings is localized onthe bananas only. The Yoneda wings corresponding to the Nb material (�NbC = 0:40�) canbe observed as the end-points of the bananas, whereas the Yoneda wings of the Si material(�SiC = 0:22�) are not resolved.
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Figure 4.13. The Angular (above) and The Reciprocal (below) Space Sharks (The Reciprocal Ocean,LURE bay, Paris, 1994). X-ray �shermen have found these �shes by use of a special superlattice net andby help of the non-specular re
ection of sun rays by the ocean surface. We kindly ask the reader not totouch the picture in order to avoid contamination by the di�use scattering.The detailed discussion and the explanation of the features we �nd on this measured re
ectivitymap is presented in Sec. 4.6.
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79RésuméDans ce chapitre nous nous intéressons ¸ la di�usion des rayons X ré
échis sur des réseauxde multicouches (voir �g. 5.1). Ainsi, nous étudions la distribution de l'intensité di�usée auvoisinage de l'origine dans l'espace réciproque pour une onde incidente rasante. La plus grandepartie de ce travail concerne des réseaux latéralement périodiques. La généralisation ¸ d'autresréseaux, avec une transformée de Fourier discr�ete de la structure latérale (par exemple quasipéri-odique), sera bri�evement discutée. Par la suite nous utiliserons l'abréviation MLG (multilayergrating) ¸ la place de "réseaux de multicouches périodiques latéralement".Notre but est de développer plusieurs théories adaptées ¸ ce calcul et de les comparer : lathéorie cinématique, l'approximation de l'onde déformée de Born et la théorie de la di�usiondynamique. Nous indiquerons les di�érentes approximations qui ont été faites dans ces théoriesainsi que leurs aspects communs.La périodicité latérale uni-dimensionnelle, principale caractéristique d'un réseau de multi-couches, est traitée dans ces trois théories au moyen de la transformée de Fourier de la sus-ceptibilité. Nous résolvons l'équation d'onde dans le cas d'une périodicité latérale. Ainsi nouspouvons formuler ces théories de la même fa�con que celle bien connue de la di�raction des rayonsX par les cristaux qui utilise, pour résoudre l'équation d'onde, l'idée similaire de la symétrie detranslation tri- dimensionnelle.Dans la premi�ere partie, nous mentionnons les publications parues sur le th�eme de ce chapitre.Ensuite nous traitons les caractéristiques de base des réseaux et leur réseau réciproque. Nousintroduisons la notation utilisée par la suite.Dans les paragraphes suivants, nous présentons les diverses théories en commen�cant par lathéorie cinématique. Nous résolvons l'intégrale de di�raction cinématique par la méthode de laphase stationnaire, procédure déj¸ utilisée pour la ré
ectivité sur des multicouches planaires.La théorie cinématique ne consid�ere que les processus ¸ une seule di�usion et ne prend pas encompte les e�ets de réfraction et d'absorption. Néanmoins, les résultats obtenus montrent lesprincipaux caract�eres de la di�usion par des réseaux : une onde incidente plane est dispersée enun éventail d'ondes planes. C'est un processus de di�raction, basé sur la ré
exion spéculaire.Les composantes latérales des vecteurs d'onde des ondes di�usées (di�ractées) di��erent de cellesde l'onde incidente par le caract�ere uni-dimensionnel du vecteur du réseau réciproque. Nousreprésentons les processus de di�usion dans l'espace réciproque au moyen de la constructiond'Ewald. Nous montrons un moyen pour généraliser les coe�cients cinématiques de ré
exion deFresnel.L'approximation de l'onde déformée de Born (DWBA) sera traitée ultérieurement comme uneméthode de perturbation plus élaborée. Nous avons utilisé DWBA pour le calcul de la di�usiondi�use sur des interfaces rugueuses dans des multicouches planes. On croyait jusqu'¸ présent quel'approximation DWBA n'était valable que dans le cas de potentiels faiblement perturbés, c'est¸ dire de rugosités faibles. Cependant, nous montrons que cette méthode s'applique aussi aucalcul de la ré
ectivité sur des réseaux. Notre discussion portera essentiellement sur le domainede validité de DWBA.La théorie dynamique de la ré
exion sur des réseaux de multicouches lamellaires a déj¸ ététraitée par divers auteurs. Dans le paragraphe suivant, nous présentons une revue de ces travaux.Dans ce travail, nous développons une théorie dynamique de la ré
exion des rayons X sur desréseaux en nous inspirant du formalisme de Darwin-Laue utilisé dans la théorie dynamique dela di�raction des rayons X par des cristaux. Notre formalisme est connu en optique ; c'est laméthode modale des valeurs propres : nous prenons comme solution ¸ l'équation d'ondes uneonde plane semblable aux ondes de Bloch ¸ une dimension, nous résolvons la valeur propreet nous appliquons les conditions aux limites aux interfaces de MLG. Ceci sera réalisé par un
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ectivity from multilayer gratingsformalisme matriciel. Le principal avantage de cette présentation de notre théorie est de garderla même notation que pour la ré
exion sur des multicouches planes ; ceci montre les liens existant,pour la ré
ectivité, entre tous les types de structures. En particulier, ce formalisme nous permetd'introduire une matrice généralisée de la matrice des coe�cients de Fresnel.Cette théorie enti�erement dynamique est utilisée pour des calculs numériques. Cependant,les équations de cette théorie rigoureuse sont trop lourdes pour pouvoir être discutées de fa�conqualitative. Aussi, nous formulons la théorie dynamique avec des approximations de di�u-sion multiple. Ces approximations sont appliquées dans des régions o�u les e�ets dynamiquesl'emportent. Notre approche consiste ¸ introduire l'approximation ¸ deux ondes, comme dans ladi�raction dynamique des rayons X par les cristaux. Nous discuterons aussi le cas de la di�usionnon- coplanaire quand le faisceau incident devient presque parall�ele ¸ la direction des �ls desréseaux.Dans le paragraphe suivant, nous présentons la discussion sur ces théories, les simulationsnumériques associées et nous les comparons sur l'exemple particulier suivant : un réseau desurface avec une largeur de �l moitié de la période (8000 �A). Nous montrons que les tiges detroncature d'ordre impair sont fortes et que la plupart des pro�ls peuvent être expliqués parles deux théories, dynamique et DWBA. Par contre, les tiges de troncature d'ordre pair sontinterdites dans toutes les théories de di�usion unique ; le calcul a besoin de tenir compte dela di�usion multiple et seulement le traitement dynamique est approprié. Nous avons fait dessimulations numériques pour déterminer le nombre d'ondes nécessaire dans les approximations¸ ondes multiples de mani�ere ¸ obtenir les intensités di�usées avec une précision su�sante.Nos théories et leur formalisme dans le cas de réseaux périodiques s'appliquent aussi bien¸ certains réseaux apériodiques, principalement aux réseaux dont la transformée de Fourier dupro�l latéral a une forme discr�ete. En particulier, nous étudions qualitativement la carte deré
ectivité attendue pour un réseau quasi- périodique de Fibonacci. Nous discutons bri�evementcomment appliquer ces théories au calcul de la ré
ectivité par des réseaux avec des �ls nonrectangulaires mais trap�ezo��daux.Les calculs ci-dessus consid�erent des réseaux de multicouches parfaits. Cependant, commedans le cas des multicouches planaires, les interfaces peuvent présenter des défauts. Nous faisonsla distinction entre la rugosité sur les parois verticales des �ls des réseaux et celle, horizontale, desinterfaces. Nous utilisons notre formalisme matriciel de la théorie dynamique et nous montronsl'in
uence de ces rugosités sur l'intensité di�usée. Notre approche est ainsi une généralisationde la ré
ection sur des multicouches planaires rugueuses ; cependant, dans le cas des réseaux,nous n'avons pas trouvé de traitement matriciel correct dans la littérature o�u le plus souvent larugosité est prise en compte par les facteurs cinématiques classiques d'atténuation exponentielle.Dans la derni�ere partie de ce chapitre, nous présentons les mesures expérimentales et l'ajus-tement des param�etres structuraux d'une multicouche avec trois périodes et demie avec laderni�ere partiellement gravée en réseau.



5.1 Introduction 815.1 IntroductionIn this chapter we will deal with X-ray scattering from multilayer gratings (see Fig. 5.1) inre
ection geometry. This means that we study the intensity distribution near the origin ofthe reciprocal space for grazing incidence of the incoming wave. The main part of this workis devoted to laterally periodic gratings. The generalization to other gratings with a discreteFourier transform of the lateral structure (e.g., quasiperiodic gratings) is also brie
y discussed.We further use the name of a multilayer grating (MLG) for laterally periodic multilayer gratings,if it is not explicitly stated otherwise.Our aim is to develop and compare di�erent theories suitable for this calculation. Thiscomprises the kinematical theory, the distorted-wave Born approximation and the dynamicalscattering theory. We point out di�erent approximations involved in these theories as well astheir common features.The principal characteristic of a multilayer gratings, the one-dimensional lateral periodicity,is involved in all the three treatments by means of the Fourier transform of the susceptibility. Wesolve the wave equation for this case of lateral periodicity. Thus we can formulate the presentedtheories in the way of the well-known X-ray di�raction theories for crystals, which use a similaridea to solve the wave equation in the crystal with a three-dimensional translation symmetry.In the �rst section, we review the work published by other authors on the topic of thischapter. Then we deal with the basic features of the gratings and their reciprocal lattice. Weintroduce the notation used afterwards.In the following sections we present the theories, starting by the kinematical theory. We solvethe kinematical di�raction integral by means of the stationary phase method similarly to ourprocedure for the re
ection from planar multilayers. The kinematical theory includes only single-scattering processes and it does not include the refraction and absorption e�ects. Nevertheless,the results obtained show the general features of the scattering from gratings: one incomingplane wave is spread into a fan of plane waves. That is a di�raction process, based on specularre
ection. The lateral components of the wave vectors of the scattered (di�racted) waves di�erfrom that of the incoming wave by the one-dimensional reciprocal grating vector. Therefromfollows the famous grating formula. We represent the scattering process in reciprocal space bymeans of the conventional Ewald construction. We show a way to generalize the kinematicalFresnel re
ection coe�cients.The distorted-wave Born approximation (DWBA) as a more elaborate perturbation methodis treated afterwards. DWBA has been used in the X-ray re
ectivity from planar multilayers forthe calculation of the di�use scattering from rough interfaces. It was believed until now that theDWBA is valid only for small perturbing potentials, e.g., small interface pro�le displacements(small roughnesses). However, we show the applicability of this method to the calculation ofthe re
ectivity from gratings too. Therefore the main point of our discussion of the DWBAconcerns the range of its validity.The dynamical theory of re
ection from lamellar multilayer gratings is treated by many au-thors. The review is presented in the following section. In this work, we develop a dynamicalscattering theory of X-ray re
ection from gratings, taking pattern from the Darwin-Laue for-mulation of the dynamical theory of X-ray di�raction from crystals. Our formulation is knownin optics as the modal eigenvalue method: we �nd a plane wave solution of the wave equationas the one-dimensional Bloch waves, we solve the eigenvalue problem and apply the boundaryconditions at the MLG interfaces. This will be performed by the matrix formalism. The mainadvantage of our presentation of the theory in this work is that we keep the same notation asfor the re
ection from planar multilayers, which depicts the links to the re
ectivity from bothstructure types. As a particular result, this will allow us to introduce a matrix generalizing thematrix of the Fresnel coe�cients.This fully dynamical theory is used for numerical calculations. However, the equations ofthis rigorous theory are rather cumbersome for being discussed in a qualitative way. Thereforewe formulate multiple-beam approximations of the dynamical theory. These approximation are
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ŷ ẑ x̂Figure 5.1. A sketch of a multilayer grating with a fan consisting of four di�racted re
ected waves.employed in the regions where the dynamical e�ects prevail. Our new approach consists ofintroducing the two-beam approximation, similarly to the two-beam case of X-ray dynamicaldi�raction by crystals. We discuss also non-coplanar scattering in the geometry where theincident wave falls (nearly) parallel to the wires.The discussion of these theories, together with numerical simulations and their comparisonis presented in the subsequent section. As a particular example we take a surface grating with awire-to-period ratio 0.5 and a period of 8000 �A, which was a characteristic sample of the seriesof the samples we worked with. We show that the odd order truncation rods are strong, andmost parts of their pro�le can be well explained by both the dynamical theory and the DWBA.In contrary, the even truncation rods are forbidden by all the single-scattering theories, thecalculation needs to deal with a multiple scattering and thus only the dynamical treatment isappropriate. We use the numerical simulation to determine the number of interacting wave�eldsneeded in the multiple-beam approximations in order to obtain the scattered intensities with asu�cient precision.Our theories and their formalism for the periodic grating can be applied for certain aperiodicgratings as well, mainly to the gratings where the lateral pro�le has a discrete Fourier transform.In particular, we study qualitatively the expected re
ectivity map of a quasiperiodic Fibonaccigrating. We brie
y discuss how to use the theories in order to calculate the re
ectivity bygratings with non-rectangular wire shapes (trapezoidal gratings).The calculations above considered perfect multilayer gratings. However, as it was the caseof the planar multilayers, the interfaces between the materials can be imperfect. We distinguishbetween the side wall roughness of the grating shape and the interface roughness of the horizontalinterfaces. We use our matrix formalism of the dynamical theory and we show how theseroughnesses in
uence the scattered intensity. Thus our approach is a generalization of there
ection from rough planar multilayers; however, for the case of gratings, we have not found acorrect matrix treatment in the published literature where mostly the roughness is involved bysupposing the usual exponential kinematical damping factors.In the �nal part of this chapter we present a measurement and �t of the structural parametersof a multilayer grating with three-and-a-half partially etched periods.



5.2 Review of the published work 835.2 Review of the published workSimple surface gratings and multilayer gratings have achieved scienti�c and practical applicationsmainly in optical or electronic devices. Multilayers and gratings are the microstructures usedas optical elements for most of this century, mainly for the soft X-rays and ultraviolet spectraldomains. Joining of these two optical microstructures to form combined microstructures greatlyenhances both the throughput and the resolution attainable in soft X-ray and extreme ultravioletoptics [Bar89]. Di�raction gratings are well known for their high spectral resolution. Comparedto a simple surface grating, the multilayer gratings generate higher di�raction orders, thus highere�ciencies. Optimum e�ciency is obtained when the geometry for a certain grating order issuch that the multilayer Bragg relation is ful�lled (the grating formula). Lamellar multilayergratings are also applied in X-ray spectroscopy as spectral analyzers [KLC+96].There are also interests in studies of structured multilayers, which are laterally non-periodic.The so-called Bragg-Fresnel optics have been developed recently for X-ray optics [Erk90] andstrati�ed Fresnel linear zone plates are being used as X-ray optical elements [SA93, ASB+94].In semiconductor physics, the quantum wires (and quantum dots as well) are partially based onlayered surface gratings [WV91, TRL+92a].The X-ray scattering techniques, being the non-destructive methods, are advantageouslyemployed for the structural characterization of the gratings. Both X-ray re
ection (XRR) andX-ray di�raction (XRD) experiments are performed, the latter for the crystalline samples.In the theoretical approaches, X-ray di�raction applies the three-dimensional crystal latticeperiodicity to the wave equation, and the additional arti�cial lateral periodicity is treated after-wards. In X-ray re
ection this one-dimensional periodicity is the main characteristics applieddirectly for solving the wave equation.Scattering theories of di�erent complexity are involved in the calculation of the intensityscattered from multilayer gratings (MLGs), ranging from fully dynamical to simple kinematicalones. Within the XRR the kinematical and dynamical theories have been used, in XRD alsothe distorted-wave Born approximation (DWBA) has been applied. Let us now review thesetheories.Kinematical theoriesIt is possible to solve the wave equation by means of the Green functions and develop theexpression for the scattered wave�eld into a Born series [SA93]. Cutting this series after the�rst iteration we get the �rst Born approximation or the kinematical theory. The kinematicaldi�raction integral is mostly calculated using the Fraunhofer approximation [BTS+95, KLC+96].However, the resulting amplitude of the scattered wave depends on the sample size as it isthe case of the conventional kinematical XRD by small crystals. This leads to the simpleexplanation of the re
ectivity map, mainly the peak positions by means of the grating formula[PdWL+91]. However, the main disadvantage of such a formulation is that the sample size hasto be smaller than the �rst Fresnel zone, which is not ful�lled for laterally large multilayers(Sec. 3.5). This approach is also improper for comparing analytically the intensities calculatedby the kinematical and dynamical theories: the intensity calculated by the kinematical theoryincreases quadratically with the sample dimension, whereas the dynamical theories apply theboundary conditions and use the Fourier transform for laterally in�nite structures, and not forsmall samples. We overcome this problem by applying the stationary phase method to thecalculation of the kinematical di�raction integral, which will furthermore enable us to clearlyrelate the obtained re
ectivity coe�cients to the classical Fresnel coe�cients.Dynamical theoriesIn 1907, Rayleigh [Ray07] studied the optical re
ectivity from periodic gratings. In his theory thescattered wave�eld consists of \pseudo-periodic" waves. These waves were introduced into X-raydi�raction from crystals by Ewald [CJK92], they are used in solid state physics as Bloch waves
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ectivity from multilayer gratings[AM76], and they are known by mathematicians also as the solution of the Floquet theorem[SJMP91].In a modern review Maystre [May84] presented rigorous vector theories of di�raction gratingsfor optics. He discussed the validity of the Rayleigh hypothesis [Ray07], i.e. the validity of theRayleigh expansion inside the grating. For X-rays, the scalar theories are su�cient (page 21).They are also discussed in the above mentioned work. The formulae for the Rayleigh coe�cients(so-called Bm) are integral equations. In the X-ray region, they have been applied by Tolan etal. [TKB+92, TVS+95, TPBK95] to calculate the scattering amplitude by a trapezoidal surfacegrating.Unfortunately, the integral equations have to be integrated numerically. Therefore anothertype of theories calculating the scattering from gratings has been developed|the dynamicalmatrix methods. We will employ them in the rest of this work and we show how they allowus to explain the scattering phenomena.The dynamical matrix methods calculate the Fourier components of the scattered wave�eld(i.e. the Rayleigh coe�cients) separately in di�erent layers. The wave�elds are then coupled atthe horizontal interfaces by applying the boundary conditions. A convenient matrix formalismsimilar to the Ab�eles method [Ab50] is used for this task by all the authors.Most of the work has been done on rectangular periodic gratings. Considering the non-periodic gratings, the dynamical matrix theory has been employed for the calculation of there
ection from strati�ed Bragg-Fresnel gratings [SA93]. Attention is paid also to gratings withtrapezoidal and triangular wire shapes [Nev94].We distinguish two types of dynamical matrix theories, depending on how they calculate thescattered wave�elds inside the \structured" (etched, see Fig. 5.2) layer (for rectangular gratings)or along the vertical direction ẑ (for any grating pro�le):The di�erential method numerically integrates the di�erential wave equation (e.g. by meansof the Runge-Kutta method). Nevi�ere [Nev94] used the di�erential method for a gratingwith triangular wire shapes, Erko et al. [EVV+93] used this method also for a rectangulargrating.The modal method calculates the wave�eld in the whole laterally structured layer. We dis-tinguish two types of modal theories, depending on how they calculate the wave�eld insidea structured layer:The eigenvalue method the periodic susceptibility in the layer is expanded into a Fourierseries and the wave�eld is developed into Bloch waves. The solution of the wave equa-tion is transformed into an eigenvalue problem, which gives the wave vector compo-nents and the Fourier coe�cients of the scattered waves. This method has been usedfor etched gratings [MVV+94] as well as for multilayer mirrors modulated with atransverse acoustic wave [AEM92].It is this approach, the modal eigenvalue dynamical matrix method, which we willfurther use as the \dynamical theory" in the present work.The point matching method solves the wave equation inside the two homogeneousparts of the structured layer. The wave�elds in both wires are coupled by applyingthe boundary conditions on the side walls. This leads to a transcendental dispersionequation for the wave vector components of the di�racted waves [LG85, SJMP91].The wave�eld is then Fourier transformed in order to get the Fourier coe�cients ofthe scattered wave�eld.A comparison of the modal and di�erential methods for multilayer grating e�ciencies hasbeen published [MVV+94]. The authors have found a good agreement of the calculated curvesfor gratings with lateral period between 4 and 10 �m and CuK� radiation. (In the present workwe are mainly interested in short period gratings with a period at about 1 �m and smaller andwavelength of about 1 �A).



5.2 Review of the published work 85However, a comparison between the modal and di�erential methods has not been done forthe interesting case of a strong dynamical interaction. Such an interaction can be achievedwhen the incident beam falls parallel to the wires, see Fig. 5.4(d). In this work we present thecalculation for this case (Sec. 5.7.3) by means of the eigenvalue method and we address theproblem of comparing it with the point matching method for future studies.Rough gratingsMost theoretical works about gratings consider perfect samples, whereas rough gratings havenot attracted much attention. Further, all the studies of imperfect gratings were limited to therough interfaces. They neglected the side wall roughness due to the etching process itself.Erko et al. [EVV+93] assumed that the re
ectivity losses are equally distributed in all thedi�racted orders, therefore they empirically proposed a correction in the form of a classical kine-matical Debye-Waller damping factor exp(�K2�2 sin2 �) which they applied to the dynamicallycalculated intensity of a perfect grating. The � is the scattering angle and � is an e�ectivegrating roughness.Tolan et al. [TPBK95] included the roughness by averaging the Rayleigh{Mayster Bm coef-�cients. Their damping factors were similar to the dynamical \rapid" Névot-Croce factors, cf.Eq. (4.33).In the present work, we introduce the roughness of both the side walls of the grating shapeand of the horizontal interfaces of a multilayer grating in the framework of the dynamical matrixapproach as well as of the kinematical theory.X-ray di�raction theoriesThis review of the published matter on the gratings would not be complete without comprisingthe theories of X-ray di�raction from crystalline gratings.In general, X-ray di�raction dynamical multiple-beam scattering theories [Cha84] are rathercomplex, numerically di�cult and they do not provide an easy relation between the formulaeand the calculated map of the scattered intensity. Therefore we usually restrict the approachto multiple-beam scattering. For the region near reciprocal lattice points, the two-beam case ismostly employed. Further, Taupin [Tau64] and Takagi [Tak69] derived equations that describedi�raction by non-ideal crystals. They lead to the so-called semi-kinematical approximation,which is adequate for di�raction by multilayers [Spe81, BHL86], or periodic quantum wires[HTK+93]. The kinematical theory has been used in the calculation of di�raction by periodicgratings [TRL+92b, TRL+92a], surface gratings [TPBK94], for polystyrene �lms deposited onlaterally structured surfaces [TVS+95] and it has been employed for a theoretical treatment ofa quasiperiodic grating [Mik95]. The distorted-wave Born approximation is also used, and it isreviewed separately below. The kinematical theory with the stationary phase method has beenemployed for di�raction by planar multilayers as well [Mik95, Hol96] and the similarity to thesemi-kinematical approximation has been addressed.In the present work on re
ection from lateral gratings, some ideas coming from the X-raydi�raction theories for crystals have been found stimulating:� the representation of the scattering phenomena in the reciprocal space by the Ewald con-struction,� developing the dynamical multiple scattering theory into a two-beam case and studyingthe single-scattering processes,� making use of the kinematical theory as well as� of the distorted-wave Born approximation.We will show that we succeeded to reformulate the matrix eigenvalue method into the two-beamapproximation, very similar to the two-beam case of the dynamical X-ray di�raction. Further,



86 Chapter 5: X-ray re
ectivity from multilayer gratingswe have achieved to calculate the scattered intensity by means of the kinematical theory usingthe stationary phase method.Distorted-wave Born approximationPerturbation theories are often involved in the scattering calculations. The distorted-wave Bornapproximation (DWBA) is successfully employed in the calculation of scattering from rough andimperfect multilayers [SSGS88, HKO+93], as we have already discussed in Sec. 4.5. On the otherhand, DWBA is also found advantageous for the calculation of scattering from perfect structures[Vin82, Dos87]. It has been successfully applied to calculate grazing incidence di�raction (GID)by multilayers [HB94, BG95]. DWBA of the second order enabled to explain all features on aXRD pattern of multilayer surface gratings [GBM+93, BG95], where the authors have foundthe e�ects of a dynamical interaction of the wave�elds in the partially etched grating and theunderlying multilayer.Despite these results in XRD and GID, it was believed that in the re
ectivity experiments theDWBA is applicable only in the case of small roughness, and it cannot be employed to calculatethe re
ection from a grating, which can be considered as a big perturbation [TPBK95]. In thepresent work we discuss that it is possible to use the DWBA for most parts of the truncationrods, except for the known regions where the strong dynamical interaction between di�erenttruncation rods becomes important.
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zjzj�1 d

d(j)b = (1� �(j))dd(j)a = �(j)d
d

tjx

z
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d K1 y z
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Figure 5.2. (a) Sketch of a multilayer grating. There is a homogeneous layer (e.g., a bu�er layer) depositedon the substrate, covered by two structured layers and a capping layer. The system exhibits the lateralperiodicity d. The incident beam K and the fan of specularly re
ected (K0) and di�racted (Kh) beamsare schematically shown. (b) Notation of the variables describing one structured layer. (c) Sketch of amultilayer grating consisting of three layers with unique side walls. (d) Sketch of a trapezoidal multilayergrating.



5.3 General characteristics of multilayer gratings 875.3 General characteristics of multilayer gratingsIn this section we introduce the common notation of variables and functions used in this chapter.A three-dimensional view of a rectangular multilayer grating is presented in Fig. 5.1. Thewhole multilayer is characterized by the lateral periodicity d in the direction x̂ . The gratingis homogeneous in the ŷ direction, therefore it is su�cient to draw 2d section of the gratings,Fig. 5.2. The most usual cases of the wire pro�les are the rectangular (Fig. 5.2(a) and (c)) andtrapezoidal (d) gratings.The multilayer grating consists of N layers deposited on the substrate. The numbering ofthe layers and interfaces follows the convention introduced in Fig. 3.5. The jth layer (thicknesstj) is bounded by two interfaces j and j + 1, the z-coordinate of the jth interface is zj . Thesample dimensions are denoted Lx and Ly and its surface area S = LxLy.Two layer types can occur in the MLG. There are homogeneous layers, e.g., a bu�er or acapping layer, and structured layers, whose structure is periodic along the axis x̂ with the lateralperiodicity d. Each period consists of two parts (blocks, wires) a(j) and b(j). We denote theirsusceptibilities �(j)a ; �(j)b and their widths d(j)a = �(j) d, d(j)b = (1� �(j)) d with 0 � �(j) � 1.The lateral periodicity d is a characteristic property of
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��������QxQzQy 2�dFigure 5.3. Sketch of the reciprocallattice of a periodic grating.
the multilayer, �(r) = �(r + d x̂ ). The reciprocal latticeof a periodic grating is shown in Fig. 5.3. It consists oftruncation rods equidistantly distributed in the reciprocalspacehm = hm x̂ ; hm = 2�d �m ; (5.1)where m is integer.Let us consider a structured layer. We develop its sus-ceptibility into the Fourier series�(x; z) = Xh �h(z) eihx (5.2)�h(z) = 1d Z d=2�d=2 dx�(x; z) e�ihx : (5.3)For brevity we omit the index j in the variables related to a layer j. Within the rectangularMLG, Fig. 5.2(c), both side walls separating the a and b materials are unique and �j = � forall layers j. We choose the origin or the coordinate system in the middle of the material a, thus��h equals �h.We introduce the shape function 
a(r) of the material a in the layer. It equals unity insidethe material a and it is zero elsewhere, see Fig. 5.2(b). The susceptibility is�(x; z) = �a
a(x; z) + �b�1� 
a(x; z)� (5.4)and its one-dimensional Fourier transform is�h(z) = (1d [�ada(z) + �bdb(z)] = �b + (�a � �b) da(z)=d for h = 0 ;(�a � �b)
ah(z) for h 6= 0 : (5.5)The Fourier coe�cients 
ah are calculated similarly to (5.3). We can see that da(z)=d is thecoverage of the material a at level z.Further we de�ne the three-dimensional Fourier transform ~
a(q) of the shape function 
a(r)~
a(q) = Z dr 
a(r) e�iqr : (5.6)



88 Chapter 5: X-ray re
ectivity from multilayer gratingsIn comparison to the de�nition (5.3), we �nd useful to de�ne the Fourier transform (5.6) so thatit integrates over the whole layer and it is not normalized to its volume.Since the wires a are distributed periodically, their shape function can be given as a convo-lution of the shape function of one period 
a1(r) (de�ned on the interval �d2 � x � d2 ) with aperiodic arrangement of �-functions
a(r) = 
a1(r)
Xn �(x � nd) : (5.7)The Fourier transform~
a(q) = 4�2d ~
a1(qx; qz) � Xhm= 2�d m�(qx � hm) �(qy) = Sd ~
a1(qx; qz) Xh= 2�d m�qx;h � �qy;0 (5.8)is represented in reciprocal space as the reciprocal lattice (i.e., the truncation rods (qx = hm))modulated by the Fourier transform of the shape function of one wire ~
a1.With respect to the future application in multilayer gratings, the Fourier transform ~
a1 isnaturally de�ned with respect to the lower interface of the structured layer zj (see Fig. 3.5(a),tj is the layer thickness)~
(j)a1 (qx; qz) = Z zjzj�tj dz Z d=2�d=2 dx
(j)a (r) e�i(qxx+qz(z�zj))= Z 0�tj dz Z d=2�d=2 dx
(j)a (r � zj ẑ ) e�i(qxx+qzz) : (5.9)Therefore these Fourier coe�cients in a multilayer grating will be the same for structured layersof the same type, i.e., they will not have di�erent phases depending on the thickness of the wholemultilayer.Further, we de�ne the area (i.e., the cross-section in the plane (x̂ ; ẑ )) of one period Vab = dt(t � tj is the layer thickness), and Va = ~
a1(0; 0) = R t(j)0 dz R d=2�d=2 dx
a(r) gives the area of thewire a, which equals dat for a rectangular grating. The area of the wire b is Vb = Vab � Va,which becomes dbt for a rectangular grating.We de�ne the coverage of the layer j by the material a as �(j)a � V(j)aVab .Explicitly for a rectangular grating, the Fourier transforms of the quantities de�ned aboveare1 
ahm = dad sinc hmda2 = � sinc (�m�) (5.10)~
a1(hm; qz) = da sinc hmda2 eiqzt � 1iqz = d
ahm eiqzt � 1iqz : (5.11)We recall that hm = 2�=d �m according to (5.1).We note that the Fourier coe�cient 
ahm falls as 1=m. Further we can see that if the ratio1=� = d=da is integer, then the Fourier transforms are zero if m is multiple of 1=�.The wave�eld excited by the incident plane wave Einc(r ;K ) = E0 eiKr , with the vacuumwave vector K = (Kx;Ky;Kz), obeys the wave equation (3.12)(� +K2)E(r) = V (r)E(r) ; V (r) = �K2�(r) : (5.12)As in the previous chapters, the vacuum wavelength is � and K = 2�=�. The crystal polariz-ability � and the potential V are zero in vacuum and complex in a medium.The main task of our theories is to determine the intensities and directions of the scatteredwaves propagating above the sample surface by solving the wave equation for this case of aone-dimensional lateral periodic grating (5.2){(5.3).1 sinc (x) � sin(x)x



5.4 Kinematical theory 895.4 Kinematical theoryIn this section we formulate the kinematical theory for the scattering by a multilayer grating.We will make use of the results of Sec. 3.5, where we dealt with the re
ectivity from planarmultilayers.There we derived the kinematical integral (3.97). In the present case of a MLG, the suscep-tibility is a periodic function (5.2). Therefore the re
ected amplitude on the sample surface ismodi�ed toEr(r=0) = Z dr 0 �K24� �Xh �h(z0) eihx0 eijr 0jKjr 0j E0 eiKr 0 : (5.13)Let us join the exponential terms and introduce the lateral wave vectorKhk = Kk + h = (Khx;Ky; 0) ; Khx = Kx + h : (5.14)Now we can separate the contribution of di�erent Fourier componentsEr(r=0;K ) = Xh Eh(K ) (5.15)Eh(K ) = K24� E0 Z dz �h(z) eiKzz Uh(z;K ) ; (5.16)Uh(z;K ) = ZZ dx dy 1jr j ei(Khxx+Kyy+Kjr j) = ZZ drk 1jr j ei(Khkrk+Kjr j) ; (5.17)where jr j =px2 + y2 + z2 .The integral (5.17) is of the same form as the integral (3.102), which we have already solvedexactly (i.e., without the restriction to the Fraunhofer approximation) using the stationary phasemethod. Similarly to (3.104) we getUh(z;K ) = 2�iKhz eiKhzz (5.18)and Khz =qK2 � (K2hx +K2y ) : (5.19)The latter equals the z-component of the di�racted wave vector (Khk;�Khz) with the parallelcomponent given by (5.14) and with the length K. Thus the end-points of the di�racted wavevectors lie on the Ewald sphere (Fig. 5.5).The di�racted-re
ected waves are plane waves with the wave vectorKh = Khk �Khzẑ (5.20)and the amplitudeEh = E0 iK22Khz Z dz �h(z) ei(Khz+Kz)z = E0 iK22Khz Z dz �h(z) e�iQhzz : (5.21)The incident wave is scattered by the periodic grating into a fan of di�racted waves, seeFig. 5.1. The wave vector transfer of the di�ractionQh = Kh �K = h � (Khz +Kz)ẑQhz = �(Khz +Kz) (5.22)is constant over the whole MLG since we used the vacuum incoming plane wave as the eigenstateentering the Born approximation.
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x̂dŷ (d)(c)(a) (b)

d(�) = d= cos��

Khk

KhkKk

Qx

Qx

h

Kk h
KkKk h � = 90� QxQy Qy� Khk = Kk + h

Qy

Figure 5.4. Sketch of the lateral real (a) and reciprocal (b){(d) spaces. The azimuthal angle � changesthe \e�ective" grating period d(�) and it diverges when the incident beam is parallel to wires. Reciprocalspace drawings illustrate the (lateral) Bragg law (5.23) for di�erent azimuths.If we write the above equation in the parallel coordinates, we get the (lateral) Bragg lawKhk = Kk + h x̂ (5.23)shown schematically in Fig. 5.4. Rewritten for the coplanar geometry this leads to the conditoncos �hm � cos! = �d m ; (5.24)where �h is the exit angle of the di�racted-re
ected wave Kh and ! is the angle of incidence.From the X-ray di�raction point of view, this grating formula is equivalent to a single Lauecondition [AKK+74, Pin78, SJMP91].Considering the specular scan (truncation rod m=0) the kinematical integral (5.21) is thesame as that in the re
ectivity (3.105). Therefore the specular intensity of the MLG is exactlythat of the averaged multilayer, since �0(z) is the laterally averaged susceptibility.Let us now deal with the non-zero truncation rods (TR m, m6=0, experimentally measurableas non-specular scans). Since the Fourier transform of the susceptibility is constant in each layerj (for an arbitrary wire shape), then the integral (5.21) turns into the summation formulaEh = E0 iK22Khz NXj=2 F (j)h e�iQhzzj : (5.25)We call F (j)h the structure-geometric factor of layer j. For a rectangular grating it becomesF (j)h = �(j)h e�iQhztj � 1�iQhz : (5.26)



5.4 Kinematical theory 91The above formula is very similar to the formula of the kinematical di�raction by crystallinelayers (cf. the previous discussion for planar multilayers on page 42). This is because the bulkof the grating (i.e., the lateral distribution of the susceptibility) contributes to the scattering,whereas on re
ection from planar multilayers the scattering is only due to the susceptibilitychange at 
at interfaces.We can easily reformulate the expression (5.25) into a relation acting in the \interface"spirit of the SXR from planar multilayers, see Eq. (3.113). We put the expression (5.26) for thestructure factor F into the equation (5.25) for Eh and separate the two sumsEh = E0 K2�2KhzQhz NXj=2 �(j)h �e�iQhzzj+1 � e�iQhzzj�= E0 K2�2KhzQhz NXj=1 ��(j)h � �(j+1)h � e�iQhzzj+1� E0 NXj=1 rkinh;j e�iQhzzj+1 : (5.27)We introduced the Fresnel re
ection coe�cient of kinematical di�raction of an interface jrkinh;j � K2 (�(j)h � �(j+1)h )�2KhzQhz : (5.28)For the case of specular re
ection (h = 0; Q0z = �2K0z), this perfectly coincides with thekinematical Fresnel re
ection coe�cient (3.114) for the re
ectivity from planar multilayers.This generalized Fresnel coe�cient for the re
ection from gratings is proportional to thedi�erence of the Fourier coe�cients of the susceptibilities of the two subsequent layers, andinversely proportional to the ẑ component of the scattering vector and of the wave vector of thedi�racted wave.Finally, the re
ectivity amplitude is Rh = Eh=E0 and the sample re
ectivity de�ned as theratio of the energy 
uxes isRh = jRhj2 KhzKz : (5.29)A graphical representation of this scattering phenomena by means of the Ewald constructionis shown in Fig. 5.5. The di�racted wave vectors lie on the Ewald sphere K of the incident wavewhere it intersects the grating truncation rods. If a TR crosses the Ewald sphere at two points,then a pair of di�racted waves is excited. The di�racted-re
ected wave propagates above thesample surface and the di�racted-transmitted wave propagates below the surface.When we will further say that \an incident wave is scattered into a truncation rod h", thenwe mean that for a given incident wave there is a di�raction process characterized by the lateralwave vector transfer h .For a certain angle of incidence the Ewald sphere touches a given positive TR mmax in onepoint only (mmax = +2 in Fig. 5.5). This is the \starting point" of a Qz-scan, and according topage 15 this \starting angle" equals!hmmax =p2hmmax=K =p2�mmax=d : (5.30)We summarize that an incident plane wave creates a �nite fan of di�racted (scattered) waveswith real vacuum wave vectors Kh, because there is a �nite number of truncation rods inside theEwald sphere of the incident wave. The TRs outside the Ewald sphere correspond to vacuumevanescent waves which cannot be measured. The condition of Khz being real is expressed bythe inequalityK2 � (K2hx +K2y ) > 0 : (5.31)



92 Chapter 5: X-ray re
ectivity from multilayer gratings
-2mmin K 1 2=mmax-1

Ki KL

0
K�1

K
Kf

Qx

�Qz

Figure 5.5. Reciprocal space representation and the Ewald construction for the scattering by a multilayergrating (coplanar geometry). The reciprocal space of the MLG consists of truncation rods distributedequidistantly along Qx. For a given wavelength the intensity distribution along certain parts of truncationrods can be explored; the dashed parts of the truncation rods are not accessible in coplanar re
ectiongeometry (vacuum evanescent waves). For clarity, we drawn only 24 truncation rods inside the large sphereKL of diameter 2K. In a real case, there should be thousands of them (since 2K=(2�=d) � d=� � 103)and the angle of incidence should be at about one degree.We denote the number of excited truncation rods by D. Since the above condition can berewritten asjKx + hj �qK2 �K2y ; (5.32)then the truncation rods of the lowest and of the highest order are2mmin =l� �qK2 �K2y +Kx�=dmmmax =j�qK2 �K2y �Kx�=dk (5.33)and the dimensionD = mmin +mmax + 1 : (5.34)For a rectangular grating consisting of a single layer (i.e. a surface grating) the amplitudeof the wave scattered into the TR h isEhm = E0 iK22Khmz (�(2)a � �(2)b ) � sinc (�m�) e�iQhmzt2 � 1�iQhmz (5.35)2Function bxc returns the largest integer smaller or equal to x, and dxe returns the smallest integer equal toor larger than x.
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Figure 5.6. Ewald construction of the kine-matical theory illustrating the scattering fromthe incident-transmitted to the di�racted-re
ected wave. Similar �gures drawn for theDWBA as well as for the two-beam approxi-mation of the dynamical theory are drawn inFigs. 5.7 and 5.10, respectively.

Qx
h
h

0

Qz
K QKh

and its re
ectivityRhm = K4���(2)a � �(2)b ��24KhmzKz �2 sinc2(�m�) (t2)2 sinc2 Qhmzt22 : (5.36)From this follows that the maxima in the Qz direction are at the positions Qz;p = 2�t p (so-calledthickness oscillations, see page 36). When this is combined with the lateral di�raction conditionQk = hm, then peaks in the reciprocal space are expected atQmp = 2�d m x̂ + 2�t p ẑ : (5.37)In the coplanar geometry, the above condition provides two equations connecting the angleof incidence !mp and the exit angle of a di�racted-re
ected wave �mp2�� (cos �mp � cos!mp) = 2�d m (5.38a)2�� (sin �mp + sin!mp) = 2�t p (5.38b)which yields the grating formula [SJMP91, PdWL+91, KLC+96]p sin!mp �m td cos!mp = �2t p2 + �t2d2 m2 (5.39)for the maxima of the angle of incidence. Similarly the maxima for the exit angle arep sin �mp +m td cos �mp = �2t p2 + �t2d2 m2 : (5.40)Within the kinematical theory the peak positions are equidistant in both directions Qxand Qz of the reciprocal space, see Fig. 5.8(a). The kinematical theory does not take therefraction into account. In order to explain the positions of the experimentally found maxima,the kinematical theory would have to be \corrected" for this e�ect. This is not necessary in thedynamical theory nor in the DWBA, where the refraction is naturally involved.
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ectivity from multilayer gratings5.5 Distorted-wave Born approximationIn this section we calculate the intensity scattered by a multilayer grating by means of thedistorted-wave Born approximation (DWBA) of the �rst order. Therefore we solve the waveequation (5.12) with the periodic potential V (r) = V (r + d x̂ ). We suppose a grating with 
atinterfaces and walls (no roughness), and therefore the incoherent cross section (4.45) is zero. Wedeal with the coherent scattering term (4.44), which needs the calculation of the matrix element(4.54).The DWBA method requires the splitting of the scattering potential into the ideal andperturbing potentials (4.48), V (r) = V id(r)+V p(r). In homogeneous layers, including the sub-strate, we choose the ideal potential equal to the potential of the layer, therefore the perturbingpotential is zero there. In structured layers we choose as the ideal potential V id the potential ofa virtual planar multilayer, where V id is constant within each layer. The perturbing potentialis V p = V � V id.The main objection against the usage of the DWBA for the calculation of the re
ectivityfrom gratings [TPBK95] was that the perturbing potential V p is large, i.e., it is non-zero in largevolume of the grating. However, in this work we will show that this is not the main obstacleand that the choice of the eigenstates determines the correct results. By comparing the DWBAto the dynamical theory and its two-beam approximation we will determine the regions of thevalidity of the DWBA.The choice of V id determines our set of eigenstates. Two independent eigenstates (givenby (4.50) or (4.52)) are required for the DWBA calculation. They are superpositions of thetransmitted (T ) and the re
ected (R) plane waves. We follow our convention (pages 34 and 68)concerning the phases of the transmitted T (j)1;2 and of the re
ected R(j)1;2 waves to be zero at thelower interface of a layer j, zj�1 � z � zj . The perpendicular wave vector components of theseeigenstates follow the spherical dispersion relation (3.11)k(j)lz =qK2(n(j))2 � (k2lx + k2ly) ; l = 1; 2 : (5.41)This means that the wave vectors are corrected for refraction in an averaged medium.Now we will consider some general properties of the perturbing potentialV p(r) = V (r)� V id(r) = (Va � V id)
a(r) + (Vb � V id) (1� 
a(r))= (Vb � V id) + (Va � Vb)
a(r) : (5.42)The Fourier transform of the perturbing potential ~V p(q), and the Fourier transform overone period, ~V p1 (q), are calculated similarly to (5.8) and (5.9).At this point we have to propose the value of the ideal potential V id given by the generalform (5.42). There are three natural possibilities:1. V id shall be the laterally averaged layer potentialV id = VaVa + VbVbVab = Vb + (Va � Vb) VaVab = Vb + (Va � Vb) �a : (5.43)This leads to the perturbing potentialV p = (Va � Vb) [
a(r)� �a] : (5.44)2. V id is equal to the potential of the material b, thus V id = Vb. This gives the perturbingpotentialV p = (Va � Vb)
a(r) : (5.45)
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Figure 5.7. Ewald construction of the fourscattering processes T1T2 (wave vector trans-fer q0), T1R2 (q1), R1T2 (q2) and R1R2 (q3),which are considered by the DWBA calcula-tion. The lateral component of the wave vec-tor transfer between the states 1, 2 equals areciprocal grating vector h and it is the samefor all four scattering processes. Similar �g-ures drawn for the kinematical theory as wellas for the two-beam approximation of the dy-namical theory are drawn in Figs. 5.6 and 5.10,respectively.
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3. V id is equal to the potential of the material a, thus V id = Va. This gives the perturbingpotentialV p = �(Va � Vb)
a(r) : (5.46)Now we evaluate the matrix elements (4.54). The matrix elementV id12 = hEid2 jV idjE0i = 2iKz � Rid(K ) � S �K2k ;Kk (5.47)is the same as that given by (4.62), where Rid is the specular re
ection amplitude by the virtualundisturbed multilayer.The matrix element of the perturbing potential isW � hEid2 jV pjEid1 i = NXj=2W (j) ; (5.48)whereW (j) � hEid;(j)2 jV p;(j)jEid;(j)1 i= T (j)1 T (j)2 ~V p;(j)(�q (j)0 ) +R(j)1 R(j)2 ~V p;(j)(�q (j)3 ) +T (j)1 R(j)2 ~V p;(j)(�q (j)1 ) +R(j)1 T (j)2 ~V p;(j)(�q (j)2 ) : (5.49)The three-dimensional Fourier transform of the perturbing potential ~V p;(j)(�q) is calculatedaccording to (5.6) or (5.8).Finally we comment on the one-dimensional Fourier transform (5.2) of the perturbing po-tential. We prefer to express it by the Fourier series of the shape function. Alternatively, it canbe developed into the Fourier series of the susceptibility. Both representations are equivalentand for the ideal potential being the averaged layer potential we will �ndV p = �K2(�(r)� �0(z)) = �K2Xh6=0�h eihx= �K2(�a � �b)Xh6=0 ~
ah eihx : (5.50)



96 Chapter 5: X-ray re
ectivity from multilayer gratings5.5.1 Specular scanIn the specular scan it holdsq3z = �q0z and q0x = q1x = q2x = q3x = q1z = q2z = 0in each layer. Then the contribution of one structured layer isW (j) = T (j)1 T (j)2 ~V p;(j)(�q (j)0 ) +R(j)1 R(j)2 ~V p;(j)(�q (j)3 ) +T (j)1 R(j)2 ~V p;(j)(0) +R(j)1 T (j)2 ~V p;(j)(0) : (5.51)Let us make the choice of the ideal potential V id now. Firstly, let us use the perturbingpotential according to the rule 1., Eq. (5.44). Then W (j) simpli�es since~V p(0; 0) = (Va � Vb) �Z dr 
a(r)� ~
a(0)� = 0 (5.52)and the scattering processes T1R2 and R1T2 do not contribute to the matrix element (5.51) ofthe specular re
ectivity.Now let us consider a rectangular grating, which is a special case of a grating with the shapefunction 
a(r) = 
a(x)
a(z). Here the contribution of the terms T1T2 and R1R2 is proportionalto ~V p(0; qz) = (Va � Vb)"Z d=2�d=2 dx
a(x)� d�a# Z dz
a(z)e�iqzz = 0 : (5.53)From this it follows that the choice 1. of the ideal potential corresponding to a virtual multilayerwith the susceptibility averaged in the layers does not contribute to the perturbation term in thespecular re
ectivity, W (j) = 0. Consequently, the specular re
ectivity amplitude of the gratingequals the re
ectivity from the laterally averaged multilayer.If we choose the undisturbed system according to the possibilities 2. or 3., then the Fouriertransform of the perturbing potential for the specular re
ectivity scattering processes is non-zeroand the contributions of the four scattering processes are proportional to (Va�Vb) ~
a(0; 0 or �qz), and the perturbation term will in
uence the specular re
ectivity curve. Since it is preferableto calculate the whole specular curve dynamically, we will further prefer the form (5.44) of theperturbing potential. We note that this will not in
uence considerably the intensity of the non-specular truncation rods, since it is proportional to the potential contrast �(Va � Vb) and thedi�erences would be attributed to the eigenstates (amplitudes and phases).Finally, making use of the choice 1., the amplitude of the specular re
ectivity by a rectangulargrating isRspec = Rid(K ) (5.54)and that of a general (e.g., a trapezoidal) grating isRspec = Rid(K ) + 12iKz NXj=2(V (j)a � V (j)b ) "jT (j)1 j2 ~
(j)a (0; q(j)0z )� V(j)a e�iq(j)0z tj � 1�iq(j)0 tj ! (5.55)jR(j)1 j2 ~
(j)a (0;�q(j)0z )� V(j)a e�iq(j)0z tj � 1�iq(j)0 tj !# :We recall that the potential contrast is proportional to the di�erence of the susceptibilities orthe refractive indices, Va � Vb = �K2(�a � �b) = 2K2(�a � �b).For most samples, the susceptibility (the index of refraction) of the averaged grating layeris higher (lower) than that of the substrate, respectively. Therefore we observe a \dip" inthe specular re
ectivity curve [TPBK95], see Fig. 5.20(b), at the critical angle of the averagedgrating, which is between the zero angle of incidence and the critical angle of the substrate.



5.5 Distorted-wave Born approximation 975.5.2 Non-specular scansThe potential contrast (Va � Vb)
a(r) describes the grating pro�le and we will treat it as aperturbation. Since the contrast is zero in homogeneous planar layers, these layers do notcontribute to the non-specular re
ectivity by a matrix element. Therefore we will now calculatethe matrix elements of the structured layers.The matrix element of a structured layer j is given by (5.49)W (j) = Sd (Va � Vb) �qy ;0Xh �qx;h �T (j)1 T (j)2 ~
(j)a1 (�q (j)0 ) +R(j)1 R(j)2 ~
(j)a1 (�q (j)3 ) +T (j)1 R(j)2 ~
(j)a1 (�q (j)1 ) +R(j)1 T (j)2 ~
(j)a1 (�q (j)2 )� : (5.56)According to the discrete Fourier transform (5.8), this allows excitations of separate truncationrods m with the lateral wave vector transferQhm;x = (K2 �K1)x = hm = 2�d �m ; m integer. (5.57)This is a result we have got also from kinematical theory and the stationary phase method,Eq. (5.22).The amplitude of each scattered wave excited by the incident wave isRh = 12iKhz d NXj=2(V (j)a � V (j)b )�T (j)1 T (j)2 ~
(j)a1 ��h;�q(j)0z �+R(j)1 R(j)2 ~
(j)a1 ��h;�q(j)3z �+T (j)1 R(j)2 ~
(j)a1 ��h;�q(j)1z �+R(j)1 T (j)2 ~
(j)a1 ��h;�q(j)2z �� :(5.58)For a rectangular grating with unique side walls this takes the formRh = iK22Khz � sinc(�m�) NXj=2��(j)a � �(j)b ��T (j)1 T (j)2 e�iq(j)z0 tj � 1�iq(j)z0 +R(j)1 R(j)2 e�iq(j)z3 tj � 1�iq(j)z3 +R(j)1 T (j)2 e�iq(j)z2 tj � 1�iq(j)z2 + T (j)1 R(j)2 e�iq(j)z1 tj � 1�iq(j)z1 � : (5.59)
The re
ectivity of the grating isRh = jRhj2 KhzKz : (5.60)The scattering by each layer contributes to the amplitude of the scattered wave by fourterms, characterized by the pre-factors T1T2, R1R2, T1R2 and R1T2, which are weighted by theFourier transform of the shape function, Eqs. (5.56){(5.59). We discuss the contributions of thefour elements later in Sec. 5.7. Meanwhile, we recall that the re
ectivity amplitudes are mostlysmall and therefore we estimate that the T1T2 term prevails. This is the primary scatteringprocess between k1 and k2, see Fig. 5.7. Omitting the terms proportional to the re
ectivityamplitudes R1; R2 we get a \semi-kinematical" approximation of the scattered amplitudeRh = NXj=2 (V (j)a � V (j)b )2iKhz 1d ~
(j)a1 (�h;�q(j)0z ) T (j)1 T (j)2= NXj=2 (V (j)a � V (j)b )2iKhz �(j) sinc(�m�) e�iq(j)0z tj � 1�iq(j)0z T (j)1 T (j)2 : (5.61)



98 Chapter 5: X-ray re
ectivity from multilayer gratingsThe intensity scattered by a single layered (surface) grating calculated semi-kinematically be-comesRh = jRhj2 KhzKz = K4j�a � �bj24KzKhz �2 sinc2(�m�) ����e�iq0zt � 1�iq0z ����2 jT1T2j2 : (5.62)From this follows that the grating formula has to be reformulated for the interior of theaveraged layer. Then the maxima are found at positions�q0z;p = +(k0z + khz)p = 2�t � p ; (5.63)in accordance with relation (3.88). From this also follows the necessity of correcting the gratingformula for the averaged refractive index of the grating [SJMP91, PdWL+91, KLC+96]. Thisleads to the \curved" (i.e. not equidistant in Qx vs. Qz) peak positions as shown in Fig. 5.8(b).The comparison of the relations (5.59) and (5.62) to both the kinematical formula and thedynamical calculation is the subject of the discussion in Sec. 5.7.
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QxFigure 5.8. Reciprocal space maxima of a laterally periodic grating etched into a surface grating or intoa periodic multilayer. The reciprocal space maxima of the grating lie on the truncation rods and thatof the multilayer on sheets passing through the \Bragg peaks" or the thickness fringes on TR 0. Themain reciprocal space maxima lie on the intersections. The sheets are parallel to the Qx axis in thekinematical treatment (a), whereas they are curved in the DWBA (b) and dynamical (c) calculations dueto refraction. We note that a similar phenomenon is known in di�use scattering from correlated periodicmultilayers producing \bananas" of resonant di�use scattering [HB94]. In addition, the sub�gure (c)illustrates the interaction between simultaneously excited TRs which is taken into account within thedynamical theory.



5.6 Dynamical theory 995.6 Dynamical theoryIn this section we formulate the matrix dynamical theory for the scattering by a periodic multi-layer grating. Firstly, we solve the wave equation within one structured layer. Then we couplethe wave�elds of di�erent layers at their interfaces by means of the boundary conditions. Thetwo-beam case, the two-beam approximation and multiple-beam approximations of the dynam-ical theory will be developed and their results compared.5.6.1 Wave�elds and the dispersion relationLet us solve the wave equation in a structured medium, i.e., in a medium characterized by alateral periodicity d. Since the susceptibility �(r) is periodic in the direction x̂ , its Fouriertransform (5.3) is discrete and we can substitute it into the wave equation (3.12) or (5.12). Weget ��+K2� E(r) +K2Xh �h eihx � E(r) = 0 (5.64)or ��+K2(1 + �0)�E(r) +K2Xh6=0�h eihx � E(r) = 0 : (5.65)This procedure of using the properties of the translation symmetry from the beginning of solvingthe wave equation or the Schrödinger equation is known as the Ewald concept [CJK92, LMD96],because the mathematical form of the wave�eld propagating in a periodic medium and ful�llingthe above equation has been found by Ewald in his dynamical theory of di�raction in crystals.Later it was applied by Bloch in solid state physics (the Bloch theorem [AM76]). It is alsoreferenced as the Floquet theorem in the case of one-dimensional periodicity [SJMP91].This Ewald solution E(r) is a superposition of plane wavesE(r) = Xh Eh(r) = ei(kxx+kyy) Xh eihxEh(z) = eikyy Xh eikhxxEh(z) ; (5.66)khx = kx + h : (5.67)Introducing the variables�hz = +qK2�0 � (k2hx + k2y) (5.68)the wave equation decomposes into a set of di�erential equations for each Fourier component h�2hz Eh(z) + d2Eh(z)dz2 +K2 Xg;g 6=hEg(z)�h�g = 0 : (5.69)We interprete �hz as the z-components of the di�racted-transmitted wave vectors (khx; ky; �hz)which full�ll the dispersion equation (3.11) (cf. the kinematical expression (5.19)).We solve Eq. (5.69) by choosing the particular solutions as the plane wavesEh;n(z) = eikznz Eh;n ; (5.70)where n enumerates the particular solutions. The set of equations [AEM92]��2hz � k2zn� Eh;n +K2 Xg;g 6=hEg;n �h�g = 0 (5.71)is obtained for each component h. The above equation can be conveniently rewritten using thematrix formalismhÂ� k2znÎi ~En = ~0 ; (5.72)



100 Chapter 5: X-ray re
ectivity from multilayer gratings
Â = 0BBBBBB@. . . �2�h;z K2��h K2��2hK2�h �20z K2��hK2�2h K2�h �2hz . . .

1CCCCCCA ; ~En = 0BBBBBB@ ...E�h;nE0;nEh;n...
1CCCCCCA ; (5.73)where Î is the unity matrix, ~0 is column vector of zeros. The matrix form of (5.72) shows thatthe di�erential wave equation (3.12), (5.65) has been transformed into an eigenvalue problem.Now let us combine the particular solutions in order to express the whole wave�eld in thestructured medium (structured layer). We can see that the solution of this equation gives uniqueamplitude Eh;n for both �kzn. Therefore we further let kzn > 0 and get two sets of the particularsolutionE+h;n(z) = eikznz Eh;n ; E�h;n(z) = e�ikznz Eh;n : (5.74)The physical meaning is that each di�racted wave occurs simultaneously as a pair of thedi�racted-transmitted (kzn) and di�racted-re
ected (�kzn) waves.The solution of the wave equation is a linear combination of the particular solutions [SJMP91]Eh(z) =Xn hT 0nEh;n(z) +R0nE�h;n(z)i =Xn �T 0n eikznz +R0n e�ikznz�Eh;n ; (5.75)where we denoted the coe�cients of the linear combination by T 0n; R0n. Taking the simplest caseof n = 1 we getEh(z) = T 0 eikz;1z Eh;1 +R0 e�ikz;1z Eh;1 (5.76)which is exactly the form (4.52), with Eh;1 = 1 being the eigenvectors of (5.72). Therefore werelate the amplitudes Tn; Rn with respect to the lower layer interface and get the �nal formEh(z) =Xn heikzn(z�zj+1) Tn + e�ikzn(z�zj+1)RniEh;n ; (5.77)where n goes over all the particular solutions of Eq. (5.69).Eq. (5.71) can be better understood if it is rearranged into the formEh;n = K2k2zn � �2hz Xg;g 6=hEg;n �h�g : (5.78)Each component Eh (i.e., the particular wave�eld corresponding to the truncation rod h) is givenby the sum over contributions of the other excited waves Eg weighted by �h�g. We have shownthis schematically in Fig. 5.9. The vector h�g is the momentum transfer between the TRs g andh. The amplitude of Eh;n is proportional to the resonance factor K2k2zn��2hz . Since the amplitudeEh;n has to be �nite, then �hz 6= kzn. Therefore the dispersion relation for the di�racted waves isnot the Ewald sphere. Such a phenomena is known in the dynamical theory of X-ray di�raction(the end-points of the wave vectors lie on the dispersion surface [Pin78, AEM92, MVV+94]).Since the series (5.2) and (5.66) are in�nite, the dimensions of Â and ~En are in�nite too. Thiscannot be handled numerically and a reasonable restriction to a �nite number D of scatteredand interacting waves has to be undertaken. We choose the number of waves in the numericalcalculation so that the amplitudes Eh of the TRs of interest are approximated with a givenprecision.The restriction to D interacting pairs of waves (each pair consists of the transmitted andre
ected wave) determines the dimension D of the particular matrix Â, thus the eigenvalue
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Figure 5.9. Schematic drawing of the dynamical scattering processes. In the fully dynamical theory (a),the truncation rod h is excited by the multiple scattering from all the other truncation rods, as given by(5.78). (b) In the two-beam case (and the two-beam approximation, see Sec. 5.6.4), the truncation rod his excited by the zeroth TR, which means we calculate it as a single-scattering interaction between theincident wave�eld and the wave�eld di�racted to the TR h. (c) In the multiple-beam approximation onlya speci�ed set of the TRs around the TRs h and 0 contribute essentially to the amplitude of the TR h.Here the approximation of the �rst order is shown which calculates dynamically the scattering into thegiven TR h as the dynamical interaction between TRs h�1; h; h+1 and �1; 0; 1. If the Fourier coe�cient�h = 0, then the direct single-scattering process 0 ! h is not allowed, i.e., it does not contribute tothe amplitude of the wave�eld h. Then the multiple-scattering processes (we show 0 ! 1 ! h or0! h�1! h) are of decisive importance.problem can be solved numerically. The numerical calculation is further simpli�ed in the case��h = �h. Then the matrix Â is symmetric, and in a non-absorbing medium it would be real.The solution of Eq. (5.72) gives D wave vector components kzn forming column vector ~kz,and D associated column eigenvectors ~En forming the matrix Ê. The vectors ~En are uniqueexcept for a multiplicative constant (see (5.72)), allowing us the choice En;n = 1 for each n.In the following section we denote for each layer j the column vectors of Tn; Rn; kzn by~T (j), ~R(j), ~k(j)z , respectively. k̂(j)z is the diagonal matrix of the eigenvalues kz;n and Ê(j) is thecorresponding eigenvector matrix. The dimension of these vectors and matrices is D.5.6.2 Boundary conditionsIn the previous part we have found the form of the wave�eld in a structured layer being a seriesof plane waves (5.66) and (5.77). In order to �nd the coe�cients T (j)n ; R(j)n which determine thevalue of the excitation of the particular solution, we have to connect the wave�elds in the layerswith the wave�elds in the vacuum and in the substrate. We will make use of the convenientmatrix formalism similar to the Ab�eles method [Ab50] as it is used for this task by all theauthors (see [SJMP91, Nev94] for instance).The boundary conditions provide the relations coupling the wave�elds and their derivativesat the interfaces as we have already treated in Sec. 3.4.1. Let us apply them in order to connectthe wave�elds of two neighbouring layers j and j + 1 at their common interface j at z = zj . Inthe present calculation we will closely follow the matrix formalism we used in the re
ectivitycalculation, see sections 3.4.3 and 3.4.4.Since the equality between wave�eld amplitudes and normal derivatives holds at each point(x; y; zj) of each interface j, the conditions for the undetermined coe�cients T (j)n ; R(j)n can beexpressed by the matrix relation (cf. (3.47) and (3.56))P(j) � ~T (j)~R(j)! = P(j+1) � Q(j+1) � ~T (j+1)~R(j+1)! : (5.79)



102 Chapter 5: X-ray re
ectivity from multilayer gratingsThe boundary matrices P(j) areP(j) =  Ê(j) Ê(j)Ê(j) k̂(j)z �Ê(j) k̂(j)z ! (5.80)for structured layers andP(j) =  Î Î�̂(j)z ��̂(j)z ! (5.81)for homogeneous layers (including both the vacuum and substrate, cf. (3.48)). The propagationmatrices Q(j) connect the amplitudes of the waves between the bottom and top interface of alayer (cf. (3.56) and (3.57))Q(j) = �Q(j)+ 0̂0̂ Q(j)�� : (5.82)Q(j)� are diagonal matrices with the diagonal vector�e�ik(j)1;ztj ; e�ik(j)2;ztj ; : : : ; e�ik(j)D;ztj� (5.83)for structured layers, and�: : : ; e�i�(j)�1;ztj ; e�i�(j)0;ztj ; e�i�(j)1;ztj ; : : : � (5.84)for homogeneous layers. The dimension of matrices P and Q is 2D.Introducing the transfer matrix of layer j (cf. (3.63))M̂(j) = P(j) � Q(j) � (P(j))�1 ; (5.85)the vacuum (index v) and the substrate (index s) waves are coupled by the transfer matrix ofthe whole multilayer M̂ ~T v~Rv! = M̂ � ~T s~Rs!M̂ = (Pv)�1 � NYj=2 M̂(j) � Ps � �M̂11 M̂12M̂21 M̂22� : (5.86)We employ two additional conditions. Firstly, the substrate is semi-in�nite, therefore re-
ected waves are not excited in it (~Rs = ~0). Secondly, there is only one beam incident on thesample, therefore ~T v is zero vector except for the element corresponding to h = 0, which isunity, ~T v = (0; : : : ; 0; 1; 0; : : : ; 0). Then the amplitudes of the re
ected waves (measured in thevacuum, above the sample surface) are~Rv = M̂21 � M̂�111 � ~T v : (5.87)In other words, vector ~Rv is the column vector of the matrix (M̂21 � M̂�111 ) corresponding to thecolumn of h = 0. This can be considered as a generalization of the simple relation (3.62).The re
ected intensity of the wave h is jRvhj2 and the re
ectivity of the grating isRh = jRvhj2 KhzKz : (5.88)In summary, we expressed the problem of the scattering from a MLG by a matrix formalism,which is very similar to the matrix formalism we used in the re
ectivity calculation, Secs. 3.4.3



5.6 Dynamical theory 103and 3.4.4. However, the matrices employed here are of higher order and the eigenvector matricesÊ(j) are calculated by the present procedure.Finally, let us make a comment on the numerical implementation of the matrix calculation.In this calculation, these matrix operations are used: multiplication, eigenvalue problem andmatrix inversion. Since the matrix multiplication is an algorithmically straightforward process,we can encounter only two numerically di�cult points: the eigenvalue problem (5.72) and thematrix inversions (5.85) and (5.87). We have found that the solution of the eigenvalues andeigenvectors as well as the inversion of the matrix of the eigenvectors are numerically stable.3However, the calculation of the evanescent waves in a thick multilayer can lead to numericallysingular matrix M̂11. This follows from the exponential terms in (5.83) or (5.84), which are verylarge for imaginary kz and thick layers (large tj). This very large number can propagate in thematrix multiplication and cause the numbers in the corresponding column in M̂11 to becomesvery large compared to the other matrix elements. Then the numerical inversion will fail. We canavoid this problem by either of two methods. Firstly, we can calculate the transfer matrix of thewhole multilayer from the vacuum (in +z direction) and stop the calculation in the layer wherethe transmitted waves are su�ciently weak. Secondly, we can calculate the transfer matrix ofthe whole MLG and then apply the following trick. We demonstrate it for a matrix M̂11, whereMjD are large numbers and Mjk are about unity (1 � k < D, 1 � j � D). Using the identityM̂11 � 0BB@M11 M12 : : : M1DM21 M22 : : : M2D: : :MD1 MD2 : : : MDD1CCA= 0BB@M11 M12 : : : M1D=MDDM21 M22 : : : M2D=MDD: : :MD1 MD2 : : : 1 1CCA0BB@1 0 : : : 00 1 : : : 0: : :0 : : : 0 MDD1CCA (5.89)the inverse matrix is(M̂11)�1 = 0BB@1 0 : : : 00 1 : : : 0: : :0 : : : 0 1=MDD1CCA0BB@M11 M12 : : : M1D=MDDM21 M22 : : : M2D=MDD: : :MD1 MD2 : : : 1 1CCA�1 : (5.90)The elements of the latter matrix are of the same order and the numerical inversion runs withoutproblems.Similar procedure can be applied in presence of more evanescent waves, i.e., for more hugecolumns present in M̂11. Then the inversion of M11 is given by the product of diagonal matrixand a matrix to be inverted.5.6.3 Relation to the Fresnel coe�cientsIn this section we reformulate the above matrix method based on layer transfer matrices insuch a way that the new approach will make use of the matrices of the Fresnel-like coe�cients.This means that we show how we can switch from the bulk-like approach of M(j) matricesto the interface-like approach of Nj. Later we will show the advantage of this interface-likerepresentation for studying the re
ectivity from gratings with rough interfaces. We recall thatwe dealt with both matrix approaches in the dynamical theory of the re
ection from planarmultilayers, Sec. 3.4.4.3My program is written in C++. It employs the matrix libraries from the source code of program octave,where the blas and lapack routines are used. Program octave is a Matlab-like clone and it is free software(distributed under the GNU General Public License).



104 Chapter 5: X-ray re
ectivity from multilayer gratingsLet us reexpress Eq. (5.79) so that it includes directly the matrix of the transition throughan interface j (cf. (3.50){(3.51)) and, consequently, the Nj matrices (cf. (3.58){(3.59)) ~T (j)~R(j)! = Nj  ~T (j+1)~R(j+1)! (5.91)Nj � Pj;j+1 � Q(j+1) (5.92)Pj;j+1 � �P(j)��1 P(j+1) : (5.93)We rewrite the boundary matrix (5.80) so that the matrices of eigenvectors and of wave vectorsare separatedP(j) =  Ê(j) Ê(j)Ê(j) k̂(j)z �Ê(j) k̂(j)z ! = �Ê(j) 00 Ê(j)�  Î Îk̂(j)z �k̂(j)z ! (5.94)�P(j)��1 = 12  Î �k̂(j)z ��1Î ��k̂(j)z ��1! �Ê(j)��1 00 �Ê(j)��1! : (5.95)The \interface matrix" (5.93) becomesPj;j+1 = 12  Î �k̂(j)z ��1Î ��k̂(j)z ��1! �Ê(j)��1 00 �Ê(j)��1! � �Ê(j+1) 00 Ê(j+1)� Î Îk̂(j+1)z �k̂(j+1)z !� ��̂j �̂j�̂j �̂j� : (5.96)the form of which corresponds formally to the \interface matrix" of the Fresnel coe�cients(3.51) for an interface of a planar multilayer.We introduced these matrices of dimension D�̂j = 12 hÊj;j+1 + (k̂(j)z )�1 Êj;j+1 k̂(j+1)z i�̂j = 12 hÊj;j+1 � (k̂(j)z )�1 Êj;j+1 k̂(j+1)z i (5.97)Êj;j+1 = �Ê(j)��1 Ê(j+1) :Since the matrices k̂z are diagonal, the matrix elements are calculated as simply as�j;mn = 12 (Ej;j+1)mn �1 + k(j+1)z;n =k(j)z;m��j;mn = 12 (Ej;j+1)mn �1� k(j+1)z;n =k(j)z;m� : (5.98)If we introduce the matrix of generalized Fresnel transmission and re
ection coe�cients t̂j ; r̂jwith the elementstj;mn = 2k(j)z;mk(j)z;m + k(j+1)z;nrj;mn = k(j)z;m � k(j+1)z;nk(j)z;m + k(j+1)z;n (5.99)(compare (3.52)) then we can rewrite the former relations�j;mn = (Ej;j+1)mn � 1tj;mn �! �̂j � Êj;j+1 � 1̂tj�j;mn = (Ej;j+1)mn � rj;mntj;mn �! �̂j � Êj;j+1 � r̂ĵtj : (5.100)



5.6 Dynamical theory 105We de�ned the matrix operations â � b̂ and â̂b as the element-by-element multiplication anddivision operations, respectively. The meaning of the matricial Fresnel coe�cients is the follow-ing. A transmission coe�cient �j;mn corresponds to the transmission of the wave k(j)z;m (in layerj) through the interface j into the wave k(j+1)z;n in layer j+1.Let us consider the special case of an interface separating two homogeneous layers. Thereis no lateral di�raction in these layers, therefore Ê(j); Ê(j+1) and Êj;j+1 are unity. The matrices�̂j = t̂j and �̂j = r̂j are diagonal and their elements correspond to the Fresnel coe�cientsaccording to the \classical" Fresnel formulae (3.52)r̂j = k̂(j)z � k̂(j+1)zk̂(j)z + k̂(j+1)z = 0BBBB@k(j)z;1�k(j+1)z;1k(j)z;1+k(j+1)z;1 0 0 : : :0 k(j)z;2�k(j+1)z;2k(j)z;2+k(j+1)z;2 0 : : :0 0 : : : : : :
1CCCCAt̂j = 2k̂(j)zk̂(j)z + k̂(j+1)z = 0BBBB@ 2k(j)z;1k(j)z;1+k(j+1)z;1 0 0 : : :0 2k(j)z;2k(j)z;2+k(j+1)z;2 0 : : :0 0 : : : : : :
1CCCCA : (5.101)

The matrices k̂z, t̂ and r̂ are diagonal and therefore we have used the properties of the algebraicoperations on the class of these matrices. These operations are similar to those on real numbers(commutativity of the multiplication, k̂�1 = 1=k̂, etc.).This reformulation of the approach of the interface matricesM(j) we dealt with in Sec. 5.6.2turns into the formalism of the Nj = Pj;j+1Q(j+1) matrices we preferred for planar multilayersin Sec. 3.4.4. Therefore the transfer matrix M = Qj Nj of the whole multilayer grating canbe computed either by means of the bulk-related formalism using the matrix M of Eq. (5.86),which is analogous to (3.64){(3.65), or by the interface-related formalism using the matrices Njin direct analogy to (3.61).5.6.4 Two-beam case and multiple-beam approximations of the dynamicaltheoryIn the fully dynamical theory formulated above, the interaction of an \in�nite" number (i.e.,the number of TRs intersecting the Ewald sphere) of di�racted wave�elds is taken into account,Eq. (5.71). However, not all the truncation rods produce strong di�racted wave�elds. Forexample, the di�raction orders h 6= 0 are weak in a surface grating for angles of incidence andexit above the critical angle. Therefore only a small number of truncation rods can be consideredin the (numerical) calculation.In this section we propose a two-beam approximation of the dynamical theory of re
ectionfrom gratings, quite similar to the so-called two-beam case of the dynamical theory of X-raydi�raction by crystals [AKK+74, Pin78]. The di�erences between these two methods can befound in the reciprocal space. In XRD, the usual experimental conditions are such that theEwald sphere passes through or near only one reciprocal lattice point (Bragg peak), and theother reciprocal lattice points are so far that the case of the multiple-beam scattering can beneglected. However, in the former case the Ewald sphere always intersects many truncation rodsof the reciprocal lattice of the periodic grating, see Fig. 5.5. What we can expect is that forlarge-period gratings the TRs are near, thus their dynamical interaction is increased, whereasfor small-period gratings the TRs distances are larger and the dynamical interaction is smaller.The two-beam approximation follows from the dynamical theory of re
ection treated above.We suppose that the fan of the dynamically interacting wave�eld consists of two truncation rods0 and h 6= 0. We are going to show that in this case the matricial equations can be reduced intosimple analytical formulae.
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Figure 5.10. Ewald construction of the dy-namical interaction acting in the two-beamapproximation of the dynamical theory amongthe incident-transmitted, incident-re
ected,di�racted-transmitted and di�racted-re
ectedwaves. Similar �gures drawn for the kine-matical theory as well as for the DWBA aredrawn in Figs. 5.6 and 5.7, respectively. Wenotice that the DWBA considers only theinteraction between the incident-transmittedand incident-re
ected waves and between thedi�racted-transmitted and di�racted-re
ectedwaves, and not among all four waves.

�k1h �k 01
h 0

qz
qxk 02

k2
The two truncation rods 0 and h 6= 0 form two pairs of interacting wave�elds: the transmittedand re
ected incident waves (h = 0) and the transmitted and re
ected di�racted waves (h 6= 0).The calculation will be therefore equivalent to the (D0=2)-beam case of the dynamical theory.According to (5.77), these two interacting wave�elds inside the structured layer areE0(z) = eikz0(z�zj) T0E0;0 + e�ikz0(z�zj)R0E0;0 + eikzh(z�zj) ThE0;h + e�ikzh(z�zj)RhE0;hEh(z) = eikz0(z�zj) T0Eh;0 + e�ikz0(z�zj)R0Eh;0 + eikzh(z�zj) ThEh;h + e�ikzh(z�zj)RhEh;h ;(5.102)where we conveniently enumerated the beams by n = 0; h instead of the usual enumeration of theparticular solutions n = 1; 2 used in the dynamical theory above. Then the matrix formulationof the wave equation (5.72), supposing �h = ��h for simplicity, reads��20 � k2zn K2�hK2�h �2h � k2zn��E0;nEh;n� = 0 : (5.103)This leads to the quadratic dispersion relation for k2zn(�20 � k2zn)(�2h � k2zn)�K4�2h = 0 : (5.104)In comparison with the similar equations of the two-beam case of the dynamical X-ray di�rac-tion4 the present one is mathematically more simple. The unknown wave vector components(eigenvalues) kzn occur only on the matrix diagonal. This is because in the not-strongly asym-metric Bragg-case of the X-ray di�raction from crystals the net planes more or less parallel tothe surface are di�racting (di�raction by bhkl; l 6= 0). In the present case of XRR the lateralgrating di�racts the wave�elds by bh0l, l is small. Therefore the present interpretation is closerto the grazing-incidence X-ray di�raction than to the conventional one.4This dispersion equation, written in the usual notation [AKK+74, Pin78], comes from the matrix equation�k2 � k20 C��hk20C�hk2h k2 � k2h��D0Dh� = 0 ,thus it is (k2 � k20)(k2 � k2h)� C2�h��hk20k2h = 0.



5.6 Dynamical theory 107We solve the dispersion relation and getk2z0zh = 12 ��20 + �2h � (�20 � �2h)q1 + w2h � (5.105a)~E0 = � 1E0h� ; ~Eh = ��E0h1 � (5.105b)E0h = 1wh �q1 + w2h � 1� (5.105c)wh � 2K2�h�20 � �2h : (5.105d)We note that�20 � �2h = h(2kx + h) (5.106)and the roots kz0 and kzh of the quadratic equation (5.105a) must have either the real partpositive (real transmitted waves), or the imaginary part negative (evanescent waves).The variable wh depends further on the incidence wave vector component kx, i.e., wh(kx).Let us notice that de�ning yh = 1=wh we can rewrite Eq. (5.105c) into the equivalent formE0h = � �yh � sgn (yh)q1 + y2h � ; (5.107)which is similar to the well-known expression for the two-beam case of dynamical XRD forc(i) = Dh=D0 in the Laue case of di�raction [Pin78]. This we can understand by a simpleconsideration: in the present case, the lateral wave vector transfer h is much smaller than thelateral component Kk of the scattered wave vectors, therefore all waves are di�racted forward(see Fig. 5.4) as in the Laue case of di�raction.The solution of the dispersion relation can be approximated ifjwhj = 2K2 j�hjj�20 � �2hj <� 2K2h(2kx + h) j�a � �bj�hda=2 � 4K2h2d(2Kx + h) j�aj (5.108)is small. For typical values of the parameters of interest (namely � � 1 �A, d <� 104 �A,j�aj <� 10�5), this value depends considerably on the orientation of the sample with respectto the incident beam. There can be two marginal cases:1. The incident beam makes large angle with the wires, Kx � K � h, thus it can be (nearly)perpendicular to the wires (Fig. 5.4(b){(c)). Thenw?h = 2K2Kxh2d j�aj � dm� j�aj � 10�1 : (5.109)The approximate relations of the two-beam case arek2z0 = �20 + K4�2h��20 � �2h� (5.110a)k2zh = �2h � K4�2h��20 � �2h� (5.110b)E0h = wh2 = K2�20 � �2h � �h : (5.110c)2. The incident beam is (nearly) parallel to the wires (Fig. 5.4(d)), Kx � h. Thenwkh = 4K2h3d j�aj � dm� j�aj � 10+3 : (5.111)



108 Chapter 5: X-ray re
ectivity from multilayer gratingsThe approximate relations of the two-beam case arek2z0 = �20 + �2h2 +K2�h (5.112a)k2zh = �20 + �2h2 �K2�h (5.112b)E0h = sgn (wh)� 1wh � �1 : (5.112c)In the case 1., the amplitude of the di�racted wave E0h is proportional to the resonancefactor and to the susceptibility. Therefore it is a small number and this wave is weak. In thecase 2., both eigenvalue amplitudes E00 of the incident wave and E0h of the di�racted wave areof the same absolute value j�1j, therefore there is a strong dynamical interaction between them.We can see that the value of wh(kx) conditions the applicability of the two-beam approxima-tion for a given truncation rod h, angle of incidence ! (and for azimuthal angle � in non-coplanargeometries). For choosing the value of the threshold we can take the value wh = 0:01 at whichE0h is 2% of E00, thereforejwh(kx)j � 0:01 (5.113)is the condition of the validity of the two-beam approximation (TBA).Usually the strongest TRs are the TRs �1, therefore if this condition holds for them, it holdsfor the other TRs as well since wh falls as h�2. We veri�ed numerically that this is a good choice:for the surface grating discussed in Sec. 5.7 the wh�1 equals 0.012 and the single-scattering isfound adequate for TRs m with jmj � 3 and for larger angles of incidence on the TRs �1; forthe measured MLG (Sec. 5.10) the wh�1 equals 0.009 and the single-scattering theories (i.e.,the two-beam approximation as well as the DWBA) give the same results as the dynamicalhigher-order multiple-beam approximations.The re
ectivity amplitude on the top surface of a multilayer grating is obtained by applyingthe boundary conditions. Most easily we calculate the scattered intensity by using the matrixformalism, as described in Sec. 5.6.2, for the matrix dimension D = 2.We �nd that under the TBA validity condition, the contributions of the TRs �h to theTR 0 cancel each other. This follows from the analysis of Eq. (5.78): �+g equals ��g, whilstthe amplitudes Eg;0 are inversely proportional to g, so that Eg;0 = �E�g;0 and the sum of theg and �g terms goes away. We can illustrate this phenomena by an \e�ective, mean �eld of thetruncation rods" in reciprocal space, which causes the DWBA5 to give the same results as themultiple-beam dynamical theory as we will show later by numerical simulations.However, this cancelling will not occur in large period gratings where the TBA is not validand Eg;n are no more inversely proportional to g. We will come back to this point later in thediscussion in Sec. 5.7.For a mesoscopic grating there are thousands (� d=�) of simultaneously excited TRs, Fig. 5.5.Within the two-beam approximation we calculate the intensity of all the di�racted waves as atwo-beam case, i.e., as a pair interaction of the incident (h = 0) and the scattered (h 6= 0)wave�elds. This is shown schematically in Fig. 5.9(b) and 5.10. The two-beam approximationis correct if the intensity of the di�racted waves is weak and when the dynamical interactionwith the other di�racted waves g 6= h, see Eq. (5.78) and Fig. 5.9(a), is small. Therefore TBAcan be used in the case 1. (Kx � h), but not in the case 2. (Kx � h), i.e., when the incidentwave is nearly parallel to the wires.5In our convention, the DWBA, as well as the kinematical theory and the TBA, is a single-scattering theorybecause of calculating the scattering between two TRs only. However, all these theories di�er in the approach forchoosing the eigenstates and in solving the boundary conditions at the interfaces.



5.7 Discussion of the re
ectivity from a perfect rectangular surface grating 109The accuracy of this approximation should be numerically checked by comparing it to thefully dynamical calculation. This we will discuss for the simple case of a surface grating inSec. 5.7.The main advantage of the two-beam approximation is that we are able to analyze theanalytical formulae of the amplitudes of the wave�elds and of the wave vectors. These relationsare not easy to see in the fully matricial dynamical theory. The other advantage of the two-beamapproximation lies in the numerical calculation of the intensity pro�le of the di�racted waves.The use of TBA enables us to transform the problem of solving the dynamical theory with onematrix of order D into a procedure of solving (D�1) times the dynamical two-beam case (D0=2),which is numerically much faster.However, TBA fails for the calculation of the amplitudes of wave�elds of the TRs with zeroFourier coe�cients of the susceptibility, �h = 0, since E0h = 0 in this case. This is for examplethe case of the rectangular grating with the ratio � = da=d = 1 : 2 and even truncation rods (h iseven). In this case the wave�eld Eh is not excited directly by a single-scattering from the incidentwave�eld (scattering by h) since this contribution within the two-beam case is proportional to�h=h and thus it is zero. Now also the weak contributions of the multiple di�raction fromthe other excited truncation rods play a role. Mathematically, we have to take into accountthe terms g 6= 0 in (5.71) and therefore we introduce the multiple-beam approximations.The zeroth order of this approximation is the two-beam approximation. In the higher orders pwe calculate the given Eh as the dynamical interaction of the wave�elds whose contribution isproportional up to �p�h. Therefore we take the wave�elds of the two stripes of the truncationrods (Fig. 5.9(c)): from the TRs around 0 (their amplitude is proportional to �g=g >� �p, butthe contribution is approximately �h�g � �h+1) and from the stripe around the TR h (theiramplitudes are �g=g � �h+1=h and their contributions are superior to �p).Explicitly in the approximation of the �rst order, we calculate the given Eh as the dynamicalinteraction of the wave�elds whose contribution is proportional up to �1�h. Therefore we useEh�1; Eh; Eh+1; E�1; E0 and E1, and this is the six-beam approximation. If, for example, alleven �h are zero, then the approximation of the second order would take all terms up to �3 intoaccount, thus the waves of TRs h�3; h�1; h; h+1; h+3, �3;�1; 0; 1; 3, which leads to the ten-beam approximation. In the graphical representation in Fig. 5.9(c), the �rst order approximationis drawn as the interaction of the wave�elds of TRs h � 1; h; h + 1 and �1; 0; 1. In general,multiple-beam approximation of order p leads to the (4p+ 2)-beam approximation.The accuracy and convergence of these higher-order multiple-beam approximations shouldbe veri�ed by the numerical calculation that compares them to the dynamical calculation, i.e.,to a multiple-beam approximation of very large order.Finally let us make a remark on the terminology used. We denoted by the \two-beam ap-proximation" the scattering when two truncation rods 0 and h are simultaneously excited, givingrise to four waves, see Fig. 5.10. Although the names of \two-truncation-rod case" or \four-wavecase" could be used, we prefer the \two-beam approximation" due to the correspondence to theX-ray di�raction theory from crystals. The latter theory uses the name of \two-beam case" forhistorical reasons, though in this conventional case there are two transmitted and two di�ractedwaves excited on both sides of the Ewald sphere for both � and � polarisations, i.e., there are16 waves.5.7 Discussion of the re
ectivity from a perfect rectangular sur-face gratingIn this section we discuss the theories treated earlier and we compare the analytical formulaeas well as the results obtained by a numerical simulation. We study a simple surface grating,i.e., a MLG with one structured layer deposited on a substrate. On a GaAs substrate (�a =1:455 � 10�5 + i 4:195 � 10�7) there are GaAs wires of width da = 4000 �A distributed with thelateral periodicity d = 8000 �A. The layer thickness is t � t2 = 3000 �A. The wavelength is



110 Chapter 5: X-ray re
ectivity from multilayer gratings1.54 �A, the critical angle of GaAs is 0:309� and that of the averaged layer is 0:309�=p2 =0:219�. The Fourier coe�cients (5.3) with �b = 0 are �h = �a
ah. The formula (5.10) for� = da=d = 1=2 gives the averaged layer susceptibility �0 = 12 �a. The odd coe�cients are
ahm = (1=m�) (�1)bm=2c and the even coe�cients are zero. The reciprocal grating vector is2�=d = 7:85 � 10�4 �A�1.The choice of the period d is given according to the series da = db = 4000 �Ad = 8000 �AGaAs t=3000 �AFigure 5.11. Sketch of a surfacegrating.
of samples we dealt with (so-called quantum wires with periodaround 1 �m). We stress in the beginning that these are shortperiod gratings for which all theories we are presenting hereare adequate. This will not be necessary the case of large pe-riod gratings of d >� 10 �m, where truncation rods are closetogether and the single-scattering approximations are no morevalid (cf. the validity of the two-beam approximation given bythe condition (5.113)).The comprehensive di�raction pattern is represented as the reciprocal space map of the scat-tered intensity in Fig. 5.12. It consists of the main (specular) truncation rodm = 0 (the specularre
ectivity) around which the truncation rods of non-zero orders are distributed equidistantlyin the Qx direction. Due to the choice of � = 1=2 we expect that the even truncation rods(except for the zeroth TR) disappear in the calculations where only single scattering processesare considered (kinematical theory, DWBA of the �rst order, two-beam approximation)|wesay that these TRs are kinematically forbidden. This feature will underline the necessity of thedynamical theory or of higher-order approximations of the dynamical theory.5.7.1 Intensity of the di�racted wavesIn this section, we discuss the properties of the non-zero truncation rods, i.e., the intensity pro�lemeasured along the non-specular TRs. We start the discussion by the odd truncation rods and weshow that our theories can describe the intensity pattern under several limitations. Thereforewe will determine their regions of validity, i.e., the multiple-scattering regions, illustrated inFig. 5.12. Afterwards we show that only the dynamical theory can explain the pro�le of thekinematically forbidden even-order TRs because of their multiple scattering origin.The following discussion is devoted mainly to the coplanar scattering geometry when theincident beam is perpendicular to the wires. The non-coplanar case when the incident beam isparallel to the wires is discussed separately in Sec. 5.7.3.We note that the Qz dependence of the intensities of the opposite TRs +m and �m arethe same. However, the plots with respect to the angle of incidence are di�erent. The negativeTRs are every time excited because they are always crossed by the Ewald sphere of the incidentwave, see Fig. 2.2. However, the positive TRs are being excited one after another when the angleof incidence increases, Fig. 5.20(b). This explains the angular shifts of the �rst three positivetruncation rods in Fig. 5.15.Dynamical theory and multiple-beam approximationsWe start the discussion with the dynamical theory since it provides the exact solution. Firstly,let us brie
y summarize how we deal with the numerical calculation. We calculate the wavevectors in the vacuum and in the homogeneous layers (substrate including) for a given incidentwave. We form the matrix Â (5.73) and by solving the eigenvalue problem (5.72) we get the wavevectors and their relative amplitudes in the structured layers. Then the layer transfer matricesM(j) are created (5.85) and from the transfer matrix of the whole MLG (5.86) the amplitudesof the scattered waves is obtained (5.88).The dynamical nature of the scattering (i.e., the expression of the multiple scattering) isfound in both basic equations (5.72) and (5.78) we derived from the wave equation. Firstlythe matrix relation (5.72) stores together all the amplitudes in a single matrix and thereforeall these amplitudes are interdependent. In the second alternative expression (5.78) we can see
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Figure 5.12. Reciprocal space map of the intensity scattered by the surface grating considered in thediscussion. This comprehensive view combines the schematic reciprocal space representation of the gratingtruncation rods (cf. Fig. 5.5) with the intensity pro�le of the separate scans, Figs. 5.13{5.14 and with theannotation of regions with two-beam scattering and multiple-beam scattering. We show in the discussionthat the dynamical theory and the DWBA (single-scattering \e�ective �eld" theory) can calculate theintensity of the strong truncation rods, whereas the single-scattering two-beam approximation is valid(with a given precision) above the critical angles of the grating materials of the incident and/or exit wave.The most intense is the main truncation rod 0 (the specular scan) starting in the origin of the reciprocalspace by an intense plateau of the total external re
ection (TER). The other truncation rods start onthe Ewald sphere Ki and Kf , respectively (Fig. 5.5). The odd order TRs are of high intensity and theyexhibit periodic oscillations in Qz, cf. Fig. 5.13. The \dynamical" even order TRs are of low intensity andtheir oscillations are no more equidistant, cf. Fig. 5.14. The coherent truncation rods (�-function pro�lein the Qx direction) have been enlarged to a certain �nite width (using the so-called \truncation-rod"algorithm of my plotting program pm3d). In an experiment, non-zero intensity between the truncationrods would be measured because of the incoherent di�use scattering, and further the truncation rodswould be enlarged by the resolution function of the measuring di�ractometer [HM96].



112 Chapter 5: X-ray re
ectivity from multilayer gratingsthat each amplitude can be expressed as a sum of the contributions of the other TRs. Theindividual contributions are proportional to the Fourier transform of the susceptibility and it isdemonstrated graphically in Fig. 5.9. The dynamical behaviour is observed in (5.78) becauseeach amplitude on the right-hand side is again a sum of the contributions of the other waves,and so on.The former method of (5.72) is very convenient for numerical simulations. The latter (5.78)is useful for describing the scattering by means of the excitations of truncation rods and of thewave�eld propagation because the intensity of the most intense TRs can be predicted by thetwo-beam approximation, Sec. 5.6.4.The Fourier transform �h drops with 1=h (Sec. 5.3), thus the contribution of distant TRsfor a given TR h decreases, see (5.78). Within the TBA we have shown that Eh is proportionalto �h=h. Therefore, there are two regions of strong contributions to Eh. The �rst includes theTRs around the main truncation rod 0, the other one contains the TRs around h, Fig. 5.9(c).Let us choose one particular truncation rod m 6= 0 (di�raction by the lateral vector hm =2�=d �m). The wave�eld corresponding to this TR is excited through the interaction of manyscattering processes (5.78). The primary scattering process is the scattering by h from theprimary beam (g = 0) to that TR. Other scattering processes are multiple di�ractions of theother di�racted waves (g 6= 0) as we have shown in Fig. 5.9(c). If the amplitudes of the otherdi�racted waves are smaller or comparable to the amplitude of the chosen TR, and they are allsmall with respect to the amplitude of the primary beam, then only a small number of interactingwaves can a�ect the scattered amplitude Eh substantially. The limiting case is described by thetwo-beam approximation, in which the intensity of a non-specular truncation rod is determined(with a given precision) only as the interaction of the primary waves and those di�racted wavescorresponding to h.As we already stated, the dynamical theory gives exact solutions and therefore it would bepreferable to use it every time. However, the applicability of the matricial dynamical theory islimited by the e�ciency of the numerical calculation.6The matrix order is given by the number of interacting waves D being proportional to d=�.For d=� >� 1 the numerical calculation is easy, but as in our case d=� = 8000 �A=1.54 �A, the fulldynamical calculation covering all the real TRs within and the evanescent TRs near the Ewaldsphere of the incident wave would not be numerically possible. Fortunately, not all waves arevery strong and approximations of the dynamical theory are valid in this case. Instead of takingall those thousands of TRs, only several dozens of TRs from the region near to the origin ofthe reciprocal space are taken into account. Their number was chosen by testing the numericalconvergence required for a given precision. The computer program was written in a way, whichallowed us to investigate the dynamical interaction for arbitrarily selected TRs separately.We have already discussed the two-beam approximation (TBA) on the basis of two-beamcase. We have shown that it can be applied for \nearly" coplanar scattering, i.e., Kx � h. Itsvalidity has been further supported by the small value of the susceptibility for X-rays, �0 � 10�5.The di�racted wave amplitude in the structured layer (5.110c) is approximatelyEh � K22kx h �h = d� �A2� 1m2 (�1)bm=2c : (5.114)We can see that the amplitudes Eh of the di�racted waves in a layer drop as �h=h � h�2, thusthe intensity of these waves in the layer decrease as h�4.The calculation speed of the numerical implementation of the TBA is high since the wavevectors as well as the amplitudes are analytically expressed (sets of Eqs. (5.105a){(5.105c) and(5.105a){(5.110c)) and the boundary conditions are calculated using 2� 2 matrices. The devia-6Unfortunately, no computer will ever be rapid enough for in�nite matrices. Therefore we have to optimizeour programs or algorithms, or �nd a physically approved approximation.
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Figure 5.13. Calculations by the dynamical theory, multiple-beam approximation and the DWBA givethe same intensity of the odd truncation rods for the discussed surface grating and the coplanar scatteringgeometry. (a) The graph of the TRs {1, {3, {5, {7 and {9 (di�racted intensity vs. angle of incidence) forthe region around the critical angles. (b) The graph of the TRs {1, {3 and {5 (shifted down by 0, 1 and3 decades, respectively), the intensity being plotted vs. the perpendicular wave vector transfer Qz.
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Figure 5.14. The kinematically forbidden even order truncation rods �2;�4;�6;�8 calculated by thedynamical theory. At least the third-order multiple-beam approximation of the dynamical theory has tobe used to produce the pro�les with a su�cient precision. The two-beam approximation, the DWBA ofthe �rst order and the kinematical theory give zero re
ectivity of even TRs for a grating with � = 0:5.(a) Di�racted intensity vs. the angle of incidence around the critical angle. (b) Intensity plotted vs. theperpendicular wave vector transfer Qz The curves of the TRs {2, {4 and {6 are shifted down by 1, 3 and5 decades, respectively.
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Figure 5.15. Intensity of the positive truncation rods +1, +2 and +3 (dynamical calculation).tions of the wave vector components with respect to the kinematically calculated ones (includingrefraction)kz0 � �0 = k2z0 � �2z0kz0 + �z0 = K4�2hh(2kx + h)(kz0 + �z0) � K4�2hkxh�z0 � K4�2akxh3d2�0z � d j�aj2�2m3 sin!(5.115)are of the order of 10�5. Thus we can conclude that the wave vectors, resulting from the eigen-value solution, correspond to those calculated \kinematically with the refraction correction",�0z and �hz. Further this proved that the eigenstates of the DWBA, which we have chosenaccording to the virtual planar multilayer, are suitable.The intensity of the odd order TRs are shown in Fig. 5.13, of the even order TRs in Fig. 5.14.The intensity pro�les of the TR {1 calculated either by the TBA (dynamical interaction betweenTR {1 and TR 0), or as a multiple-beam scattering among TRs {1,0,+1 (TR +1 is evanescent inthe plotted region) slightly di�er, Fig. 5.16. This shows that the TR +1 in
uences the intensityof TR {1 for the angle of incidence around the critical angles, so that the interaction with theTR +1 is important. However, we can see that the di�erences are very small: the curves ofboth calculations are shifted not more than 0.002�(value of a very good experimental precision),whereas the maximal di�erence in the intensities is lower than 4%. For angles of incidence belowthe critical angle of the averaged medium (0.219�) as well as for angles of incidence much largerthan the critical angle of the wires (0.309�) both curves coincide. The same behaviour can befound on the intensity pro�les of the other odd TRs too, Fig. 5.16.Therefore there are two scattering regions on each odd TR (see the graphical representationin Fig. 5.12): the multiple-scattering region for the angle of incidence between the criticalangles, and the single-scattering region elsewhere. The value of wh(0) for the TRs �1 is 0.012,which slightly exceeds the threshold for the validity of the TBA (5.113). This demonstratesthat the condition of the validity of the TBA (5.113) is an approximation only: this conditionconsiders the scattering between the TRs inside a structured layer, but not the enhancement ofthe transmission function at the critical angles.The value of wh (5.109), which determines the \size" of the multiple-scattering region de-pends on �0d=�. Therefore we �nd many samples for which the multiple-scattering region canbe neglected. This is e.g., the case of the 1.3 �m InP/GaInP MLG measured for the wavelength0.7114 �A (Sec. 5.7) because of wavelength dependence of the susceptibility �0 � �2.However, we already stated that TBA cannot be used if �h is zero (or very close to zerocompared to �1), i.e., for even TRs in the considered example. These truncation rods are
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ectivity from multilayer gratings\kinematically forbidden". This happens because the contributions of the scattering from theprimary beam (proportional to E0) to TR h is weighted by �h. If we want to avoid the use of thefull dynamical calculation, we have to �nd a multiple-beam approximation of a su�cient orderwhose di�raction curve would correspond to the dynamical curve. In the case of the consideredsurface grating we have found numerically that approximation of the third order, i.e., 14-beamapproximation, can be used instead of the full dynamical calculation.Distorted-wave Born approximationThe distorted-wave Born approximation is a perturbation method. We used the DWBA of the�rst order and we derived the formula (5.59) for the intensity of the beam corresponding tothe TR m. Each structured layer contributes to the amplitude of the scattered wave by a sumof four scattering processes, describing the interaction between the transmitted and re
ectedincident and di�racted beams, Fig. 5.7. The magnitude of those four contributions for the TR�1 is plotted in Fig. 5.17. The strongest contribution is that of the T1T2 process. In the caseof the negative TRs, the scattering process R1T2 in
uences the re
ectivity around the criticalangle because of the maximum of T2 at the critical angle. The other two processes, R2T1 andR1R2, are of small amplitude and their contributions to the scattered intensity are negligible.For positive truncation rods, the contributions of R1T2 and R2T1 change their roles.The �nal formula (5.59) of the DWBA calculation gives a clear description of the featureson the di�raction curve. Since the scattering process T1T2 between the incident-transmittedand di�racted-re
ected waves mostly prevails (the re
ectivity amplitudes are small: T1; T2 �R1; R2), the intensity pro�le is determined mainly by this primary scattering process. The depen-dence of T1 and T2 on the angle of incidence gives rise to the increase of the scattered intensity atthe critical angle (of the averaged grating|given by the choice of the ideal potential), Fig. 3.10.This region corresponds to the so-called Yoneda wings in the di�use scattering [Yon63]. Theoscillations on the truncations rods are caused by the oscillating term [exp(�iqz0t)� 1]=(�iqz0)in Eq. (5.59).Approximating jT1T2j � 1 for large angles of incidence, the equivalence of the DWBA (5.59)and the two-beam approximation (5.110c) for large angles of incidence can be analytically demon-strated. Consequently, the numerical simulations show that the TBA slightly di�ers with respectto the DWBA and to the dynamical theory in the region of the critical angles. The di�erencesbetween the TBA, DWBA and the dynamical theory increases for large period gratings. Thenumerical calculation shows that the DWBA can be accurately applied for a GaAs surface grat-ing up to the period of 2 �m, where from the multiple-scattering features start to be important.Fig. 5.18 shows what is the di�erence between the calculation by the DWBA and by the multiplescattering among TRs {3, : : : ,+3 for a GaAs grating with the period of 5 �m.Further, we �nd that homogeneous layers do not contribute to the intensity of the di�ractedwaves by a matrix element, only by in
uencing the amplitudes T and R.Finally we should note that we used the DWBA of the �rst order, where only the singlescattering process from the incident to the di�racted eigenstates is involved. The amplitudeof the di�racted wave of the primary scattering process is proportional to �h. Similarly tothe two-beam approximation, distorted-wave Born approximation of the �rst order cannot beused for calculating the intensity of the kinematically forbidden TRs with zero �h. This canbe overcome by applying the DWBA of a higher order. The DWBA of the second order wouldbe su�cient for determining the intensity of the kinematically forbidden TRs, because they areexcited through scattering from the other strong TRs.The main objection in the literature against the usage of DWBA for the calculation of there
ectivity from gratings was that this perturbing potential is large. This objection is naturalif the DWBA is applied for the di�use scattering calculations in which case it is shown thatDWBA breaks down for larger roughnesses (above >� 20 �A). However, near a rough interfacethe scattered wave�eld is \random", therefore the eigenvectors taken from the laterally averagedmultilayer di�er strongly from the actual wave�eld and their usage in the DWBA is no more
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a1(�q1), etc. The contribution of the process R1T2 on the total sum issigni�cant and therefore the \semi-kinematical" calculation (i.e. the calculation using the T1T2 termonly, see (5.62)) is not su�cient. Figure (c) shows the absolute values of the amplitudes T1, R1, T2, andR2 at the lower interface of the grating.appropriate. In the present case of perfect grating structures it shows that the eigenstates of avirtual planar multilayer with laterally averaged potential is a very good choice and therefore theDWBA gives correct results even though the perturbing potential acts in large grating volume(we recall that the grating layer thickness is 3000 �A).Kinematical theoryWe have shown that the kinematical theory without the restriction to the Fraunhofer approxi-mation can qualitatively explain some features of the re
ectivity from multilayer gratings. Thekinematical di�raction integral is equivalent to the �rst Born approximation with the eigen-states given by the vacuum plane waves (cf. the DWBA treated above, where the base statesare wave�elds of the averaged ML). Since the refraction e�ects are not involved in this theory,
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ectionat interfaces plays a smaller role: the elements of the matrix of generalized Fresnel coe�cients(5.99) approach the kinematically calculated Fresnel di�raction coe�cients (5.28). The periodof the oscillations on a truncation rod approaches that calculated dynamically for larger anglesof incidence, Fig. 5.19.Similarly to the other single-scattering theories, the kinematical theory cannot calculate theintensity of the kinematically forbidden even-order TRs of the discussed surface grating.Nevertheless, from the approach used by the kinematical theory we get a simple overviewof the scattering phenomena. Namely, the Ewald construction, shown in Fig. 5.5, is of generalimportance. Further, the scattered amplitude is proportional to the Fourier transform (in the ẑdirection) of the (lateral) Fourier coe�cient of the susceptibility �h, which gives a good estimatewhere to expect the peak positions|and this is what the grating formula is about.
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ectivity from multilayer gratings5.7.2 Specular re
ectivitySo far we discussed the intensity of the di�racted waves. Now let us concentrate on the specularintensity, which is the intensity pro�le along the zeroth truncation rod (TR 0). The specularre
ectivity curve of the considered surface grating is presented in Figs. 5.20 and 5.21.The curves calculated by the dynamical theory, multiple-beam approximations and DWBAcoincide, except for a narrow dynamical region on the DWBA curve, which we are going toexplain in more details below. They are identical to the re
ectivity curve for an averaged layer(with � = 12�GaAs) on the substrate as calculated by the dynamical theory of re
ectivity fromplanar multilayers, Ch. 3.The dynamical theory in the one-beam case (D = 1) calculates the scattering only as thepropagation of the pair consisting of the incident transmitted and re
ected waves. The trans-mitted and re
ected waves in each layer are coupled at interfaces and the corresponding matrixelements depend on the averaged susceptibility �0. Therefore this leads to results identical tothe dynamical X-ray re
ectivity from an averaged planar multilayer (Sec. 3.4.4 and 3.4.5). Thisis also the result of the DWBA calculation because of the choice of the eigenstates.Using the full dynamical theory for MLGs, thus the case whenD > 1 and (lateral) di�ractionsby h 6= 0 occur, the other TRs are interacting with the TR 0. In Fig. 5.16 we can see thatthe interaction with both the TRs �1 has to be taken into account even when the TR +1 isevanescent in the region ! < 1:12�. This again recalls that the contributions of the wave�elds(eigenvectors of the dispersion relation) of opposite TRs cancel each other. However, the specularcurves coming from the interaction between TRs 0 and 1, and TRs 0 and {1 di�er (Fig. 5.16)because the wave�eld di�racted in the grating has to come out through the interfaces, and bothdi�racted-re
ected waves of TRs �1 make di�erent angles with the interfaces, which changestheir re
ection and transmission functions (the generalized Fresnel coe�cients).Another dynamical region of multiple scattering is found near the angle of incidence at whichthe wave�eld of the TR +1 becomes real (this is schematically shown by circles in Fig. 5.8).In this case the di�racted-transmitted wave has a maximum and it can eventually in
uencethe specular beam by taking some of its energy away, cf. the transmission function T1T2 in theDWBA. We can see in Fig. 5.21 that only the TR +1 is so strong near the critical angle of itsoutgoing beam that it enhances and modulates the specular re
ectivity curve pro�le. We can�nd this feature in the dynamical theories, including TBA, in which the interaction between
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Figure 5.20. The specular re
ectivity curves (the main truncation rod) of the discussed GaAs surfacegrating (period 8000 �A, � = 0:5, thickness 3000 �A; wavelength 1.54 �A). (a) Comparison of the dynamicaland the kinematical calculations. (b) Specular curve calculated by the dynamical theory in large angularregion. This �gure illustrates the fall-down of the intensity of the specular curve and its intensity at theangles at which the positive truncation rods arise (denoted by the enumerated arrows); cf. Fig. 5.22 too.The critical angles of the GaAs material and of the averaged medium are shown by arrows.
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Figure 5.21. The specular re
ectivity curves of the discussed GaAs surface grating. (a) Region of thespecular re
ectivity curve (the upper thick curve) near the angle of incidence where the �rst truncationrod (TR +1) appears (the wave�eld of TR +1 becomes real). The intensity of the TR +1 (shifted down5-times and represented by the dashed curve) is strong in the region of the maximum of the transmissionfunction and it takes away energy from the incident transmitted beam, which in
uences the intensity ofthe specularly re
ected beam. The lower thick curve is the dynamical calculation without the interactionwith the �rst TR. (b) Same as (a), but for the third truncation rod (TR +3). Its intensity (dashed curve)is low compared to the intensity of the incident transmitted beam. Therefore it does not in
uence theother truncation rods nor the specular one (the thick curve).TR 0 and TR +1 is involved in the calculation. However, the calculations which do not take theinteraction between these two TRs into account (i.e., DWBA and the dynamical theory withoutTR +1 7), lead to the re
ectivity curve of the averaged planar multilayer. In the region far fromthis narrow \dynamical" region the re
ectivity curve coincides perfectly with that calculatedaccording to the formulae in Sec. 3.4.5 for the averaged multilayer. We note that this dynamicale�ect diminishes when the grating side walls are rough (Sec. 5.9.1) so that the amplitude of theTR +1 is reduced.7I have already noted that in my program for the numerical simulation of the dynamical theory the TRsdynamically interacting can be arbitrary chosen. For example, we can calculate the dynamical theory using allavailable TRs, only non-positive or non-negative TRs, or a subset of them. The \dynamical theory withoutTR +1" means the dynamical calculation considering many TRs except for the speci�ed TR +1.
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Figure 5.22. Dependence of the angle of incidence !startm =p2m=(d=�), see Sec. 2.3, at which the positivetruncation rods +1, : : : ,+8 arise, with respect to the ratio of the period d and the wavelength �. The boldvertical bar on the left-hand side represents the conditions of the discussed SG (d = 0:8 �m, � = 1:54 �A),that on the right-hand side the conditions of the measured MLG (d = 1:3 �m, � = 0:7114 �A).Further, it has been shown by the two-beam approximation that the amplitudes of thedi�racted waves are of the order of �h=h, Eq. (5.110c). For X-rays the sum of the contributionsof the h 6= 0 TR is small (except for the TR +1) thus the in
uence of the total (integrated)non-specular re
ectivity on the specular re
ectivity amplitude is negligible if the amplitude ofthe stronges TR is negligible too (i.e., out of the region where the TR +1 is strong).Let us note that the di�racted TRs make much more impact on the TR 0 pro�le if they arecloser together (in reciprocal space), i.e., for grating period much larger than the discussed one,or when the e�ective grating period is enlarged by the azimuthal rotation, which is the subjectof the treatment in the following section. Further, in visible light optics the susceptibilities �hare not small (the index of refraction is substantionally greater than unity) and the specularre
ectivity is changed substantially.For short period gratings the DWBA calculation accurately coincides with the multiple-beam dynamical approximation (the e�ect of the \e�ective" �eld of the TRs). For large periodgratings, the multiple-scattering e�ect plays an important role. The specular re
ectivity curveof a GaAs surface grating is well approximated up to a period of 2 �m (for the wavelength1.54 �A), the di�erences become important for a period of 5 �m, which is shown in Fig. 5.18.The re
ectivity curve calculated by the kinematical theory shows exactly the same behaviouras that discussed for non-specular scans and for the specular re
ectivity from planar multilayers,page 42. This we have demonstrated by comparing the \interface" Fresnel coe�cients (3.114)and (5.28) for h = 0. Therefore we brie
y summarize the main features: the intensity, given by(5.36) is inversely proportional to K2z (since h = 0), and therefore it diverges around the zeroangle of incidence. There is no region of total external re
ection|this e�ect has been alreadyattributed to the choice of the vacuum base states. The refraction corrections to the wave vectorin the averaged medium kz calculated by the dynamical theories become small for large anglesof incidence and the dynamical Fresnel coe�cients approach their kinematical limit, thereforethe dynamical curve approaches the kinematical one.5.7.3 Azimuthal angle dependenceUp to now we discussed the re
ectivity from a grating in the geometry where the incidentbeam was perpendicular to the wires. When we rotate the sample about its surface normal(azimuthal scan �), the e�ective period changes as d(�) = d= cos �, see Fig. 5.4(a). According
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Figure 5.23. Map (azimuthal angle vs. angle of incidence) of intensity of the specular truncation rod(upper map) and of TR {1 (lower map).



124 Chapter 5: X-ray re
ectivity from multilayer gratingsto Fig. 5.4(b){(d), we can see that the sample's reciprocal lattice rotates in reciprocal space andthe scattering is non-coplanar, but it still preserves its forward-scattering character (the \Lauecase"). We have found that the dynamical theory is well adapted for the case Kx � h, and wedetermined a condition for applying the two-beam approximation. From this it follows that themultiple-beam interaction among TRs becomes important for a grating with a large period aswell as for a rotated short period grating with larger e�ective period.In this section we brie
y discuss the case when the incident beam is nearly parallel to thewires, i.e., the azimuthal angle � is near to 90�. From this follows that the x̂ component ofthe incident wave vector Kx � K cos�, de�ned by expression (2.1a), is smaller than the lowestorder reciprocal vector of the grating h1.We calculated numerically the intensity distribution for the surface grating treated in thisdiscussion. Maps of the intensity dependence on the azimuthal and incidence angles for TRs 0and {1 are shown in Fig. 5.23. For the calculation of these TRs, we have found that for aprecision better than 10�3 at least the 11-beam dynamical theory, i.e., calculation includingdynamical scattering among TRs {5, : : : ,+5, has to be used. For calculating the intensity ofeven order TRs �2, at least the 15-beam dynamical theory (TRs {7, : : : ,+7) is necessary. Letus note that the angular separation of the di�racted waves of two neighbouring TRs is at about0.01�.The di�racted waves in this scattering geometry are strong and the scattering has to becalculated dynamically, i.e., as a multiple interaction among many TRs. This need for themultiple-scattering interaction coincides with the condition of the validity of the two-beamapproximation (see Sec. 5.6.4 and Eqs. (5.113) vs. (5.111)).The necessity of the multiple-beam dynamical interaction can be understood from the 2dreciprocal space construction in Fig. 5.4(d). If we enlarge this 2d picture into the true 3dreciprocal space by adding the Qz axis perpendicular to the paper sheet, then the grating TRsare perpendicular to the paper sheet and they cut the Ewald sphere of the incident wave in pointswhose Qz coordinates are very close for the neighbouring TRs. In the real space representation,all the di�racted waves are con�ned in the grating wires and in the grooves between them, sincethey make an angle of incidence with the side walls smaller than the critical angle.5.8 Other grating structuresUp to now we were concerned with discussion of the re
ectivity from rectangular periodic grat-ings. This section we devote to the treatment of scattering by other types of lateral gratings,namely rectangular quasiperiodic gratings and trapezoidal periodic gratings.5.8.1 Quasiperiodic gratingsOur previous discussion has been focused on scattering by a laterally periodic grating, whichrepresents an arti�cial 1d crystal with periodic lattice. Now let us treat the re
ectivity patternfrom a grating with lateral quasiperiodic lattice we have proposed earlier [Mik95]. As a particularexample we suppose a (lateral) Fibonacci lattice introduced in Sec. 3.6.2. A sketch of a lateralFibonacci grating is shown in Fig. 5.24(a).In Sec. 3.6.2 we discussed the re
ectivity from a Fibonacci multilayer grown in direction ẑ .We used the general properties of the Fibonacci lattice, namely its discrete Fourier transformwith the peak positions described by two integers and �lling densely the whole 1d reciprocalspace. These results can be applied directly also for the present case of a Fibonacci grating,i.e., the Fibonacci lattice in the x̂ direction where the wires a, b are positioned according to theFibonacci sequence. Figure 5.24(b) shows the reciprocal space of this structure. It consists ofan in�nite number of truncation rods which are enumerated by two integers p; q. A truncationrod (p; q) resides at lateral position hpq = 2�d (p+ q�)x̂ , where the lattice period is d = da + �db.Since the golden mean � is an irrational number (p. 46), the truncation rods are found in everypoint of the axis Qx.
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Figure 5.24. (a) A sketch of a Fibonacci grating. (b) Its reciprocal space is a set of truncation rodswhose position hpq = 2�d (p+ q�)x̂ are determined by two integers p; q. Because the golden mean � is anirrational number, a truncation rod is found in every point of the axis Qx.In the calculation of the intensity of the scattered waves, we proceed similarly to our approachof periodic gratings. The only di�erence (cf. Sec. 5.3) is that the Fourier coe�cients are indexedby hpq instead of the equidistant hm. Then all the calculations by the kinematical theory,distorted-wave Born approximation, dynamical theory and the two-beam approximation canbe used without any change, just using hpq instead of hm and �hpq instead of �hm . Some\implementational" problems could be encountered in the dynamical theory, since the matriceswould be in�nite because the Ewald sphere crosses an in�nite number of TRs. However, from theFourier transform of the Fibonacci sequence [SL87] we know that the largest Fourier componentsare those with small p; q (cf. Fig. 3.12) and therefore most of the TRs will be of very low intensity.For the same reason, there would be only few truncation rods distinguished on an experimental!-scan.We have shown earlier that the amplitude of a wave scattered by Q calculated by thekinematical theory, distorted-wave Born approximation and the two-beam approximation isproportional to the modulus of the Fourier transform of the susceptibility, Eh � �h(q?) � �(q),where qk = h .8 Thus for establishing the general properties of a re
ectivity map (we meanthe truncation rod positions and the peak positions, i.e., the \grating formula") of a gratingwith any structure we can use the Fourier transform approach used in the kinematical theoryof X-ray di�raction.9 Let us suppose a grating where the material b is vacuum, and the wiresof the material a are layers of a multilayer. The susceptibility of the grating can be split intothe susceptibility of the multilayer �ML, shape function of one wire 
a1 and the distributionfunction of the wires �d(x) =Pn �(x� xn). Here xn is the position of the nth wire (it can be aperiodic, quasiperiodic or any other sequence). The susceptibility of the grating is given by theconvolution�grating(r) = 
a(x; z) � �ML(r) = [
a1(x; z) � �ML(r)]
 �d(x) : (5.116)The scattered amplitude is proportional to its Fourier transform (denoted by the star)��grating(q) = [
�a1(qx; qz)
 ��ML(q)] � ��d(qx) : (5.117)According to the rule for the wire distribution, the intensity in the qx direction in reciprocalspace is modi�ed. We can see that the Fourier transform of the wire distribution is discreteand therefore it determines the lateral positions qxm of the truncation rods|they are found8In the kinematical theory, q is the vacuum wave vector transfer Q . In the DWBA it is the wave vectortransfer of a particular scattering process, cf. (5.56).9The kinematical theory of X-ray di�raction shows that the di�racted amplitude is proportional to the Fouriertransform of the electron density. The Fourier transforms of the electron density �h and of the susceptibility �(h)are proportional [AKK+74].



126 Chapter 5: X-ray re
ectivity from multilayer gratingsin the discrete maxima qxm of the Fourier transform ��d(qx). The Fourier transform of thesusceptibility pro�le of the multilayer in the ẑ direction determines the positions of the maximaalong qz. The Fourier transform ��ML(q) of the pro�le of one wire 
�a1 determines the modulation(an envelope function) of the scattered amplitude and it may lead to extinction of some TRs,thus the dynamical calculation has to be involved. This we have shown earlier on the particularcase of a surface grating with � = 0:5.From this discussion a prediction of the structure of the re
ectivity map of any grating samplecan be predicted. For example, a Fibonacci grating etched into a Fibonacci multilayer will exhibita quasiperiodic arrangement of truncation rods along qx and quasiperiodically arranged maximaalong qz; in a rough approximation the scattered map will be the product of �gures 5.24(b) and3.12. However, to our knowledge such a sample has not been produced until now.5.8.2 Trapezoidal gratingsSo far we have discussed the scattering from gratings with rectangular wire shapes, Fig. 5.2(c).Let us now brie
y discuss how to calculate re
ection by gratings with other wire shapes, notablywith trapezoidal shapes, Fig. 5.2(d).The gratings with non-rectangular shapes have been treated by di�erent methods. The inte-gral formulae for Maystre's coe�cients Bm [May84] have been applied by Tolan et al. [TPBK95]to calculate the scattering amplitude by a trapezoidal surface grating. Nevi�ere [Nev94] used thedi�erential matrix method for the calculation of the re
ectivity by a grating with triangularwire shapes.In the present work, the kinematical theory and the DWBA have been formulated in sucha way that it is easy to deal with any grating shape. In the kinematical theory, the re
ectivityis given by the integral (5.21) which calculates the Fourier transform of the Fourier coe�cient�h(z) along the vertical direction ẑ . We already provided the formula for the rectangular grating(5.25), and the generalization for other grating shapes is straightforward.The DWBA calculation is easy as well, because the perturbing potential (5.42) is convenientlydescribed by means of the grating shape function 
a(r), Fig. 5.2(b). The specular re
ectivityfrom rectangular wires was found to correspond to the re
ectivity of the averaged multilayer,Eq. (5.54), because of the choice of the ideal potential. The re
ectivity of a grating with anothershape is modi�ed by additive terms proportional to the Fourier transform of the wire shapepro�le, Eq. (5.55). The pro�les of the non-zero truncation rods (5.58) contain directly the Fouriertransforms of the wire shape function, which are weighted by the amplitudes T1T2; T1R2; : : : ofthe four scattering processes acting in the DWBA of the �rst order.Within the dynamical matrix method presented, da(z)
Figure 5.25.

we can employ the wire shape by the usual approachof calculating the re
ectivity from a layer with varyingrefractive index. We cut the grating into thin (virtual)layers, Fig. 5.25, approximate the trapezoidal shapein each layer by a rectangular shape, and apply thedynamical calculation for such a multilayer grating.Then the transfer matrix of the trapezoidal grating(5.85) will be approximated by the product of the transfer matrices of the virtual layers,M(2) =QlM (2);l, and we expect this product will converge to the transfer matrix of the trapezoidalgrating calculated by the di�erential method. Consequently, this stratifying method will takeinto account the averaged vertical pro�le of the index of refraction as well as the varying ratio�(z) = da(a)=d, whereas the e�ect of the slopes of the side walls is neglected. We expect thatthe slope of the side walls plays a negligible role, because the waves propagating in the gratingfall on the side walls under very large angle (with respect to the critical angle), and thereforetheir refraction on these walls can be neglected (the kinematical limit).



5.9 Rough gratings 127This extension of the dynamical theory for trapezoidal shapes seems to be a good approx-imation for large slopes (20�{90�), which are present in common MLGs. This approximationcould be tested by comparing it to the calculation by the di�erential method.Further, this method of virtual layers can be used also in the DWBA to compare the precisionof the calculation of the perturbation in the averaged wave�eld of the whole trapezoidal gratingto the calculation of the sum of the perturbations in the smaller trapezoids of virtual layers.5.9 Rough gratingsIn the previous part we dealt with scattering by perfect multilayer gratings. We have supposedthat the grating period is constant all over the sample and that the boundaries separating thedi�erent materials are perfectly 
at. In this section we will have a look how the structuralimperfections of a grating in
uence the scattered intensity.Obviously, the grating imperfections can be of two types: macroscopic and microscopic. Themain macroscopic imperfection is a 
uctuation of the grating period d over the sample area.However, when the mask for the etching of the grating structure is fabricated by means of anoptical method (i.e., by optical holography), then the wire period is given by the wavelengthused and consequently it is constant over the sample surface. Therefore we will further dealwith two microscopic imperfections: rough side walls and rough lateral interfaces.We will calculate the in
uence on coherent scattering and we will not deal with the incoherent(di�use) part. Namely, we do not calculate the pro�le of !-scans or 2�-scans. We suppose thatthere are only coherent truncation rods, enlarged by the instrumental function.5.9.1 Rough side wallsLet us suppose that the side walls, i.e., the walls separating the materials a and b in each layer,are rough. In this section we make the calculation for a single structured layer, therefore we willfurther omit the layer indices. The positions of the side walls of the nth wire are nd�da=2+U(r),where the displacement U is a random quantity. The theories we used earlier for the calculationof the scattered intensity make use of the Fourier coe�cients of the susceptibility (5.3) or of theshape function of the material a (5.5). In the present case of a rough MLG, we use the averagedvalues h�hi and h
ahi instead. This is because we have shown that in the single-scatteringtheories the re
ectivity amplitude is proportional to these Fourier coe�cients. For the fullydynamical theory, this seems to be a reasonable approximation.The zeroth Fourier component of the susceptibility is its averaged value in the layer, thereforeit does not change in the presence of rough side walls.The averaging of the Fourier components 
ah for h 6= 0 givesh
ahi = *1d Z da=2+U�da=2+U dx e�ihx+ = 1d �e�ihda=2 
e�ihU�� eihda=2 
e�ihU���ih= dad sinc dahd De�ihUE = 
idah De�ihUE : (5.118)We denoted the Fourier transform of the shape function on the undisturbed system by 
idah.We assume a gaussian distribution function of the side wall roughness characterized by the rootmean square roughness �w. The updated Fourier coe�cients areh�hi = �idh e�h2�2w=2h
ahi = 
idah e�h2�2w=2 : (5.119)We can see that the rough side walls diminish the intensity of the non-zero truncation rods.In the single-scattering approximation the amplitude of the di�racted wave of the truncationrod h decreases by a constant value e�h2�2w=2 which makes the higher-order truncation rods less



128 Chapter 5: X-ray re
ectivity from multilayer gratingsobservable. However, in order to achieve a noticeable decrease of the intensity, the factor h�wshould be at about unity and therefore �w >� d=4. For a realistic example of a grating withthe periodicity of 1 �m it means that the intensity of the �rst TR is changed noticeable for aroughness of several hundreds of �Angstroms.5.9.2 Rough interfacesLet us consider the roughness of the interfaces separating adjacent layers of a MLG. We willproceed similarly to the approach used in the calculation of the specular re
ectivity from arough planar multilayer, and we use both the dynamical (Sec. 4.3.1) and kinematical (Sec. 4.3.2)theories.We describe each rough interface (Sec. 4.2.1) by the displacement Uj(r), see (4.1). Wesuppose a unique probability distribution function over the interface, which means that we donot distinguish between possibly di�erent statistical properties of the interfaces on top of the aand b materials. Therefore we characterize the roughness of an interface j by a single root meansquare roughness �j and not by means of two separate roughnesses (e.g., �aj ; �bj).Rough interfaces and the dynamical matrix theoryThe rough interfaces cause layer thickness 
uctuations which in
uence the phase terms (5.83){(5.84) of the propagation matrices Q(j) (5.82). According to relations (4.22){(4.24), the phasematrix becomes randomQ(j)(rk) = Uj�1(�k(j)z ; rk)Q(j)(k(j)z )Uj(k(j)z ; rk) (5.120)Uj(kz ; rk) � �U (j)+(kz; rk) 00 U (j)�(kz ; rk)� : (5.121)Here U (j)�(kz; rk) are the diagonal matrices with the diagonal vector�e�ik(j)1;zUj(rk); e�ik(j)2;zUj(rk); : : : ; e�ik(j)D;zUj(rk)� (5.122)for structured layers, and similarly for homogeneous layers.The amplitude of the re
ected waves is given by (5.87), which has to be averaged over theinterface displacements. We employ the approximation (cf. (4.27))D~RvE = DM̂21 � M̂�111 � ~T vE � DM̂21E � �DM̂11E��1 � ~T v : (5.123)In the present formalism we use the same notation as in the dynamical theory of re
ectionfrom planar multilayers, therefore we can directly apply the reordering of the matrix sequenceaccording to (4.25). Then the averaged transfer matrix of the whole multilayer reads (cf. (4.29))hM(rk)i = NYj=1 hNj(rk)i = NYj=1 hPj;j+1(rk)iQ(j+1) : (5.124)We rename the ideal matrices Pj;j+1 in (5.93) to P idj;j+1 and putPj;j+1(rk) � Uj(k(j)z ; rk)P idj;j+1 Uj(�k(j+1)z ; rk) : (5.125)Averaging the boundary matrix is straightforward. It leads to the form where the elements ofthe ideal matrix are multiplied by the characteristic function of the probability distribution �Uj(as usual, we use the gaussian distribution function (4.7))
Pj;j+1(rk)� = 0B@h� idj;mn �Uj ( k(j)z;m � k(j+1)z;n )i h�idj;mn �Uj (k(j)z;m + k(j+1)z;n )ih�idj;mn �Uj (�k(j)z;m � k(j+1)z;n )i h� idj;mn �Uj (k(j+1)z;m � k(j)z;n)i1CA : (5.126)
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Figure 5.26. Intensity of (a) the odd truncation rod {1 and (b) the even truncation rod {2 (b) of thesurface grating according to Sec. 5.7 having rough interfaces. (a) Intensity of TR {1. From the upper tothe lower curve: without roughness, interface roughness 12 �A, surface roughness 12 �A, both roughnesses12 �A. (b) Intensity of the TR {2. From the upper to the lower curve: without roughness, surface roughness12 �A, interface roughness 12 �A, both roughnesses 12 �A. The explanation of the opposite order of the curvescorresponding to the surface and interfaces roughnesses with respect to their order in the odd TR {1 isgiven in the text.



130 Chapter 5: X-ray re
ectivity from multilayer gratingsThis relation is analogous to (4.30). However, in the present case the matrices �̂ idj ; �̂idj are notdiagonal and an analog of some \corrected Fresnel coe�cients", as it is possible in (4.32), doesnot exist except for an interface between two homogeneous layers.We explain the roughness in
uence in the following way. Rough interfaces change the inten-sity pro�le along the Qz-direction. From the last matrix relation we deduce that the transmissioncoe�cients lying on the diagonal �mm are not substantionally in
uenced, since k(j)m � k(j+1)m forlarger angles. The damping of the o�-diagonal terms �mn; m 6= n, depends on the \verticaldistance" of the wave vectors jkz;m � kz;nj. The damping of the re
ectivity elements �mn ismuch stronger, since the decrease is given by a static Debye-Waller-like factor in the argumentof the vertical wave vector transfer jkz;m + kz;nj2.Numerical calculation of the specular re
ectivity shows that it behaves similarly to thespecular re
ection from rough laterally averaged planar multilayers. For a simple case of asurface grating the surface and interface roughness acts as shown in Fig. 4.3(a). Numericalresults demonstrating the in
uence of the roughness on the di�racted intensity are shown inFig. 5.26 for the surface grating discussed in Sec. 5.7. We can see that the di�raction curves aresensitive to a roughness of several Angstroms, as in the case of the re
ectivity curves of planarmultilayers.Let us discuss the order of the curves for rough and 
at surface/interface, i.e. what is theintensity for a given angle of incidence depending on the roughness of di�erent interfaces. For theodd TR {1 their order is as that of the specular re
ectivity, Fig. 5.26, because the odd TRs areexcited by the direct scattering process from the TR 0. Larger surfaces roughness decreases thefall-down of the intensity of TR {1. Larger interface roughness decreases the amplitude of thewave�eld of TR {1 con�ned in the layer, therefore it decreases the amplitude of the oscillations.The order of the intensities for both roughness combinations is opposite for the even TR {2.This is because the di�racted wave�eld of an even TR is excited by a double-scattering processinside the layer. The di�racted-re
ected wave of the TR {2 coming from the interior of the layeris less re
ected back if the surface roughness is large, and therefore its intensity is higher. Thedi�racted-re
ected wave of TR {2 falling on the bottom side of the 
at surface is considerablyre
ected back for an incidence angle below the critical angle and therefore the intensity measuredabove the surface is smaller.Rough interfaces and the kinematical theoryThe position z(r) of a rough interface is random (4.1), and therefore Eq. (5.27) has to beaveragedhEh(r)i = *E0 NXj=1 rkinh;j e�iQhzzj+1(r)+= E0 NXj=1 Drkinh;j (r)E e�iQhzzj+1 : (5.127)The Fresnel re
ection coe�cient of kinematical di�raction corrected for the roughness of aninterface j isDrkinh;j (r)E = rkinh;j(r) � De�iQhzUj(r)E = rkinh;j � �Uj (Qhz) : (5.128)For the gaussian probability distribution function (4.7) we get explicitlyDrkinh;j (r)E = rkinh;j e�Q2hz�2j =2 : (5.129)Similarly to the specular re
ectivity from rough planar multilayers (Eqs. (4.35) and (4.36)) weget the kinematical damping factor depending on the ẑ component of the vacuum scattering



5.10 Experiment 131vector (Debye-Waller form of the diminution). This is di�erent from the dynamical theory wherethe correction depends on the ẑ components of the wave vectors in both neighbouring layers,Eq. (5.126) vs. (4.33). The di�erent behaviour of MLG interface roughness as calculated by thedynamical and kinematical theories is therefore similar to that shown in �gure 4.3.This kinematical damping factor is similar to that empirically assumed by Erko et al.[EVV+93]Ih = I0 � e�K2�2 sin2 � (5.130)for I0 calculated dynamically. They characterized the grating by a single e�ective roughness �and used an e�ective wave vector transfer K sin � instead of the scattering wave vector Qhz.5.10 ExperimentIn this section we present the re
ectivity measurement on
GaInAsInP substrateInP 500 �A300 �A
d = 1:362 �m

Figure 5.27. Schematical drawingof the sample RG505B4.
a multilayer grating whose structure is presented in Fig. 5.27.There are three and a half periods of the bilayer Ga0:47In0:53As(nominal thickness 500 �A) and InP (nominal thickness 300 �A)grown on a InP substrate. The uppermost period is etched.This creates a bilayer grating sitting on multilayer with twoand a half periods.We performed the re
ectivity measurement of this sampleat the Optics Beamline D5 in the E.S.R.F. (European Syn-chrotron Radiation Facility, Grenoble), using a high-resolutiontriple-axis di�ractometer, Fig. 5.28. The radiation was mono-chromatized by a single-re
ection on a Si(111) crystal posi-tioned on the �rst goniometer. The sample was mounted on the second independent goniome-ter. The intensity of the scattered radiation was measured by a scintillation counter mountedafter a Si(111) analyzer crystal, both placed on the third independent goniometer. The angle ofincidence ! was changed by simple rotation. For measuring the outgoing radiation at certainscattering angle 2�, a more complicated movement was needed. Firstly, the analyzer crystal aswell as the detector had to be rotated. Because of the distance between the second and thirdgoniometers and the �nite size of the analyzer crystal, the whole third goniometer had to bemoved so that the measured scattered beam always arrived at the analyzer crystal. And �nally,the beam between the sample and the analyzer had to pass through a slit, employed in orderto discriminate the analyzer streak. Therefore the arm carrying the slit and a lead tube (toavoid the di�use scattering from the air) had to be moved as well. In order to make the wholemovement automatically, we wrote several macros for the spec software running the whole mea-surement. We implemented the macros in very convenient way, so that we could measure in any
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Figure 5.28. A sketch of the di�ractometer at the Optics Beamline at the E.S.R.F.



132 Chapter 5: X-ray re
ectivity from multilayer gratingsgiven point in reciprocal space, or perform any reciprocal space scan. The tests showed verygood mechanical precision of the whole equipment.The sample was mounted with its surface vertical, and the incident wave was perpendicularto the wires. Table 5.1 contains the lattice parameters of the compounds and the index ofrefraction and the critical angle for the wavelength � = 0:7114 �A used.Table 5.1. Lattice parameters and refractive indices for the wavelength 0.7114 �A.material lattice parameter � = 1� n = ��=2 critical angle �CInP 5.8688 �A 2:837 � 10�6 + i 6:311 � 10�8 0.1365�Ga0:47In0:53As 5.8680 �A 3:284 � 10�6 + i 1:554 � 10�7 0.1468�Firstly, the !-scans have been measured in order to �nd the positions of the truncationrods. We could resolve the specular truncation rod and the �1 truncation rods, Fig. 5.29. Fromthe angular positions of the �1 TR peaks we calculate the reciprocal space positions of thesetruncation rodsQ�1x = � 2�0:7114 �A (cos 0:595� � cos 0:105�) = � 4:61 � 10�4 �A�1 (5.131)with the precision of �2 � 10�6 �A�1. From this follows the grating periodd = 2�=jQ�1x j = (1:362 � 0:005) �m. (5.132)We can see that the truncation rods are very thin in the !-direction. The full width athalf-maximum (FWHM) is 0.006�, which can be veri�ed by calculating the resolution functionof the triple-axis di�ractometer [HM96]. Thus for measuring the intensity along the \top" ofthe truncation rod we needed the precision of 0.001�. Therefore we studied the truncation rodsby measuring a narrow mapping around them: at each theoretical position (Qx; Qz) on the TRwe made a small !-scan and we have taken the maximal intensity of this scan.
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Figure 5.30. Intensity of the measured truncation rods {1, 0 and +1 vs. the angle of incidence.The measured intensity of truncation rods vs. the angle of incidence is shown in Fig. 5.30. Ifwe plot the TRs as Qz-scans, then the curves of the opposite TRs �1 will coincide (within theexperimental precision).We have theoretically investigated the in
uence of the dynamical e�ects of multiple scatteringon the sample re
ectivity, using �rstly the nominal structural parameters of the measured MLGand later the �tted values. We have found that the multiple and single scattering calculations(i.e., the dynamical theory, TBA and DWBA) provide the same curves except in a small regionaround the critical angles on the specular scans, where TBA slightly di�ers (with a precisionbetter than 10�2) from the other calculations. Thus it was possible to �t the experimentalcurves by using any of these theories.Consequently, we �t the specular curve Fig. 5.31, just as a specular re
ectivity curve from alaterally averaged multilayer and the intensity of the TR +1 Fig. 5.32 by the dynamical theorywith roughness. We have got a qualitative coincidence of the measured and simulated curves.The peak positions are well estimated, di�erences are in the intensities of some peaks. Because
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angle of incidence [deg]Figure 5.32. Fit of the intensity of the truncation rod +1 of the sample RG505B4.of the complex structure of the multilayered grating sample, it is not so easy to �nd a \perfect"�t as we have shown earlier for planar multilayers.The values of the structural parameters obtained from both �ts are the following. The layerthicknesses were found very close to the nominal values: tInP = (290 � 8) �A and tGaInAs =(503 � 8) �A. The estimated interface roughnesses were (5 � 3) �A. The ratio of the wire widthand the grating period � = dA=d = 0:66� 0:03.The coincidence of the data �tted by both the specular and di�racted truncation rods veri�edthat the �tted parameters from both �ts are consistent. If this were not the case, it would meanthat these structural parameters correspond to a false \local minimum" on the surface of �ttedparameters and the �t should be remade.It has been found earlier in X-ray di�raction that the etched grating acts as a transmissiongrating [GBM+93, BG95] for the scattering from the multilayer below the etched part. Thereforewe numerically examined the in
uence of the multilayer below the grating on the intensity of thetruncation rods. We have found that the presence of the ML a�ects considerably the specularcurve|the specular curve is sensitive to all layers in a multilayer. Further, the ML below thegrating increases the second peak behind the Yoneda-like wing on the TRs �1 with respect toa grating without the underlying multilayer. Increased number of periods of this ML does notin
uence the di�racted wave�eld in the MLG substantially due to the extinction in the �rst twobilayers below the grating, and therefore the intensity of non-zero TRs is not sensitive for morethan two periods of the underlying multilayer for these angles of incidence.Further we found that the intensity of the truncation rod is not sensitive to the roughnessof the grating side-walls below several hundreds of �Angstroms. In order to be sensitive to thisroughness, we would have to measure the scattered intensity in the geometry where the incidentbeam is parallel to the wires. In this case the scattering is no more coplanar and it requiresanother experimental arrangement. The measurement in this scattering geometry is promisingand it will be studied in the future.5.11 ConclusionDi�erent theories for the calculation of the X-ray re
ection from multilayered gratings have beendealt with in this chapter. Since their formulae have been presented and thoughtfully discussed,I enclosed a \road-map", Fig. 5.33, which presents schematically an overview of the propagationof the approximations in the discussed theories. I hope the reader will enjoy it more than anothertextual summary.
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Chapter 6
Conclusion





139ConclusionDans ma th�ese, j'ai traité la théorie de la ré
ectivité des rayons X et je l'ai appliquée ¸ l'étudede multicouches de plusieurs types :1. multicouches planaires avec diverses séquences d'empilement (monocouche, périodique,quasipériodique),2. multicouches rugueuses,3. réseaux de multicouches (multicouche avec une structure latérale).Le but de ma th�ese était de développer et de présenter plusieurs théories dans un formalismeunique tout en les raccordant aux théories de di�raction des rayons X. Les théories que j'aidiscutées sont :1. la théorie cinématique,2. l'approximation de l'onde déformée de Born,3. la théorie dynamique,4. diverses approximations de la théorie dynamique (approximation ¸ une ré
exion unique,approximation ¸ deux ondes et approximation ¸ di�usion multiple).Ces théories ont été comparées ¸ la fois par leurs expressions analytiques et par des simula-tions numériques. J'ai décrit les régions o�u elles sont en bon accord et celles o�u elles di��erent.De plus, j'ai démontré l'utilité des simulations numériques pour l'ajustement des mesuresexpérimentales. Ceci m'a permis de déterminer les param�etres structuraux des échantillonsétudiés dans les laboratoires.La premi�ere partie de la th�ese a été consacrée ¸ la représentation de la di�usion dans l'espaceréciproque. J'ai décrit les relations entre les mouvements angulaires expérimentaux et les balaya-ges correspondant dans l'espace réciproque. J'ai appliqué ces formules dans la programmationdes mouvements des moteurs des goniom�etres utilisés au synchrotron.Ensuite, j'ai analysé la ré
ectivité spéculaire sur des multicouches planaires. Tout d'abordj'ai formulé la théorie cinématique. J'ai calculé l'intégrale de di�raction par la méthode de laphase stationnaire, dont la validité n'est pas limitée ¸ la premi�ere zone de Fresnel, contrairement¸ l'approximation de Fraunhofer couramment employée dans les traitements cinématiques. J'aiformulé la théorie dynamique habituelle de la ré
ectivité et j'en ai déduit l'approximation de laré
exion unique. J'ai comparé les coe�cients de Fresnel dynamiques et cinématiques.La théorie cinématique et l'approximation de la ré
exion unique étaient utilisées avec succ�espour le calcul de la ré
ectivité par une multicouche quasipériodique de Fibonacci. En appliquantles théor�emes fondamentaux de la physique des quasicristaux, j'ai montré que la courbe deré
ectivité présente une autosimilarité et que deux entiers sont nécessaires pour décrire lespositions des pics.J'ai aussi analysé la ré
ectivité spéculaire et non spéculaire des rayons X sur des multicouchesrugueuses. J'ai utilisé les propriétés statistiques d'interfaces aléatoirement rugueuses pour cal-culer la ré
ectivité avec les théories cinématique et dynamique. J'ai appliqué ces simulationslors de l'ajustement avec les courbes expérimentales obtenues sur des multicouches \sandwich"ou périodiques. J'ai traité bri�evement le processus de la di�usion di�use sur des multicouchesrugueuses et j'ai utilisé l'approximation de l'onde déformée de Born (DWBA) pour faire une



140 Chapter 6: Conclusionanalyse quantitative. J'ai présenté les principaux caract�eres de la di�usion di�use incohérentesur une carte des mesures e�ectuées sur une multicouche périodique.L'essentiel de ce travail concerne la ré
exion des rayons X sur des réseaux de multi-couches. J'ai résolu ce probl�eme en utilisant chacune des trois théories : la théorie cinématique,l'approximation de l'onde déformée de Born et la théorie dynamique rigoureuse. La théorie dy-namique a été traitée dans le cadre de la méthode modale ¸ valeurs propres dans un formalismematriciel. Comme cas limite de la théorie ¸ une seule di�usion, j'ai formulé et discuté de fa�conapprofondie l'approximation ¸ deux ondes. La théorie cinématique a été traitée par la méthodede la phase stationnaire.Ces trois théories ont été formulées dans un seul formalisme général. Ceci facilite leur dis-cussion et leur comparaison. Cela me permet de généraliser les coe�cients de Fresnel impliquésdans la ré
exion spéculaire conventionelle sur des multicouches planaires au cas de la di�ractionlatérale. Dans la théorie cinématique, on exprime ces coe�cients de ré
exion de Fresnel selonla di�raction cinématique, tandis que, dans la théorie dynamique, la \matrice d'interface" deces coe�cients a été généralisée. De plus, j'ai montré que le formalisme utilisé dans toutes cesthéories est valable non seulement pour les réseaux périodiques, mais aussi pour le calcul de laré
exion sur des réseaux plus compliqués tels les réseaux quasipériodiques de Fibonacci.Mon intérêt s'est porté principalement sur les réseaux ¸ courte période (environ 1 �m)mais j'ai aussi discuté bri�evement des réseaux ¸ plus grande période. La discussion détailléea été faite sur un réseau de surface (SG pour surface grating) de période d = 8000 �A avec unrapport �l/période du réseau égal ¸ 1=2 ; la longueur d'onde utilisée était 1.54 �A. En gardant cesvaleurs en mémoire, j'ai comparé ces théories aussi bien analytiquement que numériquement. Letraitement proposé m'a permis de séparer les e�ets de la di�usion unique de ceux de la di�usionmultiple :� Les régions ¸ di�usion unique (\two-truncation rod" regions) ont été déterminées commeétant celles o�u les calculs par la théorie dynamique, l'approximation ¸ deux ondes et DWBAcoincident :{ la plus grande partie du pro�l des fortes tiges de troncature (truncation rods), inter-dites cinématiquement pour des angles d'incidence éloignés des angles critiques desmatériaux des réseaux,{ la totalité du pro�l des fortes tiges de troncature autorisées cinématiquement pourun réseau remplissant les conditions de validité de l'approximation ¸ deux ondes (casdu réseau mesuré),{ la plus grande partie du pro�l des fortes tiges de troncature calculé par DWBA.� Les cas fortement dynamiques o�u on doit considérer la di�usion multiple parmi les nom-breuses tiges de troncature et o�u les théories de di�usion unique font défaut :{ le pro�l d'intensité des faibles tiges de troncature, interdites cinématiquement (tigesde troncature di�ractées d'ordre pair),{ l'intensité di�usée dans la géométrie o�u le faisceau incident devient parall�ele aux �ls.�� Les régions de di�usion multiple, o�u les théories de di�usion unique donnent toujours desrésultats approximatifs et o�u on doit tenir compte de l'intéraction multiple entre plusieurstiges de troncature :{ pr�es de l'angle d'incidence pour lequel le champ d'onde de la premi�ere tige de tron-cature devient réel,{ pour les tiges de troncature fortes dans la région des angles critiques calculés avecl'approximation ¸ deux ondes.



141Le principal avantage de la présente approche est la représentation des régions de validité desapproximations de di�usion unique (théorie cinématique, DWBA et l'approximation ¸ deux on-des). J'ai démontré que dans l'approximation ¸ deux ondes et dans DWBA, l'amplitude di�uséedans un processus de di�usion primaire (la di�usion simple entre l'onde incidente transmise etl'onde di�ractée et ré
échie) est proportionnelle ¸ la transformée de Fourier de la susceptibilité.Cette proportionnalité a aussi été le résultat du traitement par la théorie cinématique.Cependant cette théorie, équivalente ¸ la premi�ere approximation de Born, ne tient pas comptede l'e�et de la réfraction qui est d'importance primordiale dans la ré
ectivité des rayons X.La DWBA employée au premier ordre tient compte de la réfraction aussi bien que desprincipaux caract�eres de la théorie dynamique. Cette DWBA a été trouvée adaptée au calculde l'intensité des tiges de troncature non interdites et mesurables, ce qui accrédite la légitimitéde la méthode DWBA pour les réseaux comme exemple de \rugosité énorme". Ceci con�rmel'utilité potentielle de cette méthode pour étudier la di�usion par des couches désordonnées (parexemple des couches en �̂lots). De plus, j'ai analysé les régions o�u les e�ets dynamiques de ladi�usion multiple l'emportent et o�u la théorie dynamique compl�ete de DWBA d'ordre supérieurdoit être utilisée.De mani�ere ¸ introduire dans les calculs les imperfections structurales existant dans desréseaux de multicouches, j'ai étudié également la di�usion par des réseaux de multicouchesrugueuses. J'ai considéré ¸ la fois la rugosité de côté des �ls des réseaux et la rugosité d'interfacedans la théorie dynamique de formalisme matriciel et dans la théorie cinématique ; la générali-sation de la rugosité dans DWBA est alors directe.Dans la théorie dynamique, j'ai trouvé que les éléments de la \matrice d'interface" doiventêtre multipliés par la fonction caractéristique de la distribution de la probabilité de la rugositéd'interface. Ceci est similaire aux \matrices d'interface" des coe�cients de Fresnel introduitespour les multicouches planaires.Dans la théorie cinématique, la rugosité d'interface agit comme le facteur d'atténuationcinématique de Debye-Waller sur les coe�cients de Fresnel de la di�raction cinématique. Lesformules analytiques déduites permettent de prévoir l'in
uence de la rugosité sur l'intensitédi�usée ce qui a été véri�é par simulation numérique. La rugosité des côtés a été introduitedans l'approximation de processus de di�usion simple en faisant la moyenne latéralement descoe�cients de Fourier de la susceptibilité.En�n, j'ai utilisé les simulations numériques pour l'ajustement des param�etres structurauxd'un réseau de multicouche InP/GaInAs partiellement gravé.Perspectives scienti�ques des méthodes de ré
exion des rayons X. La technique de la ré
ex-ion des rayons X est de nos jours utilisée fréquemment et avec succ�es pour la caractérisationstructurale de di�érentes sortes d'échantillons en multicouches. Les investigations récentes parXRR ont eu lieu dans les domaines suivants :� les fonctions de corrélation d'interface dans des échantillons avec di�érents types d'interfa-ces aléatoires,� les multicouches avec des interfaces en terrasses, obtenues par exemple lors de la croissancesur des substrats inclinés,� des échantillons avec une structure latérale :{ avec une structure presque parfaite (réseaux de multicouches, �ls et points quan-tiques),



142 Chapter 6: Conclusion{ avec de grandes imperfections, tels les échantillons avec des couches discontinues en�̂lots.En particulier, je propose d'étudier, par la ré
ectivité des rayons X, les réseaux de multi-couches qui ont fait l'objet d'un grand intérêt dans ce travail :� La discussion a ici montré le degré de validité et les limites de DWBA au premier ordre. Demani�ere ¸ élargir l'application de DWBA aux régions o�u les e�ets de la di�usion multiplel'emportent (tiges de troncature interdites cinématiquement), cette méthode peut êtreétendue au deuxi�eme ordre.� La DWBA pourrait être employée pour calculer la di�usion di�use incohérente sur desréseaux imparfaits en utilisant soit{ les états propres d'une multicouche planaire moyennée latéralement, dans la limitedes régions de validité discutées dans ce travail,{ les états propres donnés par la théorie dynamique.� La technique de la ré
ectivité non coplanaire peut permettre l'acc�es ¸ la partie de l'espaceréciproque non accessible dans la ré
ectivité coplanaire. La théorie dynamique modale desvaleurs propres, présentée ici, permet de traiter la di�usion non coplanaire. Cependant,la cohérence entre la théorie modale d'approche des valeurs propres et la méthode decouplage pour le cas fortement dynamique quand l'onde incidente devient parall�ele aux�ls, n'a pas encore été théoriquement con�rmée.



143ConclusionIn my thesis I have dealt with the theory of the X-ray re
ectivity. I have applied it to thestudy of the following types of multilayered samples:1. planar multilayers with various stacking sequences (single layer, periodic, quasiperiodic),2. rough multilayers, and3. multilayer gratings (multilayers with a lateral structure).My aim was to develop and present several theories together using one uni�ed formalismwhile pointing out the links with the X-ray di�raction theories. The theories discussed are:1. the kinematical theory,2. the distorted-wave Born approximation,3. the dynamical theory, and4. various approximations of the dynamical theory (single-re
ection approximation, two-beam and multiple-beam approximations).These theories have been compared by their analytical expressions as well as by numericalsimulations. I discussed their regions of good coincidence as well as their di�erences.Further, I demonstrated the use of numerical simulations to �t measured data. This allowedme to reveal structural parameters of the samples we analyzed in our laboratories.The �rst part of the thesis has been devoted to the representation of scattering in reciprocalspace. Here, the relations between the angular movements during an experiment and the ap-propriate scans in reciprocal space have been described. These formulae have been applied byprogramming the motor movements of the goniometers for synchrotron measurements.Further I discussed the specular re
ectivity from planar multilayers. Firstly, the kinematicaltheory has been formulated. I calculated its di�raction integral by the stationary-phase method,whose validity is not restricted to the �rst Fresnel zone contrary to the Fraunhofer approximationmostly employed in calculating the kinematical treatments. Further, the usual dynamical theoryof re
ectivity has been formulated, from which I derived the single-re
ection approximation.Dynamical and kinematical Fresnel coe�cients have been compared.The kinematical theory and the single-re
ection approximations were successful especially forthe calculation of the re
ectivity pattern of a quasiperiodic Fibonacci multilayer. By applyingthe fundamental theorems from the physics of quasicrystals I have shown that the re
ectivitycurve exhibits a self-similarity and two integers are needed to describe the peak positions.Furthermore, specular and non-specular X-ray re
ection from rough multilayers has beendiscussed. The statistical properties of randomly rough interfaces have been employed in thespecular re
ectivity from both the kinematical and dynamical theories. I applied the simulationsin �tting the experimental curves for sandwich multilayers and periodic multilayers. Furtherdi�use scattering from rough multilayers has been brie
y discussed and the distorted-wave Bornapproximation (DWBA) employed for quantitative analysis. I presented the main features ofincoherent di�use scattering on a measured map from a periodic multilayer.The main contribution of this work treats X-ray re
ection from multilayer gratings. I solvedthis problem using the kinematical theory, the distorted-wave Born approximation and the rig-orous dynamical theory. The dynamical theory has been treated in the framework of the matrixmodal eigenvalue method. The multiple-beam approximations have been derived from the dy-namical theory. As a limiting case of a single-scattering theory I formulated and thoroughly



144 Chapter 6: Conclusiondiscussed the two-beam approximation. The kinematical theory was treated by the stationaryphase method.All three theories have been formulated within one general formalism. This made theirdiscussion and comparison easier and transparent. It allowed me to generalize the Fresnelcoe�cients involved in conventional specular X-ray re
ection from planar multilayers for thelateral di�raction case. In the kinematical theory, they were expressed by Fresnel re
ectioncoe�cients of kinematical di�raction, whereas in the dynamical theory the \interface" matrixof Fresnel coe�cients has been generalized. Further I have shown that the formalism used inall the theories is suitable not only for periodic gratings, but also for calculating the re
ectionfrom more complicated quasiperiodic Fibonacci gratings.My main interest has been devoted to short period gratings (period d � 1 �m) and wave-lengths around 1 �A, but also larger period gratings have been brie
y discussed. A detaileddiscussion was performed for a short period surface grating (SG, d = 8000 �A) with the wire toperiod ratio one half and for a wavelength of 1.54 �A. The theories have been compared analyti-cally as well as numerically bearing these values in mind. The proposed treatment enabled meto separate the single scattering and the multiple (dynamical) scattering e�ects.� The single-scattering (\two-truncation rod" scattering) regions, where the calculation bythe dynamical theory, two-beam approximation and the DWBA coincide, were determined:{ most of the pro�le of the strong truncation rods (kinematically non-forbidden) forangles of incidence outside the critical angles of the grating materials (the discussedSG),{ the whole pro�le of the strong truncation rods for a grating ful�lling the conditionsof validity of the two-beam approximation (the measured multilayer grating),{ most of the pro�le of the strong truncation rods calculated by the DWBA.� Strongly dynamical cases, where multiple-beam scattering among many truncation rodshas to be involved and where the single-scattering theories fail:{ the intensity pro�le of the weak, kinematically forbidden truncation rods (non-zeroeven order truncation rods for the discussed SG),{ the intensity scattered in the grazing incidence geometry where the incident beamfalls parallel to the wires.� Multiple scattering regions, where the single-scattering theories give still approximate re-sults and where the multiple interaction between several truncation rods has to be consid-ered:{ near to the angle of incidence for which the wave�eld of the TR +1 becomes real,{ in the region of the critical angles for the strong truncation rods and the calculationby the two-beam approximation.The main advantage of the presented approach is the presentation of the regions of validityof the single-scattering approximations (kinematical theory, DWBA and the two-beam approx-imation). I demonstrated that within the two-beam approximation and the DWBA the scat-tered amplitude of the primary scattering process (the single scattering between the incidence-transmitted and the di�racted-re
ected waves) is proportional to the Fourier transform of thesusceptibility �h.This proportionality was also the result of the treatment by the kinematical theory. However,this theory, equivalent to the �rst Born approximation, does not include the e�ect of refraction,which is of major importance in X-ray re
ectivity.The �rst order DWBA employed includes the refraction as well as the main features of thedynamical theory except for a small known region of strong interaction with TR +1. ThisDWBA has been found adequate for calculating the intensity of the measurable non-forbiddentruncation rods, which con�rms the legitimacy of the DWBA for gratings as an example of a \big



145roughness". This con�rms the potential usability of this method for the studies of scattering byrandomly structured layers (e.g., island-layer structures). In addition, I discussed the regionswhere the dynamical e�ects of multiple scattering prevail and where the full dynamical theoryor the DWBA of higher order have to be employed.In order to include the structural imperfections of real multilayer gratings into the calculation,I studied scattering from rough multilayer gratings too. I have considered both the \side wall"roughness of the grating shape and \interface" roughness into the matrix dynamical formalismsas well as into the kinematical theory, from which the generalization of the roughness into theDWBA is straightforward.In the dynamical theory, I have found that the elements of the \interface" matrix have to bemultiplied by the characteristic function of the interface roughness probability distribution. Thisis similar to the \interface" matrices of Fresnel coe�cients introduced for planar multilayers.In the kinematical theory, the interface roughness acts as the kinematical Debye-Wallerdamping factor on the Fresnel coe�cients of kinematical di�raction. The derived analyticalformulae allowed the roughness in
uence on the scattered intensity to be predicted, which wasveri�ed by the numerical simulation. The side wall roughness was introduced under the ap-proximation of single-scattering processes by averaging laterally the Fourier coe�cients of thesusceptibility.Finally, the numerical simulations have been applied to �t the structural parameters of apartially etched InP/GaInAs multilayer grating.The scienti�c perspectives of the X-ray re
ection methods. X-ray re
ection is nowadaysfrequently and successfully applied to the structural studies of di�erent kinds of multilayeredsamples. Topics of recent investigations by this technique are:� interface correlation functions of samples with di�erent types of random interfaces,� multilayers with terraced interfaces, e.g., multilayers grown on miscut substrates,� laterally structured samples{ with nearly perfect structure (multilayer gratings, quantum wires and dots),{ with large imperfections, like the samples with non-continuous island-like layers.In particular, we propose the following studies of the X-ray re
ectivity from multilayergratings, to which a great deal of this report has been devoted to.� The discussion here has shown the degree of validity and the limits of the �rst orderDWBA. In order to extend the application of the DWBA also for the regions of prevailinge�ects of multiple scattering (the kinematically forbidden truncation rods), this methodcould be expanded into the second order.� The DWBA could be advantageously used to calculate the incoherent di�use scatteringfrom imperfect gratings, using either{ the eigenstates of a laterally averaged planar multilayer with the restriction to theregions of validity discussed in this work,{ the eigenstates given by the dynamical theory.� The non-coplanar re
ectivity technique can overcome the limitation of the accessible re-ciprocal space for the coplanar re
ectivity. The presented matrix dynamical theory usingthe modal eigenvalue approach has been shown to cope with the non-coplanar scattering.However, the consistency of the eigenvalue and the point matching approaches for thestrongly dynamical case when the incident wave falls parallel to the wires has not yet beentheoretically con�rmed.
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Abstract (English)The X-ray re
ection from planar and structured multilayers is presented using di�erenttheoretical approaches. The scattering phenomena studied are the specular re
ection fromplanar multilayers with various stacking sequences (single layer, periodic, quasiperiodic),the di�use scattering from rough multilayers, and the scattering from surface gratings andfrom multilayer gratings. The theories employed for the calculation are: the kinematicaltheory, the distorted-wave Born approximation, the dynamical theory and various approxi-mations of the dynamical theory (the single-re
ection approximation, the two-beam approx-imation and the multiple-beam approximation), developed in one uni�ed formalism. Thisuni�ed formalism enables all these theories to be discussed and compared in a consistentand methodological way. Numerical calculations are applied to �t the experimental curvesin order to reveal the structural parameters of miscellaneous types of layered samples.
Abstract (fran�cais)La ré
éctivité des rayons X par des multicouches planaires et structurées est présentée enutilisant di�érentes approches théoriques. Les ph�enomenes de di�usion étudiés sont : laré
éctivité speculaire par des multicouches planaires ayant diverses séquences d'empilement(monocouche, périodique, quasipériodique), la di�usion di�use de multicouches rugueuses,et en�n la di�usion par des réseaux de surface et par des réseaux de multicouche. Les théoriesemployées pour les calculs : la théorie cinématique, l'approximation de l'onde déformée deBorn, la théorie dynamique, et plusieurs approximations de la théorie dynamique (approxi-mation ¸ une ré
exion unique, approximation ¸ deux ondes et approximation ¸ di�usionmultiple), sont développées dans un formalisme unique. Ce formalisme permet de discuteret de comparer toutes les théories d'une mani�ere solide et méthodologique. Les calculesnumérique sont appliqués pour l'ajustement des courbes expérimentales pour mettre enévidence les param�etres structuraux des divers syst�emes multicouches.
Abstrakt (èesky)Rentgenová re
ektivita rovinných a strukturovaných multivrstev je prezentována za pou-¾ití rùzných teoretických postupù. Diskutovány jsou následující typy rozptylu: spekulárníre
ektivita rovinnými multivrstvami s rùznou sekvencí vrstev (monovrstva, periodická èikvaziperiodická posloupnost vrstev), difuzní rozptyl od drsných multivrstev, a koneènì roz-ptyl vrstevnatými møí¾kami. Teorie pou¾ité pøi výpoètech | kinematická teorie, Bornovaaproximace poru¹ených vln, dynamická teorie, a rùzné aproximace dynamické teorie (apro-ximace jediného odrazu, dvouvlnná aproximace a aproximace vícenásobného rozptylu) |byly vyvinuty v jednotném formalismu. Tento formalismus umo¾òuje diskutovat a porovnatv¹echny tyto teorie v jednotném a metodologickém stylu. Numerické výpoèty byly pou¾itypøi simulování experimentálních køivek pro na�tování strukturních parametrù vzorkù.


