GRBs: properties & afterglows

Petr Kurfürst ÚTFA MU Brno

Astronomical transients Selected chapters from astrophysics, fall semester, 2022

(cf. Tsvi Piran's talk on 35HUJI)

Once or twice a day

(Credit: Compton Gamma-Ray satellite)

July 2nd 1967: Vela 4a satellite (noticed only in 1969) (Credit: Klebsadel+ 1973)

(Credit: Ackermann+ 2011)

(Credit: Piran 2004)

Short & long GRBs

Low luminosity GRBs

(Credit: Nakar+ 2015, see also Lazzati+ 2012, del Colle+ 2018, etc.)

(cf: Alessandra Corsi's talk)

- Time vs. energy \Rightarrow a compact object \Rightarrow BH or NS
- Size of a GRB engine: $\lesssim 10^6\,\text{cm}$
- Energy density: $\sim 10^{33}\,erg\,cm^{-3} \Leftrightarrow$ mass density $\sim 10^{13}\,g\,cm^{-3}$
- **Temperature**: $\sim 10^{11} \text{ K} \rightarrow \text{much higher then } T$ threshold for e^+e^- pair production \Rightarrow almost equal number of photons and pairs
- Pair dominated plasma or Poynting flux?
- \Rightarrow BH with accretion disk?
- \Rightarrow Magnetars?
- \bullet Indication for the collapsar models \rightarrow several long GRBs detected in 1997 in SF galaxies?
- We detect short GRBs in all types of galaxies

The compactness problem:

- Energy: $\sim 10^{51} \, \text{erg}$
- Time variability: $\delta t \cong 0.1 \, s$ (or less!)
- Let's evaluate the size of the emitting region: $R \le c \, \delta t \lesssim 3 \times 10^9 \, {
 m cm} \approx 10^{10} \, {
 m cm}$
- We see photon energies: $\sim 300~keV$ 1~Mev with high energy tail far beyond it (1 Mev $\approx 10^{-6}~erg)$

₩

- Now let's estimate the # density of photons within the source object as $\sim E/R^3 \rightarrow 10^{51+6}/(10^{10})^3 \approx 10^{27}$ photons cm⁻³
- Cross-section for $\gamma\gamma
 ightarrow {\rm e^+e^-}$ is of the order of $\sigma_T \sim 10^{-24}\,{\rm cm^2}$
- Optical depth $au_{\gamma\gamma
 ightarrow e^+e^-} \sim n_{
 m e}\sigma_t R \cong 10^{27} imes 10^{-24} imes 10^{10} pprox 10^{13}$
- That is: the optical depth for these photons to escape from this "fireball soup" will be also 10^{13} (likely even more) \rightarrow they **cannot escape**
- This means: the spectrum must be thermal!

The compactness problem:

- But: we observe clearly nonthermal spectrum (synchrotron)!
- Need a "new physics" for explanation? Yes, but the "new physics" was invented in 1905: special relativity!
- $E_{\rm ph}$ (observed) = $\Gamma E_{\rm ph}$ (emitted), $R \leq \Gamma^2 c \, \delta t$ (explain later)
- An integrated power law energy spectrum dn(ε)/dε ~ ε^{-α} reduces the # of photons N_{ph} above the γγ → e⁺e⁻ pair production threshold by ε^{-α+1} = Γ^{-2α+2} ⇒ τ_{γγ→e⁺e⁻} ~ N_{ph}/R³ σ_tR
- In that case: the optical depth will be transformed as

$$au_{\gamma\gamma
ightarrow {
m e}^+{
m e}^-} \sim \Gamma^{-(2+2lpha)} n_{
m e} \sigma_t R \, pprox \, 10^{13} / \Gamma^{2+2lpha}$$

- The power index $\alpha \sim 2 \rightarrow \Gamma \gtrsim 100$ 150 solves this mystery!
- Calculations may give the constraints on Γ for long and short GRBs
- Occurrence of high Γ jets with a large beaming factor explain $E\gtrsim 10^{52}\,{\rm ergs}$

- GRB source: mass *M*, energy *E*
- Pre-existing GRB source surroundings:

 $\rho \sim r^{-w}$ (wind : w = 2) $\Rightarrow \dot{M} = 4\pi r^2 \rho v$ (everything const. in time)

- Spherical explosion: after a time t → mass m encountered by the expansion shock wave ≫ M
- (Analogy: a-bomb in the atmosfere → a few (few tens) kgs of explosive material → after a time the shock wave encounters much higher mass of the air)
- The whole system is thus independent of an explosive mass $M \rightarrow$ depends only on surrounding density ρ and energy E (conserved quantity)
- Estimate of a size *R* of the shock wave at any time *t*:

$$\sim
ho R^3 \left(rac{R}{t}
ight)^2 = E \quad \Rightarrow \quad R \propto t^{2/(5-w)} \quad ({\it Sedov-Taylor \ solution})$$

• $R \propto t^{2/5}$ for $\rho = \text{const.}$, $R \propto t^{2/3}$ for wind, conserved $E_k \rightarrow v$ may decelerate

- Now: what is the (ultra)relativistic analog of the previous $(v_{\text{shock}} \rightarrow c)$?
- Shocked sphere at time t (in observer's frame) with the "size" R and the expansion velocity v = (almost) c:

- Now: what is the (ultra)relativistic analog of the previous $(v_{\text{shock}} \rightarrow c)$?
- Reminder of the **STR** formalism (primed = particle's rest frame):

$$E = \Gamma m_0 c^2$$
, where $\Gamma = \frac{1}{\sqrt{1-eta^2}}$ with $eta = rac{
u}{c}$, and $m_0 = m$ at rest

• The size of the shock wave now becomes (Blandford - McKee solution):

$$\sim
ho R^3 c^2 \Gamma^2 = E \quad
ightarrow \quad \Gamma \propto R^{-3/2} ext{ for }
ho = ext{const.} \quad (\Gamma^2 ext{ due to } v_{ ext{th}})$$

• From the *aberration of light* (a 4-velocity with $u' \equiv u \equiv c$):

$$\sin \theta = \frac{\sin \theta'}{\Gamma (1 + \beta \cos \theta')} \Rightarrow \text{ for } \theta' = \pi/2 \text{ (a photon emitted } \bot \text{ to } \nu \text{ in } \mathcal{K}') \rightarrow \\ \sin \theta = \frac{1}{\Gamma} \Rightarrow \text{ for } \Gamma \gg 1 \rightarrow \theta \sim \frac{1}{\Gamma}$$

• Beaming effect: if photons are emitted in \mathcal{K}' isotropically \rightarrow for half of them $\theta' < \pi/2 \Rightarrow$ in \mathcal{K} half of them lying within a cone of half-angle $1/\Gamma$, while for a minority $\theta \gg 1/\Gamma$

- Now: what is the (ultra)relativistic analog of the previous $(v_{\text{shock}} \rightarrow c)$?
- The size of the shock wave now becomes:

 $\sim
ho R^3 c^2 \Gamma^2 = E \quad
ightarrow \quad \Gamma \propto R^{-3/2} \text{ for }
ho = ext{const.} \quad (\Gamma^2 ext{ due to } v_{ ext{th}})$

- Connecting NR and UR regimes ($v \ll c/v \approx c$): $\beta \Gamma \propto R^{-3/2}$
- NR: $\Gamma \sim 1$ / UR: $\beta \sim 1 \Rightarrow$ smooth relation covering both the extreme cases
- Accurate SSS → proper coefficients, now an estimate, but: exact coefficient do not differ much ⇒ not bad approach (we now follow the UR case):

• Most o the GRB afterglows go as the synchrotron or the IC radiation

• Most o the GRB afterglows go as the synchrotron or the IC radiation

• Heuristic estimate of the synchrotron emission power *P* (per unit time): (exact solution using the Larmor formula, etc., too complicated for now)

tennis racket

- IC scattering by relativistic electrons:
- ellastic collision NR analog: ΔV of the ball $\rightarrow 2V$ (let's prove it in the restframe of a racket)
 - UR IC scattering by a head-on coming e^- with $v \rightarrow c$: incoming photon frequency $h\nu \rightarrow$ backward scattered photon energy $h\nu = \Gamma_e^2 h\nu'$ (same Γ^2 as in the previous energy equation)

• Heuristic estimate of the synchrotron emission power P (per unit time): (exact solution using the Larmor formula, etc., too complicated for now)

- IC scattering by relativistic electrons: NR analog: ΔV of the ball $\rightarrow 2V$ (let's prove it in the restframe of a racket)
 - UR IC scattering by a head-on coming e^- with $v \rightarrow c$: incoming photon frequency $h\nu \rightarrow$ backward scattered photon energy $h\nu = \Gamma_{e}^{2} h\nu'$ (same Γ^{2} as in the previous energy equation)
- Cross sectional "cylinder" volume (between relativistic e⁻ and ph, per unit time): $\beta c\sigma_T \Rightarrow E_{\rm IC} = \beta c\sigma_T U_{\rm ph} \Gamma_{\rm e}^2 (U_{\rm ph} \text{ is the photons' energy density inside } \beta c\sigma_T)$
- We may think of a synchrotron radiation as if $U_{\rm ph}$ is the energy density of the *B*-field: $P_{\rm e} = \beta c \sigma_T \Gamma_{\rm e}^2 B^2 / (8\pi)$ (UR electron's emitted power per unit of time)

- What is the emission from a distribution of electrons?
- Assuming a **shock wave** that accumulates mass $\sim \rho R^3$, accelerating the collected electrons to all kinds of energies:
- Let's have a decreasing power-law distribution of a # of electrons per Γ_e (dependence of the quantity $\frac{dn_e}{d\Gamma_e}$ on Γ_e): $\frac{dn_e}{d\Gamma_e} \sim \Gamma_e^{-p}$
- The same distribution as a **function of a frequency** ν : # of electrons in a certain Γ_e range $\rightarrow \Gamma_e \frac{dn_e}{d\Gamma_e}$
- Multiplying this by power and divide by the frequency for this Γ_e :

 $\frac{\Gamma_{\rm e} \frac{{\rm d}n_{\rm e}}{{\rm d}\Gamma_{\rm e}} \,\beta \,c\,\sigma_{\rm T}\,\Gamma_{\rm e}^2 \frac{B^2}{8\pi}}{\frac{q_{\rm e}B}{m_{\rm e}c}\Gamma_{\rm e}^2} \sim \Gamma_{\rm e} \frac{{\rm d}n_{\rm e}}{{\rm d}\Gamma_{\rm e}} = {\rm power} \ ({\rm energy \ per \ unit \ time}) \ {\rm per \ unit \ frequency}$

• Recalling $\Gamma_{\rm e} \sim \nu^{1/2}$: $F_{\nu} \sim \nu^{-(p-1)/2}$

• Broad-band synchrotron spectrum of the afterglow from a spherical fireball with constant density ("ISM" model) and $\rho \propto r^{-2}$ medium ("wind" model) :

• Evaluation of an efficient cooling time from the previous:

$$t_{\rm cool} \sim \frac{E_{\rm e}}{P_{\rm e}} \sim \frac{\Gamma_{\rm e} m_{\rm e} c^2}{\beta c \, \sigma_T \, \Gamma_{\rm e}^2 B^2 / (8\pi)} \sim \frac{1}{\Gamma_{\rm e}} \sim \frac{1}{\sqrt{\nu}}$$

- Electrons between $u_{\rm m} < \nu <
 u_{\rm c}$ "live" forever (= longer than the system)
- Electrons with $\nu > \nu_c$ are so efficiently cooled that they "live" for a shorter time than the system: $F_{\nu} \sim \nu^{-(p-1)/2} \cdot \nu^{-1/2} \propto \nu^{-p/2}$
- The yet simpler consideration may use the fact that during their short "life" the electrons emit all their energy:

$$\left(\Gamma_{\rm e}\frac{{\rm d}n_{\rm e}}{{\rm d}\Gamma_{\rm e}}\,\Gamma_{\rm e}m_{\rm e}c^2\right)/\left(\frac{q_{\rm e}B}{m_{\rm e}c}\Gamma_{\rm e}^2\right)\sim\Gamma_{\rm e}^{-p}\propto\nu^{-p/2}$$

- Electrons between $\nu_a < \nu < \nu_m$ (low energy tail, a bit complicated to derive): $F_{\nu} \propto \nu^{1/3} \rightarrow$ even for "monoenergetic" electrons
- At the yet more lower frequencies, $\nu < \nu_{a}$, the synchrotron emission is so efficient that it absorbs the photons that it emits: self-absorption (blackbody) spectrum $\rightarrow F_{\nu} \sim \frac{\nu^{2}}{c^{2}} \Gamma_{\min} m_{e} c^{2} \frac{R^{2}}{D^{2}}$ (*E* instead of $kT \rightarrow$ not really thermal)

- What we need to know for actual calculations:
 - # of electrons
 - What is the Γ_{min}
 - Parameters of the *B*-field
 - Energy distribution p of electrons
- $n_{\rm e} \sim {\rho R^3 \over m_{\rm p}}$
- $\Gamma_{\min} \rightarrow \varepsilon_{e} \Gamma m_{p} c^{2} \Rightarrow \Gamma_{e} m_{e} c^{2} = \Gamma m_{p} c^{2}$ (equipartition between e⁻ and p⁺?) \Rightarrow $\Gamma_{\min} \sim \varepsilon_{e} \frac{m_{p}}{m_{e}} \Gamma$ (ε_{e} is the "fudge" factor, Γ is the Lorentz factor of the shock) • $R^{3} \frac{B^{2}}{8\pi} \sim \varepsilon_{B} E$
- However: everything evolves in time, the values change; the picture introduced here may fit only for early times (cf. Granot+ 2000)
- Even the ordering of the limiting frequencies may change, e.g., ν_c becomes lower than ν_m , then the power law is $\nu^{-p/2}$ for $\nu > \nu_m$ and $\nu^{-1/2}$ for $\nu_c < \nu < \nu_m$, etc.

- What if the explosion is not spherical → only jet with an initial opening angle Θ₀: (observational constraints for the geometry)
- If $\Gamma \gg 1 \rightarrow$ the center of the jet does not "know" about edges; only limited amount of material that "knows" about the empty space outside the jet
- The time of the jet expansion in the local frame: $t = R/\Gamma c$

- What if the explosion is not spherical → only jet with an initial opening angle Θ₀: (observational constraints for the geometry)
- Corresponding "arrival angle": $\Theta_{\perp} = \frac{R_{\perp}}{R} = \frac{1}{\Gamma}$; if $\Theta_{\perp} \ge \Theta_0 \rightarrow$ the jet begins to "feel" the edges \rightarrow spreads and slows down faster; the time when this happens $\approx 6 \operatorname{hrs} \left(E_{52} / \rho \left[p^+ \operatorname{cm}^{-3} \right] \right)^{1/3} \Theta_0^{8/3}$, (Θ_0 between 1-10 degs)
- Spherical explosion energy E_{iso} , jet energy $E_{jet} = \frac{\Theta_0^2}{2} E_{iso}$, canonical values: $E_{\rm iet} \sim 10^{51} \, {\rm erg}, \, E_{\rm iso} \sim 10^{51} \, {
 m -} \, 10^{54} \, {
 m erg}$ lateral expansion , Θ. break Θ → to observer source $\Gamma > \frac{1}{\Theta_0}$ $\Gamma = \frac{1}{\Theta_0}$ $\Gamma < \frac{1}{\Omega_{0}}$

GRB engines

internal dissipation 10¹³-10¹⁵ cm

 $10^{16}\text{-}10^{18}\,\text{cm}$