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GRBs: the brightest EM transients (cf. Tsvi Piran’s talk on 35HUJI)

Once or twice a day (Credit: Compton Gamma-Ray satellite)
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GRBs: the brightest EM transients

July 2nd 1967: Vela 4a satellite (noticed only in 1969)
(Credit: Klebsadel+ 1973)



GRBs: the brightest EM transients
BATSE GRB LCs:
great diversity

• ‘Multimessengers’

• Colgate’s model



GRBs: the brightest EM transients

(cf. Bing Zhang’s talk 2018)

The “Band” function
Prompt GRB spectrum →
nonthermal!

Louis Band (1957 - 2009)
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GRBs: the brightest EM transients

(Credit: Ackermann+ 2011) (Credit: Piran 2004)



GRBs: the brightest EM transients

(Credit: Piran 2004)

Solid line:
the whole sample

Dashed line:
a subset of the data



GRBs: the brightest EM transients

(Credit: Kumar 2003)

GRB afterglow LCs - Radio to X-ray



GRBs: the brightest EM transients

Short& long GRBs



GRBs: the brightest EM transients Short & long GRBs

different progenitors
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long GRB →
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GRBs: the brightest EM transients

Low luminosity GRBs

(cf: Alessandra Corsi’s talk)

Necessary
condition for
GRB: the engine
working time is
long enough to
allow the jet to
drill through the
star

(Credit: Nakar+ 2015, see also Lazzati+ 2012, del Colle+ 2018, etc.)



GRBs: the brightest EM transients

Precursors of GRB

Credit: Minaev&Pozanenko



GRBs: the brightest EM transients

Time vs. energy ⇒ a compact object ⇒ BH or NS

Size of a GRB engine: ≲ 106 cm

Energy density: ∼ 1033 erg cm−3 ⇔ mass density ∼ 1013 g cm−3

Temperature: ∼ 1011 K → much higher then T threshold for e+e− pair
production ⇒ almost equal number of photons and pairs

Pair dominated plasma or Poynting flux?

⇒ BH with accretion disk?

⇒ Magnetars?

Indication for the collapsar models → several long GRBs detected in 1997 in
SF galaxies?

We detect short GRBs in all types of galaxies



The compactness problem:

Energy: ∼ 1051 erg

Time variability: δt ∼= 0.1 s (or less!)

Let’s evaluate the size of the emitting region:
R ≤ c δt ≲ 3 × 109 cm ≈ 1010 cm

We see photon energies: ∼ 300 keV - 1Mev with high energy tail far
beyond it (1 Mev ≈ 10−6 erg)

⇓

Now let’s estimate the # density of photons within the source object as
∼ E/R3 → 1051+6/(1010)3 ≈ 1027 photons cm−3

Cross-section for γγ → e+e− is of the order of σT ∼ 10−24 cm2

Optical depth τ γγ→e+e− ∼ neσtR ∼= 1027 × 10−24 × 1010 ≈ 1013

That is: the optical depth for these photons to escape from this “fireball
soup” will be also 1013 (likely even more) → they cannot escape

This means: the spectrum must be thermal!



The compactness problem:

But: we observe clearly nonthermal spectrum (synchrotron)!

Need a “new physics” for explanation? Yes, but the “new physics” was
invented in 1905: special relativity!

Eph (observed) = ΓEph (emitted), R ≤ Γ2c δt (explain later)

An integrated power law energy spectrum dn(ϵ)/dϵ ∼ ϵ−α reduces the # of
photons Nph above the γγ → e+e− pair production threshold by

ϵ−α+1 = Γ−2α+2 ⇒ τγγ→e+e−∼
Nph
R3 σtR

In that case: the optical depth will be transformed as

τγγ→e+e−∼ Γ−(2+2α)neσtR ≈ 1013/Γ2+2α

The power index α ∼ 2 → Γ ≳ 100 - 150 solves this mystery!

Calculations may give the constraints on Γ for long and short GRBs

Occurrence of high Γ jets with a large beaming factor explain E ≳ 1052 ergs



GRB afterglows (cf. Re’em Sari’s lecture on 35HUJI)

GRB source: mass M, energy E

Pre-existing GRB source surroundings:

ρ ∼ r−w (wind : w = 2) ⇒ Ṁ = 4πr2ρv (everything const. in time)

Spherical explosion: after a time t → mass m encountered by the
expansion shock wave ≫ M

(Analogy: a-bomb in the atmosfere → a few (few tens) kgs of explosive material
→ after a time the shock wave encounters much higher mass of the air)

The whole system is thus independent of an explosive mass M →
depends only on surrounding density ρ and energy E (conserved quantity)
Estimate of a size R of the shock wave at any time t:

∼ ρR3
(
R

t

)2

= E ⇒ R ∝ t2/(5−w) (Sedov - Taylor solution)

R ∝ t2/5 for ρ= const., R ∝ t2/3 for wind, conserved Ek → v may
decelerate



GRB afterglows

Now: what is the (ultra)relativistic analog of the previous (vshock → c)?

Shocked sphere at time t (in observer’s frame) with the “size” R and the
expansion velocity v = (almost) c :

From the aberration of light (a 4-velocity with u′ ≡ u ≡ c):

sin θ =
sin θ′

Γ (1 + β cos θ′)
⇒ for θ′ = π/2 (a photon emitted ⊥ to v in K′) →

sin θ =
1
Γ
⇒ for Γ ≫ 1 → θ ∼ 1

Γ

Beaming effect: if photons are emitted in K′ isotropically → for half of
them θ′ < π/2 ⇒ in K half of them lying within a cone of half-angle 1/Γ,
while for a minority θ ≫ 1/Γ

R

T = 0
GRB source

v →
c

ISM particles:
⟨ρ⟩ ∼= 1p+ cm−3

particles’
vth ≈ c



GRB afterglows

Now: what is the (ultra)relativistic analog of the previous (vshock → c)?
Reminder of the STR formalism (primed = particle’s rest frame):

E = Γm0c
2, where Γ =

1√
1 − β2

with β =
v

c
, and m0 = m at rest

The size of the shock wave now becomes (Blandford -McKee solution):

∼ ρR3c2Γ2 = E → Γ∝ R−3/2 for ρ = const. (Γ2 due to vth)

From the aberration of light (a 4-velocity with u′ ≡ u ≡ c):

sin θ =
sin θ′

Γ (1 + β cos θ′)
⇒ for θ′ = π/2 (a photon emitted ⊥ to v in K′) →

sin θ =
1
Γ
⇒ for Γ ≫ 1 → θ ∼ 1

Γ

Beaming effect: if photons are emitted in K′ isotropically → for half of
them θ′ < π/2 ⇒ in K half of them lying within a cone of half-angle 1/Γ,
while for a minority θ ≫ 1/Γ



GRB afterglows

Now: what is the (ultra)relativistic analog of the previous (vshock → c)?

The size of the shock wave now becomes:

∼ ρR3c2Γ2 = E → Γ∝ R−3/2 for ρ = const. (Γ2 due to vth)

From the aberration of light (a 4-velocity with u′ ≡ u ≡ c):

sin θ =
sin θ′

Γ (1 + β cos θ′)
⇒ for θ′ = π/2 (a photon emitted ⊥ to v in K′) →

sin θ =
1
Γ
⇒ for Γ ≫ 1 → θ ∼ 1

Γ

Beaming effect: if photons are emitted in K′ isotropically → for half of
them θ′ < π/2 ⇒ in K half of them lying within a cone of half-angle 1/Γ,
while for a minority θ ≫ 1/Γ

∆ = t(c − v) = ct (1 − β) ∼=
R

2Γ2

R

t ∼=
R

c
, t ′ ∼=

R

Γc
, β ∼= 1 − 1

2Γ2

T = 0δt = ∆

c
= R

2Γ2c

GRB source

v →
c

ISM particles:
⟨ρ⟩ ∼= 1p+ cm−3

particles’
vth ≈ c



GRB afterglows

Connecting NR and UR regimes (v ≪ c/v ≈ c): β Γ∝ R−3/2

NR: Γ ∼ 1 / UR: β ∼ 1 ⇒ smooth relation covering both the extreme cases

Accurate SSS → proper coefficients, now an estimate, but: exact coefficient
do not differ much ⇒ not bad approach (we now follow the UR case):

From the aberration of light (a 4-velocity with u′ ≡ u ≡ c):

sin θ =
sin θ′

Γ (1 + β cos θ′)
⇒ for θ′ = π/2 (a photon emitted ⊥ to v in K′) →

sin θ =
1
Γ
⇒ for Γ ≫ 1 → θ ∼ 1

Γ

Beaming effect: if photons are emitted in K′ isotropically → for half of
them θ′ < π/2 ⇒ in K half of them lying within a cone of half-angle 1/Γ,
while for a minority θ ≫ 1/Γ

Γ ∝ R−3/2 ⇒ Γ ∝ (TΓ2)−3/2 ⇒

Γ ∝ T−3/8 and R ∝ T 1/4

R

t ∼=
R

c
, t ′ ∼=

R

Γc
, β ∼= 1 − 1

2Γ2

T = 0δt = ∆

c
= R

2Γ2c

GRB source

v →
c

ISM particles:
⟨ρ⟩ ∼= 1p+ cm−3

particles’
vth ≈ c



Interlude: synchrotron radiation

B

e−

R

v
t

E

Most o the GRB afterglows go as the synchrotron or the IC radiation

NR: cyclotron radiation

mev
2

R
=

v

c
qeB ⇒ ωcyc =

v

R
=

qeB

mec

UR: synchrotron radiation

ωsyn =
qeB

Γemec
(< ωcyc)

But: the significant emission duration of an E field
narrowed by the ratio 1/Γ + the electron is chasing
the E field by ∼ v → c , then the observer sees:

ωsyn(grey zone) =
qeB

Γemec
Γ3

e → νsyn ∼ νcycΓ
2
e



Interlude: synchrotron radiation
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narrowed by the ratio 1/Γ + the electron is chasing
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Interlude: synchrotron radiation

tennis
racket ellastic collision

V

2V

Heuristic estimate of the synchrotron emission power P (per unit time):
(exact solution using the Larmor formula, etc., too complicated for now)

IC scattering by relativistic electrons:

NR analog: ∆V of the ball → 2V (let’s prove it in the
restframe of a racket)

UR IC scattering by a head-on coming e− with v → c :
incoming photon frequency hν → backward scattered
photon energy hν =Γ2

e hν
′ (same Γ2 as in the previous

energy equation)

Cross sectional “cylinder” volume (between relativistic e− and ph, per unit time):
βcσT ⇒ EIC = βcσTUphΓ

2
e (Uph is the photons’ energy density inside βcσT )

We may think of a synchrotron radiation as if Uph is the energy density of the
B-field: Pe = βcσT Γ2

eB
2/(8π) (UR electron’s emitted power per unit of time)
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Interlude: synchrotron radiation
What is the emission from a distribution of electrons?

Assuming a shock wave that accumulates mass ∼ρR3, accelerating the
collected electrons to all kinds of energies:

Let’s have a decreasing power-law distribution of a # of electrons per Γe

(dependence of the quantity
dne

dΓe
on Γe):

dne

dΓe
∼ Γ−p

e

The same distribution as a function of a frequency ν: # of electrons in a

certain Γe range → Γe
dne

dΓe

Multiplying this by power and divide by the frequency for this Γe:

Γe
dne

dΓe
βc σT Γ2

e
B2

8π
qeB

mec
Γ2

e

∼ Γe
dne

dΓe
= power (energy per unit time) per unit frequency

Recalling Γe ∼ ν1/2: Fν ∼ ν−(p−1)/2



Interlude: synchrotron radiation
Broad-band synchrotron spectrum of the afterglow from a spherical fireball with
constant density (“ISM” model) and ρ ∝ r−2 medium (“wind” model) :

Representative of the
observed spectrum
few days after the
burst

Credit: Kulkarni+ 2000



Interlude: synchrotron radiation
Evaluation of an efficient cooling time from the previous:

tcool ∼
Ee

Pe
∼ Γemec

2

βc σT Γ2
eB

2/(8π)
∼ 1

Γe
∼ 1√

ν

Electrons between νm < ν < νc “live” forever (= longer than the system)

Electrons with ν > νc are so efficiently cooled that they “live” for a shorter
time than the system: Fν ∼ ν−(p−1)/2 ·ν−1/2 ∝ ν−p/2

The yet simpler consideration may use the fact that during their short “life”
the electrons emit all their energy:(

Γe
dne

dΓe
Γemec

2
)
/

(
qeB

mec
Γ2

e

)
∼ Γ−p

e ∝ ν−p/2

Electrons between νa < ν < νm (low energy tail, a bit complicated to derive):
Fν ∝ ν1/3 → even for “monoenergetic” electrons

At the yet more lower frequencies, ν < νa, the synchrotron emission is so
efficient that it absorbs the photons that it emits: self-absorption (blackbody)

spectrum → Fν ∼ ν2

c2 Γminmec
2 R

2

D2 (E instead of kT → not really thermal)



Interlude: synchrotron radiation
What we need to know for actual calculations:

# of electrons
What is the Γmin
Parameters of the B-field
Energy distribution p of electrons

ne ∼
ρR3

mp

Γmin → εeΓmpc
2 ⇒ Γemec

2 = Γmpc
2 (equipartition between e− and p+?) ⇒

Γmin ∼ εe
mp

me
Γ (εe is the “fudge” factor, Γ is the Lorentz factor of the shock)

R3B
2

8π
∼ εBE

However: everything evolves in time, the values change; the picture introduced
here may fit only for early times (cf. Granot+ 2000)

Even the ordering of the limiting frequencies may change, e.g., νc becomes
lower than νm, then the power law is ν−p/2 for ν > νm and ν−1/2 for
νc < ν < νm, etc.



GRBs: the brightest EM transients
What if the explosion is not spherical → only jet with an initial
opening angle Θ0: (observational constraints for the geometry)

If Γ ≫ 1 → the center of the jet does not “know” about edges; only limited
amount of material that “knows” about the empty space outside the jet

The time of the jet expansion in the local frame: t = R/Γc

“Arrival distance” of a photon from edges towards the center: R⊥ = ct =
R

Γ
(causal connection)

Θ0θθ

Γ >
1
Θ0 Γ = 1

Θ0
Γ <

1
Θ0

Θ⊥source to observer

break

lateral expansion



GRBs: the brightest EM transients
What if the explosion is not spherical → only jet with an initial
opening angle Θ0: (observational constraints for the geometry)

Corresponding “arrival angle”: Θ⊥ =
R⊥

R
=

1
Γ
; if Θ⊥ ≥ Θ0 → the jet begins

to “feel” the edges → spreads and slows down faster; the time when this
happens ≈ 6 hrs

(
E52/ρ [p+ cm−3]

)1/3
Θ

8/3
0 , (Θ0 between 1 - 10 degs)

Spherical explosion energy Eiso, jet energy Ejet =
Θ2

0

2
Eiso, canonical values:

Ejet ∼ 1051 erg, Eiso ∼ 1051 - 1054 erg

Θ0θθ

Γ >
1
Θ0 Γ = 1

Θ0
Γ <

1
Θ0

Θ⊥source to observer

break

lateral expansion



GRBs: the brightest EM transients
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