1 Linear theory in a weak field approximation

(More detailed technical and explanatory remarks are marked in red.)

Creating a mathematical formalism describing gravitational waves is extremely difficult, among
other things, because of its nonlinearity. In this case, we consider spacetime ripples very weak
because we are far from the source. Following this assumption, we can linearize the gravitational
field as a slightly deformed Minkowski flat spacetime 7, = diag(+1,—1,—1,—1) with a small
perturbation hy, (we use the convention + — —— here, other authors may use the opposite, while
the physics stays unaffected),

Guv = Nw + Py + Oy, |hy| < 1. (1)
We raise and lower the indices of this terms by 7,,: following the principle,
W =1 hag,  h= 0"y, (2)
we obtain the “upper index” linearization
g B, 3)
It’s because g"” is obtained from g,, as the inverse matrix, i.e., via
9" guo = 0. (4)
Now we formally distinguish “lower” and “upper” indexed perturbations as h and h,
Jvo = Nvo + hwe, " =0 + ", (5)
noting again that 7, = 0" = diag(+1, —1, -1, —1). Following this, we get
9" guo (= 61) = (0" + ") (1o + huo) = 6% + BE + BE + O(h* hyy), (6)
which means (or, after raising the lower index again with 7?),
R = —hH . R = —h (7)

So, this results from the consistently applied formalism of lowering and raising indices with 7,
and n"”, respectively.

Now we want to find the equation of motion of the perturbations h,, by examining Einstein’s
equations in the first order. We adopt the Christoffel symbols to the linearized gravity (since the

derivatives of 7, are zero) as

1 . 1

0y = 200 @b + b — Out) = L 10, + 010, — 0n,). ®)
1 . 1 .

FZp = 577/) (auhpo + aph;w - aah,up> = 2 (a#hpp + aphp# — Oyh M) . (9)

The Ricci tensor (since the Christoffel symbols are the first order quantities; we employ only the
derivatives of I and neglect the I'? terms) will then take the form

Ry = 0,1, — 9,1,

1
pe =5 (0p0ult, + 00,15, — 0uOu 17, — 00"y - (10)



The term h’, = n*°h,, = h, and the operator 9,0” represents the scalar product of the four-
derivatives in Minkowski space with the raised index 9” = n”?9,,, that is,

0p0f = PO =0 =0y~ O = =V =1, (1)

where the "box" shortly symbolizes the d’Alembert operator (also called the d’Alembertian).
Applying the n*” R, contraction of Ricci tensor, we obtain the Ricci scalar R as

1
R = 3 (90" + 0,000 — 0,01, — ,0°N,) = 0,0, — 0,07 . (12)

Using the contraction of hY, = h and the d’Alembertian symbol, we can write the Ricci tensor
and Ricci scalar of the linearized perturbed spacetime in the more convenient form as

1
Ry = 5 (00, + 0p0, 1, = 8,0,k — Ohy) - R = 8,0,h — O, (13)

We directly obtain the Einstein tensor G, of this linearized flat spacetime perturbations by
summing the Ricci tensor and Ricci scalar,

1 1
G = Ruw = 50 R = 5 (9,01, + p0, 1, = 3,8,h = Oy = 1,0, 8,0, 1"+, Oh) . (14)

We can thus simply write the equation of the linearized gravity,

167G
0p0uh’, + 0,0,h", — 0, 0uh — Ohyy — 1 0p 0, WM + 1, Lh = TTW' (15)
As a next step, it is convenient to introduce a "trace-reversed" (in 4-dimensional spacetime)

tensor ¢, defined as

1
¢,ul/ = huu - §7I,uuh7 (16)
which manifestly gives ¢ = —h and so h, = ¢, — %nyyqﬁ (for the same reason, we may regard the

Einstein tensor as simply the trace-reversed Ricci tensor). The metric perturbation h,, and the
trace-reversed perturbation ¢, thus contain the same information. In n-dimensional spacetime
it would be

h = h‘u# = nwjh;w = hoo — h]] — }122 — h33 — ... — hnn: (17)
2 1 1% 1
¢ — ,U“ = 77'[“ h’,U,V — 577'“‘ n#yh/ == h - éﬂ,h, (18)
noting that n*n,, = n (summation convention). If n =4, then ¢ = h — 2h = —h. We can now

insert the tensor ¢, into Eq. (15), getting

1 . » 1 1
apau [UW <¢uu - 27];w¢>:| + apdu |:7]p (¢uu - 277;w¢>:| + apau¢ -0 <¢uu - 27hw¢> -
o 1 167G
—7//,,,,8,)(9“ |:7]N T]lp <(b;w - QT];LV¢>:| - ”/;WDC/J - CTZU/ = (19)
1 1 1
0,0,0", — ia,,aycb + 8[,8,,(% — 58,,0@ +0,0,¢ — U + 577;11/5(1)—

I | 167G
*npyapduﬁb” + 577MZ/D¢ - 77;W|:|¢ = CTTMU = (20)



167G
8pau¢py + 8pay¢pu - E’¢MV - nuuapa/,cd)#p - 04 TMV7 (21)

we thus reduced the left-hand side of the equation of the linearized gravity to four terms; by
lowering the upper index p in the term ¢*”, we can even reduce the left-hand side to two terms,

167G
apauqbp,u - D¢;w = CTT/U/7 (22)

Another step in the solution of this problem is to “choose a gauge.” This is similar to the
“electromagnetic” Lorentz gauge condition on the vector potential A, (by setting ¢/ = ¢ — 9,
A=A+ 61#, where 1) is an arbitrary function), in which V,A* = 0. To illustrate the gauge from
basic principles, let’s introduce two coordinate systems x, and :c;l, deviating from each other by
a very small displacement & (four functions of the order h,, in a 4-dimensional spacetime),

ot = ot et (23)
Then, obviously,
oxH oxH
7:(5'u_y'u, :&u Vu7 24
oxv! v g orv v + 0 € ( )
and the first-order displacement is
oxf O0x° - -
@) = 5o Gpo () = (6%, — 0uE) (8%, — DuE) (1por + hipor)
>~ N + h/u/ - 8}151/ - al/é.,u = Ny + h;u/ (25)
Thus, the metric transforms as
h:uz = hlU/ - 8u€l/ - 8V§u (26)

and, following the contraction h' = n*hj,, = " (hu, — 0u& — 0u€u) = hjy — &t — 0¥ =
h —20,£%, we can immediately generalize the gauge condition in the trace-reversed perturbation
as

¢;w = ¢/,Ll/ - augl/ - 8V€u + 77,“/8)\5/\- (27)

In general relativity, solving Einstein’s equations, it is common practice to choose a harmonic
gauge condition (also known as Lorentz, Hilbert, de Donder, or Fock gauge) on the coordinate
system, where (absolutely analogously to the Lorentz gauge in EM)

Ozt = 0. (28)

Since 0 = V@V, (recalling that the covariant derivative V,a# = Oqat + T'h, 2", Vawy = 0wy —
I'g,wy where z, is the four-vector and wy, is the one-form why? because the covariant derivative of
a scalar is simply the partial derivative, so let’s assume an ad-hoc symbolized expression V,w,, =
Oawy, + fgﬂwy and let’s impose the covariant derivative on a scalar V, (w,az#) = x* (Vaow,) +
wy (Vazt), giving o (0w, + fguwg) + wy, (Oax* + Thya”), while, simultaneously, V,, (w,a#) =
On (wpat) = a# (Oawy) + wy (Oaxt); this cancels the connection coefficient (Christoffel symbols)

log

terms, I'? w,xH = ffgyx”wu, so, since I‘uuwg:r“ = Fguwuxyﬂ this finally proves that I'h, =

o7



—TI'f,), we may this condition (noting that it is imposed on a scalar coordinate function z# within
the orthogonal four-coordinate system where obviously d,2* = %) explicitly expand as

0 = 02" =77 (0,0,2" — F;\U@)\x“) = —17‘0”1“20. (29)

At this point, it is necessary to strictly keep in mind that the four functions z* are just functions,
not components of a vector; since the covariant derivative of a scalar function is just the partial
derivative, V,z# = Jy,x*, we simply arrive at the expression (29). Expanding the Eq. (29)
explicitly in the weak field limit,
1 po . Ao P 1
0= 577 n (aphaa + aahpa - 8ahpo) = 8pha — §8ah. (30)
The first term on the left-hand side of Eq. (15) then transforms to %&,@Lh = %UWDh, while the
fifth term transforms to —8,0,hl = —%nw,Dh; that is, Eq. (15) by imposing the Lorentz gauge
simplifies to

1 167G
Dhuu - inuumh = _CTTMW (31)
or
167G
D¢uu = _CTT;UM (32)

while the vacuum form of Einstein equation R, = 0 (together with the gauge invariance expressed
by Eq. (23) and the Lorentz gauge condition, Eq. (28)) super-reduces Eq. (31) to

Ohuy =0,  O¢u =0, O =0. (33)

Moreover, by raising indices and substituting the trace-reversed tensor ¢, into Eq. (30), we
obtain the alternative important form of the Lorentz gauge condition,

0= (Opht, — S0 = 01 — L0"h = 0,(60" — S0"6) + 396 =
Dy = 0. (34)

Now, we apply the linearized gravity to a gravitational field of an isolated mass in the New-
tonian limit. In this case, we assume that the energy-momentum tensor (see explanations in
Example 2.5 in the textbook "Prakticke pocetni metody pro_fyziky") is dominated by the en-
ergy density pc? (T = p025uo5yo), the matter is practically static, or it moves slowly enough so
we may neglect the time derivatives (then 00 = —V? in the convention + — —— of the flat space-
time), and the spacetime is "asymptotically flat," that is, it behaves as the Minkowski spacetime
at large distances. Then Eq. (32) says

167G
V2hoo = 2 P (35)

and, after implementing the gravitational Poisson equation V2® = 47Gp (we hereafter consis-
tently distinguish ® as a gravitational potential from a trace-reversed perturbation ¢),

boo = ‘iif. (36)



Since the other components of ¢, are negligible, then ¢ = ¢qo, and h;o = ¢i0 — %Th‘od) = 0 (where
i = 1,2,3 are the spatial components of the metric). The "inverse" Eq. (16) thus immediately
gives

20

hyw = 0725’“/' (37)

Finally, following Eq. (1), the metric form of a perturbed spacetime in this weak-field limit is
s = (2 +20)d® — (14 22) (de? + dy? + a2 38
57 = (¢ +20) dt* - +§(az+y+z). (38)

We now describe the formalism of the weak-field limit application to gravitational radiation.
Let’s suppose the perturbation within the vacuum solution Ug,,, = 0 radiates plane waves in the
form

¢/J,V - Al“’ eikaxa - Ap,y eii(kixiiw”, (39)

where A, is a constant and symmetric spacetime tensor of second order (consisting thus of ten
independent components, called polarization tensor including information of the amplitude and
the polarization properties of the gravitational waves), and k, is the wavevector; kg = k° = w/e,
k; = —k*. Then, the flat-space d’Alembertian imposed on a scalar complex 4-exponential yields

0= Dqsyy — naﬂaaaﬁ¢uu - naﬁaa(lkﬁgby,u) - _naﬂkakﬁqbyu - _kaka¢uy- (40)

Because at least some of the ¢,,, components must be nonzero (otherwise, we do not have any
subject to deal with), we have a solution of a null wavevector,

kak® =0, (41)

which immediately shows that the gravitational waves propagate with the speed of light. Moreover,
since w? = 26;;k'k) = ?k? (kok® = w? — *|k[* = 0) (where k? = |k|?), this relation explicitly
suggests

w Ow
Uphase = E = ¢, Vgroup = % = ¢, (42)

that is, the group as well as the phase velocity of the gravitational waves are equal to the speed
of light c.

This simple plane wave, of course does not describe the complete or general solution; (possibly)
an infinite number of distinct plane waves can be superposed and solve the linear wave equations
(33). Imposing the Lorentz gauge condition (34) on Eq. (39), we see that

0 = 0y (A e®e™™) = ik, AW eiFat® (43)
which is fulfilled if and only if
k, AM = 0. (44)

Thus, we may regard the wavevector k, as orthogonal to A#*"; this condition reduces the number
of independent components of A*” from ten to six. Explicitly, recalling that due to the symmetry



of Apy (A = Auy),
¢ (kuAr?) = wA™ — ¢ (k1 A" + ky A® + k3 A*) = 0, (
¢ (kyAMY) = w (A" = A1) — ¢ (k AM + ko A% + k3 A1) =0, (
¢ (kuAr?) = w (A" = A7) — ¢ [ky (A" = A%) + kp A® + k3 A%?] = 0, (47
c (]CMAHS) —w (A03 = A30) —e [kl (A13 = ASI) + ]{52 (A23 = A32) + ]{731433} _ 0, (

showing that in this case, the ten originally independent components A%, A0 A20 430 All
AL A3 A2 A32 A33 reduce to only six, AN, A2Y A31 A%2) A32 and A3 (the same applies for
symmetric counterparts of the nondiagonal ones). From the last equation (33) and analogously
to Eq. (39), we claim the solution for the displacement

£u = Bt (49)

where B,, are constant coefficients and k. is the wave four-vector. Then, following (27) with
Eq. (39) plugged in and with Eq. (49) for the transformation of displacement, we obtain the
gravitational wave amplitude changes as

Ay = Ay — ik, B, — ik, By, + inu kB, (50)

MY changes to

This, after raising indices by 7
Al = Ak — k"B, — k"B, + 4ik\B* = A", + 2ik\B*. (51)
which can also be simply modified to
: A
A”:L = AHI’/ —|— 21/{,‘)\B . (52)
This can be rearranged as
A= AR 4 2ikyBon™, (53)
which we may explicitly write as (employing only the relevant terms)

A ’; = Al +2i (kOBonoo + k1 Bin* + ko Bon* + k‘3337733) = (54)
= A, + 2i(koBo — k1B1 — k2Bs — k3Bs) (55)

Following Egs. (50) and (52), we can construct the matrix transformation for selected amplitudes,

A 1A4, ©  —ki —ky —ks\ [Bo
Ay | Ao | . |-k -2 0 0 B
Ay |5 A [T ke 00— 0 | B (56)
Al Aos ~ks 0 0 -%) \Bj

where, because we may choose the coordinate shift amplitudes B, however we need, we can also
adjust the coordinate system so that

At =0, Ay, =0, (57)



to which we convert the "old" A, coefficients. We can also extend the solution (44) via
ktA,, = kMA,, —ikPE, B, — ik"k, B, + in,k kB =
=00~ ik (KBy ~ kbaB*) =0, thatis kA’ =0. (58)

For clarity, we readjust the relation (56) as

Lan, ~¢ ky ky ks\ [Bo
An I % 0 O B
Ao | " ke 0 2 0] B (59)
Aos ks 00 T/ \Bs

In any case, the first equation (57) brings another constraint to the already announced six in-
dependent components A" reducing them to five. The second equation (57) should bring four
more constraints; however, since one of these is already dependent via Eq. (44), we have only
three additional constraints at this point. The total number of independent coefficients A*" is
thus reduced to two. The following suggestions will yet more clearly explain this.

2 The transverse - traceless (TT) gauge

We can now choose the coordinate system oriented so that the plane gravitational wave is propa-
gating in the direction of the third spatial axis 2* = x3. In this case, according to the null vector
solution (41), we have

kukt = kok® + ksk® = %’% tas(—a3) = 0= 23 = % (60)

= (%,o,o,x?’) - (%,o,o, %) (61)

In this case, the condition (58) now gives kKVA'o, + k3A’s, = 0, which, together with the second
equation (57), means

Als, =0, (62)

reducing the number of independent terms in the A4j,, to four, A}y, A}y, Ay, and A5y, Moreover,
Ay = A}, due to the symmetry of A, and the first equation (57) implies that Aj,, is traceless,
AV = AL, = Ay — Ay = Ay — Ay = 0, Ay = — Ay, and

0 0 0 0

0 Ay A, 0

0 Al Al 0

0 O 0 0

A:W = (63)

The plane is within this configuration completely described by frequency w and the two compo-
nents A}, and A},. We call this particular gauge the Transverse Traceless (TT) gauge (or radiation
gauge). Now, since the trace-reversed perturbation ¢, is in this gauge traceless (because A,,, is),
and it is equal to the trace-reverse of h,,, we have

o = P (64)



We can, therefore, use both quantities equally in this gauge.
Let’s rename the two numbers to forms that will better illustrate the principles (will be ex-
plained soon), A, = A}, and A, = A),, then

0 O 0 0
_ 0 A+ AX 0 _ ikngd
A=lo b ZA 0| hw=Ae (65)
0 O 0 0

The quantities Ay and Ay are invariant under gauge transformations according to Eq. (50), so
we may use them to compute the amplitudes of an arbitrary gravitational wave. The metric
associated with a gravitational wave within this gauge is

ds? = G dat'dz” =

=c2dt? — (1+ A e ™) (dz)? — 24, dgtda? — (1 — A7) (dz?)? — (dz®)2. (66)

Let’s consider a linearly polarized wave with polarization +, and an ensemble of test particles at
coordinates z!, 22, x3. As the wave passes, the particles separated in the 1st direction oscillate
in this direction. The particles separated in the 2nd direction do the same in the counter-phase.
The distance element in the 3rd direction (the direction of propagation) remains unaffected by
the passage of the gravitational wave. The distance elements in the 1st and 2nd direction are thus

given by
1 Ly ikoa® 1 2 Ly koo 2
dz” ~ 1+ §A+e dxg de“~ | 1-— 5A+e da. (67)

A X polarized wave oscillates along the axes rotated by 45 degrees. The 3rd direction remains
again unaffected. We designate + and X polarizations rather than "horizontal" or "vertical," as
we do for light. Here should be added pictures of polarization-dependent oscillations.

These polarization modes are thus invariant under rotation of 180 degrees; since the spin S
is generally given by the rotational angle # invariance as S = 360°/6, we may suppose that the
"gravitons" predicted in the quantum gravitation theory will have the spin 2. Of course, such
particles have not yet been detected (and maybe they will never be in the future). However,
relevant quantum field theories suggest their existence as massless particles (since they propagate
with the speed of light) with the corresponding spin.

Now, let’s revoke Eq. (32) as the starting point for describing the coupling of the gravitational
radiation with its source (supposed to be of a material nature). The solution to such an equation
can be obtained using Green’s function in precisely the same way as the analogous problem in
electromagnetism. However, before we come to this, we join the short explanatory notes on "re-
tarded” solutions as they are defined in, e.g., the Liénard-Wiechert potentials in electrodynamics
(in this sense, there can be replaced a mass for a charge, or vice versa). The term "retarded" is
used in this context in the sense of "propagation delays." Consider a particle of charge ¢ moving
along a trajectory r — r’(t') whose velocity is u(t') = #'(#'). Its charge and current is

= /qa(r— P Br, qu= /qua(r— () dr, (68)

where the charge and current densities are p(r,t) = qd(r — r’(t')) and j(r,t) = qué(r — r'(t')),
respectively, and where the general property of the Dirac d-function is a localization of an integral



given by

[ 18— a0 ds = f(a0). (69)
We now define the retarded potentials (in the system of SI units) as
L[l
t) = = — . 70
o(rt) dmeg ) |r—r| ’ A | |r—r'] (70)

where the quantities in the square brackets mean that they are evaluated at the retarded time
t — |r — r’|/c, which refers to conditions at the point r’ that existed at a time earlier by |r — r’|/c
than t where |r — r’|/c is the time required for light to travel between r’ and r.

We now evaluate these retarded potentials from Eq. (70) via the charge and current densities
given by integrands of Eq. (68). The scalar potential is then

o= [0 [AED o (i)
- L / RY() 6 { —t R(Ct/)] dr’ (71)
A(r,t) = ’“:T(f / u(t)RL() 6 [t’ it Rit/)} dt’, (72)

where R(t") = r — r/(t') and R(t') = |R(t)|.
The argument of the d-function vanishes for a value of t' = t,¢; (retarded time) given by

R(tret)

oy = £ = — (73)
We substitute a new variable ¢/ = t' — t + R(t') /c whose differential
. 1
dt’ = {1 + R(t’)] dt’ = [1 - En(zt/) : u(t’)] dt’, (74)

where we obtain the latter by differentiating the identity R2(t') = 2R(!R(t') = —2R(t') - u(t),
where R(t') = —u(t') and the unit vector n = R/R. Equations (71) and (72) take the form

B(r,t) = a /R_l(t’) [1 — 1n(t’) . u(t’)]_lét” dt”, (75)

4eq c
A(r,t) = ‘jf:/u(t’)R—l(t’) [1 — %n(t/) : u(t’)} _161&“ dt”. (76)

Setting ¢t = 0 or equivalently ¢’ = t,¢¢ simplifies the notation to

= (] A= (1) m

where we keep the "bracket" notation for retarded potentials and where

’f( ret) =1- % ( ret) : U( ret) =1- /3( ret) : n(tret)- (78)



Equations (77) are the Liénard-Wiechert Potentials. They differ from static electromagnetic
potentials by the factor x(t.et) that becomes very important at velocities close to the speed of light
¢, where it concentrates the potentials into a narrow cone about the particle’s velocity (relativistic
beaming effect). Another difference is that the quantities are evaluated at the retarded time ¢,
which enables a particle to radiate. The potentials fall off as o< 1/r so that the fields would
decrease oc 1/r? if the differentiation of potentials acted exclusively on the factor oc 1/r. The
retardation involves an implicit dependence on position via the definition of retarded time, and
the differentiation for this dependence transforms the 1/r behavior of the potentials into the fields
themselves. This allows radiation energy to flow to an infinite distance.

The alternative (and maybe better) explanation of this stuff is the following, using the prin-
ciples of special relativity: In the primed frame, the charge is at rest, so (see electro- and magne-
tostatics),

2 O _poge

that is, si 2, DMl
at is, since poeg = ¢™°,  — = ik 0, (79)

r_ 1 9
dmeg R’

where the latter two terms are the components of the four-potential A = (¢/c, A), while the
other relevant four-quantities are u® = ~y(c, u), and R® is the position four-vector of the inter-
event distance, formed analogously to the four-position definition r“ = (ct, r) as

R=[c(t—t),r—r]=[c(t-1t) R]. (80)

We can, however, generalize the four-potential (using the four-notation, in the non-primed quan-
tities) consistently as

a_ Mo cu®
= (81)

where, reminding that ¢(t —t') = |[r — r'| = R,
UﬁR’B =v(c,—u) - [c(t—t),R] =vc¢(R—B-R)=~cR(1—-3"n), (82)

where n = R/R is a unit vector in the observer’s direction, 3 = u/c is the normalized velocity
of the particle, and v = 1/(1 — u?/c?)'/? is the Lorentz factor. In the reference frame of the
charge (in which f =0 and v = 1), the expression (82) is reduced to cR so we see that Eq. (81)
is correctly reduced to Eq. (79). We now express the components of Eq. (81) in terms of the lab
frame (in which ¢’ = t,¢ and R = Ryet),

GOl o IR GO = ey DR

These formulas for the Liénard-Wiechert potentials are identical to those in Eq. (77).
Let’s now do one more formal calculation whose result we will need anyway. We differentiate
the geometric relation

c(t — tret) = Riet = |r(t) — ' (tret)] (84)

over tyt and then, independently, over ¢, assuming that r is fixed. Differentiating both sides of
the identity R%, = Ryet - Riet OVer tyet, we have
8]%ret 8Rret

2Rret? = 2R’ret : ot .
ret ret

(85)

10



Regarding the fixed r, then ORye;/Otiet = O(r — 1')/Otrer = —OF [Otrer = —Uyet, Eq. (85) yields
8Rret o Rret 8Rret

= . =—(n- . 86
0 tret Rret atret (n U)mt ( )
Differentiating in Eq. (84) the same Ryet over t gives
OR, ot
o = o (&7)
while using the chain rule, we have
a-Rret a-eret atret c{)tret
— =—(n-u)_, —=, 88
Ot Ot O (- et = (88)
Combining Egs. (87) and (88) gives
Otrct C |: 1 :|
ot c—(n-u),, 1-8-n],

The Green’s function G(z* — y®) for the D’Alembertian operator [J is the solution of the wave
equation in the presence of a delta-function source: [,G(z* — y®) = 6@ (z* — y*), where O,
denotes the D’Alembertian for the coordinates . The general solution of Eq. (32) can be then
written as the convolution see the general principles of Fourier transformation

bute®) = =15 [ 6" — ) Tty . (90

We express the retarded Green’s function, which represents the accumulated effects of signals to
the past of the point under consideration as

1

ST Ty

e ] (o)

C

where t = 2% and the boldface denote the spatial vectors x = (2!, 22 2%) and y = (y!, 52, 9?),
0 —y°)

with the norm |x — y| = [6;;(2" — y') (a7 — y7)] Y2 Wwhile the function O(x° — %) equals 1 when
2% > 40, and zero otherwise, to protect the time causality.

Inserting (91) into (90), we can perform the integral over 3’ using the delta function,

d),U«V t X /’X ( - ’x;y|ay> dgya (92)

the retarded time now refers to tyet = |X — y| /c. We may consider Eq. (92) in the following way:
the perturbation of the gravitational field at the "spacetime point" (¢, x) is a sum of the energy
and momentum impulses generated at points on the past light cone. Illustrative picture?

Let’s now consider the case of the gravitational radiation emitted by a sufficiently distant
isolated source comprised of nonrelativistic matter; these approximations will be consistently
explained further on. We employ the Fourier transform solutions, which always make life easier
in case of waves or oscillations. Reminding the general principles: given a whatever function of
spacetime f(¢,x), we can construct its Fourier transform (and inverse) for time variable (using
the symmetric scaling convention) as,

Flw,x) = \/127 / T Xy e td,  f(tx) = \/12? / " Flw, x) e du, (93)

11




When applying the same to the function ¢, including the Green’s function solution, we have

o )
—~ . uu Yy
v(w,x) = Lt x) e whdt = /dt/ e Wt g3y
d)ﬂ ( ) /¢# ( ) 04\/7 ‘X—y’
v t y 71w<t+|x y‘
m
. d —_
c4\/ / / x —y]| v
o x—yl
4G s~ feTve o 4G v(W,Y) byl g
T, (t, B | = 71‘”cd,94
NG () e x—yl YT Tx—y] v (94)

where t =t — |x — y|/c. The first row of equation (94) defines the Fourier transform, the second
reflects the equation (92), the third transforms the variable ¢ to t, and defines again the Fourier
transform. We now approximate the source as isolated, far away, and slowly moving. We consider
the center of the source at a spatial distance r, with the opposite parts at distances r + dr where
or < r. Since it is slowly moving, most of the radiation emitted will be at frequencies w sufficiently
low that 6r < w™!. (Essentially, light traverses the source much faster than the components of
the source itself do.)

—iw [x—y|
c

Under these approximations, the term e /|x—y| can be replaced by e /r and brought

outside the integral. This leaves us with

~

~ 4G e e
¢,uu(wax) = 6747 /Tw/(way) d3y' (95)

r

We do not need to calculate all the components of au,,(w, x), since the harmonic gauge condition
0™ (t, x) = 0 in Fourier space implies

v __ i Tiv
3 = Lagw, (96)

We, therefore, only need to concern ourselves with the spacelike components of g/zb\u,,(w, x). From
(95), we want to take the integral of the spacelike components of T, (w, y). We integrate by parts,

/Tij(w,y) d*y = /8k (yifkj) 4’y — /yi (3kfkj> d’y, (97)

where the first term is a surface integral which will vanish since the source is isolated, while the
second can be related to T'% by the Fourier-space version of 0,T" =0,

T = —iwT O, (98)
Thus,
/fij(w,y) By = iw/yifoj A3y = l;d/ (yifoj + yiji) A3y =
IUL)
=5 [Bk (y ijO’“) y'y’ ((%TO’“)} ddy = —/y yTOdy.  (99)

The third integral of Eq. (99) is justified since we know that the left-hand side is symmetric in ¢
and j, while the fourth and fifth integrals are simply repetitions of reverse integration by parts
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and conservation of TH¥. It is conventional to define the quadrupole moment tensor of the energy
density of the source,

qi(t) = / Yy Tt y) d%, (100)

a constant tensor on each surface of constant time. In terms of the Fourier transform of the
quadrupole moment, our solution takes on the compact form

~ 2Gw? e Wi .
¢ij(w,x) = — 4 qu'j(w% (101)

or, transforming back to ¢ by the inverse Fourier transform, we can absorb the factor —w? into
a second time derivative, as well as 7“7 by transforming to the retarded time, following the
previously used steps in reverse. Thus, we finally arrive at the quadrupole formula

1 2G iw(t—T) ~ 1 2G dZ iw -~
gbij(t,x) = _EE w2€ (t=%) Qij(w) dw = E%@ /e tret Qij(w) dw =
2G d?
= i g 9t 102

The gravitational wave produced by an isolated nonrelativistic object is, therefore, proportional
to the second derivative of the quadrupole moment of the energy density at the point where the
observer’s past light cone intersects the source.

In contrast, the leading contribution to electromagnetic radiation comes from the changing
dipole moment of the charge density. The difference can be traced back to the universal nature of
gravitation. A changing dipole moment corresponds to the motion of the center of density - charge
density in the case of electromagnetism and energy density in the case of gravitation. While there
is nothing to stop the center of charge of an object from oscillating, the oscillation of the center
of mass of an isolated system violates the conservation of momentum. (You can shake a body up
and down, but you and the Earth shake slightly in the opposite direction to compensate.) The
quadrupole moment, which measures the shape of the system, is generally smaller than the dipole
moment, and for this reason (as well as the weak coupling of matter to gravity) gravitational
radiation is typically much weaker than electromagnetic radiation.

It is always illustrative to take a general solution and apply it to a specific case of interest.
One case of interest is the gravitational radiation emitted by a binary star (two stars in orbit
around each other). For simplicity, let us consider two stars of mass M in a circular orbit in
the x'-z? plane, at a distance R from their common center of mass. Circular orbits in the
Newtonian approximation (where the orbital period of both stars is T' = 2w R/V') are characterized
by equating the gravitational and centrifugal forces,

GM? MV? GM GM
QRE - R giving V =4/ IR and \/ ik (103)

where 2 is the angular frequency (hereafter, we distinguish © as the angular frequency of the
orbiting system and w as the angular frequency of the gravitational wave, where w = 20 due to
two "tidal maxima" of the wave during one orbital period). Then, we can express the trajectories
of stars A and B as

zh = RcosQt, z% = RsinQt, x5 =—RcosQt, z% = —RsinQt, (104)
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while the corresponding energy density is

T%(t, x) = M6(2?) [5(w1 — RcosQt) §(z* — Rsin Qt) + 6(x' + ReosQt) §(2? + Rsin Qt)] .
(105)

Following this, we can integrate Eq. (100) (using the principle given in Eq. (69)),
q11 = 2MR*cos® Qt, qoo = 2MR?sin> Qt, qi2 = g1 = 2MR?* cos Qtsin Qt, g3 = 0. (106)
We get the components of the metric perturbation from (101) as

08 20tet  SIN2Qf.e; 0
Q?R? | sin 20t —cos20te; 0] . (107)
0 0 0

8GM
Gij(t, x) = A
The remaining components of ¢, could be derived from the harmonic gauge condition.

Another approach to construct the quadrupole moment tensor g;;(t) is based on the evaluation
of the "second moment of mass" (moment of inertia) of the nonrelativistic isolated two-body
system (of two masses m; and mg where M = mj + mg) in the center-of-mass frame where
Xg = X1 — Xg is the relative coordinate, the center-of-mass coordinate xcy and the reduced mass
w are (usually) given as

miXi + maXa mimsg
oM 7 k=07 (108)
Then, the second moment of mass can be written as
gij = mizhia] + moahal = MJ?ZCM.Z']CM + /m%x%. (109)

Following the last expression, we can expand this as

]\[mlxil + mgrg mlle + mngg n mlmg( i L)( j j>
] — x9) (] —x5) =
M M MoTHTEATL T2
2,0 .0 i J J i 2,0 .0 , } _ _
_ MITITY A+ MM Ty + MIMaT Ty + MHTyTy n mims (12 2 gt il 4 [L’j)
M M ~141 142 142 242
=77 ™ (m1 + ma) Ziz] + ma (M1 + ma) zhad | = mixiz] + mozsal,. (110)

Therefore, if we choose the origin of the coordinate system at xcy = 0, the quadrupole moment
becomes the same as that of a particle of mass p described by the coordinate xo(t). In this CM
frame, the mass density is then

plt,x) = 16 (x — xo () (111)
and the quadrupole moment is
4ij(t) = p (D)2 (1)- (112)

We can thus relate the gravitational radiation emitted by such a two-body system to the mass
quadrupole moment of this system whose relative coordinate performs a given periodic motion,
say simple harmonic oscillations.
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3 Energy and momentum of gravitational waves emitted from a
two-body system

To derive the energy emitted via gravitational radiation, let us consider vacuum Einstein’s equa-
tions to second order and see how the result can be interpreted as an energy-momentum tensor
for the gravitational field. Once again, if we consider the metric as g, = 1. + by, then at
first order we have GE},,) [n+ h] = 0, where G,(},,) is the Einstein’s tensor expanded to first order in
hyw. These equations determine h,, up to (unavoidable) gauge transformations, so to satisfy the
equations to second order, we have to add a higher-order perturbation, g,, = 7., + hu + h,(f,,) .
The second-order version of Einstein’s equations consists of all terms either quadratic in A, or

linear in hg,) Since any cross terms would be of at least third order, we have

GO+ P+ G+ h) = 0. (113)
Here, ny) is part of the Einstein tensor, which is of second order in the metric perturbation. It
can be computed from the second-order Ricci tensor (involving the nonlinear terms of the Ricci

tensor (not only the linear ones as we did before in the case of the vacuum solution used to find
the solution of perturbations), which is given by

RE) = 9,10, — 9,1, +T0.Th, —T0,\T3,. (114)

The solution of the first nonlinear term within the TT gauge is
1 1
I Ch =T, 31" Ophrg + s = Dshpr) | = F,i@ (0ph + O\hE — 95h5) =0,  (115)

because the first and third terms cancel (they are the same in the transverse gauge, using the
symmetry in the metric n*? = n®® and following, therefore, the identities NP7 0phre = 17P0shxp),
and the middle term is zero due to the traceless choice of the gauge. The second nonlinear term
can be expanded as

—I0\T0, = =217 (Oubre + 0o — ehyx) 17 (Buhipo + Ophuo — Dshuy) =
=77 (aﬂhi + a)\h‘ﬁ - aphuz\) 77/\0 (al/hpa + 8phl/U - aahyp) =

(0127 + O7hE, — OhE) (Db + Dphurs — D) =

N il N

[(02°7) (D Ppo) + (8uhP) (Bphue) — (0uhP7)(ohup) + (O7HE) (Buhpe )+
+(07hf;) Ophwe) = (87hf3) (Dohup) — (8°15)(Buhpo) — (O7,) (Dphue )+
+(0705,) (Dohup) ] 5 (116)

the second term cancels with the third term, and the fourth term cancels with the seventh term
due to the obvious symmetry of the metric, as was already described above. Equation (116) thus
simplifies to

T, 0, = = 5 (Ouh)Ouhym) + (O7RE) Byhua) — (07 H) @)~
(O Do) + (O°N) O] (117)
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where, however, the second and the fifth terms are for the same reason identical due to the
symmetry of indices, d7hl, = 9P hy, as well as 0,h,e = Oyhyp, while for the third and the fourth
terms we can also apply this argument. We may thus yet simplify this identity to

1 1 1
D003, = =5 (0uh) Ouhyo) + 5(07H) (Dphi) = 5 (O7HE) (o). (118)

We can rewrite the second and the third term on the right-hand side of Eq. (118), using the rule
for the derivative of the product of two functions as

SO ) Ophu) = 507 (Wepha) — SHE0 (119)
—%(8"hﬁ)(8ghyp) _ —%8"(hﬁ(9ghyp) v %hgaoaah,,p, (120)

where, due to the gauge condition (34), the last term in (119) vanishes. Now, let’s label the two
linear terms of the Ricci tensor from Eq. (10) as being the "connections" of the second order (due
to the derivatives of the Christoffel’s symbols); we can then rewrite the complete second-order
Ricci tensor (see Eq. (13) for its linear part only) in this sense as

1
RE) =3 (00,1, + 00,1, = 0,0,h — Oy~

—%(a#hw)(ayhpg) 07 (WD) — O (WD huy) + hﬁDhl,p] , (121)

where the d’Alembertian in the last term comes from 00, = 0,0° = 0. We now evaluate the
second-order Ricci scalar by contracting the second row of Eq. (121) by n*¥ (since the first-order
expression, that is, the first row in Eq. (121), was already calculated in Eq. (13)),

1

R® =8,8,h** — Oh — 5 %(awg)(ayhpo) + (WP, hye) — 8% (WPDyhy,) + h”"Dhl,p} . (122)

Now, since G(2,,) = R(2l,) — 11, R® and, following Eq. (113) where we can put G(ly) +h@) =
f w 21 o \7]

%tw, we simply define

R+ ) = -, (123)
we formally distinguish ¢, as the energy-momentum tensor specifically for the gravitational field
in the weak field regime.

We will not describe here the Bianchi identity and other mathematical tools which may lead
us too far aside (see Caroll and others for the detailed stuff), stating only that it implies V¥R, =
%VPR which is equivalent to energy conservation V#G),, = 0 and, therefore, V#T),,, = 0. For this
reason, we have in the flat space (weak field regime) the modified energy-momentum conservation
condition

Ot = 0. (124)
By averaging over a macroscopic region, | ff f(z)dz]/(b— a), we can yet simplify the Einstein

tensor. At this point, it is important to note that we are working with functions constructed from
small perturbations. The difference in the values a and b of the function at any point will also
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be small. If the wavelength of the gravitational wave is much larger than the region b — a we are
considering, f(a) and f(b) will also be practically the same. So let’s go through the right-hand
sides of equations (121) and (122) term by term and see which ones can be neglected (noting
again that we "are" in the TT gauge): The first four terms and the last term in (121) vanish due
to the conditions 9,ht, = 0, h = h% = 0, and Oh,,, = 0 (see the explanations above). In contrast,
the second and the third terms from the end vanish due to neglecting the average of the total
derivative, as described closely above. The same principles apply in Eq. (122) where also the third
term (first term in square bracket) vanishes due to the same macroscopic condition within the
averaged value (remembering that u'v = (uv)’ — uv’ where the middle averaged term vanishes, so
uw'v ~ —uwv'), that is,
1 1

@) Dhgo)) = (h7 D) = 0. (125)
Finally, we are only left with a single term (the fifth term on the right-hand side of Eq. (121)) for
the effective stress-energy of gravitational waves,

1 - 8wG
RO+ 1) = =5 (@uh*) @uhpe)) = == tu, (126)
that is,
ct po
b = 33— ((Ouh*7) Buhyo) (127)

where we only readjusted Eq. (126) and transferred the "Einstein gravity coefficient" to the
opposite side of the equation.

Regarding the derived energy-momentum tensor, we proceed with the Tpy component that
describes the energy density. Therefore, we can find the total energy of the gravitational radiation
contained within the surface X of constant time. Using the symmetries of the system, we put the
source of the radiation into the origin, which is especially important when we work with the
retarded time,

E—/t00d3x. (128)
b

We can also calculate the energy loss AFE due to radiation through a sphere S with a radius R
per second because the Ty, components describe the energy flux in the direction y as

AE:/tOﬂn“dQth, (129)
S

where the integral is taken over a spacelike two-sphere in infinity and some interval in time, and
n# is a unit spacelike vector normal to S. After a little rearrangement and a transcription of the
isotropic situation to spherical coordinates where the only component tg,n* is to,, we can write
the same equation (not in the infinity but at least in a considerable distance r) as

— = [ to,r°dQ. 130
i = [ (130)
Then, according to Eq. (127),
4
_ ¢ af TT
tor = 55— ((QhFT) (0:hE3)) (131)
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where we further employ the derivation of the trace-reversed tensor (101) based on the second-
order time derivative of the quadrupole momentum, noting that ¢,, = h,, in the TT gauge. We
also advancingly use the fact that the amount of radiated energy (129) can be written in terms
of the radiated power P as

AE:/P&, (132)

where the power is then given by the integrand of Eq. (130) in spherical coordinates.

Now, we need to impose the TT gauge to the trace-reversed perturbation so it changes to the
weak field perturbation, and we can use it in equation (127). We have to find a TT tensor qéZT
constructed from ¢. We can use this to find Toy, after which we can change q%jT back to ¢
without information loss. First, we begin by projecting ¢/ on its traceless component Q% (whose

TrQi; = Q! =0),
I
Y=g — 55”5qukl7 (133)

second, to make Qij transversal, we want to project its components on a transversal image.
Therefore, we will use the projection operator

b
Pb(x) =60 — %, which is equivalent to  P’(n) = 62 — n’n,, (134)
, z! 2?23 )
where x = (xl,:cQ,:c?’) so 2'z; =712, and n = <, —, ) so n'n; = 1, that acts as
r’or’or
ij i i_ 1 ij
T — PaQabe - §PaanbP . (135)

After projecting Q¥ on its transversal image, you can use the projection again, but it stays the
same transversal image. Since a general property of a projection operator is

P2 =PAPPPY = PP, (136)

p2_ (5 {L‘b[L'a 50— %z, _ sbga _ gb %, B é_a:lfbéL'a {L’b[L'a ez, B
a r2 c r2 a% a2 c 2 r2 2
b b b,.2 b
= 60 — -t = 6L — - =P, in other words (137)

r r T T

P? =

/N

6L — nbna> (6% — nne) = 6262 — 6bnn. — 0%n°ng + nPngnn. =
=6 — nbne — nbne +nbn. = 68 —nn. =P 138
C C

using this, we can check that qézT = Q?T is traceless and transversal: Let’s first check that Q?T
is transversal, that is, z - Q7+ = 0 in the following way,

g , 1 g
Q7 = (% PY)Qup P — §Paanb(a:iP”), checking in particular that

) %

z; P, = x; ((52 — 2“) =T, — Tza:a =24, — e =0, in other words (139)
r r

nLP(j: n; ((5('1 - ni7za) = Iy — n'ning = ng — ng = 0, (140)

zPY =2 (Y — —- ) =2/ — —5-2) =27 —27 =0. This is also (141)
r r

n;PY=n, ((5“ — ninj) =n) —nin'n? =n? —n = 0. (142)
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Second, we check that QQZT is traceless, that is, Qf =0, by
i ij i 1 i
Qi = 9ijQpr = PoQavPiv — §PaanbP7;7 where

4 - iz, TiTp TaXb
PPy = (52—73) <5ib_TT) =0 = — 5 = L,

P!Py= ((52 - nina) (05 — ninp) = Oap — Nanp = Pap,

1 . 1 A 1 .
2Pi":2<5§_ 7“21> :5(3—1):1, that is,
§PL»: 5(5ifnni) = 5(371)21,
Qz - aanb - Paanb =0. (143)

Now, inserting Eq. (101) into Eq. (131), we continue as

op _ 2G 0 [508 _ 2G0he 9 T
Dohr = cir ot [ TT(tmt)} dAr Ot Otret [QTT(tret)] ’ (144)
2G 0 |1 », 2G 0t Otrey O [0 2G T~
Orhos = "o r [ T?f(tret)} = o 0 G (00 (t)] = Gz Q)] (149

where we use Eq. (89) for the derivative Ot /0t which however, due to negligible 5 term, we
regard as 1. Due to the spherical symmetry (one radial spatial coordinate r), we set the radial
derivative 0, of the quadrupole equal to ¢ times 0; (the time derivative), except the direct spatial
derivative of r in the denominator. We thus obtain

N 2G [ gy

dohgy = - [ Tg‘(tret)} (146)
rr 2G [T 0G [ e

87'ha/8 = E [Qaﬁ (tret):| - W |: aB (tret):| . (147)

Because we are far from the source, we may neglect the last term in Eq. (147). We can thus write
an expression for the power P = dE/dt radiated by a gravitational source,

dE A 4G? 5 0B T G ap TT
a < /S 52mG o2 917 Qas d9> = < /S §rcs 917 Qop d9>- (148)

Since we want to achieve a general solution of the integral, we transform this back to a non-
transversal form. We use again the property of the projection operator P? = P,

P i 1 o1 I
Qij Qrr= (Pf‘P}’ - 2Pab3j> <P;Pg - 2Pch”) Qup Q. (149)

We can split the two brackets with the projection operator into four terms

Pla_P]bPCzPé = Pcapé” _§-Pia-ijPCsz] = _5 ch(lb’ _ipamePcZP(g — _5 chab’

1 R | 1
ZPabPichdP” = ZPcdpabpg = 5PCUZP‘”’, (150)
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(see Eq. (143) for justification of the last equation’s solution) we need to solve the two operators,

a a b
Poph = <5g -k > <5d i :”d) = 528b — 56”‘ Td _ g% | Lol Td (151)
r 72 72 r
P P = (5 d— xcxd) 5% — w2ty 88 eq — 5ab$cxd =0, dxaxb + ) (152)
c — \Ye r2 r2 )= cd™2 A
Substituting this into Eq. (149) gives
b..d a,.c a.C.b.d
cee ces d e v b xrxT cee cee xr'x e ...b r'r-r'axr
PIPiQuQ™ = Q@™ - ?QabQZ— ﬁczab@ + = QuQu  (153)
1 SO B TV Tl ooe oo xaajbxcxd ..
PP, = LG GG 5,0 - TG, ()

Remembering that the quadrupole moment of mass distribution is still traceless (Q = 0), we can
rewrite equation (149) as

zezc . xxlrbrd ..

e cee e cee b d... cee cee
OtrQy = Q@™ - 5 Q@i - S Q@i+ —pr—Qulu  (155)

We must integrate this over d{2 to obtain the total power. To perform the integration, we yet
introduce the solutions for a surface S with radius R (cf., e.g., Michele Maggiore, Gravitational
waves, 2008, pp. 104-105)

jirzl, b _ %R%’]ab, / iizxaxbxcxd 115R (nabncd + nacnbd + T/adnbc) (156)
These identities and their generalization to an arbitrary number of n’s can be found as follows.
For an odd number of n; the integral vanishes because the integrand is odd under parity. For
an even number of n;, we use the fact that the tensor n;; n;o ... nyor is symmetric, and therefore
its integral can only depend on the symmetrized product of Kronecker deltas. Once the tensor
structure is fixed, the overall constant is obtained by contracting all indices. This all gives

dQ 1
/47T Ny Mgy +ee Mgy, = m (511 ZQ(SB is "'(Si%—l ior, T ) , (157)

where !! denote the "double factorial" n(n — 2)(n — 4)... and the final dots denote all possible
pairing of indices. In particular, we thus have

" dQ 1 102
77”La7”bb _ 7,I7ab, / C nanbncnd _

- 3 = <77abl7cd + nac ]bd 4+ nad ]bc> ) (158)

—_
U("_‘

which is analogous to Eq. (156).
We can now use these particular solutions to calculate the integral of the total energy release
(power of the gravitational radiation)

dQ i
ot
bd ac .. ... ab,,cd ac,,bd adbe .
= 0" - 0,0 - 0,0 T GG,
= G0 - S GG o (@'c?'wabcz PG =1 0,0", (59)
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where we use again Q = 0 and Q% = Q. Inserting this into Eq. (148), we finally find the famous
quadrupole radiation formula, first derived by A. Einstein,

dEgW G e ...ab>
= — , 160
2= Q@ (160)
where, again, Q o Mmust be evaluated at the retarded time te. Sometimes, in explicit computa-
tions, it is more practical to use ¢;; instead of @;;, then we have d]gfw = % < Gy @ — % G 9

which is not traceless. Some authors, e.g., Landau and Lifshitz, Vol. II (1979), or Carroll (1997),
define the quadrupole moment with a different normalization, ijL =/ A3z p(t, x) (3z27 — r269),
where the superscript "LL" stands for Landau & Lifshitz. This is larger by the factor 3 than
the definition in Eq. (160); the quadrupole formula, therefore, is QB _ % <Q'ab Q'ab>, and all

dt
other equations involving );; must be rescaled similarly.

Let’s now consider the evolution of a binary star on a circular orbit in the xy plane. The stars
have masses m; and my and separation a; they thus have the reduced mass p and they orbit each
other with an angular frequency w and the total orbital energy F,., of the binary system,

mims GM 1 9 o 2 Gmimg GuM
B=—r Q= i B, = 3 (m1a1 + m2a2) 07— . =5, (161)

where M = mq + mso is the total mass and where the term in the bracket in the last equation is
equal pa? in the center-of-mass coordinate system, as is already described in Eq. (110). We now
follow the principles manifested by Eq. (112) of the quadrupole moment (g;;(t) = pa}(t)x}(t) for
reminder); we consider for the moment an isolated binary system with masses m; and mg, and
we assume that the relative coordinate xg is performing a circular orbit with constant radius R.
We choose the system’s trajectory in xy plane, so in the center-of-mass frame, the xf] components
are given as

x0(tret) = R cos Qtyet, Yo(tret) = Rsin Qtye, 20(tret) = 0, (162)
so, the components of the mass quadrupole moment are
Q11 (tret) = pR? cos® Qtyer,  qoa(tret) = pRZsin® Vtrer,  qr2(trer) = pR? sin Vtyeq 08 Vtrer, (163)

(where a1 (tret) = q12(tret)) while the other components vanish. In this sense, we have the time
second derivatives

G11(tret) = —2uR*Q% c08 20ret,  dina(tret) = 2uR*Q oS 20,

G12(teet) = —2uR20? sin 20, (164)
and the time third derivatives
G 11(tret) = 4uRQQ3 sin 20 et G 99 (tret) = —4,uR2§23 sin 20t et
G 1o(tret) = —4uR%*03 cos 20 et (165)

The consistent matrix notation of the previous thus will be

Sin 20t —cos20ter 0
@ ij(trer) = AR | — cos20rey  —sin 20y 0| . (166)
0 0 0

]
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Since this matrix is traceless, according to Eq. (133), it also equals ng Plugging it into the
quadrupole radiation formula (160) where we may the dFEg, /dt regard as the "luminosity" of the
gravitational waves radiation Lgy, we have

G /o ab 2GRS 332G A M
R e
where the additional factor 2 comes from summing over all products of the corresponding elements
(sin? 20 et 4 cos? 2Q et + cos? 2Qt et + sin? 2Qtet) of the two identical matrices from Eq. (166).

As the gravitating system loses energy by emitting radiation, the distance between the two
bodies shrinks at a rate

(167)

dEy, ~ GuMdR . dR 64G3uM?
_ S —, thatis, — =—-——+——. 1
dt oRZ dt’ T 565 R3 (168)

The orbital frequency increases according to the decrease in the orbital distance as

Lgw =

Q3R
S_9_ B3R (169)
fQ 2R
and, therefore, if the present separation of the two stars is Rinit, then from Eq. (168), the binary
system will merge in the gravitational wave inspiral time

5c5 0 5P RY . 5 5pp1/3
tGW = —736 3 / R3 dR = ¢ 31n1t 2 - ¢ 8/3' (170)
64G° M= Jp, . 256G° uM 256G5/3m1m291nit
As long as.Q < Q2 we are in the quasi-circular motion regime. From Eq. (169), we see that
R = —%R% = —%RQ% = —%V¢%, then, as long as the condition Q < Q2 is fulfilled, |R| is

much smaller than the tangential orbital velocity Vi = R{2. The approximation of a circular orbit
with a slowly varying radius is then applicable.

To evaluate the amplitude of the gravitational wave, we first apply the P operator from
Eq. (134) to the traceless form of Eq. (102),

2G .
hii = S Qij(teet), (171)
ctr
remembering that in the TT gauge h;; = ¢;; and sz = ¢;j. First, we realize that if the propagation

direction of a gravitational wave is z, then the P;; operator becomes (because both n, and n, are
zero, and n'n; =0 if i # j,so Pf =62 =1, P/ =6y =1, and PZ =62 —nn, =1—-1=0)

1 00
4 y T 3 1 g
Pij = sz =pP7=(0 1 0 , SO ‘Piaq.abpg - §Pab dabPU = qW - §éjaaPU =
000/,
Gt Gz O 1 100 (G11 — Go2)/2 412 0
=1Ga1 G2 O] — 3 Te(§) [0 1 0 = o1 —(Gnn — g22)/2 0] . (172)
0 0 O 0 0 O 0 0 0

We directly see the two polarization amplitudes of the gravitational waves propagating in the z
direction

G . . 2G .
hi(t,z) = E(Chl —G22), hx(t,z) = oy 412 (173)
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evaluated at ... To calculate the amplitude of a wave that in the coordinate frame with axes
(z,y, z) propagates to an arbitrary direction n, we introduce another orthogonal frame (z/,y/, 2’)
that is identical with (z,y,z) at the beginning and performs two rotations, first around the
axis z = 2’ and subsequently around the axis z’, after which both frames are inclined in both
angular directions by angles ¢ and 6. If the wave now propagates in the primed frame along
the axis 2/, then the vector n has coordinates n; = (0,0,1) while in the unprimed frame n; =
(sin @ cos ¢, sinfsin ¢, cos ). Equation (173) will in the primed frame differ by the argument
(t,n) of the amplitudes (instead of (¢,z)) and the ¢’s now will be primed. We can construct the
rotational matrix R of two rotations around axes 2z’ and 2/, respectively, simply as

cos¢p sing 0 1 0 0 cos¢ cosfsing sinfsin¢
R=|-sing cos¢p 0 0 cosf sinf | =|—sing cosfcos¢p sinfcoso |, (174)
0 0 1 0 —sinf cosf 0 —sinf cos 6

and solve the transformation for ¢’ as qz’] = (R%§ R)ij, where RT is the transposed matrix R.
Applying this to the relevant terms of the primed version of Eq. (173) and merging symmetric
terms into single ones (with doubled values), we obtain

G11 = G11 cos® ¢ — {12 8in 2¢ + Gz sin? ¢, (175)
41y = qnicos 0;in 29 + G2 cos 0 cos 2¢ — 13 sin 6 cos ¢ — Gao CoSTHM 2P Hzin 2¢ + Gogsinfsing  (176)
G5 = G11 cos? 0sin? ¢ + §ig cos® 0sin 2¢ — (i3 sin 20 sin ¢ + Gz cos® 0 cos® ¢ —
— oz 8in 26 cos ¢ + ¢33 sin’ 0, (177)
and, therefore,
hy(t,n) = % |ij11 (cos2 ¢ — cos® 6 sin’ qzb) — (128in2¢ (1 + cos? 0) + ¢13 sin 260 sin ¢ +

+ o2 (Sin2 ¢ — cos? 6 cos? gb) + Gog SIn 260 oS ¢ — (g sin’ 0‘ ,
G
hy(t,n) = o |(G11 — Goa2) cos 0sin2¢ + 2 §i2 cos O cos 2¢ — 2§13 sin O cos ¢ +
+ 2 Gos Sinasin¢’ . (178)

This equation allows us to calculate the angular distribution of the quadrupole radiation once g;;
is given.

Let’s now again remind that we consider the evolution of a binary star on a circular orbit in
the zy plane, so if we plug Eq. (3) into (178), after some arithmetic, we have

4 202 /1 2
ho(t,n) = 2GHE ( - cos 9) c08 (20ter + 20) (179)
ctr 2
4 202
hy(t,n) = G'ZTR; cos 0sin (2Qt e + 29) , (180)

and, substituting the frequency f of gravitational wave (that is twice the orbital frequency) and
realizing that in this circular orbit approximation where QAt, ot = A¢, we can shift the origin of
time so that Qtiet + ¢ — Qtret, we get a modification of the above,

AGuR*(mf)? (14 cos? 0
hy(t,n) = K 04:7#) < 5 ) cos (27 ftyet) , (181)
2 2
hy(t,n) = w cos Osin (27 ftret) - (182)
ctr
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We see that observing the gravitational waves binary system source pole-on (6 = 0, cosf = 1),
the amplitudes of hy and hy are identical while the phase is shifted by 7/2; the wave is thus
circularly polarized. On the other hand, if we observe the system equator-on (6 = /2, cosf = 0),
the amplitude h, vanishes, and the amplitude h, is of half magnitude, the wave is linearly
polarized.

We make another consideration; following the angular acceleration and substituting Eq. (168),
we find that

3Q . 96GT2uMP2 96GP3 (M) QU3

O=_2"R— -
2R 5¢5 R11/2 5¢°

(183)

Now, we rearrange this equation to express the explicit mass-containing term (highlighted by the
bracket) in the dimension of mass [g]; this means that we have to raise the expression pM?/® by
the power 3/5, transfer it to the left-hand side of the equation, and leave on the right-hand side
the quantities Q and € observable due to the propagation of gravitational waves. We get

3/5 7 52/5 5\*° & 53/50y—11/5
M2 == — Q%P0 184
I <3> e , (184)

where the quantity on the left-hand side is the "chirp mass,"

(m1m2)3/5

(mq + m2)1/5

M, = (185)

that can thus be measured from observations.

Implementing the chirp mass as a canonical quantity, we define the chirp as a rapid frequency
increase f . We follow Eq. (183) keeping in mind that the orbiting angular frequency is twice lower
than the frequency of the wave (which has two peaks during one orbit), so Q = «f (not 27 f);
after little arithmetic we write its usual form

8/3
f= %éi (gﬂch) . (186)

Integrating Eq. (186) as f?—lfjg = %gﬁc (C%TFMC)S/ s fttcoal dt, we see that f formally diverges

at a finite value of time (time of coalescence) that we denote t.oa1; in terms of the time remaining
t0 teoal, the frequency of a gravitational wave is

0= (ew) [mma] o1

Inserting Eqgs. (186) and (187) into Eq. (169), after a little algebra, we evaluate the expression

R 2f 1
R__2f _ (188)
R 3f 4 (teoal — t)
which, after integration of the radius according to time, gives
RdR tooar PN V!
/ — = —/ ————, thatis R(t) = R <°Oal) , (189)
Ro R to 4 (tcoal -1 ) teoal — T0
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where Ry is the value of R at the initial time tg. This means that after a long phase of relatively
smoothly decreasing R, there is a plunge phase where the approximation of a quasi-circular orbit
is no longer valid. By inversion of (186), we can also express the chirp mass as

(5 —8/3 p—11/3 } 3/
M. = G \og”™ f f - (190)

Substituting the chirp mass M, into the angle-independent part of Eq. (181) or (182), we obtain
(after some algebra and renaming the general distance r to the luminosity distance D) the scaling

amplitude
5/3 2/3
NN

c? c

In this lowest order Newtonian approximation, the amplitudes depend on masses mi and ms only
through the chirp mass M,.. By simple inversion, we can thus calculate the luminosity distance

5/3 2/3
S ICONOR

c? c

which is a method of measuring the luminosity distance using only gravitational wave observables.
This is extremely useful as an independent distance indicator in astronomy.

The amplitude of the emitted gravitational waves depends on the angle between the line of sight
and the axis of angular momentum; the formula for the amplitude contains angular factors of order
1. The relative strength of the two polarizations depends on that angle as well. If three (or more)
detectors observe the same signal, it is possible to reconstruct the full waveform and deduce many
details about the orbit of the binary system. As the oldest canonical example, the well-studied
pulsar PSR 1913416 (the Hulse-Taylor pulsar) served a long time. It is expected to merge after
~ 3.5 x 10 years. The binary system is roughly 5kpc away from the Earth; the masses of the two
neutron stars are estimated to be ~ 1.4 M, each, and the present period of the system is ~ 7h and
45 min. The predicted rate of period change is T =-24x10"12 sec/sec, while the corresponding
observed value is in excellent agreement with the predictions, i.e., T = (—2.340.22) x 10~ 2 sec/sec;
finally, the present amplitude of gravitational waves is of the order of h ~ 10723 at a frequency of
~ 7 x 1075 Hz.
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