
Solve the inhomogeneous wave equation using the Green’s function:

Let’s now consider the inhomogeneous wave equation in three spatial dimensions,(
1
c2

∂2

∂t2 − ∆
)

u(t,x) = f(t,x), (1)

where we hereafter denote the d’Alembertian operator (the term in bracket) conventionally as
□. We now define the Green’s function G(t,x, t′,x ′) as a function which satisfies

□G(t,x, t′,x ′) = δ(t − t′) δ3(x − x ′), (2)

where the time derivative and Laplacian act on the unprimed variables.
Without any loss of generality, we can set t′ = 0 and x ′ = 0 so G(t,x) is the response of the

system to a point-impulse delivered at t = 0, x = 0. We begin to solve for G(t,x) by taking
the Fourier transform in time and space (see Chapter 11 in the textbook Computing Practice,
while the sign convention can be opposite in other texts)

Ĝ(ω,k) =
∫

dt
∫

d3x G(t,x) e−i(ωt−k·x), G(t,x) = 1
(2π)4

∫
dω

∫
d3k Ĝ(ω,k) ei(ωt−k·x). (3)

We also note the consequences of the Fourier transform of the Dirac delta function and its
inverse, ∫ ∞

−∞
δ(x) e−iξx dx = e−iξ·0 = 1 so then 1

2π

∫ ∞

−∞
eiξx dξ = δ(x). (4)

Applying this all to Eq. (2), we get

□
1

(2π)4

∫
dω

∫
d3k Ĝ(ω,k) ei(ωt−k·x) = 1

(2π)4

∫
dω

∫
d3k ei(ωt−k·x) (5)

and, after differentiation of the left-hand side of Eq. (5) where, since it is a function of different
variables, the d’Alembertian does not affect the Fourier transformed Green’s function Ĝ(ω,k),
it is ∫

dω
∫

d3k Ĝ(ω,k)
(

k2 − ω2

c2

)
ei(ωt−k·x) =

∫
dω

∫
d3k ei(ωt−k·x), (6)

where k = |k|. Comparing the left- and right-hand side of Eq. (6), we get

Ĝ(ω,k) = 1
k2 − ω2/c2 . (7)

Inserting Eq. (7) into the second equation in Eq. (3), we find the Green’s function G(t,x)
by integration

G(t,x) = 1
(2π)4

∫∫ ei(ωt−k·x)

k2 − ω2/c2 d3k dω. (8)

Converting to spherical coordinates (x,y,z → k,θ,ϕ), where we identify the x-axis with the third
component of the wave vector k3, i.e. k = |k|, x = |x|, k3||x and k · x = kx cos θ, we transform
Eq. (8) as

G(t,x) = 1
(2π)4

∞∫
−∞

eiωt dω

∞∫
0

π∫
0

2π∫
0

e−ikx cos θ

k2 − ω2/c2 k2 sin θ dk dθ dϕ. (9)



Noting that the azimuthal integral
∫

dϕ = 2π, we first integrate separately the polar angular
part of the integral (9) by substituting −ikx cos θ = t, ikx sin θ dθ = dt and involving the Euler
identities, that is

π∫
0

e−ikx cos θ sin θ dθ = 1
ikx

ikx∫
−ikx

et dt = eikx − e−ikx

ikx

(
= 2

kx
sin kx

)
. (10)

By converting this solution into the immediately preceding integral in Eq. (9), we may write
this integral as

1
ix

 ∞∫
0

k eikx

k2 − ω2/c2 dk −
∞∫

0

k e−ikx

k2 − ω2/c2 dk

 . (11)

We can formally simplify the last integral by substitution k → −k, dk → −dk in the second
term, then its upper integration limit changes from ∞ to −∞; we can swap the limits and
change the sign in front of the integral, obtaining

1
ix

 ∞∫
0

k eikx

k2 − ω2/c2 dk +
0∫

−∞

(−k) eikx

k2 − ω2/c2 (− dk)
 = 1

ix

∞∫
−∞

k eikx

k2 − ω2/c2 dk. (12)

We solve Eq. (12) using the Residual theorem (see Eq. (11.20) and the accompanying text
in the textbook Computing Practice). Unfortunately, the contour integral is undefined since it
goes right through isolated poles on the real axis at k = ±ω/c. We get around this obstacle
by moving the poles slightly off the real axis (in the “vertical sense”, i.e., along the imaginary
axis) by adding a “tiny shift” iϵ in the limit ϵ → 0. Let’s modify the last term of Eq. (12) to

1
ix

∞∫
−∞

k eikx

k2 − (ω/c + iϵ)2 dk = 1
ix

∞∫
−∞

k eikx

(k − ω/c − iϵ) (k + ω/c + iϵ) dk. (13)

Both the poles are first-order, so according to the Residual theorem, we get the solution of the
contour integral in the form

2πi Res−(ω/c+iϵ) = 2π

x
lim

k → −(ω/c+iϵ)

k eikx

(k − ω/c − iϵ) = 2π

x

(ω/c + iϵ) e−i(ω/c+iϵ)x

2 (ω/c + iϵ) (14)

and, since ϵ → 0, it is

2πi Res−(ω/c+iϵ) = π

x
e−iωx/c. (15)

Inserting everything into Eq. (9) (with the term 2π from the ϕ integration), we arrive at a
form strikingly similar to the inverse Fourier transform of the delta function in Eq. (4),

G(t,x) = π

x(2π)3

∞∫
−∞

eiωt−iωx/c dω = δ(t − x/c)
4πx

. (16)

Finally, we express the latter in the full 4-dimensional form as

G(t,x, t′,x ′) =
δ

(
t − t′ − |x − x ′|

c

)
4π|x − x ′|

. (17)


