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Chapter 1

(Gas Dynamics

1.1 Boltzmann Kinetic Equation

(Kurfiirst 2015): The Boltzmann kinetic equation (hereafter BKE) for a particle a, used in the
gas (plasma) kinetic theory (see Bittencourt 2004, for details), is

Ofa 0 fa

2o B v4 -V === . 1.1

ot + v fa+aet vfa < ot ol ( )
The distribution function f,(r,v,t) is defined as the density of the particles « in the phase
space,

fa(r,v,t)d3rd3v = dSN,(r, v, 1), (1.2)

where the quantity dSN,(r,v,t) denotes the number of the particles o in the phase space
volume d3r d®v with coordinates (r, v) at instant time ¢. The quantity aey in Eq. (1.1) is the
acceleration due to an external force, V is the wvelocity gradient 0/0v and the collision term
on the right-hand side quantifies the rate of change of f, due to particle collisions. The average
value of a general physical quantity x(r, v,t) for the particles « is given by

na(lr’t) /X(r, v,1) fulrv,t) v, (1.3)

where ng(r,t) is the number density (number of particles « per unit volume) at instant time ¢,
defined as integral of f,(r,v,t) over the velocity space,

N (r,t) = /fa(r, v,t) dv. (1.4)

<X(r7 Vﬂt)>o¢ =

We multiply BKE for a particle o by a general physical quantity x(v), independent of time
and space (a function of only the particle’s velocity) and integrate it over the velocity space as

X({aaﬁjtdgv+/XV-Vfad3V+/Xaext'vaad?)VZ/X((s(sf(l) dv. (1.5)
t t coll

Since r, v and t are independent, the spatial derivatives of the velocity dependent quantities,
V-v and Vx(v), vanish. The force component F; is independent of the velocity v;, the velocity
gradient of the acceleration, V - @eyt, also vanishes (this is not true in case of the magnetic
force, where F, ; = qa €ji v; Bi). The solution of Eq. (1.5) gives,

o (a(0)a) + V- (1a0)a) = ol Ve = |5 a0l (19

coll

1



Chapter 1. Gas Dynamics 2

where the terms in ( ) are the average values of the corresponding quantities. We also define
the mass density for the particles a as po, = nameq.
The velocity v of the particle « is the vector sum

v=V,+C,, (1.7)

where V(r,t) is the flow (macroscopic drift) velocity of the particles o at the position r at
time ¢,

Vdnﬂ:nxiw/}jdnmﬂd%, (1.8)

and C,(r,t) is the random or peculiar velocity of thermal motion, relative to V,(r,t). The
average value of the flow velocity (as a macroscopic collective property) is (V,) = V,, while
the average thermal velocity (C,) = 0. The average total velocity of the particle « therefore is

<V>Oc = <Va> = V,. (1'9)

From the kinetic theory of gases follows the mass and momentum density of the matter,
p=2 par PV =) paVa, (1.10)
(0% (63

where p and V are the density and the flow velocity of the whole medium. We introduce the
diffusion velocity w, defined as the vector subtraction of velocity V of particle @ and the
flow velocity V of the medium,

Wo=Vs—V, (1.11)

which we regard as the velocity of the particle « in a co-moving frame of the medium. Since
the diffusion velocity w,, is clearly the macroscopic quantity, (w,) = w,. We define also the
global thermal velocity €, for particles « relative to the velocity of the fluid. Equations (1.7)
and (1.11) give

Cuo=v—V, thatis, C,=C,+ wg. (1.12)

We define the kinetic stress tensor 7q;; (see Sects. 1.4 and 1.4) for the particle a (where 7, j
are spatial components) and the global kinetic stress tensor 7;; as

Taij = —Pa(CaiCaj), Tij = — Zpa<oa0i0a0j>- (1.13)

The scalar pressure p, for the particle a and the global scalar pressure p are defined as (cf.
Sect. 1.5.1)

1 1
Po = gpa<C§>v p= gzpa«;ﬁéo)- (1.14)
(e
The thermal energy flux g, for the particle o and the global thermal energy flux q are

1 1
do = 50a(C2Ca), a=3 Y palClCao). (115)



Chapter 1. Gas Dynamics 3

1.2 Mass Conservation (Continuity) Equation

(We hereafter use R, V for radial distance and velocity in Cartesian and cylindrical coordinates,
while 7, v are used in the spherical coordinates.)

Substituting the mass m, of the particle o for the general quantity x into Eq. (1.6), we
obtain the mass conservation (continuity) equation (0-th moment of BKE, the mass conservation
law) for the particle a,

0pa

W_i_v.(pava) :SOH (]..].6)

where the collision term S, is (cf. Eq. (1.5))

S, :ma/ (‘%) By = <5"’a> : (1.17)
ot coll ot coll

The term S, refers to the rate of production or destruction of particles o due to particle
interactions, i.e., due to ionization, recombination, charge transfer, etc. In case of non-isolated
physical system it may also refer to source (or sink) of mass (it is also called the source term).
The detail form of S, may be very complex in general. It involves the inelastic collisions that
lead to production or loss of a particle type. In case of electrons, for example, the most important
interactions are ionization and recombination (neglecting the electron capture ionization, etc.).
If k; and k,- denote the ionization and recombination collision rates, respectively, we may express
such (simplified) collision term for electrons, Se, as (Bittencourt 2004)

Se = Mme (kme—krng—i— ), (1.18)

while the inclusion of the radiative rates would lead to equations of statistical equilibrium (see
Sect. 10). If we sum Eq. (1.16) over all particle types « in the isolated system, the collision
term S, vanishes due to the total mass conservation, and we obtain the continuity equation for
the whole medium,

0

l+v.(pV):0. (1.19)

ot

An alternative derivation of the continuity equation is based on assumption of an equilibrium

between the number of particles leaving some volume 2 through its closed surface A (particle
flux) and the time rate of particle number density decrease within the volume €,

0
%:/Anamava. dA_—za:at/QnamadQ, (1.20)

where nom, is the mass density p, of the particle a. Since Eq. (1.20) must hold for any
arbitrary volume 2, by applying the Gauss’s theorem and summing over all particles a, we
obtain Eq. (1.19).

1.2.1 Equation of continuity in curvilinear coordinates

The general form of continuity equation is given by Eq. (1.19). To transform the continu-
ity equation into cylindrical coordinates, we use Eq. A.44 in Kurfirst (2017), the cylindrical
continuity equation is

dp 1 0 10(pVs) | 0(pV2)
R 0¢ 0z

= 0. (1.21)
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Using Eq. A.70 in Kurfiirst (2017), we transform the continuity equation into spherical coordi-
nates,

dp 10

1 9d(pvg)
o T 2or

rsinf  0¢ =0 (122)

1 0, .
rsin 6 90 (sin 6 pvg) +

(r’puvR) +

In azisymmetric or spherically symmetric case the terms with angular (and vertical) derivatives
vanish, reducing Eq. (1.21) to the frequently used axisymmetric radial continuity equation

dp 1 0
— RoVe) =0 1.23
or the spherically symmetric continuity equation,
op 10 ,,
il =0. 1.24
ot * r2 Or (o vn) (1.24)

1.3 Equation of Motion

Substituting the particle’s momentum, mqv, for the general quantity x(v) into Eq. (1.6), we
obtain the equation of motion (momentum equation) (1st moment of BKE, the momentum
conservation law) for the particle a,

% (paVa) +V [pa(Va@Vy+(Coh®Cy))] —naFa = Aa, (1.25)
where V,®V, and C,®C, are the tensor (dyadic) products of vectors. The third left-hand side
term V - (po (Co ® C,)) expresses the divergence of the stress tensor —V; 757 (cf. Eq. (1.13)),
the fourth term —ngF, is the sum of external forces (multiplied by particle number density)
acting on the particle «, i.e., the gravity, radiative force, etc. The collision term A, quantifies
the momentum change due to collisions, creation, and destruction of particles. It is usually
given as the linear approximation for a small difference in velocities (Bittencourt 2004),

A, = —Pa ZVOL,B (Va - V,B)a (126)
B

where we assume that the force exerted on particles « by colliding particles 3, is proportional
to the difference of the velocities V, — Vg of the particles. The constant of proportionality,
Vag, 1s called the collision frequency for transfer of momentum.

If we subtract the continuity equation (1.16), multiplied by V,,, from Eq. (1.25) (noting that
a, =dV,/dt=0V,/ot+ V,-VV,), we obtain the momentum equation in the form

pate = V1o + Fo + Ay, (1.27)

where i, j are the spatial components. If we sum Eq. (1.27) over all particle types « in the
isolated system, the collision term A!, vanishes due to the conservation of the total momentum.
Equation (1.27) becomes the momentum equation for the whole fluid,

pa' =V ;T + F. (1.28)
We expand the acceleration term on the left-hand side of Eq. (1.28) as

_

)

pPa

p(%‘ervajvi), so that pa=p %\;—&-p(V-V)V , (1.29)
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where the term (see the vector identities in Sect. 5.3 in Kurfiirst (2017))
1
(V-V)V:§VV2—V><(V><V), (1.30)

splits into two terms, to a separated laminar flow and to a rotational (turbulent) motion,
respectively.

An alternative derivation of the momentum equation is based on Newton’s second law,
ma = F, written as the sum of forces acting on the particle «,

Z/chpgtva)dﬁzz:(/g F2d9+/AF§dA>. (1.31)

Following the notation used in Eq. (1.20), we denote F'! the volume forces that act throughout
the volume Q and F é the surface forces that act on the surface A. By applying the divergence
theorem on Eq. (1.31), we obtain Eq. (1.28).

1.3.1 Equation of motion in curvilinear coordinates

We omit in this section the viscosity terms in the right-hand side of the equation, since they
are described in detail in Sect. 1.4. Following the acceleration term expressed in Eq. (1.29) and
the cylindrical gradient described in Sect. A.2.1 in Kurfiirst (2017), the radial component of
the momentum equation in cylindrical coordinates is

Vi Ve V,0Vg Ve Vi 1ap
) At L R S Y 1.32
ot " VPer TR "V 8: T R por IR (1.32)

where the right-hand side terms express the centrifugal force, pressure force, and sum of the
external forces (e.g., gravitation). The azimuthal component of the momentum equation is

v, oV, VoV, _aVy  VeVs 1 ap
Yo Vo YRV 1 OP g .
o "Vrar TR V0 R pRoe '? (1.33)

where the meaning of the right-hand side terms is similar. The vertical component of the
momentum equation is
oV, ov, Vy oV, oV, 10p

2 A N
ot TVRR TR ae TV ar T pas

(1.34)

The most frequent source of external gravity within the external forces F is that of a spherical
body (astronomical objects), whose gravitational potential ® = —G M, /r (where M, is the mass
of a central object and 7 denotes the spherical radial distance, 7> = R? + 22 in cylindrical coor-
dinates). Including this expression, the nonzero components of the axisymmetric gravitational
acceleration term —V @ in cylindrical coordinates are

GM,R GM,z

B+ 27 T Ty (1:5%)

grR = —

In spherical coordinates, following the acceleration in Eq. (1.29) and using the spherical
gradient described in A.3.1 in Kurfiirst (2017), the radial component of momentum equation is

ov, v,  vg Ovy vy Ovy Ug tvg 10p 09
v _
ot "

or + r 00  rsinf 09 7 por  Or’ (1.36)
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the polar component is

Ovg dvg v Oy vy Ovg U; cotd wpwy 19p 10D

20y, b SR , 1.
ot v or + r 00  rsinf 0¢ r r prd0 r 00 (1.37)
and the azimuthal component is
Oy e VeV Vo OV vpvpcotd wvy L Op 1 O g
ot " or r 00  rsinf d¢ r r prsin@ 00  rsinf 90

The meaning of the right-hand side terms is analogous to Eqs. (1.32) and (1.33). The external
gravity induced by a spherically symmetric body is

GM,
5

gr = — (1.39)

r

1.4 Stress Tensor
The stress tensor for a Newtonian fluid (cf. Eq. (1.13)) may be written in a general form as
Tij = —pdij + 0ij, (1.40)

where p is the scalar pressure and o;; is a symmetric nondiagonal viscous stress tensor. Since
the tensor components must have physical dimension of the pressure, where the i-th component
of the force F; = dII;/dt is tangential to a surface area A;, we may write

dv;

o 1d h dil; _ Q% —
U a U T T A T
The quantity II; in Eq. (1.41) denotes the i-th component of momentum of fluid particles, Q2 is
a fluid volume, Q2 = A;/¢, where the distance £ expresses the mean free path of the particles. We
denote the mean random velocity of those particles as v. Considering one-dimensional planar
shear viscous stress (Fig. 1.1), Eq. (1.41) is

v, dz _av,  dv,
o e, S , 1.42
R T L (1.42)

The factor of proportionality 7 in Eq. (1.42) is called the coefficient of dynamic viscosity.
Its physical meaning is pl 0, or fplv, where the numerical factor f is approximated as 1/3,
which corresponds to an average fraction of fluid particles moving in z direction (its exact value
depends on the type of particle interactions (Maeder 2009)). Assuming large deformations, one
can write the expression for the viscous stress tensor of the form

oij =1 (ViVj + V,;Vi + ViViV; Vi) + AV VES; = 2n Eij + AV VF 6,5, (1.43)

where A is the dilatation or second viscosity coefficient. The symbol V; represents the covariant
derivative, defined for orthogonal coordinate systems by Eq. A.43 of Kurfiirst (2017). The
components of stress and the strain tensor F;; thus take the elementary form

oV Vi
8xi 8.%']'

2 179V, v
Tij = —poij +n ( > +(¢ - gn)vkvkéij, Eij =3 ( J > : (1.44)

8952- + 8xj
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Zo+€ >

— V(zo — ¢/2)

Z()—g >

Figure 1.1: Schema of the planar shear stress with vertically increasing magnitude of velocity V. The
reference horizontal plane is denoted zp, while ¢ is the mean free path of a particle (regarded as a
subject of the stress force) and o, is the z-component of a mean velocity of random motion. Adapted
from Kurfiirst (2015).

In Eq. (1.43) we use the full Green-Lagrangian strain tensor,
1
E;; = B (ViV; + V;Vi+ ViV Vi V) . (1.45)

In case of small deformations the nonlinear term in the Green-Lagrangian strain tensor drops,
and we obtain the symmetric Cauchy strain tensor,

By = 5 (ViV; + V,V0). (1.46)
Using Eq. (1.45), the viscous stress tensor can be written in the form
oij =1 (vivj +V;Vi + ViViV; Vi, — %vkv’f 5Z-j> + ¢ VeVESi, (1.47)
where { = A+ %7} is the coefficient of bulk viscosity. Using n and (, the stress tensor is
Tij = —poij +n(ViV; + V;Vi+ Vi Vi,V Vi) + (C — ?)77) Vka(Sij, (1.48)
or, using the strain tensor,
Tij = —pdij +2nEij + (C - 30) ViV ;. (1.49)

Another characteristic quantities, which describe the viscosity, are the kinematic viscosity
v, defined as the ratio of the dynamic viscosity 7 to the fluid density p, and the characteristic
timescale tyisc of the viscous effects (viscous timescale),

L2

1
y="1_ 500, Foise ~ —, (1.50)
1%

p
where L is a typical length scale of the system. In fluid mechanics the influence of viscosity is
usually expressed using a dimensionless Reynolds number Re, given as

LV LV

Re=L20 =22 (1.51)

n v
where V' is a typical velocity. The Reynolds number expresses the ratio of inertial forces to
viscous forces. The extent of viscous effects is scaled by a critical value Recyit, which varies
according to the fluid type and the geometry of the system.
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1.4.1 Stress tensor in Cartesian coordinates

The components of the Cauchy strain tensor Ej;; in Cartesian coordinates are

aV, 1 /0V, Vv,
E _ x E _ - (Zy x
9 i 2(8x+8y)’
av, 1/0V. OV,
Ev =3, E“—2<ax+az)’
oV, 1oV, 09V,
Bee =5y By =3 < y a> (1.52)

The components of the stress tensor 7;; in Cartesian coordinates are

7;x=—p+2n<%‘f>+(<—§n>(V~V), nyzn(%‘jﬁa‘;)’
() () ()
o= (G2 )+ (=) vv me=n(GE+G0) asy
The general expression of momentum equation is
pdd‘f = F; + 0;Ti;. (1.54)

The components of momentum equation in Cartesian coordinates are

P Fx—aerax[2n<ax>+(4—3n>(v~v)}
0

v, oV, o[ (OV. OV,

o (o 5| o (5 50)) (1-55)
vy _p o0 0 vy _2 .
rar ~ 8y+3y[2n<8y>+<c 3n>(v V)]

o[ (dV, oV, D[ (V. 8V,

o (G %) e (552 ) a6
av, op 0 oV. 2
P4 —Fz—aeraz{2n<az>+<é—3n>(v'v)}

8Vx>

_l’_

o [ov. oV,

Neglecting the bulk viscosity coefficient ¢ and the mixed derivatives, we write the simplified
Eq. (1.54) in the frequently used form usually called the Navier-Stokes equation,

dv

1
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1.4.2 Stress tensor in cylindrical polar coordinates

Following Eq. (1.44), all the independent components of symmetric stress tensor in cylindrical
coordinates are

_ IVr _2.C. _|10VR 0 (Vs

TrR = p+277<8R>+(C 377)V v, Tre U[R 90 R(‘)R(R)]’
~ A7 2 N AN

Too = vt 30 (G4 Vi) + €= 3veve Te=n(G5+55) s
- v, 2 1oV, oV,

T.. = p+277(az>+(C 377)V v, To: = <Ra¢+ )

where p is the diagonal component of stress tensor (scalar pressure) and all the non-diagonal
terms form the viscous stress tensor that includes the bulk viscosity terms (containing the
velocity divergence) and the shear stress terms. Including the stress tensor, the general form of
the momentum equation (Egs. (1.32)-(1.34)) is

pa; = Vjﬁj - pVﬁI), (160)
where the left-hand side represents the advective force, the first term on the right-hand side is
the pressure (including viscous) force and the last term on the right-hand side is the external
force.

Following Eq. (1.60) and including stress tensor components from Eq. (1.59), the radial
component of momentum equation in cylindrical coordinates is

1 1 1
par =Fr+VETrR + VoTre + ViTr: = Fr + OrTrR + [06TRs + 0:Tr: + ZTRE — 7700

— - g | (G2) + 6= 2nw - v)]

+l£ 1%4_}{8 V¢ _|_2 8X/Z+%

Ros \"|R 96 T VOR oz "\ orR " oz

2,0 (VR _ 10V,

+R[R6R<R> R&;ﬁ]’ (1.61)

where Fgr is the radial gravitational force pgr (cf. Eq. (1.35)). Analogously, the azimuthal
component of momentum equation is

1 9
pag = Fy +VrTor + VoTos + ViToe = Fo + OrTor + 506 Toe + 0:To: + T Tor

A 9 [ [1Ve, 0 (Ve
Fo Ra¢+aR{” [R 99 +RaR( )H

19 10V, Vg
*[Q(Ra¢+)+“‘"

o (1Lav. OV, 1oVe 9 (Vg
T { <R 96 " ﬂ R [R 90 " on (R)] (1.62)

and the vertical component of momentum equation is

1 1
paZ:Fz+vR7;R+v¢7;(b+vz7;z:FZ+8R7;R+E8¢7;¢+627;Z+ETRZ
o op @[ [oV. oVR\] 1o (lav. oV
=5 8z+8R[n<8R+8z>]+R8q§[”<R8q§+ >]

+ % [277 @‘:) +(C- %n)(v- V)] +2 (g‘;f - %) : (1.63)
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1.4.3 Stress tensor in spherical polar coordinates

Similarly to Sect. 1.4.2, we write all independent components of symmetric stress tensor in
spherical coordinates,

ov, 2
ﬁr—_p+2n<8r>+(g_377)v
B 18vr 0 [vy
Tro = [ 20 " "or (7‘)]
_ 1 v, 0 (Vg
ﬁ¢—”[ma¢+r(r>]7

1 81)9

2
Too = —p + 21 <89+ >+<C—377)V

B 1 Ovg sinf 0 [/ vy
Top =1 [rsin& 0¢ * r 00 (sin@)}

B 1 Ovy v +vgcot
Too = —p+2n <rsin08¢) >

(¢ ;n)v v, (1.64)

Following Eq. (1.60) and including spherical stress tensor components introduced in Eq. (1.64),
we write the radial component of momentum equation in spherical coordinates,

par = F. + vr,ﬁ‘r + v97;9 + V(j)’];'d)

1 1
=F+ 50 (r* Tor) + 0y (5in 0 Typ) + -

h @ v 2 [ (G) + - v >]

+18 18vr+ré<vi) n 1 2 1 8vr+rﬁ(v£)
r 00 r 00 or \r rsinf 0¢ K rsinf ¢ or \'r
o /vy 2 0 .
[4 "or (7> ~ rsinf 90 (vo sin 6)

2 8v¢ 0 /vy cot 8 Ov,.
rsinf 9¢ reo te? (7>+ r 39}’ (1.65)

1
. (Too + Tes)

where F, is the radial gravitational force pg, (see Eq. 1.39). The polar component of momentum
equation is
pag = Fy + V., Tor +VoTog + Vi Tos
1 1
=Fy+ ﬁar (r* Tor) + 9(99 (sin 0 Tge) + 73¢779¢ + - (757« —cot 6 Tye)

B 10p 0 1 0v, 0 /vy 10 181}9 2
= o rae+ar{”[rae +rg (5 )} 89[2 ( 29 v )HC 3N (V- v)

n 1 g 1 %_’_511198((75)
rsinf d¢ T sing fole) r 00 \sinf

+n{2cit6 [smﬁa( ‘1}9 )— : % —1—37“2 (%) +38vr}. (1.66)

r 00 \sin 0 sin® 0¢ | or r 00
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The azimuthal component, of momentum equation is

pag = F¢ + VT%T + v@%@ + v(b%(i)

1 1
= F¢ + ﬁar (T2 7:1,,) —|— 89 (Sln@%g) + 78457;5(15 + - (7:1,, + cot 9779(15)
S T 1 Ov 0 (v
=Fo rsin08¢+8r{ [rsm@ 8¢+ (T)]}

cro Lt %gm@ﬁ( )
r 00 rsin @ d¢ r 00 \sin@

1 0 1 Ovy v, wgcoth 2
+rsin087¢ [27] <rsm€ 0o + N r >+(C_377)(V.V)]
n 2cot 0 2 Vg 1 Ovg 2 Vg 3 Ov,
* r { r [ 980 (Sin9> * sinf 0¢ o or ( ) * rsinf d¢ | (1.67)

1.5 Equation of Energy

1.5.1 General form

Substituting the kinetic energy %moﬂ}2 for the general quantity x(v) in Eq. (1.6), we obtain the
energy equation for the particle o (2. moment of BKE, the energy conservation law),

3 (3m2) (o 0) o5 o) (et )
+V (pa (Ca®@Co) Vo) + V- < pa<02Ca>>—na(F V), = M,. (1.68)

The term nq (F - V), is the flux of external forces that act on the particle o The collision term
M, on the right-hand side represents the rate of energy change due to collisions, creation and
destruction of particles (cf. the collision terms S, in Eq. (1.16) and A, in Eq. (1.25)),

= [0 () = [P0l
2 5t ) 5t

If we sum Eq. (1.68) over all particle types a (cf. Egs. (1.10)-(1.15)), we obtain the energy
equation for the whole medium,

(1.69)

coll

0 3 1 3 ,
5PV + L) +v; 5PV 42 Pyvi_viri 4 ¢ ) —viFt =0, (1.70)
ot 2 2

where, due to the conservation of the total energy in the isolated system, the collision term
M, (taking into account only particle collisions and omitting the radiation) vanishes when
summed over all particle species. The terms 1p, (V2) and pa (C2) in Eq. (1.68) represent
the kinetic and internal (thermal) energy of the particle a,, while the corresponding expression
330 Pa{C%)) (cf. Eq. (1.14)) represents the internal energy pe of the whole fluid. Following
Eq. (1.14), we set

3?]3 = pe, (1.71)
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where € denotes the specific internal energy (internal energy per unit mass). Equation (1.70)
therefore is

P 1 . 1 o .
5 (p6 + 2pV2> +V; [pV] (e - 2V2> -ViTV + q]} = V;F* (1.72)
Multiplying the equation of motion (1.28) by the velocity V; and subtracting the continuity
equation, we obtain the equation of the mechanic (kinetic) energy for the whole medium,

9 /1 1 g .
— | =pV2) +V; [ pVIZV?) = VYV, TY + V;F. (1.73)
ot \ 2 2

Subtraction of Eq. (1.73) from the total energy equation (1.72) gives the equation of internal
(thermal) energy in the form

9 (pe)
ot

d (pe)

T peV; Vi = THN,;V; —V; ¢, (1.74)

+V; (,oer) =

which can be written with use of Eq. (1.71) also as

i<?>+?(V-V):(T-V)-V—V~Q~ (1.75)

Subtracting equation of continuity (1.19) from Eq. (1.74) and following the identity d/dt =
d/0t + VIV, we write Eq. (1.74) as

de

e = TV Vi =V, . (1.76)

Using expression (1.49) for the stress tensor, we write the first right-hand side term of
Eq. (1.76),

TV, Vi = | —pd 4+ 2nEY + (g — in) vkv’faij} v, Vi. (1.77)
Equation (1.77) can then be explicitly written in the form
TV, Vi = —pV, V' + 20E"V,V; + (c - 377) (V,Vi)2. (1.78)
Using the Cauchy strain tensor formalism, Eq. (1.78) becomes
TV, V; = —pV;V' + 2nE; E7 + (g - §n> (V,v)° (1.79)

(see also Eq. (1.95) in Appendix 1.5.2). The first right-hand side term of Eq. (1.79) is the
reversible work done by the expanding matter, while the second and third terms represent the
dissipation function, i.e., the energy of the viscous dissipation of the gas (Mihalas & Mihalas
1984). The dissipation function is usually written as ®, we denote it here ¥ (while ® is the
gravitational potential),

U =2E;; E7 + (g - gn) (V- V)2, (1.80)
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The dissipation function is always nonnegative, ¥ > 0 (see Mihalas & Mihalas (1984) for the
proof). The equation of the internal (thermal) energy (1.76) in the vector notation then becomes

p%:—pV-V+\P—V'q. (1.81)

The reversible work done by pressure forces (the first right-hand side term of Eq. (1.81))
vanishes in case of incompressible fluid (V - V = 0). The other terms contribute to the heat
energy - the second right-hand side term of Eq. (1.81) is the (already introduced) energy of
dissipation, while the third term is a reversible contribution of the heat conduction and of other
energy sources (radiation, chemical reactions, etc.). It corresponds to the divergence of g in
Eq. (1.15).

The energy equation can be alternatively derived from the first law of thermodynamics,
using the continuity equation (1.19) and the equation of motion (1.28). Time derivative of the
energy (all the quantities are per unit volume) gives

0 pV? _ Oe V2 ov

where, noting that de = de — V - Ve, the first term on the right-hand side of Eq. (1.82) can be
written as

Oe ds
—=pT— —pV -V —pV .V 1.83
Pa =Pl —P p €, (1.83)
where s is the specific entropy (entropy per unit mass). We can expand the third term on the

right-hand side of Eq. (1.82), using Eqgs. (1.28), (1.29) and the vector identity (1.30),

ov 1
pvﬁz—pV~V§V2—pv-(VxV)XV—V‘V-P—i—V-F, (1.84)
where the second term on the right-hand side vanishes (since A- (B x A) = 0) and where P is
the pressure tensor P;; = —7;;. In that sense, the pressure tensor represents the same physics

as the stress tensor, with the opposite sign. Using Eqgs. (1.82), (1.83), and (1.84), we write the
equation of the total energy (1.70),

0 pV?2 V2 ds
< PV ow |pV et = vi=v.v. RV 1.
5 <pe—|— 5 >—|— [p <e+ 5 +p op+p & + , (1.85)

where the quantity o, denotes the non-diagonal part of the pressure tensor, i.e., the tensor of
the viscous pressure. Equation (1.83) can be compactly written as

de ds
Y, b vl 4 1.86
Py =PTg P , (1.86)

and, comparing Eqs. (1.86) and (1.76), we obtain

d
,on% —7-V.q. (1.87)

From Eq. (1.80) follows the relation ¥ = g, - VV (cf. Egs. (1.77)-(1.79)). Including this into
Eq. (1.82), we obtain

2 2
gt(pe—i-p;/)—i—V[pV(e—i—‘g)—i-PV—&-q]:V-F, (1.88)
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which is identical to the total energy expression given in Eq. (1.72).

Another frequently used form of the energy equation involves the Fourier’s law of heat
conduction: The heat flux in any material is proportional to its internal temperature gradient;
the heat flows from hotter to cooler regions (Mihalas & Mihalas 1984). The term — V - g for
the heat energy flux can be expanded as

~V.q=V - (KVT)+qg, (1.89)

where the constant of proportionality K is the material heat conductivity and the term qg
refers to the heat sources other than conduction, i.e., to radiation, chemical reactions, etc. The
structure of the term gr can be quite complex, it depends on the detailed physics of internal and
external heat sources. We may rewrite Eq. (1.81), using Eq. (1.89) and assuming no macroscopic
mass transfer (V = 0), no work done (p = const., de = ¢, dT, where ¢, is the specific heat at
constant pressure) and no dissipation (¥ = 0), in the following form,

pcpd—T -V (KVT)=gqg, or ar DV?T + qg, (1.90)

dt dt

where D = K/(pcp) is the thermal diffusivity. Equation (1.90) is thus a inhomogeneous
parabolic partial differential equation that describes the distribution of heat (variations in tem-
perature) in a given region over time.

1.5.2 Energy dissipation

Following the formalism of the stress tensor introduced in Sect. 1.4, we now discuss the term
TV ;V; in the internal energy equation (1.76),

de
Pt
We expand the first term on right-hand side of Eq. (1.91) into

=TIV, Vi — V. (1.91)

TV, V; = |—pd + 2nE" + (c - 377> vkv’“ézﬂ] v,Vi
) . 2 )
= —pV;V' +2nE"V,;V; + (( - 317) (Vivl)2 , (1.92)

where in the right-hand side term we contract the indexes using Kronecker deltas. Using the
definition of the symmetric strain tensor E¥, we expand the second term on the right-hand side
of Eq. (1.92),

g 1 .y o 1 .y o
EYV;V; = 3 (VJV’ + VZV]) V;V; = 3 (VJV’V]-VZ- + VZV]VjVi) . (1.93)
The symmetry of the strain tensor EY = EJ% in 4, j as well as the orthogonality of the
coordinates, and implying E% E;; = EijEij , gives the identity

1

EVE;; = = (VIV' + V'VI) (V;Vi + V;V})

(VIVIV, Vi + VIVIV, V) + VVIV,V; 4+ VIVIV )

DN i =

(VIVIVVi + VIVIV,V;) = EyEY. (1.94)
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Equation (1.92) thus becomes the form of Eq. (1.79),
. . . 2 .
TV, Vi = —pVi;V' + 2nE;; BV + (c - 3n> (viVl)Q. (1.95)
Using Eq. (1.44), the explicit form of the dissipation function in Cartesian coordinates is
)N AN ) AN
+(52) +
ox y 0z
Ll ove oY, 2+1 oV, OV 2+1 vy OV 2
2\ Oy ox 2\ 0z ox 2\ 0z oy

+ <§ - §n> (V- V)2, (1.96)

U =2n

In cylindrical coordinates the dissipation function is
3 Ve\> [(10Vy Va\® [0V’
‘P—2’7{<aR> +<R8¢+R =
1[10Vg 8 (Vu\1> 1[0V, oVg\> 1[/10V. aVy\°
T3 [R 06 +R8R<R>} +2<8R+ 2= ) T2\&as T -
10 10V, 0V,

+(C—§n> [RaR(RVR)‘i‘Raqb—F 82}2. (1.97)

In spherical coordinates the dissipation function is
ov, 2 10vg v, 2 1 Ovg v, wvpcoth 2
‘I’—Q”{<ar> +<rae+r) +<rsmea¢+r+ ; )
19v, & qwe\]> 1] 1 dv, 9 (vg\]°
[r 26 " "or (T)] i) L«sme o6 " or (T)]
.1 %_f_sirﬂg(% ) 2
rsinf 0¢ r 00 \sinf

2 10 ,, 1 0 . 1 vy
" <C_377> [7“287“ (ror) * rsingag (nfro)+ rsin@@(b] ' (99

1
2
1
2

1.6 Equation of State of an Ideal Gas

We close the above system of hydrodynamic equations using the equation of state that describes
the (thermodynamic) properties of the variables in the fluid. Following the notation introduced
in Sect. 1.5.1, we write the first law of thermodynamics in the form

dg = de — %dp, (1.99)

which in adiabatic case is equal to zero. The adiabatic transformation of a perfect (ideal) gas
is given by the relation p/pY = const., where the adiabatic exponent v is defined as the ratio
of specific heats at a constant pressure and a constant volume, v = ¢p/cy = (dInp/dIn p)aq.
Since ¢, cy are defined as ¢, = (dg/dT), and ¢y = (d¢/dT)y, Eq. (1.99) gives

dh =¢,dT, where h=e+p/p (enthalpy), and de=cydT. (1.100)
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For adiabatic transformations in a fluid described by general equation of state (in case of
nonideal gas), the basic relation is similar, p/p'' = const., where I'; is the general adiabatic
exponent (see Maeder 2009, for details).

The law of ideal gas relates the pressure p, volume V', and temperature T by the equation
pV/T = const. Assuming V is the volume occupied by one particle, V' = pum,/p, where pu is
the mean molecular weight (see Eq. (1.102)) and m,, is the atomic mass unit (i.e., 1/12 of the
mass of the neutral 12C atom), the law of ideal gas becomes

k

fmy,

p= oT, (1.101)
where k is the Boltzmann constant and the term pum, is the average mass of the particles
(electrons, ions, atoms or molecules) in the gas. The mean molecular weight p is defined in a
medium with various elements j (see Maeder 2009) as

1 j—

X;
g 14+ ne,), 1.102

where X is the mass fraction of element j with atomic mass A; and ne ; is the number of free
electrons per 1 atom (ion) of element j. The number density n, of particles of the type «, is
P/ (pa M), where p, is the mean molecular weight of the particle a. Equation (1.101) in this
case gives po, = nq kT, so that p = nkT when summed over all the particle types.

Integrating the equation for specific internal energy (the latter equation in (1.100)), we
obtain € = cyT. For a perfect gas one has ¢, — cy = R = k/(um,,), where R is the specific gas
constant. The equation of state (1.101) then becomes

p=(y—1)pe. (1.103)

This corresponds to Eq. (1.71), where we implicitly assume mono-atomic ideal gas, where
v=5/3.

We can relate the pressure, density, and temperature by the speed of sound a, given by
a® = dp/dp. In adiabatic case we obtain the following relations between pressure and density,
and the relation between adiabatic speed of sound and temperature, respectively,

2 Uy 2 2l
Vp=a*Vp, sothat p=-2 ai;= kT. (1.104)
¥ [y
In isothermal case the index of polytrope is v = 1. Following Eqs. (1.101) and (1.104) (with
T = const.), we obtain the corresponding relations in the form

9 9 kT

P = Aoy ligo = o (1.105)
The speed of sound is the key gas dynamics characteristics. The flow of matter is basically
determined by whether the flow velocity is subsonic or supersonic. In astrophysics, the tem-
perature of the gas is often determined by thermal balance between heat sources and radiative
cooling; the isothermal speed of sound may be applied if the cooling time is much shorter than
the propagation speed of the sound waves. We use the isothermal speed of sound in situations
where the temperature of the gas (plasma) is determined by external processes (by irradiation

of external sources, etc.).
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Shock wave in a non-uniform gas

2.1 Rankine-Hugoniot relations

The 1D basic hydro equations (involving only the principal terms that are important for non-
viscous, non self-gravitating gas expansion) take the following Cartesian explicit form (Sedov
1959; Zel’dovich & Raizer 1967)

ou Oou 10p B
App~7) | Opp™7) _
o g =0, (2.3)

where p is the density, u is the flow velocity, p is the pressure, v is the adiabatic constant, and
Fy is the volume force density (gravity). In a spherical case Eqs. (2.1) - (2.3) take the explicit
form

ou Oou 10p B
oPp™)  Opp™7) _
BT +u o 0. (2.6)

Neglecting the volume force term in Eqs. (2.2) and (2.5) and assuming the coordinate frame
that is co-moving with the shock front and the constant specific heat ratio within the system,
we can express the adiabatic hydro equations in their stationary form as simple conservation
laws,

p1UL = PoUQ, (2.7)
prut + p1 = poud + po, (2.8)

S A G I 2.9)
y=1p1 2 y—1py 2’ '

where the upstream versus downstream quantities are distinguished using the subscripts 0 and
1 (keeping in mind that we now “live” in the shock co-moving frame). In the lab frame are the

17
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corresponding velocities transformed as uy — D — u; and ug — D — ug = D, where D is the
propagation speed of the shock front.

Eliminating the particular quantities from Egs. (2.7) - (2.9), we obtain in the shock co-
moving frame the following relations,

=l (p1 —po)’ u2 =2 (p1 —p0)7 (2.10)
po (p1 = po) p1(p1 = po)
+1 +1 +1
&:Pl%—l)o &: L1+po w 1+7 >—1Po (2.11)
Po PO% —p1 PO pit 7+1p0 ug ﬁ +po’
v-1 <p1> 2
p=|——=\(—] —1fpui+po.
v+ 1 \po ] .
Assuming now the strong shock, where p; > po, Eq. (2.11) becomes,
o v+1 up  y—1 2 9 2
po_yHloowm _y=l u u 2.12
o -1 w oyl P —mm e 7+1p00 (2.12)
Transforming to lab frame, Eq. (2.11) becomes
T L“—po o1 plﬁﬂoo =21(p1 — po)
Po por= 1 —p1 PO 1+ 1]90 P1y—1 +Po
-1 (Pl) 2
p=|—7=(—] — 1] p(D—u)”+ po,
211 Lo ] p1( )
while the strong shock condition turns Eq. (2.12) into the form
pr_y+1 2 2 2 2 2
o y—1 1 S+ 1 b1 _1P1( 1) 74_1Po ( )
Using Eq. (2.11), we can rewrite Eq. (2.10) into the form
1 [(y=1)p1+ (v +1)po)”
2 _ 2
U, y+1)pr+(y—1)po], uj=_-— . 2.15
* 2pp . ) ( ) ol Y200 (WD) pr+ (v — Do (215)
From the ideal gas law we obtain the temperature ratio
Ty _ s (2.16)
Ty popr’

Very important results can be obtained by comparing velocities of gas on both sides of shock
with corresponding speeds of sound. In ideal gas with constant heat capacity, a®> = vp/p,
Eq. (2.15) becomes

(“0>2: (7+1)§;2;r(7—1) v <u1)2: (7+1)%j(7_1)

where M is the Mach number in the corresponding region. Substituting Eq. (2.17) into
Eq. (2.15), we obtain

= M3, (2.17)

ap ai

w_po_ _OFYME op 9kl (2.18)
u p1 (y=1MI+27 pg 2yMI—y+ 1

Ty [2yME—y+1][(v—DMZ+2]" 770 M-+ 1
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Figure 2.1: z-axis is directed into the gas perpendicular to the boundary z = 0 where pg(z) = 0 while
the shock wave located at = X (t) is asumed to propagate in the negative x-direction with (lab frame)
velocity U. The boundary condition is given as X = 0 at ¢ = 0, hence the time is negative until the
shock reaches the edge (Sakurai 1960).

Substituting Eq. (2.1) into Eq. (2.3) in Cartesian case and Eq. (2.4) into Eq. (2.6) in spherical
case, we get respectively

Op op ou

dp Op Ou  2u\

However, the Rankine-Hugoniot relations (2.7) - (2.9) are in the spherical case same as in
Cartesian geometry, due to the fact that the thickness dgy, of the shock wave region is in vicinity
of the stellar edge much smaller than the stellar radius, dg, < Ry.

2.2 Shock wave arriving at the edge of a gas

Assuming a gas with decreasing density towards the edge of the gas-filled region, the shock wave
that drives through that region can be described using the following considerations (Sakurai
1960). Figure 2.1 shows the configuration of the shock wave arriving at the edge of a gas with
lab velocity

dX
U=—. 2.22
g (2.22)
We also assume the following power law relations for density po(z) and shock front velocity
U(Xx),
po(z) = k12", (2.23)
U(X) = ko X2, (2.24)
where k1, ko, n, and X are constants. Setting Fy = 0, we introduce the similarity relations for
the progressing wave type,

p = po(x) f(n),
u="U(z)g(n), (2.25)

p = po(z) U*(z)h(n),
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noting that U(z) in Eq. (2.25) satisfies the equality U(z) = kgz ™.
We introduce in Eq. (2.25) the similarity variable n which is defined as

== 2.2
=(%) (2.26)
Substituting Eq. (2.24) into Eq. (2.22) gives
XM= bW+ 1), (2.27)
n=rkoA4+1)z 1, (2.28)

where, according to the boundary condition X (¢ = 0) = 0, the integration constant in Eq. (2.27)
is zero. The corresponding partial derivatives of n with respect to ¢t and x are

on -1 _ "

=k 1 = 2.2
5 = (A + D ! (2.29)
on 2 —\—=2 n
e koA +1)%x t (A + )x (2.30)

Following the formalism, we can rewrite Eqgs. (2.1), (2.2), and (2.20) with use of Eq. (2.25)
(where the prime values mean the derivatives with respect to n) respectively as

I n—\
(1- ng)? —n9' + 77539 =0, (2.31)
h A n—2\h Fox
1— Vg —n't _ 2 D_p =0 2.32
(1—n9)g U s U e wl { (1+A)U2}7 (2.32)
I - Ay+2)

n
1—ng)— —nvg = 2.

(L=ng)p —nvg +— 5 0, (2.33)
where the additional right-hand side in curly brackets in Eq. (2.32) is involved if the volume
force Fp is not zero. In spherical case will Egs. (2.31) and (2.33) (following the corresponding

notation x — r and involving Eqgs. (2.4), (2.5), and (2.21)) be modified respectively to

! n—A\A+2

/

(1—779)7—779%71+A 9=0, (2.34)
n n—Avy+2)+2

(1 =mng)5 —nv9' + (¥+A) Tg=o. (2.35)

The Rankine-Hugoniot conditions for a strong shock at + = X (n = 1) reduce to

v+1 2 2
= Xa = :7UX7 = =
- 1/)0( ), (Wa=x Tt 1 (X),  (Pa=x 11

(P)oex p(X)U2(X).  (2:30)
Substituting Eq. (2.36) into Eq (2.25), we get boundary conditions for f, g, and h at n =1 in
the form (cf. Egs. (2.12) and (2.14))

oy +1 2 2

1 , 1)=——, h(l)=——:. 2.37
=150 o= b= (237)
We now have a system of nonlinear ordinary differential equations (2.31), (2.32), and (2.33)
and boundary conditions (2.37) at n = 1. However, even providing this, a solution in the region

0 < n <1 for arbitrary n, v, and A cannot be found in general, while it is continuous only for
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one special value of A which is thus appropriate for the system. This value has to be found
semi-analytically using the principles described in detail as follows.
Subtracting Eq. (2.31) from Eq. (2.33) (or Eq. (2.34) from Eq. (2.35) in spherical case) gives

y+1

(1—-mng9) <ln ;) —ng'(y—1) - Agm =0, {= -2 E} , (2.38)

where, with respect to following considerations, we combine the variables f and h as a fraction
h/f. Substituting the expression for A’ from Eq. (2.33) (or from Eq. (2.35)) into Eq. (2.32) and
omitting the volume force term, we obtain

n—A(y+2) +{2
g prgf — 1N, {v}g}h+n_2Ah_O 30
99T TN 1—1g S ‘

where again the additional term 2+ in curly brackets denotes the spherical geometry. We
now define new substitutional variables x and y (not to confuse with original inverse radial x
coordinate), entering relations

1 1 h 1 =z
g=1 1_>7 h_ 1z 2.40
U ( y [Py (240)
whose derivatives (noting that ' = 1) are
1 1 1y o 1y
g/:2<1)+y, <lnh> :x2<+y>. (2.41)
7 y) oy f x noy
Substituting Eqs. (2.40) and (2.41) to Egs. (2.38) and (2.39) respectively gives
z’ y 22 -(y-1)  y+1 2y -1 —y)
— = 1)= = 2.42
ny T 1+x Y71 ) ’ (242)
Y A a7 n— Ay +2)
1—2)nt =(1- 1) — —(y-1)3?] - —2L T2 2.43
(A—2)n - =1-2)-1) o 2= =17 NIESY (2.43)

22(1 —y)
1+x )7
which are two differential equations in 2’ = dz/dn and y' = dy/dn. By eliminating dn/n

from both equations and denoting R; and Ry the right-hand sides of Egs. (2.42) and (2.43),
respectively, we get one differential equation in dy/dz in the form

dy y Ro

T -2 Ri+(y+ )R
2 n+y—2\ 2z(1—y)
2w —1— [A—1+%x}y_{ 0y y}

M+ Dy = (=)= [n+2+ 222 ] o424 {20t b

(2.44)

Substituting Eq. (2.37) into Eq. (2.40) gives the values of the variables  and y at the shock
wave point (n = 1),

2(1) = 2 gy =211 (2.45)
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We find the correct value of A starting at * = 1 (singularity point in Eq. (2.43)) which gives
the Dirichlet y boundary value, y = [n — A(2 — )]/yA. Then integrate eq. (2.44) up to the
shock front point where x = 2v/(y — 1) with a trial value of A while the correct value of y there
should be y = (v + 1)/(y — 1). The semi-analytical solution is found using, e.g., the simple
Euler method.

For our purpose it is convenient to choose the polytrope index as v = 4/3. We found the
following values of A for selected values of n:

Cartesian case: Spherical case:
n A n A

1.0 0.194 1.0 0.163
1.5 0.287 1.5 0.241
2.0 0.378 2.0 0.321
2.5 0.468 2.5 0.408
3.0 0.553 3.0 0.479

Table 2.1: Table of values of calculated A parameter for various selected n values in planar (Cartesian)
and spherical case.

The values of parameter A in Tab. 2.1 show almost linear relation to the selected density
slopes n: in Cartesian geometry A ~ 0.197 while in spherical geometry A ~ 0.16 n (where the
spherical dependence is even stronger than the Cartesian). From Egs. (2.23), (2.24), and (2.25)
we may conclude that the shock front propagates with velocity U o (pg) =™ in the lab frame
which corresponds to

U o (po) %, and U o (pg) "1 (2.46)

in Cartesian and spherical case, respectively. As the density decreases towards the edge, the
velocity fairly increases. To avoid the singularity in velocity at the point x = 0, we need to
involve the following considerations regarding the further expansion of a gas into surrounding
vacuuin.

Employing the values of A from Tab. 2.1 we can numerically integrate system of Eqs. (2.31)
- (2.33) (or Eqgs. (2.34) - (2.35) in spherical case) for v = 4/3 in range 0 < n < 1. Starting
from boundary values at 7 = 1 given in Eq. (2.37) (using the Runge-Kutta method) we found
the values f(0), g(0), and h(0) for n = 0 at time ¢ = 0 (at X = 0) when the shock arrives at
the boundary x = 0, which are of special interest for the following chapter. We summarize the
values for various parameters n in Tab. 2.2. The calculation of f(0), g(0), and h(0) also provides

Cartesian case: Spherical case:
n f0) | 9(0) | R(0) n f0) | g(0) | h(0)
1.0 | 19.419 | 0.774 | 1.145 1.0 44.639 | 0.661 | 0.291
1.5 | 26.870 | 0.735 | 1.254 1.5 | 36.091 | 0.606 | 0.260
2.0 | 38.137 | 0.714 | 1.463 2.0 | 31.367 | 0.566 | 0.196
2.5 | 47.713 | 0.688 | 1.573 2.5 | 75.979 | 0.611 | 0.525
3.0 | 58.182 | 0.669 | 1.703 3.0 | 116.870 | 0.620 | 0.787

Table 2.2: Table of values of f(0), ¢(0), h(0) at n = 0 in Cartesian and spherical case.

a check of correctly found valus of A (which is very sensitive of, in the spherical case even much
more) because the graphs in this case show smooth curves without particular singularities.
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2.3 Gas expanding into vacuum

For the stage of gas expansion into vacuum outside the edge of the initially gas filled region we
use the Lagrangian coordinate a which coincides with Eulerian coordinate z(a,t) at t = 0. We
denote the profiles of p, u, and p behind the shock front at time ¢ = 0 (following Eq. (2.25)
subscripted with 1, setting n = 0) as

p1 = po(z) f(0) = f(0) k1",
ui = U(x) g(0) = g(0) ko™, (2.47)
p1 = po(x)U?(x) h(0) = h(0) ki k5z" >,

Following Eq. (2.47), we write Lagrangian equations for outward expansion at time ¢ = 0 (noting
that time of further outward expansion grows negatively) as

(a,0) = U(a) g(0) = g(0) kaa™?, a>0 (2.48)

p1=u; =p1 =0, a < 0. (249)

From correspondence of the continuity equations at = 0 follows that the already introduced
Eulerian density p; is in the Lagrangian (material) frame defined as

op ou ou

(2.50)

ot —Plafx = —P%a
and using the stationary Rankine-Hugoniot relation for energy (Eq. (2.9)), we transform the
equation for the velocity w and the basic hydro equations (2.1) - (2.6) into the form (we intro-
duce hereafter only the Cartesian solution because the spherical approach becomes analytically
extremely complicated in this region while it does not significantly affect the results)

gf = u, (2.51)
dr _ p

= 2.52
ou 1 0p

pp " =pipy " =ky 7k £(0)Vh(0) a7, (2.54)

where we use (from the practical point of view fully realistic) partial derivative instead of
conventional total derivative. We use the quantity p; in the first term on the right-hand side
of Eq. (2.53) due to equality p; da = pdz which follows from Eq. (2.52).

Assuming Fy = counst., we may express the solution of Egs. (2.52) - (2.54), with use of
initial conditions (2.48), by a similarity solution with functions r(¢), F(§), G(&), and H(§),
determined as

p = pi(a) F(§),
u = u1(a) G(&) + Fot, (2.55)
p = pi(a) H(E).
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The similarity variable ¢ is now defined as (where U(a) = koa™, cf. Eq. (2.24))

§= vla)t _ ka7, (2.56)

a

where —oo < ¢ < 0 since U(a) < 0. The similarity solution particularly fits the singularity at
a = 0 where both v and 2 must be —oo. Comparing Eqgs. (2.48) and (2.55), we can easily verify
that

r(0) = F(0) = G(0) = H(0) = 1. (2.57)

n Gmax
1.0 | 2

1.5 | 1.88
2.0 | 1.777
2.5 | 1.72
3.0 | 1.68

Table 2.3: Table of asymptotic maximum values of G (Gpax) at £ = 1000.

Substituting Eqgs. (2.55) into Eqs. (2.51) - (2.54), with use of Eqs. (2.48), (2.50), and (2.56),

we obtain

' =g(0) G, (2.58)
— (A& = % (2.59)
f(0)g(0) ., _ /

WG =—(n—2\)H+ (1+\)¢H, (2.60)
FUH =1, (2.61)

where the prime quantities denote their derivatives with respect of &.

Since A, f(0), ¢(0), and h(0) are given by the solution of equations in Sect. 2.2, we can
integrate numerically the system of Eqs. (2.58) - (2.61) from the starting value £ = 0 to £ = —oo.
However, first we modify Egs. (2.58) - (2.61) by eliminating r and F' into the more convenient
system of two equations for G and H,

H-O+D/~y 0 -G Y,
f(0)g(0) -, '
TRy ¢ = H+ AN (2.62)

Solution of Eq. (2.62) must fit the boundary conditions
G(0) = H(0) =1, (2.63)

while the resulting functions r and F' are given by

3
r=1+ g(O)/ Gd¢, F=H, (2.64)
0
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Figure 2.2: Profiles of F(£), G(£), and H(&) up to £ = —10 in Cartesian geometry for n = 1,2, 3.
The curves approach the asymptotic maxima, the approximate maximum Gy, for the relative velocity
profile is given in Tab. 2.3.

where the integral in the last equation is expressed as an antiderivative, hence the integration
constant r(0) is evaluated using Eq. (2.57).

Equations (2.62) are integrated numericaly (using again Runge-Kutta) with implemented
values of A\, f(0), g(0), and h(0) given in Tables 2.1 and 2.2. The functions r and F are
subsequently obtained from Eq. (2.64). We show the results up to £ = —10 in Fig. 2.2 and
the asymptotic values of G in Table 2.3. Since the similarity variable G(&) is connected with
velocity, Tab. 2.3 proves that the expansion velocity increases almost twice during the outward
expansion.

2.4 Flow past finite bodies

Simple arguments show that, in supersonic flow past an arbitrary body, a shock wave must be
formed in front of the body. For the disturbances in the supersonic flow caused by the presence
of the body are propagated only downstream. Hence a uniform supersonic stream incident on
the body would be unperturbed as far as the leading end of the body. The normal component of
the gas velocity would then be non-zero at the surface there, in contradiction to the necessary
boundary condition. The resolution of this difficulty can only be the occurrence of a shock
wave, as a result of which the gas flow between it and the leading end of the body becomes
subsonic.

Thus a shock wave is formed in front of the body when the incident flow is supersonic; it
is called the bow wave. When the leading end of the body is blunt, the bow wave does not
touch the body. In front of the shock wave, the flow is uniform; behind it, the flow is modified
and bends round the body. The surface of the shock wave extends to infinity, and at great
distances from the body, where the shock is weak, it intersects the incident streamlines at an
angle approaching the Mach angle. A characteristic feature of flow past a blunt-ended body is
the existence of a subsonic flow region behind the shock wave at the most forward part of its
surface; this region extends to the body itself, and thus lies between the discontinuity surface,
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the body, and a lateral sonic surface.

The values of quantities in the incident stream will be denoted, as usual, by the suffix 1,
and the values behind the shock wave by the suffix 0, while the stagnation point, where the
shock first meets the body, we denote by the suffix 2. The values behind the shock wave are
determined from formulae (2.17) and (2.18),

w _ (y=DMI+2  po (DM} po 2yMi—y+1

— , — , — 2.65
ap (v+ 1) M,y pr (y—=1)M24+2" p y+1 (2:65)

The pressure py at the stagnation point (where the gas velocity v = 0) can now be obtained
by means of the formulae which give the variation of quantities along a streamline. Comparing
the enthalpy h = ¢,T = yeyT and the pressure p = (v — 1)pe = (v — 1) pc, T/~ gives
v p_ d

h = == .
y=1p ~v-1

(2.66)

We obtain from Bernoulli’s equation a number of general results concerning adiabatic steady
flow of a gas. The equation is, for steady flow, h + v?/2 = constant along each streamline; if
we have potential flow, then the constant is the same for every streamline, i.e., at every point
in the fluid. If there is a point on some streamline at which the gas velocity is zero, then we
can write Bernoulli’s equation as
S (2.67)

2 2T 41 '
where hg is the value of the heat function at the point where v = 0. The equation of conservation
of entropy for steady flow is v- Vs =wvds/dl =0, i.e., s is constant along each streamline. We
can write this in a form analogous to (2.67)

5 = 89. (2.68)

We see from equation (2.67) that the velocity v is greater at points where the heat function
h is smaller. The maximum value of the velocity (on the streamline considered) is found at
the point where h is least. For constant entropy, however, we have dh = dp/p; since p > 0,
the differentials dh and dp have equal signs, and so h and p vary in the same sense. We can
therefore say that the velocity increases along a streamline when the pressure decreases, and
vice versa. The smallest possible values of the pressure and the heat function (in adiabatic flow)
are obtained when the absolute temperature 7' = 0. The corresponding pressure is p = 0, and
the value of h for T' = 0 can be arbitrarily taken as the zero of energy; then h = 0 for T' = 0.
We can now deduce from (2.67) that the greatest possible value of the velocity (for given values
of the thermodynamic quantities at the point where v = 0) is

Umax = \/2ha. (2.69)

This velocity can be attained when a gas flows steadily out into a vacuum.

Let us now consider how the mass flux density j = pv varies along a streamline. From
Euler’s equation (v - V)v = —(1/p)Vp, we find that the relation vdv = —dp/p between the
differentials dp and dp holds along a streamline. Putting dp = a? dp, we have

dp  pv

_ P 2.70
dw a? ( )
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and, substituting in d(pv) = pdv + vdp, we obtain
d(pv) v?
= 1-—= . 2.71
) _ ( . (2.71)

We see that, as the velocity increases along a streamline, the mass flux density increases as long
as the flow remains subsonic. In the supersonic range, however, the mass flux density diminishes
with increasing velocity, and vanishes together with p when v = vyax. This important difference
between subsonic and supersonic steady flows can be simply interpreted as follows. In a subsonic
flow, the streamlines approach in the direction of increasing velocity. In a supersonic flow,
however, they diverge in that direction.

The flux j = pv has its maximum value j, at the point where the gas velocity is equal to
the local velocity of sound:

Jx = Pxlisy (2-72)

where the asterisk suffix indicates values corresponding to this point. The velocity vic, is called
the critical velocity. In the general case of an arbitrary gas, the critical values of quantities can
be expressed in terms of their values at the point v = 0, by solving the simultaneous equations
a2
Sx = S92, h* + ?* = hg. (2.73)

It is evident from the previous that, whenever M = v/a < 1, we have also v/a, < 1, and if
M > 1 then v/a, > 1. Hence the ratio M, = v/a* serves in this case as a criterion analogous
to M, and is more convenient, since a, is a constant, unlike a, which varies along the stream.

In applications of the general equations of gas dynamics, the case of a perfect gas is of par-
ticular importance. For a perfect gas we shall always assume (except where otherwise specified)
that the specific heat is a constant independent of temperature in the range considered. Such
a gas is often called a polytropic gas, and we shall use this term in order to emphasize that
the assumption made goes much further than that of a perfect gas. The relations between the
thermodynamic quantities for a polytropic gas are given by very simple formulae, and this often
allows a complete solution of the equations of gas dynamics.

First law of thermodynamics (noting that de = ¢y d7T') in case of an ideal gas where p/(pT) =
R gives

ey dT = T'ds + % dp. (2.74)

Dividing this by 7" and integrating, we obtain
s=cyln(pp?) =¢p, In(p'/7p1). (2.75)

Let us now investigate steady flow, applying the general relations previously obtained to
the case of a polytropic gas. Substituting (2.66) in (2.69), we find that the maximum velocity
of steady flow is

max — . 2.
Umax = a2 po— (2.76)

For the critical velocity we obtain from the second equation (2.73)
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2
= _ 2.78
a azwfy—i—l ( )

From Eq. (1.104) we deduce T/Ty = a?/a3, combining this with Egs. (2.66), (2.67), and
(2.78), we obtain the important particular result

whence

7—17}2}

112
*

2

(2.79)

Following the adiabatic and ideal gas prescriptions p = ps (p/p2)” and p = pa (T/T2)Y 07V, we
further obtain

02 1/(v—1) v =102 1/(v=1)
=p|1—(y—1)=— =po|l—— = 2,
p=r 1= (= 1) 5] mf-222] (2.50)
02 v/ (v=1) N1 02 v/(v=1)
=p|1—(y—1)=— —py |1 - — = 2.81
p pz[ (v )2@} p2[ 'y+1a2] : (2.81)

It is sometimes convenient to use these relations in a form which gives the velocity and sound
speed in terms of other quantities:

y—1 (v=1)/~
2o 2 1_<P> _ 2 m 1_<P> , (2.82)
v—1 po 2 v—1p2 P2

Using Eqs. (2.77) and (2.78), we relate the velocity of sound and the velocity v:

U2 a? ’()2
— = =% (y—1) —. 2.
5 (v + )2 (v—=1) 5 (2.83)

a*=a3—(y-1)

Hence we find that the numbers M and M., are related by

v+1

2 _ .
/\/l"‘_'y—l—l-Q//\/ﬂ7

(2.84)
when M varies from 0 to oo, M2 varies from 0 to (y+1)/(y — 1).

Finally, we may give expressions for the critical temperature, pressure and density: they are
obtained by putting v = ¢, in Egs. (2.79) - (2.81):

2T:
T, = . +21, (2.85)
2 1/(v—1)
Px = P2 ’Y+1> ) (2.86)
2 v/(v—1)
Px = P2 <7 n 1> . (2.87)

In conclusion, it should be emphasized that the results derived above are valid only for flow
in which shock waves do not occur. When shock waves are present, equation (2.68) does not
hold; the entropy of the gas increases when a streamline passes through a shock wave. We shall
see, however, that Bernoulli’s equation (2.67) remains valid even when there are shock waves,
since h + v2/2 is a quantity which is conserved across a surface of discontinuity (see Eq. 2.9).
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Following now Bernoulli’s equation (2.67) with use of Eq. (1.102), a simple calculation gives
1 1 a3 v T 1
2 _ Gg U2 . 2 2
M [2(7 —1)+ MJ = 2.3 that is T = 1+ 5(7 — 1) M= (2.88)

Analogously to Egs. (2.79) - (2.81) we obtain

1/(v—1) v/(v=1)
P2 1 2 P2 1 2
2 e ge-nae| L 2ol - (2.50)
and, since Eq. (2.89) holds in an arbitrary point along a streamline, we may write
1 U% v/(v=1)
P2 = DPo [1 + 5(7 - 1)2] (2.90)
ap

A simple combination of Eqs. (2.90) with the last Eq. (2.65) with use of the second Eq. (2.19)
gives

B v+1 (+1)/(v=1) M%
p=nl Ty PNEVCEnE (2:91)
[y = (v =1)/(2M})]

This determines the pressure at the leading end for a supersonic incident flow (M; > 1).

For comparison, we give the formula for the pressure at the stagnation point obtained for a
continuous adiabatic retardation of the gas, with no shock wave (as would be true for a subsonic
incident flow, cf. Eq. (2.89)):

:|’Y/(’Yl)

1
P2 =1 {1 + (v —1Mj

5 (2.92)

For M1 = 1, the two formulae give the same value of po, but for M1 > 1 the pressure given by
formula (2.92) is always greater than the true pressure py given by formula (2.91).
In the limit of very large velocities (M; > 1), formula (2.91) gives

+1\ 0t/
P2 = p1 (ryz) V=D M3, (2.93)

i.e., the pressure po is proportional to the square of the incident velocity. From this result we
can conclude that the total drag force on the body at velocities large compared with that of
sound is proportional to the square of the velocity. It should be noticed that this is the same
as the law governing the drag force at velocities small compared with that of sound but yet so
large that the Reynolds number is large.






Chapter 3

Basics of Magnetohydrodynamics
(MHD)

3.1 Fundamental Equations of Ideal MHD

(Kurfiirst 2015): We review the vacuum differential form of Maxwell equations:

v.E=", (3.1)
€0
OB
E=-2" 2
V x o’ (3.2)
V.B=0, (3.3)

V xB=pud+ Moéoaj,
ot
where p is the electric charge density, E is the electric field intensity, V is the flow velocity of the
matter (ionized gas), B is the magnetic induction, €y and pg are the vacuum electric permittivity
and magnetic permeability, respectively, and J is the electric current density, J = pV. The
general expression for the electromagnetic Lorentz force is

F.=p(E+V xB). (3.5)

This equation we may further expand by the vacuum form of the “fourth” Maxwell equation
(Maxwell-Ampére’s law) (3.4) Neglecting the term pgeg OE /Ot we obtain the Ampére’s law

V x B = poJ, (3.6)

which is often used in MHD calculations.
We involve the generalized Ohm’s law,

J=0(E+V xB), (3.7)

where o is the material-dependent conductivity, which for most of the fluids is typically greater
than Siemens per meter, S/m. The dimensional analysis of Eq. (3.4) shows that egE/7 ~ o F in
case of extremely small characteristic time 7 for changes in the electric field (i.e., that the term
OE /Ot cannot be neglected only in case of 7 is of order 10~!'s or less) and we may simplify
Eq. (3.7) as J =0oFE.

Now we use analogous dimensional analysis with the “first” Maxwell equation (Gauss’s law)
in the vacuum form V - E = p/ey = E/¢ (where ¢ is the characteristic length scale of the

31
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system), using Eq. (3.4) in the described approximation V x B = pgJ ~ B/{. Combining the
two approximations and the ideal Ohm’s law for a perfect conductor given by

E=-VxB (3.8)

(whose dimension is —BV and noting that egug = ¢~ 2), we obtain the approximate ratio
pE/(J x B) =~ (V/c)?) < 1 for the non-relativistic ideal MHD. We may therefore neglect the
electrostatic force term in Eq. (3.5), writing the magnetic Lorentz force equation in the modified
form

1
Fr,=JxB=—(VxB)xB. (3.9)
Ho
Using the vector identity V x (V x B) = V(V - B) — V2B (with V- B = 0), for the right-hand
side cross product of vector rotation, Eq. (3.9) becomes

1 1 VB2
F,=—(B-V)B——
1o 2 1o

, (3.10)

where the first right-hand side term in Eq. (3.10) expresses the advection of the magnetic field
and the second term expresses the gradient of the magnetic energy density (Bittencourt 2004).
Basic hydrodynamic equations, including the Lorentz force and the induction equation
(3.14), that is, the basic MHD equations, can be written in the following way: the continu-
ity equation (1.23) remains
dp

—+V.pV =0 3.11

while the equation of motion (1.29) now is

v 1 1 VB2 1
8—+(V-V)V+—V-7>+—V - —(B-V)B+Vd=0, (3.12)
ot P 2 pop  pop

where P is the pressure tensor and ® is the gravitational potential. Including the Ohm’s law
for ideally conductive plasma (where the electrical conductivity o — 00) in the form (3.8), from
the “second” Maxwell equation (Faraday’s law),

0B
E = - .1
V x 5 (3.13)

we obtain the Mazwell-Faraday equation (usually called the induction equation),

E—VX(VXB):O. (3.14)
We neglect the diffusion term nV?2B in Eq. (3.14) where 7 = 1/(jo0) denotes the magnetic
diffusivity (Bittencourt 2004). The diffusion term plays a significant role only in case of very
low gas velocity or very small electric conductivity.

To derive the MHD terms, which enter the energy equation, we expand the term V- F on the
right-hand side of Eq. (1.85) where we assume the force F is the magnetic Lorentz force (3.9).
Multiplying Eq. (3.9) by velocity, Fr,-V = (Jx B)-V = —(V x B) - J, and using Eq. (3.8), we
obtain Fyp -V = E-J = E - (V x B)/ug, where the last expression comes from the Ampére’s
law (3.6). We expand the term E - (V X B)/ug as [B-(V x E) = V - (E x B)|/up, where we
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rewrite the first term using the Faraday’s law of induction (3.13) and the second term using the
Ohm’s law for ideally conducting fluid (Eq. (3.8)), into the form

FL.v:MlO{_B.%?+V.[(V><B)><B]}, (3.15)

Using the vector identity for the triple cross product, the term Fp - V becomes

FL‘V:_Q <B2>+M10V-[(B-V)B—BQV]- (3.16)

Inserting Eq. (3.16) into the energy equation (1.88), we obtain the ideal MHD energy equation,

2

oF 1V-[(B-V)B—BV

- -(E v =
675+V (E+P)V +g4] ”

+pg -V, (3.17)

where the first right-hand side term in the square bracket is the magnetic tension force that
is trying to straighten the magnetic field lines, the second term in the right-hand side’s square
bracket is the magnetic pressure flux, and g denotes the vector of external gravitational accel-
eration. The explicit form of the total energy density F in Eq. (3.17) is

pV? B2
E = —_— 4+ — 1
pe + > + 2’ (3.18)

consisting from the densities of internal, kinetic, and magnetic energy, respectively.

3.2 Parker Modified Momentum Equation

Bittencourt (2004): In the presence of a strong B field the pressure tensor of an inviscid
conducting fluid is anisotropic. When the cyclotron frequency Q. = —(¢/m)B much larger
than the collision frequency veon, a charged particle gyrates many times around a magnetic
force line during the time between collisions, so that there is equipartition between the particle
kinetic energies in the two independent directions normal to B but not, in general, in the
direction along B. If we denote by p, and pj the scalar pressures in the plane normal to B
and along B, respectively, and consider a local coordinate system in which the z-axis is in the
direction of B, we can write the pressure tensor of an inviscid fluid as

pt 0 O
P=(0 p. 0]. (3.19)
0 0 pH

The parallel and perpendicular pressure indexes do not refer to vector components but indicate
the part of the scalar pressures associated with the kinetic energy densities of the particle
motions along B and perpendicular to B, respectively.

When the magnetic field is not constant, the orientation of the axes of the local coordinate
system changes from point to point and this change in direction must be taken into account
when evaluating the divergence of the pressure tensor. We express P, in (3.19), as the sum of
a hydrostatic scalar pressure p; and another tensor referred to the local coordinate system, as

P=pi1+(p —pL)BB, (3.20)
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where 1 is the unit dyad (3 x 3 unit matrix in this case) and BB = BB/B? is the dyad formed
from the unit vector B,

. 0
BB=10
0

o O o

0
0]. (3.21)
1

The momentum equation, in the form (3.12), must be modified to include the anisotropy of
the pressure dyad. To evaluate V - P given by (3.12), we note that

V- (p11) =Vp, (3.22)

and using the following identity,

V-l - p)BEl = (B-9) [ )|+ [ -ro | (Vo8 G)

where the second term in the right-hand side vanishes due to V - B = 0, we obtain

V"P:VPL—F(B'V) |:(p||—pL)BB2:| . (3.24)

Substituting expressions (3.24) into the momentum equation (3.12), we obtain
v B? B B
— V. |4 — B - — — - — ® =0. 2
PO AV DV (bt 2 ) 4 (8-9) [l = p) s — 2| 409 (3.25)

This equation differs from the usual momentum equation for a highly conducting inviscid
fluid only through the term (p) — p1)/B?. 1t is usually referred to as the Parker modified
momenium equation.

3.3 The Double Adiabatic Equations (DAE)

3.3.1 Chew, Goldberger, and Low (CGL) solution

(Chew et al. 1956): To complete the momentum equation (3.25), we need equations for the
time rate of change of p| and p,. These equations will take the place of the adiabatic energy
equation (1.104), which applies for the isotropic case. From the internal energy equation (1.75),
assuming a conducting fluid and omitting heat conduction and external forces, we have

Ci(?g’)ﬁ;p(v.vn(ﬂvyvzo, (3.26)

where the pressure dyad P is given by (3.20) and the scalar pressure p is one-third the trace of
P,

(201 +py) - (3.27)

W=

p:

Note that 3p/2 represents the total thermal energy density. By direct expansion of the last term
in the left-hand side of (3.26), using (3.20) for P, we find

(P-V)-V = [pV+(p—p1)(BB- V)| -V, (3.28)
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and inserting this expression, together with (3.27), into (3.26), we obtain

d R
T (2pJ_ +p||) + (4]?1_ +p‘|) (V-V)+ 2(pH —p1)(BB-V)-V =0. (3.29)

A strong magnetic field constrains the charged particle motion only in the direction trans-
verse to B, but the particles are still free to move large distances along B. Thus, it is reasonable
to suppose that the contribution to the total thermal energy, arising from the particle motion
parallel to B, also satisfies an energy conservation equation similar to (3.26). This leads to the
following equation for the part of the total thermal energy due to the random particle motions
along B:

dpy

V- V+2p(BB-V) V=0 (3.30)

and, decoupling the parallel and perpendicular motions, the equation for p; becomes

d L
%—i—%)L(V-V)—pL(BB-V)-V:O. (3.31)
Equations (3.30) and (3.31) enable to calculate p| and p,. They can be written in a more
succinct form, as follows. First we note that if we expand the right-hand side of the induction
equation (3.14), using the vector identity V x (V. xB)=(B-V)V -B(V-V)—(V-V)B +
V(V - B), and noting that V - B = 0, we obtain
dB

- = (B-V)V —B(V-V) (3.32)

If we now take the scalar product of (3.32) with B/B? we obtain

1 dB? . . , 1 dB o
Equation of continuity (1.19) gives
1 dpm
V- V=-—— 3.34
pm dt (3:34)

(where p, is the mass density, to distinguish it from the electric charge density p) and using
Egs. (3.33) and (3.34), to eliminate the terms (BB -V) -V and V - V, we obtain

dlnpy 3 dpp,  2dB

0 dlan_idpm 1dB

i ondat Ba Y (3.35)

dt pom dt | B dt

which can be written in even compact form as

d (p B d
SEEE —o, S (L) <o, (3.36)
de \ p3, dt \ pmB
Equation (3.36) are known as the double adiabatic equations for a conducting fluid in a strong
magnetic field. They are also known as the Chew, Goldberger, and Low (CGL) equations (Chew

et al. 1956). They form the MHD equivalent of the adiabatic energy equation for isotropic
plasma:

d

T (ppy) = 0. (3.37)
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3.3.2 Special Cases of DAE

As a simple application of the double adiabatic equations, consider initially the case in which
the only variations are parallel to the magnetic field as, for example, in sound waves traveling
along the field lines. This situation is usually referred to as linear compression parallel to the
magnetic field or one-dimensional compression. The magnetic field is assumed to be straight
and uniform, and directed along the z-axis. Thus, B, = By = 0 and B = B.Z, as well as
0/0x = 9/dy = 0. In this case, we find

L oV,
(BB V) V=V.V= (3.38)
0z
and from Eq. (3.33), we see that B is constant. Equations (3.35), with dB/dt = 0, then yield
d /p) d (pL
— (2L ) =0, =(£) =0. 3.39
de (p%) Lot (pm (3:39)

If we compare these results with (3.37), we find that we may assign v = 3 along the field lines
(one-dimensional compression), and v = 1 across the field lines.
It is useful to introduce a parallel and a perpendicular temperature through the relations

p| =nkTj, pL=nkT\. (3.40)

For the case of one-dimensional compression parallel to B, noting that p,, = nm in Eq. (3.39),
we thus have

1) n?, T, = const., (3.41)

which shows that this type of compression is isothermal with respect to the perpendicular
temperature 7). The perpendicular pressure p; therefore entirely changes due to changes in
the number density n, whereas p)| changes due to changes in both n and 7.

Another special case of interest is the two-dimensional compression perpendicular to the
magnetic field, in which all motion is transverse to the field lines. This situation can be pictured
as the motion of magnetic flux tubes, identified by the particles contained in them. Assuming
straight field lines along the z-axis (B, = By = 0, B = B, ) and variations only in the transverse
direction (9/9z = 0), we find

(BB-V)-V = <2a> V=0 (3.42)
0z
and Eqgs. (3.30) and (3.31) together with the continuity equation (1.19) yield
dpy  pjj dpm dpr  2pi dpm
dt  pp, dt Toodt pm  dt (343)

which we write in the compact form as

d [ p d (pL
el — — (&) =0. 44
dt(pm> o dt<p%n> ! (344

Comparing with (3.37), we see that v = 1 parallel to the magnetic field and v = 2 transverse
to it. From (3.40) we find that for a two-dimensional (cylindrically symmetric) compression
perpendicular to B,

Tjjconst., T =on, (3.45)
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so that this type of compression is isothermal with respect to the parallel temperature. The
changes in p|| are due entirely to variations in the number density n, whereas those of p; result
from variations in n as well as in 7).

In the case of three-dimensional spherically symmetric compression, we have

pL=p|=p (3.46)
and (3.29) reduces to
dp  5p dpm d [ p
3—————=0 that — | —=% | =0 3.47
At pm at 0N g ( aB) T (3:47)

which is again the familiar adiabatic equation (3.37) of gas dynamics, with v = 5/3. In any of
the cases of adiabatic compression, the fluid has to be subjected to a certain system of forces in
order to achieve the desired type of adiabatic compression. The required system of forces has
to be determined from the momentum equation in conjunction with the conditions appropriate
to the analyzed problem.

3.4 Magnetic Viscosity and Reynolds Number

The behavior of the magnetic field is important in many MHD problems. To obtain a simple
equation for the variations of B, let us start with the curl of the generalized Ohm’s law (3.7),

VxJ=0[VxE+Vx(VxB)], (3.48)

where, using Maxwell curl equations (3.2) and (3.4), and the Ampeére’s law (3.6),

B
V x (V x B) = pyo —%—FVX(VXB) . (3.49)

Using the identity V x (V x B) = V(V - B) — V?B (with V - B = 0), Eq. (3.49) reduces to

B
aat =V x (V x B)+1,V?B, (3.50)

where 7, is called the magnetic viscosity,

1
M, = ——. (3.51)
Moo
This is in fact the extension of the induction equation (3.14), where the first term in the
right-hand side of (3.50) is called the flow term, while the second term is called the diffusion
term. To compare the relative magnitude of these two terms, we can use dimensional analysis
and approximate,
BV B
IV x (V xB)|~ =, nn|V?B| ~ np—s, (3.52)
L L
where L denotes some characteristic length for variation of the parameters. The ratio of the
flow term to the diffusion term is called the magnetic Reynolds number and is given by

_ LV
Nm

R (3.53)
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In most MHD problems one or the other of these two terms dominates and R, is either very
large or very small compared to unity. It is instructive to compare the magnetic viscosity n,
and the magnetic Reynolds number R,, with the ordinary hydrodynamic kinematic viscosity
v and hydrodynamic Reynolds number Re = LV/v (Eq. (1.51)). For this purpose, consider
the Navier-Stokes equation of hydrodynamics (1.58), where n = pv is the dynamic viscosity
(kinematic viscosity multiplied by density). Comparing this equation with (3.50) we see that
the role played by 7, in the rate of change of B, is completely analogous to the role played
by v, in the rate of change of the mean fluid velocity V. The hydrodynamic Reynolds number
is defined as the ratio of the inertia term (V - V)V to the main viscosity term vV?V from
Eq. (1.58). Using dimensional analysis, we have
2

V-V~ o VPV vty (3.54)
which confirms the expression (completely analogous to R,,) for the hydrodynamic Reynolds
number, Re = LV /v (Eq. (1.51)).

3.5 Diffusion of Magnetic Field Lines

When R,, < 1, that is when the diffusion term dominates, Eq. (3.50) becomes approximately,

oB

ST NmV2B (R < 1). (3.55)
This is the equation of diffusion of a magnetic field in a stationary conductor, resulting in the
decay of the magnetic field. It is analogous to the particle diffusion equation studied in Chapter

(add). We obtain the characteristic decay time 7p of the magnetic field by dimensional analysis,

B

2 ~Y R

0B B
Zl~ 3.56
% (3.56)
where 7p represents a characteristic time for variation of the plasma parameters. According to
(3.55), the magnetic field diffuses away with a characteristic decay time of the order of
L2
p = — = L*pgo. (3.57)
Tim,

For ordinary conductors the time of decay is very small. For example, for a copper sphere
of radius 1 m, we find that 7p is less than 10s. For an astronomical body, because of the large
dimensions, 7p can be very large. For the Earth’s core, considering it to be molten iron, the
time of free decay is approximately 10 yr, while for the general magnetic field of the sun it is
found to be of the order of 10 yr.

3.6 Freezing of a Magnetic Field

A completely different type of behavior appears when R,, > 1. In this case, the flow term
dominates over the diffusion term and Eq. (3.50) reduces to

0B

E:VX(VXB) (R > 1). (3.58)
This equation implies that in a highly conducting fluid the magnetic field lines move along
exactly with the fluid, rather than simply diffusing out, we say that the magnetic field lines are
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frozen in the conducting fluid. In effect, the fluid can flow freely along the magnetic field lines,
but any motion of the conducting fluid, perpendicular to the field lines, carries them with the
fluid. To show this implication of (3.58), we consider initially the concept of magnetic tubes
of force that are used to visually describe the direction and magnitude of B at various points
in space. Omne can think of the space pervaded by a magnetic field as divided into a large
number of elementary magnetic tubes of force, all of them enclosing the same magnetic flux
Adp. If AS is the local cross-sectional area of an elementary magnetic tube of force (see Fig.
1), then the magnitude of B, at the local point P, is equal to A®g/AS. According to this
definition, the magnitude of B is everywhere inversely proportional to the cross-sectional area
of the elementary tube of force.

Let us now consider a closed line whose points move with velocity V in a space pervaded
by a magnetic field. Assume, for the moment, that V is an arbitrary function of position and
time (not necessarily equal to the fluid velocity), with the result that the closed curve may
change in shape, as well as undergo translational and rotational motion. Let C; denote this
closed line at time ¢, bounding the open surface S(t) = S;. At a time At later, let C2 and
S(t + At) = S5 denote the corresponding closed line and open surface (refer to Fig. 2). The
flux of the magnetic field through an open surface S, at time ¢, is given by

Bp(t) = /S B(r,t) - dS. (3.59)

The rate of change of the magnetic flux through an open surface § can be written as

d 1
N [/S B(r,t)- dS] = Alllgloﬁ {/52 B(r,t+ At)- dS — : B(r,t)- dS} ) (3.60)

Expanding B(r,t + At) to the first order about B(r,t), we obtain

O0B(r,t
B(r,t+ At) = B(r,t)+(,§?)At+..., (3.61)
so that, in the limit At — 0, the right-hand side of Eq. (3.60) reduces to
1 OB(r,t 1
lim / B(r,t)'dS—i—/ (r’)-dS—/ B(r.1)- dS| . (3.62)
At—0 | At So So ot At S1

To evaluate Eq. (3.62), we use the divergence theorem for any closed surface. If we apply this
result to the closed surface consisting of §1, So, and the sides of the cylindrical surface of length
V At, we obtain

— [ B(r.1)-as +/ B(r.t)- dS— ¢ B(r.t)-[VALx dl] =0, (3.63)
S Sa G

where the minus sign in the first term on the left-hand side is due to the fact that the outwardly
drawn unit vector normal to the surface S7 is in a direction opposite to that of the surface So,
and — [V At x dl] is the element of area (pointing outwards) covered by the vector element d/ of
the closed line bounding the surface S (or S3) in the time interval At. If (3.63) is substituted
into (3.62) and the limit At — 0 is evaluated, noting that in this limit S; = S; = S(¢), we
obtain

(i[/SB(r,t)- dS] :/SaBé;’t). dS—i—;éB(r,t)-(del). (3.64)
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Using the vector identity B(r,t) - (V x dl) = —[V x B(r,t)] - dl and the Stokes’s theorem,
Eq. (3.64) becomes

ci[/SB(r’t)'ds] :/S{W_VX[VxB(r,t)]}-ds. (3.65)

Suppose now that the space is filled with a highly conducting fluid so that (3.58), valid for
R > 1, applies. If the velocity V in (3.65) is the fluid velocity, we conclude, from (3.58) and
(3.65), that

% [/SB(nt)- dS] _o, (3.66)

which is a mathematical statement of the fact that the magnetic flux linked by a closed line
(bounding the open surface S) moving with the fluid velocity V is constant. Note that this
conclusion requires that only the velocity component of the closed line perpendicular to B be
the same as the fluid velocity component perpendicular to B, since the velocity component
parallel to B does not contribute to the term V x B. Thus, (3.58) implies that the lines of
magnetic flux are frozen into the highly conducting fluid and are carried by any motion of the
fluid perpendicular to the field lines. There is no restriction, however, on the motion along the
field lines so that the conducting fluid can flow freely in the direction parallel to B.

This result is expected on physical grounds since, as the conducting fluid moves across the
magnetic field, it induces an electric field that is proportional to the fluid velocity component
perpendicular to B. However, if the fluid conductivity is infinite, this perpendicular velocity
component must be infinitesimally small if the flow of electric current is to remain finite.

In a fluid of finite conductivity the result (3.66) is no longer true. Using (3.50) in Eq. (3.65),
this yields

% _ . / V2B ds, (3.67)
ot <

where the right-hand side of Eq. (3.67) gives rise to a slipping of magnetic flux through a closed
line of the material.

3.7 Magnetic Pressure

3.7.1 Pressure dyad

The concept of magnetic pressure is very useful in the study of high-temperature plasma con-
finement. Under steady-state conditions and neglecting the external forces, the MHD equations
(3.3), (3.4), and (3.12), reduce to the following closed set of magnetohydrostatic equations:

V.-B=0, VxB=puJ, Vp=JxB. (3.68)

Eliminating J, we obtain

1
V-B=0, Vp=.-(VxB)xB. (3.69)
0

The term in the right-hand side of the first Eq. (3.69) can be written as the divergence of
the magnetic part of the electromagnetic stress dyad. Using the vector identity

(VxB)xB=(B-V)B— %V(BZ) —V.(BB)- %v . (1B?) (3.70)
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where 1 is the unit dyad, and using the following definition of the magnetic stress dyad,

1 1 p [(Bi-B%/2)  B.B, Bo B
T" = — <BB - 2132) =— | ByB.  (Bj-B%2)  ByB. |, (370
Ho Ho Bsz Bsz (Bg - B2/2)
Eq. (3.69) we write as
Vp=V-T" or V-[lp-T"]=0 (872)

Since the stress is considered to be positive if it is tensile, and negative if it is compressive,
we may define —7T™ as the magnetic pressure dyad, playing the same role as the fluid pressure
dyad.

It is instructive to consider a local magnetic coordinate system in which the third axis points
along the local direction of B. For this local coordinate system, the off-diagonal elements of
the magnetic stress dyad vanish, since B = BZ, so that

L (B2 0 0
T =— 0 -B%/2 0 |. (3.73)
Ho\ o 0 BZ%2

Therefore, the principal stresses are equivalent to a tension B2/(2p0) along the magnetic field
lines, and a pressure B?/(2u0) perpendicular to the magnetic field lines, which is similar to a
mutual repulsion of the field lines. We express (3.73) alternatively in the form

L (00 0 ) —B2/2 0 0
Thr=—10 0 0 |+— 0 —B?%/2 0 ) (3.74)
Fo\o o B2/ MO 0 0 —B%/2

so that the stress caused by the magnetic flux can also be thought of as an isotropic magnetic
pressure B?/(2u0) and a tension B2/ug along the magnetic flux lines as if they were elastic
cords. The latter representation is very useful, since the isotropic pressure B?/(2u0) can always
be superposed on the fluid pressure, resulting in a decrease in the pressure exerted by the fluid.

3.7.2 Isobaric surfaces

It is convenient to consider hypothetical surfaces, called isobaric surfaces, in the plasma, over
which the kinetic pressure is constant. At any point, the vector Vp is normal to the isobaric
surface passing through the point considered. From the third Eq. (3.68) we see that Vp is
normal to the plane containing J and B, that is

J-Vp=0, B-Vp=0. (3.75)

Therefore, both J and B lie on isobaric surfaces. To illustrate this point, consider the particular
case in which the isobaric surfaces are closed concentric cylindrical surfaces, with the kinetic
pressure increasing in the direction towards the central axis of the concentric cylindrical surfaces.
Thus, Vp is along a radial line directed towards the axis. From Eqgs. (3.75) we see that neither
B nor J passes through the isobaric surfaces and therefore it follows that the cylindrical isobaric
surfaces are formed by a network of magnetic field lines and electric currents. Further, in view
of Eq. (3.68), the magnetic field lines and electric currents, lying on the isobaric surfaces, must
cross each other in such a way that J x B is equal to Vp. The maximum kinetic pressure occurs
along the central axis, which also coincides with a magnetic field line. For this reason, this axis
is usually called the magnetic azis of the magnetoplasma configuration.
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3.8 Plasma Confinement in a Magnetic Field

The subject of plasma confinement by magnetic fields is of considerable interest in the theory of
controlled thermonuclear fusion. Consider, for simplicity, the special case in which the magnetic
field is along the z-axis, that is B = B,Z, so that Eq. (3.72) simplifies to

p+ B/(2u0) 0 0
V- 0 p+ B?/(2u0) 0 =0, (3.76)
0 0 p — B*/(2p0)

so that, in other words,

0 B2 0 B2 0 B?

From V - B =0, we have

0B,
0z

=0, (3.78)

since, in the local coordinate system, B is parallel to the z-axis. Equation (3.78), together
with (3.77), imply that both p and B do not vary in the z-direction. The solutions of (3.77),
combined with this result, give

BQ
<p + 2%) const. (3.79)
Therefore, in the presence of an externally applied magnetic field, if the plasma is bounded,
the plasma kinetic pressure decreases from the axis radially outwards, whereas the magnetic
pressure increases in the same direction in such a manner that their sum remains constant at
each point, according to (3.79). The plasma kinetic pressure can be forced to vanish on an
outer surface if the applied magnetic field is sufficiently strong, with the result that the plasma
is confined within this outer surface by the magnetic field.

Let Bg be the value of the magnetic induction at the plasma boundary. Since the kinetic
pressure at the plasma boundary is zero (ideally), we can evaluate the constant in (3.79) from
the pressure equilibrium condition at the plasma boundary. Therefore,

B* B}
P+ —=_— 3.80
2p0  2p0 (3.80)
The maximum fluid pressure that can be confined for a given applied field By is,
B3
max — . 3.81
Pma 2110 ( )

A device that can be used to confine a magnetoplasma by straight parallel field lines is
called a theta (0) pinch, since the effect responsible for the confinement is due to electric
currents flowing in the plasma in the azimuthal (#) direction. The plasma is initially confined
inside a hollow cylindrical metal tube, whose side is split in the longitudinal direction in such a
way as to form a capacitor. When a high voltage is discharged through the capacitor, the large
azimuthal current produced in the metal tube generates a magnetic field in the longitudinal
direction inside the plasma. The electric current induced in the plasma is also in the azimuthal
direction, but in a sense opposite to that on the metal tube. The resulting J x B force acting on
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the plasma pushes it inwards, towards the axis, until a balance is reached between the kinetic
pressure due to the random particle thermal motions and the magnetic pressure that acts to
constrict or pinch the plasma.

A parameter 5, defined as the ratio of the kinetic pressure at a point inside the plasma, to
the confining magnetic pressure at the plasma boundary, is usually introduced as a measure of
the relative magnitudes of the kinetic and magnetic pressures. It is given by

i p
= B2 @) (3.82)

Note that 8 ranges between 0 and 1, since the field inside the plasma is less than By. From
(3.80) we can also express the parameter 5 as

B—1- (;})2. (3.83)

Two special cases of plasma confinement schemes are the so-called low-8 and high-3 devices.
In the low-£ devices, the kinetic pressure is small in comparison to the magnetic pressure at
the plasma boundary, whereas in the high-3 devices they are of an equal order of magnitude
(8 1),

An important property of a plasma is its diamagnetic character. Equation (3.80) implies
that the magnetic field inside the plasma is less than its value at the plasma boundary. As the
kinetic pressure increases inside the plasma, the magnetic field decreases. Under the action of
the externally applied B field, the particle motions give rise to internal electric currents that
induce a magnetic field opposite to the externally applied field. Consequently, the resultant
magnetic field inside the plasma is reduced to a value less than that at the plasma boundary.
The electric current, induced in the plasma, depends on the number density of the charged
particles and on their velocity. As the plasma kinetic pressure increases, the induced electric
current and the induced magnetic field also increase, thus enhancing the diamagnetic effect.

3.9 MHD Waves

3.9.1 Linear perturbations in MHD equations

Consider a static (Vo = 0), homegenous medium with constant density py and pressure pg
threaded by a uniform magnetic field By, neglecting other external forces. Assuming small
perturbations (|q1| < |qo|), we linearize the perturbed MHD equations (3.11), (3.12), (3.14),
and (3.37), respectively, to first order,

0
oV 1
po=t + Vpy — — (V x By) x By =0, (3.85)
ot o
0B
a—tl—Vx (V1 x Bg) =0, (3.86)
0

where we perform the last equation using Eq. (3.84). Given the linear nature of the system, we
can employ a one-dimensional (plane) wave decomposition and write a generic perturbation in
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the form oc elk*=%!)  Using also the identity V x (V x A) = V(V - A) — V2A for the triple
vector product, the system (3.84) - (3.87) becomes

wp1 — pok - V1 =0, (3.88)
1 1

wpovl—kpl—fk(Bo'Bl)—i-f(k‘Bo) B, =0, (3.89)
Ko Ko

wBy—(k-V1)Bo+ (k-By) V=0, (3.90)

wpy — a’pok - V1 =0, (3.91)

where a is the speed of sound. Note that the first term in the Lorentz force in Eq. (3.89) is
related to magnetic pressure while the second one corresponds to magnetic tension.

We subsitute o = k - By, multiply Eq. (3.89) by w, express the term wB; from Eq. (3.90),
and use Eq. (3.91) to eliminate p;, obtaining

1
wipoVi=a’pg (k- V1) k+ %k{Bg [(k-V1)By—aVy]} — % [(k-V1)Bo—aV4], (3.92)

and we rearrange it into the more illustrative form,

a? B? a Q
<w2p0 — > Vi=(k-Vy) Ka?po + 0) k — BO] — —(Bg- V1) k. (3.93)
Ho Ho Ho Ho
Without loss of generality, we now assume that the equilibrium magnetic field By is directed
along the z-axis and that the wave vector k lies in the 2-z plane (k, = 0). Let 6 be the angle
between By and k, so that

k=Fkx+k,z2, ky = ksiné, k, =kcosf (3.94)
k- Vl = kx‘/lx + kz‘/lzw BO : Vl = BOVvlzw o = k2307 (395)

where k is the magnitude of the wavevector k. Note also that the solenoidal condition in Fourier
space becomes k- By = 0, implying that no field perturbation can be developed in the direction
of wave propagation.

Dividing Eq. (3.93) by po and substituting o = k- Bg = k.By = k.Va\/lopo (where
Va = |Bol|//1op is the Alfvén speed), we obtain

(W = B2VH Vi — (k- Vy) [(a® + VD) k — k. V22] + k. V2Vi.k = 0. (3.96)

Equation (3.96) is a linear homogeneous equation in V; and, using matrix notation, we rewrite
it as

AV, =0, (3.97)
where the matrix A is
w? — K2V2 — a?k? 0 —a?kyk,
A= 0 w? — k2V2 0 : (3.98)
—a%k,k, 0 w? — ang

In the first matrix element, Ajq, we have used —V2(k2 + k2) = —k?V;2. Equation (3.98) has a
non-trivial solution if the determinant of the matrix A is zero,

det(A) = (w® — k2V?) [(w® — K*VZ — a®k2) (w? — a®k?) — a'k2K2] = 0, (3.99)
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which, after simplification, gives the dispersion relation

[(:)2_‘/&200520} [(:)4_ (%)Q(aQ—&-Vf) +a®V2cos20| = 0. (3.100)

Eq. (3.100) has three independent roots in w?, corresponding to three different types of waves

that can propagate through a magnetized fluid:

3.9.2 Alfvén waves

The first root corresponds to the Alfvén wave (also known as the shear Alfvén wave) and is
given by

k- By
v/ HopPo

and the corresponding eigenvector from Eq. (3.98) is V1 = (0, V1,,0). Thus the velocity pertur-
bation must lie in the y-direction and therefore k- V; = V- By = 0. By looking at Egs. (3.88)
and (3.91), we see that this wave carries zero perturbation in density and pressure and it has
an incompressible nature. This does not mean that the plasma is incompressible, but just the
Alfvén wave carries oscillations in velocity and magnetic field only. In addition, since k-B; =0
always, perturbations in both velocity and magnetic field are always orthogonal to the direction
of wave propagation: the Alfvén wave mode is a transverse wave. In addition, from Egs. (3.90),
with use of Eq. (3.101), we obtain a relation between the perturbations of magnetic field and
velocity:

w=FkV,ycosf = Lk, V, =+ (3.101)

k- By B, Vv,
B, =-— "4 that — =F—. 3.102
1 1, SO a B() + Va ( )
Taking the square of the previous relation yields
V2
POl -, (3.103)
B1/wo

that is, the perturbation carries equal kinetic and magnetic energy contributions. We also note
that taking the scalar product of Eq. (3.102) with By, we also have By - B; = 0 which means
that Alfvén waves are generated by magnetic tension only, thereby strenghtening the analogy
between a field line and an elastic string.
Finally, we notice that the Alfvén wave solution found so far, is also an exact solution of
the full MHD equations without requiring that |B1| < |Bp| but assuming that
B, vy

By + B{| = const., — =+—. 3.104

|Bo + B Bo A (3.104)
Large perturbations of velocity and magnetic field can be related to nonlinear Alfvén wave
modes, as observed in the solar wind.

3.9.3 Fast and slow magnetosonic waves

The other two roots are given by

O A Y

_ 3.105
k 5 (3.105)
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The two solutions are always real and correspond to the fast magnetosonic (+) and slow mag-
netosonic (—) waves. The corresponding eigenvectors, from Eq. (3.98), lie in the x-z plane,
Vi = (V1£,0,V1,). As a consequence, we have k - Vi # 0, and, similarly, Vi - By # 0:
these waves are compressive in nature and involve plasma motion in both the parallel and the
perpendicular field direction.

Notice that, in general (w/k)siow < a while (w/k)fagt > a. The properties of these waves
depend on the ratio between a? and Va2 and on the relative orientation between k and Bj.

e For parallel propagation (k|| Bp or §# = 0) the matrix A in Eq. (3.98) is diagonal and the
solutions given by Eq. (3.105) are reduced to

2 2 2 2 _ 42 a® for a>YV
<g> _ e+ Vo Ve —a| 3 (3.106)
k / fast 2 Va2 for a<V,
2
<E>2 _ a2 + ‘/;2 . |Va2 _ aQ\ _ Vi for a>V, . (3.107)
k / slow 2 a? for a< Va

In a weakly magnetized medium (a > V,), the fast magnetosonic wave becomes an acoustic
(or sound) wave whereas the slow mode propagates at the Alfvén speed. Conversely, in
a strongly magnetized medium where V, > a, the fast and slow modes propagate at the
Alfvén and sound speed, respectively.

Note that the acoustic mode (w/k = =+a) is characterized by V1 = (0,0,V1,) < k and
by no field perturbation, (B; = 0), the wave is longitudinal. For w/k = £V}, implying
Vi = (V14,0,0), and the wave becomes identical to a transverse Alfvén wave.

e For perpendicular propagation (kLB or § = +m/2) the matrix A in Eq. (3.98) is again
diagonal and the solutions of dispersion relation are reduced to

9 2 2 2 2
(2) =%+ Vatla v Val _ 2y v (3.108)
k / fast 2
w2 a2+Va2—|a2—|—Va2|
— = =0. 3.109
<k‘)slow 2 ( )

Thus the fast mode becomes the magnetoacoustic wave with phase velocity equal to
Va? + V2: this is a longitudinal wave (k oc V1, as it can be verified from Eq. (3.89),
keeping in mind that k - By = 0) and it is driven by magnetic pressure. Magnetic per-
turbations develop along the background field (see Eq. (3.90)) and consist of compression
and rarefaction of the field without line bending. On the contrary, the slow waves tend
to zero.

As a final remark we note that taking the scalar product of Eq. (3.89) with k, using (3.91) to
express k - V1, and remembering that k - B; = 0, we obtain

w? 1
——5 — 1| =—Bgy- Bj. 3.110
n (1) = B (3.110)

The previous equation shows that for fast waves, (w?/k? > a?), pressure and magnetic fluc-
tuations have the same sign and tend to reinforce one another. However, for slow waves,
(w?/k? < a?), an increase of gas pressure is accompanied by a decrease of magnetic pressure,
and vice versa.



Chapter 3. Basics of Magnetohydrodynamics (MHD) 47

3.10 Magnetorotational Instability (MRI)

3.10.1 Linear analysis of MRI

The problem of the hydrodynamic stability of a fluid, subjected to a magnetic field and rotation,
has been studied for a long time. The analysis of MRI is however first systematically described
in Balbus & Hawley (1991). Because of the ubiquity of magnetic fields can the turbulences
of magnetized rotating matter (the gas is partially or fully ionized) act as a main source of
anomalous viscosity. The matter is subjected to very strong shear instabilities caused by weak
magnetic field that can be far more destabilizing than a strong one (the strong field would
rather enforce the matter to rotate as a rigid body). Arbitrarily small magnetic field cannot
therefore be neglected in linear analysis of the disk disturbances.

The basic destabilizing mechanism act as follows: consider a differentially rotating material
that is perpendicularly threaded by magnetic field, whose field lines are therefore “vertically”
oriented. The motion of the volume element that is displaced in the outward direction from its
orbit, is elastically controlled by the magnetic field. The field is trying to eliminate the effects
caused by shear friction between radial rotating segments by enforcement of rigid rotation
while it simultaneously returns this element back to its original position (and thus eliminates
stretching). The second effect is stabilizing, while the first effect acts as the source of the
instability. Magnetic field is trying to force the gas element to rotate too fast for its new radial
location, the excess of centrifugal force drives the element further outward. At sufficiently long
wavelengths (longer than a critical wavelength that corresponds to a critical wavenumber) is the
returning force too weak and destabilization wins. The presence of the finite value of the vertical
wavenumber of the magnetic field is essential, otherwise no axisymmetric instability occurs. The
MRI generates the viscous couple in the rotating matter, caused by an interpenetration of the
gas volume elements with higher and lower angular momentum, leading to turbulence.

The dispersion relation is described in Balbus & Hawley (1991) with the following assump-
tions: the radial component of the magnetic field is in the linear analysis of the axisymmetric
case set to zero (Br = 0), while in the more advanced study there is analyzed also the case with
the nonzero radial component (Br # 0). The behavior of the fluid is subject to the Boussinesq
approzimation (Boussinesq 1897), which is considered to be valid for the incompressible dis-
turbances of interest. This approximation assumes that the variations of density are negligible
(we set p — po = const. in the continuity equation and in the advection term of equation of
motion). However, the weak density variations are important for buoyancy, so that we retain
the density variations in the right-hand side of the equation of motion and in the equation of
state, while the pressure perturbations are neglected in the equation of state (Fricke 1969). In
fluid flows driven by buoyancy (buoyancy-driven flows) are the density perturbations connected
only with the reduced gravity via the equation

5
5g=2Lg with 8p=0 otherwise, (3.111)
P

the fluid is thus essentially incompressible.

The Boussinesq approximation enables us to eliminate acoustic waves, since acoustic waves
are the density perturbations. We consider constant angular velocity €2 on radial (cylindrical)
segments with Vg ~ 0, V, = 0 and 0§2/0z = 0. Axisymmetric (0/0¢ = 0) Eulerian space-time
dependent perturbation 0§ of a general quantity & with radial and vertical wavenumbers kg and
k, and the angular frequency w of the MRI can be described as

56 = gy ellhrfthzz=ut) (3.112)
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The set of seven basic ideal MHD equations, that is, equation of continuity (3.11), three mo-
mentum equations (3.12) and three Maxwell-Faraday (induction) equations (3.14), we expand
to first order. Since the density in the continuity equation does not vary, we set V-V = 0, and
the equation takes the explicit form (with only the largest terms retained)

10 0

2o BVR+ V) + o-(V: +6V2) = 0. (3.113)

We do not take into account the constant unperturbed radial and vertical components of velocity
and we also neglect any variations in radius R. After linearization of perturbations according
to Eq. (3.112), we write Eq. (3.113) as

krdVig + k.0V. = 0. (3.114)

The radial component of momentum equation (3.12), where the terms that contain the
radial derivative of the radial magnetic field, 0Br/OR, cancel, is

oV Ve V0V, oveg VI 1 1
Ve, Ve VoOVi  (OVe Y ,10p 1 0
ot OR R 0¢ 0z R  pOR  2uppOR

1 (B,0B 0Br B2
0

(B3 +B2) -

R 0o 0. R

According to the Boussinesq approximation (3.111), the radial component of the density per-
turbation (assuming the hydrostatic equilibrium) is

dop Op
0gr = ——5——=. 3.116
97 =~ 5 oR ( )
After linearization of perturbations according to Eq. (3.112), with use of Eq. (3.116), we write
. ikR ikR ikZ 5/) 8]7
—iwdVgr — 2Q0Vy + —dp+ — (Byd0By + B,6B,) — B,0Br — —5—-—= =0. 3.117
f “T ) 1op (BodBo + B.0B:) pop” T P2 OR (3.117)

In a similar way we analyze the vertical component of the momentum equation (3.12). Its
explicit form (after cancellation of the terms containing 0B,/0z) is
oV, ov, VuoV, ov, 10p 1 0, 5 9
Vi — V. -——+——(Bs+B3) —
ot * R8R+ R 0¢ + * 0z +p8z+2uop5}z( RE ¢)
1 0B, B,0B
fiop

g, =0. (3.118)

"OorR T R 06
The same linearization of perturbations, using the analog of Eq. (3.116), leads to
ik, ik, opdp

1wV, + —20p + —2 By6By — — = 0. 3.119
p P o T o ( )

The explicit form of the azimuthal momentum equation (3.12), omitting the negligible viscous
terms (we employ only the scalar pressure, while the terms containing the derivative 0Bg/0¢
cancel), is

oV, oV, VyoV, oV, VgV, 1op 1 10 ,.,
Y g P - Y (B%4B%) -
ot "VEeR TR a0 TV oz R p3¢+2,uopR6¢( R+ B)

1 OB, OB, BgrB,
(B B — 0. 12
MOp(R8R+zaz+ 7 0 (3.120)
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Linearization of perturbations in Eq. (3.120), according to Eq. (3.112), leads to

—iwdV + Vi (%‘2’ + ‘2) ;’Z (3.121)
We rewrite the term in bracket in Eq. (3.121) as 2Q + RdQ)/dR = x2/(2Q), where x is the
epicyclic frequency, k? = 4Q? +dQ?/d(In R). We derived the epicyclic frequency by considering
a small radial displacement of an arbitrary particle (body or fluid parcel), orbiting at the circular
trajectory with radius Ry in a gravitational potential ®. The acceleration of the displacement,
described by its only nonzero radial component, ap = R — R¢2 However, since ap is the
derivative of ®, ag = —0®/OR, we obtain R = —8®/OR + j2/R>, where j is the specific
angular momentum of the displaced body. Expansion of the radial acceleration R to first order
in Ry leads to

i
OR?

352

R+ +R4 (R— Ry) =0, (3.122)

Ro
where the term in bracket represents the square of the epicyclic frequency, k2
Equation (3.121) we rewrite into the simplified form

2

. ik,
—1w5V¢ + E(SVR - Lop —B 5B¢ =0. (3.123)

We rewrite the radial component of the induction equation (3.14), using the vector identity
Vx(VxB)=V(V-B)+(B-V)V —(V-V)B—-B(V-V), and involving the Maxwell
equation V - B = (),

0Br By Vg oVr 0Br V3 0Bgr 0Bgr

A, BZ N 4
o R 00 8Z+V8R+R8¢+V8z
13V¢ ov, Vg
By (=22 YR o, 124
+R<Ra¢+az+R> 0 (3.124)

Linearization of perturbations in Eq. (3.124), according to Eq. (3.112) and with use of Eq. (3.116),
taking into account the above constraints (including the assumption Br = 0), leads to

—iw5BR — iszz(sz =0. (3.125)
The vertical component of the induction equation (3.14) is
0B, oV, BydV, 0B, V,;0B, 0B,
- B VR - Vz
o Pror "R oo TVRor TR as TV as
OVr 10Vy VR
+ ( R + R 90 + 0 (3.126)

Linearization of perturbations in Eq. (3.126) according to Eq. (3.112) and with use of Eq. (3.116),
including the same constraints as in Eq. (3.125), gives

—iwdB, +1krB,0Vr =0, so that (see Eq. (3.114)) —iwdB, —ik,B.6V, =0, (3.127)
while the azimuthal component of the induction equation (3.14) is

OBy oV, oV, 0B, V;0By 0By BgpV,
ot OR 5. VR R R 0¢ TV TR

oV aV,
+B, ( a; o ) = 0. (3.128)

- B,

_BR
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Linearization of perturbations in Eq. (3.128), according to Eq. (3.112), with use of Eqs. (3.116)
and (3.114), including the same constraints as in Eq. (3.125), gives

) oVy , Vs
—iwdBy — ——0Bgr — ik, B,0 —0Br =0, 12
iwdBy — =7 0BR ~ 1 Vg + 7 0Br 0 (3.129)
which can be further simplified as
By — B $Bp — ik, B.OV, = 0 (3.130)
1w ¢ dlnR R 1 z-z (b - . .

The set of Eqgs. (3.114), (3.117), (3.119), (3.123), (3.125), (3.127), and (3.130) is closed
by conditions of entropy of the adiabatic perturbations (where s is the density of the entropy
(1.83)),

ds Os

The first law of thermodynamics (de = ¢y dT') for the ideal gas gives
dT d d d
ds=cy——RL = ¢y <p - 'yp> . (3.132)
T P p P

By integrating Eq. (3.132) in case of monoatomic gas (7 = 5/3) between two states “0” and “1”,
we obtain

As =cyln

» —5/3
23 (pl> ] , sothat s=cpln (pp*5/3) , (3.133)
Po \ Po

where s is the entropy of an ideal gas with constant specific heats to within an arbitrary constant
of integration (Zel’dovich & Raizer 1967).

Linearization of isentropic perturbations (i.e., of a process that is reversible and adiabatic,
the entropy of a considered system therefore does not change) in Eq. (3.133), according to
Eq. (3.112) with use of Eq. (3.116), valid for the Boussinesq approximation, gives

—5/3 -5/3
LY o WAL

3, o0 5 = 0. (3.134)

Further strategy is to express all perturbations in terms of 6V, by eliminating all terms 0Vxg.
We can rewrite Eq. (3.134) with use of Eq. (3.114),

5p 3 k. Oln (pp=>/3)  9ln (pp=°/3)
L A 2 -~ : 1
P 5iw6v (kR OR 0z (3.135)
Combining Egs. (3.119) and (3.135), we obtain
5p BydBy V. 1 k. Oln (pp=>/3)  Oln (pp=>/3
op  Bs0By _ Vi 3 10p (k. 0lm(pp™") 0m(pp™7) )| (3.136)
P Lo p k. Swpdz \ kr OR 0z

Using the expression for By from Eq. (3.130), we write

5V, k K2 K2V 40 E2v2 \ 7!
OVy= —22 [ 2 4 2z Az 1— 24z 3.137
¢ R( 20 o2 dlnR)( w? > ’ (8.137)
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where we introduce the Alfvén speed (Bittencourt 2004), Vi = B2/(uop) in SI units. With
use of Eq. (3.114) we rewrite Eqs. (3.125) and (3.127) as

2
6Bp = ng%j 8B, = —k:sz%. (3.138)
kr w w

By substituting Eq. (3.137) and Eq. (3.138) into Eq. (3.130), we obtain

. w2

B. k? K2v2 o\
6By = mwfgé <1 - = AZ) 5V (3.139)

Substituting Egs. (3.135)-(3.138) into Eq. (3.115) and simplifying, we obtain the dispersion
relation

g B8 (kop  op\ (kndln(pp™?) Ol (o)) |
k2 |5p \ k., 02 OR k., 0z OR
4772
— 402 kigf‘z =0, (3.140)

where @? = w? — kngjZ and k2 = k% + k2. We can yet simplify the relation by setting

Op O0ln (pp’5/3) _ Op Jln (pp’5/3)
9z  OR T OR 9z

which follows from the assumption of rotation on cylinders, or equivalently, that isobaric and
isochoric surfaces coincide (Balbus & Hawley 1991).

The Brunt-Vdisdld frequency is defined as a frequency of the fluid parcel with density
pint that oscillates due to small displacement & = £ — & around equilibrium position &y in
surrounding medium with density pext, where £ is the general coordinate direction. If the fluid
parcel is displaced along the coordinate £ and the motion is adiabatic without viscous effects,
the equation of motion is

(3.141)

Pint 5 = -9 [pint - Pext] . (3.142)

Expanding the right-hand side of Eq. (3.142) to first order in ¢ around the equilibrium position
&, we obtain the equation of harmonic oscillator

g 0Ap

+
S\ e
&o

¢ =0, (3.143)

where Ap = pint — pext- The term in bracket in Eq. (3.143) represents the square of the Brunt-
Viisdld frequency Ng that corresponds to oscillations in the direction of the coordinate & (in
case of O(Ap)/0& < 0 we obtain unstable solution, diverging to infinity).

We assume the adiabatic behavior of fluid parcel interior, we also consider the pressure
equilibrium of the fluid parcel with surrounding medium, pin; = pext (this approximation is
valid only for the subsonic motion). Including the definition of the adiabatic exponent v =
(dlnp/dIn pint)ag from Sect. 1.6, we obtain from Eq. (3.143) the adiabatic expression for the
Brunt-Vaiséld frequency in the form

10p 10p
N2 =g =L _2%° 144
§ad =9 (’Vp o€ p<95> ’ (3.144)
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where pext we hereafter denote as p. Applying the latter expression for the Brunt-Viisild
frequency for the monoatomic ideal gas in hydrostatic equilibrium, we simplify Eq. (3.141) into
the form (for example for the piece N,),

3 9pdln (pp=°/3

We thus obtain the expression for the piece of the Brunt-Viisila frequency that corresponds to
vertical oscillations. Analogously we obtain the expression for the piece of the Brunt-Viisila
frequency that corresponds to radial oscillations, Ngr. The quantities Nr and NN, are the pieces
of a scalar quantity N, (see Eq. (3.145))

N2 = —;’p (Vp) - [V In <pp*5/3)} = N%+ N2 (3.146)

Using the pieces of Brunt-Viisila frequency, we express the dispersion relation (3.140) as

k% .

2 k.

k 2
K2+ <RNZ _ NR) ] o —40%K2VE = 0. (3.147)

From Eq. (3.140) follows that only z-component of magnetic field enters the dispersion
relation (as a part of term V4, or as a part of term @), and that it is always multiplied by
the wavenumber k,. The importance of arbitrarily small magnetic fields can thus be readily
understood: strong magnetic tension forces can be generated at sufficiently small perturbation
wavelengths. We also see that by absence of the magnetic field the wavenumbers are not
scaled: internal waves propagate with a frequency that depends only on the direction of the
wavenumber. The presence of the magnetic field however enables us to establish the inverse
length scale for the wavenumbers, 2/Vy,. By normalizing the components of the wavenumber
k with use of the characteristic value Q/Vy,, we can completely scale the magnetic field out of
the problem. Only the values of the wavenumbers that are relative to the scaled characteristic
Q/V4, play a role, not the values of magnetic field induction themselves.

We can also analyze the more general case with nonzero radial component of magnetic
field (Bgr # 0). Considering the ideal MHD Faraday’s law of electromagnetic induction (3.14),
assuming axial symmetry (0/0¢ = 0) with Q = Q(R), and neglecting Vi and V; in Egs. (3.124),
(3.126), (3.128), we have the only relevant field freezing equation,

0By oVy  BRrVy dQ
= Br—2 _ = . .14
o~ ""OR R FdlnR (3.148)
Since Bg does not change with time, the solution of the equation (3.148) is
Br dQ
By(t) = B4(0) |1 —t|. 3.149

The presence of radial field component leads to a linear growth of By with time in the un-
perturbed disk. However, since the azimuthal field component is not present in the dispersion
relation (3.147) and the inclusion of radial field component does not change that (the w fre-
quency is also not explicitly time-dependent), no generality is lost by considering only the
special case Br = 0.
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3.10.2 Analysis of stability limit of perturbations caused by shears

Since Eq. (3.147) is a quadratic relation for the squared scaled angular MRI frequency &2 (and
thus for w?), it is always a real and continuous function of its parameters in the dispersion
relation. We further investigate the stability of the weakly magnetized disk by conditions in
the neighborhood of the values w? = 0 or @? = —k2V3_. In this limit the equation (3.147) is
written as

dQ?
k% (k2V3. + NZ) — 2kpk,NgN, + k2 (le + N3 + kivjz> = 0. (3.150)
n

We regard Eq. (3.150) as a quadratic equation for kg, noting that this equation would not allow
real solutions for kg in case its discriminant D is negative,

dn? dn?
=— |Kvi +k2vE [ N? N? 151
|: zVAz + zVAz + din R + 2dln R ) (3 5 )

and thereby assuring stability, since w? could not then pass through zero. This requirement of
stability we express as

~D>0. (3.152)

From the assumption N2 > 0, the inequality (3.152) holds for all non-vanishing k. by satisfying

2
% >0, (3.153)

which we regard as the criterion of stability. The violation of this criterion leads to instability
for k., < k crit. The value k; ot we obtain from Eq. (3.151) by setting D = 0,

1 an? \? ao2 1 a0
k)i = =5 % | [ V2 — 4N? — |N? . 154
(R Jeri 2V2. ( +d1nR> *dlnR [ T iR (3.154)
If N3 < N2, the critical vertical wavenumber becomes
1| ao2 [V
Dt | = =— | ———= 1
’ (k )Crlt ‘ VAz ‘dh’lR (3 55)

Moreover, if the Brunt-Viisild frequency N? = 0 or if it is quite negligible (noting that
the square root of the quadratic term (dQ?/dIn R)? may become negative), the solution of
Eq. (3.154) becomes (3.155). If N2 = 0, the criterion of stability is

d02
N2+ =" >0. 3.156
Rt iR = ( )

In case of supersonic rotational velocity (where Ni becomes negligible), the relation (3.156)
equals the criterion expressed in Eq. (3.153).
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3.11 Rigid Rotators

Force equilibrium for a mass element dm located in the position r in stellar proximity is given
by the balance of the components of the gravitational and centrifugal forces tangential to the
local magnetic field line (Preuss et al. 2004),

(Fe+Fc)-B=0. (3.157)

We may write the expressions for centrifugal force in cylindrical frame and in spherical frame,
respectively, in the form (where the boldface-typed quantities with “hat* are unit vectors)

Fo=omQ®RR, Fo=omQ2r [? ) (? : Q)} . (3.158)

Considering the dipole stellar magnetic field, we denote the angle between magnetic and rotation
axes as ¥ and the azimuthal angle of the magnetic moment vector m as ¢. Magnetic dipole
field with a magnetic dipole moment m = m#i in spherical coordinates is

B(r) = Zﬁ:’; 3 (- 7)F — ] . (3.159)

Inserting Eqs. (3.158) (spherical equation) and (3.159) together with the expression for the
gravitational force Fg = —F GM,0m/r? in Eq. (3.157) consequently yields (Preuss et al. 2004),

[?(1-%)-@(?-@)}-[3(m-?)?—m}: , (3.160)

where (GM*/QQ)I/?’ = R, denotes the corotation radius. We distinguish three possible config-
urations of distribution of magnetically confined circumstellar matter in oblique rotators:

e Aligned rotator where ¢ = 0 (i1 = §2) gives the following equilibrium condition for the

confined matter,
{2 [1 B <Rco>3
r

Equation (3.161) implies two solutions:

—3(?-@)2“}(?-(}):0. (3.161)

1. cos = # - = 0: accumulation of matter in (coinciding magnetic and rotational)
equatorial plane of the star.

R 2 (Reo )’
2.?-Q#O,c0520:1—§ =

above and below the equatorial plane whose axes coincide with the stellar rotational
axis. This solution only exists for 7 > (2/3)1/3R.,, the stability tests however show
that the “chimney” solution is unstable while the equatorial solution is stable for
r > Reo.

: matter accumulation in chimney-shaped surfaces

A~

e Perpendicular rotator, ¢ = w/2 (M- Q = 0) where Eq. (3.160) gives the following equi-

librium,
r

Equation (3.162) again implies two solutions:

—3(?-@)2} (- ) =0. (3.162)
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1. cosf = r - m = 0: the solution corresponds to the equatorial plane, however now
with respect to the magnetic axis.

RCO

r

9 3
2. F-m#0, cos’f = 3 1- ( > : chimney-shaped structure of confined matter

that is axisymmetric with respect to the rotation axis of the star. The solution only
exists for r > R¢,. The stability analysis in this case shows that both solutions are
unstable near the star (up to 1-2 R¢,) while they are stable further out.

e Oblique rotators where the equilibrium condition from Eq. (3.160) gives

(b-2) o

This indicates more complicated structure of the equilibrium regions: in case of small 1)
there forms a disk-like and a chimney- shaped structure (with a disk plane in the magnetic
equatorial plane and with the the chimney axis tilted with respect to the rotation axis)
while for large ¥ the chimney shapes become more curved and tilted and the disk becomes
somewhat warped (see (Preuss et al. 2004) for details).

m+cos¢s‘z}.f_o. (3.163)

The study of Preuss et al. (2004) presents a formulation of a strong magnetic field limit based
on the condition of the balance of forces that are tangential to the field lines and maps out
the complex surfaces on which the circumstellar material can accumulate (Townsend & Owocki
2005).

3.11.1 Rigidly rotating magnetosphere (RRM) model

The model of a magnetosphere that is at rest in a corotating reference frame whose basic princi-
ples follow the considerations of Townsend & Owocki (2005): if the magnetic field line potential
U (s) exhibits an extremum along the field line (where s is the coordinate direction along the field
line), so that d¥/ds = ¥ = 0 at some point, then the plasma parcel remains at rest. Whether
the parcel can remain at such an equilibrium point at rest over significant timescales depends
however on the nature of the extremum. At a local maximum where d?¥/ds?> = ¥” < 0 the
equilibrium is unstable: small displacements away from the extremal point perpetually grow.
On the other hand, at a local minimum with ¥” > 0, the equilibrium is stable: any small
displacement along the local magnetic field line produces a restoring force directed toward the
equilibrium point. Such minima represent the locations for circumstellar matter to accumulate,
it forms a magnetosphere that is at rest in a corotating reference frame.

Comparing the potentials that arise from Eq. 3.157: within the Roche limit (where the
most of the stellar mass is assumed to be concentrated centrally with a spherically symmetric
distribution) the effective potential W is in spherical coordinates (r, 0, ¢) given by

M, 1 i

U(r,0) = —Cj(a) - 59%2(9) sin” 0. (3.164)

Using the dimensionless coordinate £ = /R0, Eq. (3.164) becomes

GM, 1 1
V) =—"(->—-= 2sin26>. 3.165
© =% (-5 3¢ (3.165)
We introduce the dimensionless potential Z, independent of the angular (rotational) velocity €:
=(ey Reo R T T

=) = GM*\If(E) =" 2§ sin“ 6. (3.166)
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In Eq. (3.166) we can identify two regimes: if r is much smaller than the corotation radius
R (£ < 1), the potential = is spherically symmetric and increases outwards. Conversely, if
r greatly exceeds Re, (£sinf > 1), the potential = exhibits the cylindrical symmetry about
the same axis and decreases outwards. In the latter regime the field line potential exhibits the
minimum near which circumstellar plasma accumulates.

In a corotating spherical frame with aligned axes Eq. (3.159) becomes

B(r)=1" (2cos9?+sin9é). (3.167)
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We obtain the projection By of the field measured along the field line as By = (B2+B3)'/? = B,

B="0" /11 3c0s2 . (3.168)

4 r

By integrating the spherical field-line identity dr/B, = r df/ By, where from Eq. (3.167) follows
B, /By = 2cosf/sin 0, we obtain the parametric equation

¢ = vysin?6, (3.169)

where the parameter v specifies the maximum radius Rpeax (0 = 7/2) of the field line in units
of the corotation radius v = Rpeak/Rco. Inserting Eq. (3.169) into Eq. (3.166), we obtain the
dimensionless potential of a dipole field line in case of aligned dipole configuration (m-Q = 1),
1 L 5.6

R 57 sin 0, (3.170)

(11

(0) =

By integrating the field-line identity ds/B = rdf/By, from Egs. (3.167), (3.169) and (3.168)

we obtain

d
& Reoysin® /1 + 3cos? 6. (3.171)

dé

For § = 7/2 we use the identity & = . Differentiation =" = (8')2(d*Z/d#?) + 0" (dZ/d0) gives
= _, 1 2
ey~ — . 172
W= (6 ) 1)

Since =" must be positive in order to constitute an accumulation surface, the inner truncation
radius is thus given by &, ~ 0.87 at which =" changes from positive (§ > &) to negative
(€ < &n) values. Throughout the region in the equatorial plane between this truncation radius
&n and the corotation radius (£ = 1) magnetic tension supports material against the net inward
pull caused by gravity that exceeds here the centrifugal force. Beyond this region, when (£ > 1)
the centrifugal force surpasses gravity and the effect of magnetic tension holds the material down
against the net outward pull (Townsend & Owocki 2005). In Keplerian disks the gravitational
and centrifugal force is in exact balance, this is not required in a RRM inasmuch the magnetic
tension can absorb any net resultant force perpendicular to field lines.

Hydrostatic stratification along the field line is governed by the equation of hydrostatic
balance dP/ds = —pdWV¥/ds where the gas pressure is given by Eq. (1.101). For simplicity we
assume the constant temperature 7', by integrating the hydrostatic equilibrium condition we
obtain the density distribution along the field line,

U(s)— ¥,

—_—l 3.173
= (3.173)

p(8) = pm exp | —pmy
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where the subscript m denotes the value at the potential minimum where s = s,,. Taylor
expansion of the effective potential W(s) about this minimum gives

1
U(s) =, + 5xp”(s —sm)2 ..., (3.174)

where we have used the fact that by the definition W/ = 0. In the neighborhood of the minimum
the density distribution Eq. (3.173) may be thus well approximated by

U (s — 8,)2 S — Sm)?
p(8) = pp, exp |:_MmU(2k'T):| R P €XP [_(h%nm)} . (3.175)
The density scale height h,, of the RRM (using Eq. (3.166) and Eq. (3.172) that gives 2" =
3/R2, for £ > 1) therefore is

2T 1 2kT Reo 1 2kT 3/2
= \/Mmu v \/umu G\ = =\ g, R for r > Ree (3.176)

Similar vertical stratification, H ~ R3/2, formally applies for Keplerian disks, however, for the
RRM this remains constant even far from the origin (it does not produce the flaring disk). By
integrating Eq. (3.175) over the Gaussian hydrostatic stratification, we obtain the relation for
the local surface density oy,

0 o0 (S _ Sm)2 .

Om = / p(s)ds = pm/ exp {_hQ] ds, i.e. om &~ tmp/Thm, (3.177)
—0oQ —0o m

where p,, denotes the projection cosine to the surface normal.

Model of the global distribution of the surface density that is proportional to the accumu-
lation rate of material loaded from the star’s radiatively driven wind has been proposed by
Townsend & Owocki (2005): for a dipole flux-tube bundle intersecting the stellar surface at
r = R, with a projection cosine u, and having a cross-sectional area dA,, the rate of mass
increase is

. ZM*M
m =
47 R?

dA,, (3.178)

where the factor 2 takes into account the mass injection at two distinct footpoints. Considering
the simple case with a single minimum at field line coordinate s,, where the flux-tube area is
dA,, and the projection cosine to the accumulation surface normal is p,, the corresponding
rate of increase of the surface density (where &,, dA,, = mu,,) can be written as

B 2,u*M dA,
M rR? A4,

(3.179)

Om
Due to the divergence free constraint V - B = 0 we have the identity dA, By = dA,,, By, whose

substitution into Eq. (3.179) gives

_ QM*M B,
m=HmrR? B,

(3.180)

For a dipole field thus the material feeding rate of the disk obviously declines with radius,
according to &, ~ B ~ r~3 (cf. Eq. (3.167), see Townsend & Owocki (2005) for further
details).
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3.12 Dynamo Effect

Dynamo theory describes the process through which a rotating, convecting, and electrically
conducting fluid acts to maintain a magnetic field. This theory is used to explain the presence
of anomalously long-lived magnetic fields in astrophysical bodies. The conductive fluid in the
geodynamo is liquid iron in the outer core, and in the solar dynamo it is an ionized gas in
the transition region between the radiative interior and the differentially rotating outer con-
vective zone. Dynamo theory of astrophysical bodies uses magnetohydrodynamic equations to
investigate how the fluid can continuously regenerate the magnetic field.
There are three factors necessary for a dynamo to operate:

e An electrically conductive fluid medium
e Kinetic energy provided by rotation of the body

e An internal energy source to drive convective motions within the fluid.

For example, in case of the Earth, the magnetic field is induced and constantly maintained by
the convection of liquid iron in the outer core. Rotation in the outer core is supplied by the
Coriolis effect caused by the rotation of the Earth. The coriolis force tends to organize fluid
motions and electric currents into columns aligned with the rotation axis. Induction or creation
of magnetic field is described by the induction equation (3.50).

3.12.1 Equation of motion in a rotating frame

We now extend the expressions (1.32) - (1.34) derived in Sect. 1.3.1 by adding the terms for
non-inertial (fictitious) forces in a rotating frame with a fixed axis of rotation that coincides
with the z-axis in a static frame. Denoting the quantities in rotating frame as primed and the
quantities in static (inertial) frame as unprimed (due to fixed rotation axis we have R’ = R for
the magnitudes of cylindrical position vectors), we obtain the vector of velocity

V=V 1+QxR, (3.181)

where € is the angular velocity of the rotating frame (cf. Sect. A.2.3 in Kurfiirst (2017)).
Substituting the velocity V’ into the Lagrangian £ of the free particle in the inertial frame,

L=mV?/2, (3.182)
and differentiating it, we obtain the expression for the acceleration term in the rotating frame,

v dVv’ , dQ , ,
The second term in the right-hand side of Eq. (3.183) represents the centrifugal acceleration

that in case of a stationary axisymmetric rotation can be written as
2 2 2
Q°R' =V /R =Vj/R, (3.184)

where V; is the azimuthal (rotation) velocity of the rotating frame point in the distance R from
the axis. The third term in the right-hand side of Eq. (3.183) is the so-called Euler acceleration
that in uniformly rotating frame vanishes. The last term is the Coriolis acceleration that in
case of a stationary axisymmetric rotation is perpendicular to V' and can be written as

20V’ = 2VeV'/R. (3.185)
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3.12.2 Kinematic dynamo theory

In kinematic dynamo theory the velocity field is prescribed, instead of being a dynamic variable.
This method cannot provide the time variable behavior of a fully nonlinear chaotic dynamo but
it is useful in studying how magnetic field strength varies with the flow structure and rotational
speed. Using Maxwell’s equations simultaneously with the curl of Ohm’s Law, one can derive
what is basically the linear eigenvalue equation for magnetic fields B which can be done when
assuming that the magnetic field is independent from the velocity field. One arrives at a critical
magnetic Reynolds number R, crit, above which the flow strength is sufficient to amplify the
imposed magnetic field, and below which it decays. The most functional feature of kinematic
dynamo theory is that it can be used to test whether a velocity field is or is not capable
of dynamo action. By applying a certain velocity field to a small magnetic field, it can be
determined through observation whether the magnetic field tends to grow or not in reaction to
the applied flow. If the magnetic field does grow, then the system is either capable of dynamo
action or is a dynamo, but if the magnetic field does not grow, then it is simply referred to as
non-dynamo.

3.12.3 Nonlinear dynamo theory

The kinematic approximation becomes invalid when the magnetic field becomes strong enough
to affect the fluid motions. In that case the velocity field becomes affected by the Lorentz force,
and so the induction equation is no longer linear in the magnetic field. In most cases this leads
to a quenching of the amplitude of the dynamo. Such dynamos are sometimes also referred to
as hydromagnetic dynamos.

Virtually all dynamos in astrophysics and geophysics are hydromagnetic dynamos. In fact,
we need numerical approach to simulate fully nonlinear dynamos where a minimum of five
following equations are needed: The induction equation in the form (3.50),

B
a@t =V x (V x B)+1,V?B, (3.186)

Maxwell magnetic field constraint (3.3).
V.B=0, (3.187)

We use the simplification given by Boussinesq approzimation (see Eq. (3.111) and Sect. 3.10),
which reduces the continuity equation to

V.V=0, (3.188)

in which density variations are ignored except where they are multiplied by the gravitational
acceleration g so that the buoyancy forces can be included. Although this approximation may
not be always strictly valid (for example, in the Earth’s core the density variations of order 20%
can occur), it is nevertheless a useful simplification of equations which are difficult to solve.

Assuming now that we are in the uniformly rotating frame of reference, we write the equation
of motion (3.12), using Eq. (3.183) and omitting the prime notation, as

dv
p E+QX(QXR)+QQXV =-V-P+JxB+pg, (3.189)
where g = —V ® is the gravitational acceleration. Finally, we involve a heat transport equation
(1.90), noting that it particularly fits the Boussinesq approximation (3.188),

dr
T DV*T + qg, (3.190)
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where D is the thermal diffusivity and the term qg refers to non-conduction heat sources.

Following the definition of perturbations in Eqgs. (3.84) together with the Boussinesq approx-
imation (3.111) and using the simplified Navier-Stokes equation (1.58), the equation of motion
(3.189) becomes

vV o ax@xR +2xva~Lstvpiivive s, (3.101)
de po~  po Po

where v = 1/ pp is the kinematic viscosity, p; is the density perturbation that provides buoyancy,
and J is the electric current density.

Multiplying Eq. (3.191) by poV gives the rate of increase of kinetic energy density, poV?/2,
on the left-hand side. The last term on the right-hand side then is V - (4 x B) = V - F, which
represents the local contribution to the kinetic energy due to Lorentz force. However, following
Eqgs. (3.15) and (3.16), we obtain

9 [ B?
v-F, =2 <2MO> , (3.192)

because the last term in the right-hand side of Eq. (3.16) obviously vanishes due to the Maxwell
equation (3.187) and due to the Boussinesq approximation (3.188).

The scalar product of the induction equation (3.186) with B/ug gives the rate of increase of
the magnetic energy density, B?/(2u0), on the left-hand side. The first term on the right-hand
side of (3.186) is then B - [V x (V x B)] /uo. Following the discussion in Sect. 3.1 and using
Eq. (3.2), we have

2
lB-[Vx(VxB)]:—lB-[VxE}:a<B> (3.193)
H0 H0 ot \ 2ug

Comparing Eqgs. (3.192) and (3.193), we see that the term —V - F, = —V - (J x B) represents
the rate of transformation of kinetic energy to magnetic energy. This has to be non-negative at
least in part of the volume, for the dynamo to produce magnetic field.

Equation (3.193) for the rate of conversion of kinetic energy to magnetic energy, is equivalent
to a rate of work (power) done by a Lorentz force F;, = J x B on the matter, whose velocity
is V. This work is the result of nonconservative, non-inertial, and non-magnetic forces acting
on the fluid (particularly of the Coriolis force in case of the geomagnetic field).

A number of non-dimensional parameters can be found from the previous equations. The
Ekman number, E = v/(2QL? cos ), where L is a characteristic length scale of a phenomenon
and @ is the colatitude, measures the relative importance of the viscous force to the Coriolis
force. The Prandtl number P, = v/D and the magnetic Prandtl number P,, = v/, where L
is a characteristic length scale of a phenomenon and 6 is the colatitude, measures the relative
importance of the viscous force to the Coriolis force. Particularly useful in the geophysics is
the Elsasser number, A, that represents the ratio of the Lorentz force to the Coriolis force,
A = JB/(20V) = 0 B%/(2pQ), where o is the conductivity of the fluid, B is the magnetic field
induction, p is the mass density, and €2 is the angular velocity of rotation of the body.



Chapter 4

Radiative Transfer

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): Electromagnetic radiation can be decom-
posed into a spectrum that corresponds to waves of various wavelengths and frequencies, related
by YA = ¢, where v is the frequency, X is the wavelength, and ¢ ~ 3 x 108 ms™! is the velocity
of light in vacuum (for waves not traveling in a vacuum, c is replaced by the velocity of the
wave in the medium). We divide the spectrum into various regions. The frequency dependent
energy E = hv and temperature T = E/k, where h is Planck constant ~ 6.625 x 10734 J s, and
k is Boltzmann constant ~ 1.38 x 10723 JK L.

4.1 Radiative Flux

4.1.1 Macroscopic Description of the Propagation of Radiation

When the scale of a system greatly exceeds the wavelength of radiation (e.g., light shining
through a keyhole), we can consider radiation to travel in straight lines (rays) in free space or
homogeneous media - from this fact a transfer theory can be built. One of the most essential
concepts is that of energy flux: consider an element of area dA exposed to radiation for a time
dt. The amount of energy passing through the element should be proportional to dA dt¢, and we
quantify it as F'dAdt where the energy flux F is measured in Js~'m™2. Note that F depends
on the orientation of the element.

4.1.2 Flux from an Isotropic Source - the Inverse Square Law

A source of radiation is called isotropic if it emits energy equally in all directions. As an example
we take a spherically symmetric, isolated star. If we put imaginary spherical surfaces Sy, and S
at radii r; and r, respectively, about the source, conservation of energy dictates the total energy
passing through S7 must be the same as that passing through S (we assume for simplicity no
energy losses or gains between Sp, and S). Regarding a fixed sphere Sj,

t.
F(ry)4nr? = F(r)4mr?, sothat F(r) = Lm: . (4.1)
T
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Figure 4.1: Geometry for normally incident rays.

4.2 The Specific Intensity and its Moments

4.2.1 Specific Intensity

The flux measures an amount of the energy carried by all rays passing through a given area. A
more detailed description of radiation is to carry energy by individual rays: Construct an area
dA normal to the direction of the given ray and consider all rays passing through dA directed
within a solid angle dQ2 of the given ray (see Fig. 4.1). The energy crossing dA in time d¢ and
in frequency range dv is defined by

dE = I, dAdtdQdv, (4.2)

where I,,(v,Q) [J s"'m~2ster "' Hz ] is the specific intensity or brightness. Note that I, de-
pends on position, on direction, and on frequency.

4.2.2 Net Flux and Momentum Flux

Suppose a radiation field (rays in all directions) and construct a small area element dA at
arbitrary orientation n (see Fig. 4.2). The differential amount of flux (reduced according to the
lowered effective area dA cos ) from the solid angle dS2 is

dF, (J s7'm™?Hz ') = I, cos 0 €. (4.3)

The net flur F,(n) in the direction n is
F, = / I, cos 6dQ2. (4.4)
Q

If 1, is an isotropic (angle independent) radiation field, then F,, = 0 because [, cos#dQ = 0.
In other words, the same amount of energy crosses dA in the n direction as in the —n direction.

To get the flux of momentum normal to dA (noting that momentum per unit time per unit
area = pressure) we involve the photon momentum E/c. Then the differential momentum fluz
along the ray at angle 6 is dF, /c. The component of momentum flux normal to dA then is
dF, cosf/c. Integration gives the monochromatic radiation pressure

1
py(kgs?m 'Hz ) = c/ I, cos? §dQ. (4.5)
Q
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normal n

Figure 4.2: Geometry for obliquely incident rays.

F, and p, are moments of the intensity I, (we multiply by powers of cosf and integrate over
dQ?). Integrating over frequency we obtain the total quantities,

F(Js'm™?) = /Fydu, (4.6)
p (kg 572 m_l) = /pl, dv, (4.7)
I(Js'm ?ster™!) = /I,, dv. (4.8)

4.2.3 Radiative Energy Density

The specific energy density w,, is defined as the energy per unit volume per unit frequency range.
We first consider the energy density per unit solid angle u, (Q2) by dE = u, () dV dQ dv, where
dV is a volume element. Energy in a volume cdAdt of a cylinder about a ray of length ct is

dFE = u,(Q)dAcdtdQdv. (4.9)

Due to radiation velocity ¢, all the radiation escapes cylinder in time dt. Equating (4.2) and
(4.9) gives

uy () = —. (4.10)
Integration over solid angle gives the mean intensity J,:

1 4 1
ul,:/u,,(Q)dQ: /Ide:”Jy, J,,:/ I, do. (4.11)
0 C Jo C 47 Q

The total radiation density (J m~3) is obtained by integrating u, over all frequencies,

4
u:/ul,du: :/Jl,dy. (4.12)
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4.2.4 Radiation Pressure in an Enclosure Containing an Isotropic Radiation
Field

Consider an enclosure with reflecting walls containing an isotropic radiation field. Each photon
transfers twice its normal component of momentum on reflecting. We have the relation

2
Py = C/QI,, cos? 0 dQ. (4.13)

This agrees with our previous formula (4.5), since now we integrate over only 27 steradians.
From isotropy, I, = J,, so

2 /2 1
p=- / Jy dl// cos® 0dQ = u/ cos? 0 sin 6 df = ~u. (4.14)
¢ty 0 0 3

The radiation pressure of an isotropic field is just one-third of the energy density. This result
is essential for the thermodynamics of blackbody radiation.

4.2.5 Constancy of Specific Intensity Along Rays in Free Space

Consider a ray L with two points along the ray, and areas dA1, dAs, normal to the ray at these
points. Due to energy conservation we can express the energy carried by the set of rays passing
through both area elements dA;, dAs, equivalently as (cf. Eq. (4.2)):

dE1 = Iyl dAl de dQ1 dVl = dEQ = IVQ dA2 dt dQQ dVQ, (4.15)

where d2; is the solid angle subtended by dAs at dA; and vice versa. Since d2; = dAs/ R?,
dQy = dA;/R?, and dv; = dvs in identical ray, we have a constant intensity along a ray,

Iul = Iyz- (416)

We obtain the above result also from the differential relation dI, /ds = 0, where ds is an element
of length along the ray.

4.2.6 Proof of the Inverse Square Law for a Uniformly Bright Sphere

To show the connection between the constant specific intensity and the inverse square law, let
us calculate the flux at an arbitrary distance from a radiating sphere of uniform brightness B.
At an arbitrary point P outside the sphere, the specific intensity is B if the ray intersects the
radiating sphere and zero otherwise. The corresponding flux is

2 Oc 2
F:/IcosedQ:B/ d¢>/ cosfsinfdf = nBsin*0, = 7B (R> : (4.17)
Q 0 0

r

where R is radius of the radiating sphere, r is distance of P to the center of the sphere, and
0. = asin (R/r) is the angle at which a ray from P is tangent to the sphere. The specific
intensity is constant but the solid angle subtended by the given object decreases as the inverse
square law. The flux at a surface of uniform brightness B is obtained by setting r = R:

F =rB. (4.18)
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4.3 Radiative Transfer

If a ray passes through matter, energy may be added or subtracted from it by emission or
absorption, and the specific intensity does not remain constant in general. Scattering of photons
into and out of the beam also affects the intensity.

4.3.1 Emission

The coefficient of spontaneous emission j is defined as the energy emitted per unit time per
unit solid angle and per unit volume:

dF = jdV dQdt = j, dV dQdt dv, (4.19)

where dimension of monochromatic emission coefficient 7, is J m=3s~ ! ster ' Hz L.
The emission coefficient depends in general on the direction of emission. For an isotropic
emitter or for a superposition of randomly oriented emitters, we can write

1

—P, 4.20
47_(_ 78] ( )

Jv =
where P, is the radiated power per unit volume per unit frequency. Sometimes the spontaneous
emission is defined by the (angle integrated) emissivity €, defined as the energy emitted spon-
taneously per unit frequency per unit time per unit mass, with units of J kg=!s™!ster—' Hz L.
In case of isotropic emission

dQ
dE =€, pdV dt dl/4—, (4.21)
T

where p is the mass density of the emitting medium. Comparing Eqs. (4.19) and (4.21) gives
the relation between j, and €, :

. €v P
= 4.22
Jv = (4.22)

for isotropic emission. Traveling a distance ds, a beam of cross section dA passes through a
volume dV = dAds, and, combining Eqgs. (4.15) and (4.19), the intensity added to the beam
by spontaneous emission is:

dI, = j, ds. (4.23)

4.3.2 Absorption

We define the absorption coefficient a,, (m~!) as a measure of loss of intensity in a beam traveling
a distance ds («y, is positive if a beam loses energy):

I, = —a, I, ds. (4.24)

This phenomenological law can be understood microscopically for particles with number density
n (number of particles per unit volume) where each represents an effective absorbing area, or
cross section, of magnitude o, (m?). These absorbers are assumed to be randomly distributed.
The number of absorbers in the volume element is ndV = ndAds and the total absorbing area
equals no, dAds. The energy absorbed out of the beam within solid angle d? is

—dI, dAdQdtdv = I, (no, dAds) dQdtdy, thus dI, = —no, I, ds. (4.25)
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This is identical to the phenomenological law (4.24), where

ay = noy,. (4.26)
Often «,, is introduced as

ay = pky, (4.27)

where p is the mass density and x, (m?kg™!) is the mass absorption coefficient or the opacity
coeflicient.
There are some constraints for validity of the microscopic picture: The most important are

1. the linear scale of the cross section must be small in comparison to the mean inter-particle
distance d, thus Ui/Q < d~n"13 and thus a, d < 1,

2. the absorbers are independent and randomly distributed.

Fortunately are these conditions almost always met for astrophysical problems.

We consider “absorption” to include both “true absorption” and stimulated emission, because
both are proportional to the intensity of the incoming beam (unlike spontaneous emission).
Thus the net absorption may be positive or negative, depending on whether “true absorption”
or stimulated emission dominates. Although this combination may seem artificial, it will prove
convenient and obviate the need for a quantum mechanical addition to our classical formulas.

4.3.3 The Radiative Transfer Equation (RTE)

We can now include the effects of emission and ahsorption into a single equation for a specific
intensity along a ray,

dI,
ds

RTE incorporates most of the macroscopic aspects of radiation, relating them to the two co-
efficients o, and j,. A task is to find forms for these coefficients corresponding to particular
physical processes.

Once «, and j, are known, it is relatively easy to solve RTE for the specific intensity I,.
Scattering however complicates the solution, because emission into d©2 depends on I, in dY’;
RTE thus becomes an integrodifferential equation solved partly by numerical techniques.

We introduce a formal solution of the complete RTE showing two simple limiting cases:

=jy — oy ly, (4.28)

e Emission only: a,, = 0. In this case

dr, . 5

— =j,, sothat I,(s)=1I,(so) +/ Ju(s')ds’. (4.29)
ds S0

The increase in brightness is thus equal to the emission coefficient integrated along the
line of sight.

e Absorption only: j, = 0. In this case

dr,
= —ayl,, sothat I,(s)=1I,(sg) exp {—/
ds B

S

a,(s) ds’} . (4.30)

0

The brightness decreases along the ray by the exponential of the absorption coefficient
integrated along the line of sight.



Chapter 4. Radiative Transfer 67

4.3.4 Optical Depth and Source Function

RTE takes a particularly simple form if, instead of s, we use the optical depth 7, defined as

dr, = a,ds or Ty:/ a,(s') ds’. (4.31)

S0

The optical depth is measured along the path of a traveling ray; occasionally, 7, is measured
backward along the ray and a minus sign appears in (4.31). In plane-parallel media, a standard
optical depth is sometimes used to measure distance normal to the surface, so that ds is replaced
by dz and 7, = 7,(z). The zero point point sy (or zp) for the optical depth scale is arbitrary.

A medium is said to be optically thick or opaque when 7,, integrated along a typical path,
satisfies 7, > 1. When 7, < 1, the medium is said to be optically thin or transparent. In other
words, in an optically thin medium the typical photon of frequency v can pass through the
medium without being absorbed, whereas in an optically thick medium the photon of frequency
v cannot traverse the entire medium without being absorbed.

RTE now can be written, after dividing by ay,

dl,
—=5,-1, (4.32)
dr,
where the source function S, is defined as:
Jv
L= . 4.
S ~ (4.33)

The source function S, is often a simpler physical quantity than j,. Also, the optical depth
scale 7, reveals more clearly the important intervals along a ray than «,. The variables 7, and
S, are therefore often used instead of o, and j,.

We now formally solve RTE by regarding all quantities as functions of 7, instead of s.
Solving Eq. (4.32) as a standard non-homogeneous 1st order ODE, we obtain

IL(r) =L0)e ™ + /0 ”e—“v—fwsy (7)) dr.. (4.34)

The above equation is interpreted as the sum of two terms: the initial intensity diminished

by absorption plus the integrated source diminished by absorption. As an example consider a
constant source function S, then Eq. (4.34) becomes

II/<TV) = II/<O) e + Sy (1 - eiTV) = Sy + e v [L,(O) — Sl,] . (435)

As 1, = o0, in Eq. (4.35) I, — S,,. But, when scattering is present, S, contains a contribution
from I, so that we cannot specify .S, a priori.

We see from RTE that if I, > S, then dI,/d7, < 0 and I, tends to decrease along the ray.
If I, < Sy, then I, tends to increase along the ray, thus I, tries to approach S,. In case of a
sufficient optical depth, I,, does approach S, and RTE describes a “relaxation” process.

4.3.5 Mean Free Path

describes absorption of radiation in an equivalent way, and is defined as the average distance
that a photon can travel without being absorbed. It may be easily related to the absorption
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coefficient of a homogeneous material. From the absorption law (4.30), the probability of a
photon traveling at least an optical depth 7, is e7™. The mean traveled optical depth is:

(ry) = / e vdr, =1 (4.36)
0

The mean distance traveled in a homogeneous medium is defined as the mean free path A\, and
is determined by (1) = a, A\, = 1 or

A =q, = . (4.37)

The mean free path A, is the inverted value of the absorption coefficient for homogeneous
material. We also define a local mean path at a point in an inhomogeneous material as an
equivalent to the mean free path of the photon in a homogeneous region of the same properties.

4.3.6 Radiation Force

Radiation exerts a force on the absorbing medium, because radiation carries momentum. We
define a radiation flux vector

F, = / I, ndo, (4.38)

where n is a unit vector along the direction of the ray. Since a photon momentum is E/c, the
vector of absorbed momentum per unit area per unit time per unit path length is

1
F=- /ozy F,dv. (4.39)
c
Since dAds = dV, § is the force density exerted on the medium by the radiation field. The
specific force (per unit mass) is f = §/p or

Fol / iy Foy du. (4.40)

C

Equations (4.39) and (4.40) are simplified because they assume the isotropic absorption coef-
ficient. They also assume no momentum imparted by emission; it is true only for isotropic
emission.

4.4 Thermal Radiation

Thermal radiation is a radiation emitted by matter in thermal equilibrium (TE).

4.4.1 Blackbody Radiation

We first investigate the blackbody radiation, which is in TE by definition. Consider an enclosure
at temperature 7' and do not let radiation in or out until TE has been achieved. Following
general thermodynamic arguments, we can derive several important properties of blackbody
radiation.

Since photons are massless, they can be created and destroyed in arbitrary number by
the walls of the container (assuming negligible self-interaction between photons). There is no
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conservation law of photon number (unlike baryon number), we expect that the number of
photons will adjust itself in equilibrium at temperature 7.

I, is independent of the properties of the enclosure and depends only on the temperature.
To prove this, we connect the enclosure to another enclosure of arbitrary shape and place a
filter between the two, which passes only a single particular frequency v. If I, # I, energy
will flow between the two enclosures. Since these are at the same temperature, this violates the
second law of thermodynamics. Therefore, we have the relation

I, = (universal function of 7" and v) = B, (T). (4.41)

I, must be independent of the shape of the enclosure, this implies that it is also isotropic,
I, # I,(2). The function B,(T) is called the Planck function.

4.4.2 Kirchhoff‘'s Law for Thermal Emission

Consider an element of some thermally emitting material at temperature T', its emission depends
on its temperature and internal properties. Put this into a blackbody enclosure at the same
temperature T'. Let the source function of the material be S,,. If S, > B, then I, > B,, and
vice versa (cf. the discussion after Eq. (4.35)). But the new configuration does not affect the
radiation, since it also a blackbody enclosure at temperature 7. We have

S, = B,(T), j, = a,B,(T). (4.42)

Equation (4.42) is the Kirchhoff’s law. It relates «, and j, to the temperature 7" of the material.
RTE for thermal radiation is (cf. Eq. (4.28)),

df di,

— =a,B,(T) —a,I, or —=DB,(T)~—1I,. (4.43)
ds dr,
Since S, = B, throughout a blackbody enclosure, we also have I,, = B,,. Blackbody radiation
is homogeneous and isotropic, p = u/3.

We note the distinction between blackbody radiation, where I,, = B,,, and thermal radiation,

where S, = B,. Thermal radiation becomes blackbody only for optically thick media.

4.4.3 Thermodynamics of Blackbody Radiation

Blackbody radiation, like any system in TE, can be treated by thermodynamic methods. Con-
sider a blackbody enclosure with a piston, so that work may be done on, or extracted from the
radiation. From the first and second law of thermodynamics we have

dQ

where @ is heat, U is internal energy, and S is entropy. But U = uV, p = u/3, and u depends
only on T, since u = (4w /c) [ J, d,, where J, = B,(T). We have

V du V du
ds = TﬁdT—i_ dV—l—gde TﬁdT—i_gTdv (4.45)

where dS is a total differential. Eq. (4.45) gives

oS V du oS 4u
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Differentiating again Eq. (4.46), we obtain
028 ldu 4 (du u)

(4.47)

aTovV ~ TdT 3T \dT T

giving

du  4u du dT 4

ﬁ:?, ?:4?7 lnu:hl (GT ), (448)
where Ina is a constant of integration. We obtain the Stefan-Boltzmann law

u(T) = aT?. (4.49)

This may be related to the Planck function, I, = J, for isotropic radiation (cf. Eq. (4.11)),
4 4
u=— /B,,(T) dv = —B(T), (4.50)
¢ c

where the integrated Planck function is

ac, 4

B(T) = 4T

(4.51)
The emergent flux from an isotropically emitting surface is wx brightness (see Eq. (4.18)),
which gives another form of the Stefan-Boltzmann law,

F = /FV dv = TF/BV dv =7B(T), F =oT*, (4.52)

where 0 = ac/4 = 27°k*/(15¢*h3) ~ 5.67 x 1078 Js ' m~2K~* is the Stefan-Boltzmann con-
stant and a = 40 /c = 87°k*/(15¢3h?) ~ 7.56 x 10716 Jm—3K~* is the radiation (or radiation
density) constant. The constants a and o cannot be determined by macroscopic thermody-
namic arguments, (they are derived below). Combining Eqgs. (4.46) and (4.49), the entropy S
of blackbody radiation is

4

S = gULT?’V (4.53)

and the adiabatic expansion law (S = const. and p = u/3) for blackbody radiation is
TV'Y3 = const. or pV*?3 = const.. (4.54)

Equations (4.54) give the adiabatic law pV? = const. with v = 4/3.

4.4.4 The Planck Spectrum

We now derive the Planck function in two steps: First, we quantify the density of photon states
in a blackbody enclosure; second we evaluate the average energy per photon state. Consider a
photon of frequency v propagating in direction n inside a box. The wave vector of the photon
is k = (2n/A\)n = (2mv/c)n. Each dimension of the box, Ly, Ly, L, > X, the photon can be
represented by a standing wave. The number of nodes in the wave in each direction i = x,y, 2
is n; = k;L;/(2m). If n; > 1, the number of node changes in a wave number interval is

. L;AE;

An:
i 2

(4.55)
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The number of states in the three-dimensional wavevector element Ak, Ak, Ak, = A3k is

L.L,L,d%

AN = AngAnyAn, = (2r)3

(4.56)

Using L,LyL, = V (the volume of the enclosure) and using two independent photon po-
larizations (two states per wave vector k), the number of states per unit volume, per unit
three-dimensional wavenumber, is 2/(27)3. In isotropic case

32 dvdQ

2
&k = K2 dkdo = 27 (4.57)

3
and the density of states (the number of states per solid angle per volume per frequency) is

202
Pstates = 073 (458)

What is the average energy of each state? Kach photon of frequency v has energy hv, so we
ask what is the average energy of the state with frequency v. Each state contains n photons of
energy hv, the total energy may be E,, = nhv. The probability of a state with E,, ~ e #Fn,
where 3 = (kT)~!, k is the Boltzmann constant. The average energy is,

z E,e BER 5 o
-n=0 Y —BEn
(E) = i o = a8 In (ngzo e ) (4.59)
n=0

and the sum of a geometric series gives,

x o0 _1
Z e B = Z e B — (1 - e_ﬁh”> . (4.60)
n=0 n=0

We have the result:

0 -1 hy e Phv hv
_ —Bhv o o
(E) =—%2 [ln (1 - ¢ ) ] T 1 _eBhw T oBhw _ | (4.61)

which states that the average number n, (the “occupation number”) is
b -1
M, = (eﬁ v _ 1) . (4.62)

Equation (4.61) is the Bose-Finstein statistics with an infinite number of particles (chemical
potential g = 0). The energy per solid angle per volume per frequency is the product of (F)
and pstates (Eq. (4.58)). This can also be written in terms of u, (Q2) (see Egs. (4.9) and (4.10)).
We have

202 hy 2h V3

Equation (4.10) relates u,(Q2) and I,. Now we have I, = B,, and expressing B,(T) as
B)\(T) (B, dv = By d\), we have the Planck law,

2h 3 2hc? /N5

67285}”, _ 17 B)\(T) = (464)

B,(T) = = i
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4.4.5 Properties of the Planck Law

We now describe basic properties of this law:

The Rayleigh-Jeans Law, hv < kT

We expand the exponential,

2 2
A 1 =Bhv+... sothat IM(T)= LQkT. (4.65)
c

This result does not contain Planck constant. The Rayleigh-Jeans law applies at low frequencies
(in the radio region). If Eq. (4.65) is applied to all frequencies, the total amount of energy
x [ j,dv would diverge. It is known as the ultraviolet catastrophe. This indicates that for
hv > kT, the quantum nature of photons must be taken into account.

The Wien Law, hv > kT
In this limit the unity term in the denominator of Planck law can be dropped and we have:

2h
WV(T) = 2o e,

. (4.66)

The monochromatic brightness of a blackbody decreases very rapidly with frequency once the
maximum is reached.

Monotonicity with Temperature:

The blackbody curve with higher temperature lies entirely above the one with lower tempera-
ture. To prove this we note that
OB,(T) 2n** &P
OT  KT? (efhv — 1)>

(4.67)

is positive. At any frequency the increasing temperature leads to increase of B, (T'). Note that
B—0asT —0and B— o0 asT — oo.

Wien Displacement Law:

The frequency vmax at which the peak of B, (T') occurs is
0B, (T)

ov

=0, sothat humax ~2.82kT or ”I;j"" ~5.88 x 100HzK 1. (4.68)

V=Vmax

The peak frequency of the blackbody law shifts linearly with temperature. Similarly, a wave-
length Amax at which the maximum of B)(7T') occurs can be found by

OB\(T)
o\

=0, s0that Apa T ~2.9x103mK. (4.69)
A:/\max

Egs. (4.68) and (4.69) are known as the Wien displacement law.

The peaks of B, and B, given by Egs. (4.68) and (4.69) however do not occur at the same
points in wavelength or frequency, VmaxAmax # ¢. For example, if T'= 7300 K the peak of B, is
at A &~ 7000 A while the peak of By is at A ~ 4000 A. The Wien displacement characterizes the
frequency range for which the Rayleigh-Jeans law is valid, v < vpax. Similarly for the Wien
law, v > vmax-
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4.4.6 Characteristic Temperatures Related to Planck Spectrum
Brightness Temperature:

We may characterize the specific intensity (brightness) at a certain frequency by setting it equal
to the corresponding blackbody temperature, that is, for any value I, we define T;(v) by

I, = B,(T}). (4.70)

T}, is the brightness temperature. This way of specifying brightness is closely connected with the
physical properties of the emitter, and has the dimension (K) instead of (J m~2s~! Hz ! ster—1).
This is used mainly in radio astronomy (the Rayleigh-Jeans law domain), where for hv < kT

202

RTE for thermal emission takes a particularly simple form in terms of brightness temperature
in the Rayleigh-Jeans limit (cf. Eq. (4.43))

oT,,
0T,

where T is the temperature of the material. For a constant T" we have

=T, +T. (4.72)

Ty =Ty(0)e ™ +T(1—e ™), hv<kT. (4.73)

If , > 1, T, — T. We also note that, in general, the brightness temperature is a function of v,
only if the source is blackbody, Ty(v) = Tp. In the Wien region, where hv > kT, the concept
of brightness temperature is not so useful because of the rapid decrease of B, with v and due
to impossibility to formulate RTE linear in the brightness temperature.

Color Temperature:

A spectrum has often more or less blackbody profile, but not necessarily the proper absolute
value. For example, by measuring F;, from an unknown source we cannot quantify I, unless we
know the distance to the source and its size. By fitting the measured data to a blackbody curve
without regard to vertical scale, we obtain a color temperature T.. Often the “fitting” procedure
is merely an estimate of the peak of the spectrum and applying Wien’s displacement law to find
a temperature. The color temperature T, will correctly give the temperature of a blackbody
source of unknown absolute size. T, will also give the temperature of a thermal emitter that
is optically thin, providing that the optical thickness is fairly constant for frequencies near
the peak. In this case the brightness temperature Ty will be less than the temperature of the
emitter, since the blackbody spectrum gives the maximum attainable intensity of a thermal
emitter at temperature 7.

Effective Temperature:

The effective temperature Tog of a source is derived from the total amount of radiated flux,
integrated over all frequencies. We define Tog by equating the actual flux F' to the flux of a
blackbody:

F= / I, cos0drdQ = oT%. (4.74)

Note that both Tyg and Tp, depend on the absolute value of the source intensity, but T, depends
only on the shape of the observed spectrum.
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4.5 The Einstein Coeflicients

4.5.1 Definition of Coefficients

From a Kirchhoff’s law, j, = «,B,, must clearly imply a relationship between emission and
absorption at a microscopic level. This relationship was first discovered by Einstein who con-
sidered the case of two discrete energy levels: the first of energy E with statistical weight gi,
the second of energy F + hyy with statistical weight go. A transition from 1 to 2 occurs due to
absorption of a photon of energy hig. Similarly, a transition from 2 to 1 occurs when a photon
is emitted. We identify three processes:

Spontaneous Emission:

occurs when the system drops from level 2 to level 1 by emitting a photon; it occurs even in
the absence of a radiation field. We define the Finstein A-coefficient by

Aoy = transition probability per unit time for spontaneous emission (s~ 1). (4.75)

Absorption:

A transition from level 1 to level 2 occurs due absorption of a photon of energy hiyy. Since we
do not assume any self-interaction within the radiation field, we expect the probability of this
process per unit time will be proportional to the density of photons (to the mean intensity) at
frequency vg. However, the energy difference between the two levels is not infinitely sharp but
is described by a line-profile function ¢(v), which is peaked at v = 1y and which is normalized
by a convention

/000 o(v)dv = 1. (4.76)

This line profile function describes the relative effectiveness of frequencies in the neighborhood
of vy for causing transitions. Following these arguments, we write

BioJ = transition probability per unit time for absorption, (4.77)

where

o0
J = / Jyo(v)dv = 1. (4.78)
0
The constant of proportionality Bio is the Finstein B-coefficient.

Stimulated Emission:

Einstein found that there was yet another process required to derive Planck law, that was
proportional to J and caused emission of a photon. It was defined:

Bs1J = transition probability per unit time for stimulated emission, (4.79)

where Bsj is another Einstein B-coefficient.

When J, changes slowly over the width Av of the line, ¢(v) behaves like a —function, and
the probabilities per unit time for absorption and stimulated emission become simply BiaJy,,
and Bo;Jy,, respectively. To define the Einstein B-coefficients, there is often used the energy
density u, instead of J,,, which differs in value by ¢/4w (cf. Eq. (4.11)).
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4.5.2 Relations between Einstein Coefficients

In thermodynamic equilibrium (TE) the number of transitions per unit time per unit volume
out of state 1 precisely equals the number of transitions per unit time per unit volume into
state 1. Let ny and ng be the number densities of atoms in levels 1 and 2, respectively, then

nlBng_ = ngAg1 + nnglJ_. (4.80)
Solving for J from Eq. (4.80):
= Ay <n1 By >_1
J=———-1 . 4.81
Ba1 \n2 Boy (481)

Since the ratio of ny to ny in TE is

o _ A B -
n . g1€ _ 91 Bhuy _ 421 (91 D12 ghy,
Mo 91 9B pen J= 22 (LD s g 4.82
ng  goe BETh) gy ! By <92 Boy ) (4.82)

In TE J, = B,, and since B, varies slowly on the scale of Av, this implies J = B,. For
Eq. (4.82) to equal the Planck law at all temperatures, we must have the following relations:

2hv?
2

g1B12 = g2B21, A2 = Bo;. (4.83)
Equations (4.83) connect atomic properties and have no reference (unlike Kirhhoff’s law) to the
temperature T', they must therefore hold whether or not are the atoms in TE. Equations (4.83)
represent what is generally known as detailed balance relations that connect any microscopic
process and its inverse process. These Einstein relations are the extensions of Kirchhoff’s law
to include the non-thermal emission that occurs when the matter is not in TE. If we determine
any one of the coefficients Aoy, Ba, or Bio, these relations allow us to determine the other two.

Einstein included the process of stimulated emission, because without it he could not get
Planck law, but only Wien law, which was known to be incorrect. Why we obtain the Wien
law when stimulated emission is neglected? The Wien law represents the Planck spectrum
when hv > KT, but in this case the level 2 is very sparsely populated relative to level 1,
ny < np, and the stimulated emission is unimportant compared to absorption (Eq. (4.80)).
A property of stimulated emission that is not clear from the preceding discussion is that the
emitted photon has precisely the same direction and frequency (is precisely coherent) as the
photon that stimulated the emission.

4.5.3 Absorption and Emission Coefficients in Terms of Einstein Coefficients

To obtain the emission coefficient j,, we must make some assumption about the frequency
distribution of the emitted radiation during a spontaneous transition from level 2 to level 1. The
simplest assumption is that this emission is distributed in accordance with the same line profile
function ¢, that describes absorption (this assumption is very often a good one in astrophysics).
The amount of energy emitted in volume dV, solid angle df2, frequency range dv, and time
dt, is j, dV dQ2drv dt. Since the energy contribution of each atom is hv for each transition,
distributed over 47 solid angle, this may also be expressed as (hvy/4m)p(v)n2 Az AV dQdr dt,
so that the emission coefficient is
hv

Jv = Zn2A21¢(V)- (4.84)
™
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To obtain the absorption coefficient «,,, we first note from Eqs. (4.77) and (4.78) that the
total energy absorbed in time d¢ and volume dV is

dth(hllo/47T) nlBlg/ dQ/¢(V)L, dv. (4.85)

The energy absorbed out of a beam in a frequency range dv, solid angle df2, time d¢, and
volume dV, is

h
At dV dQ dy—:O n1B1a ¢(v) 1, (4.86)
T

The volume element dV = dAds, and using Eqgs. (4.2) and (4.24), we have the absorption
coefficient (uncorrected for stimulated emission):

hv
o = i By o). (4.87)
T

To express the stimulated emission, since it is proportional to the intensity and affects
only the photons along the given beam, in close analogy to the process of absorption, we
treat stimulated emission as negative absorption and include its effect through the absorption
coefficient. These two processes always occur together, analogously to reasons that led to
Eq. (4.87) we find the contribution of stimulated emission to the absorption coefficient,

oy = % ¢(V) (n1312 - n2321) . (488)
™

This quantity will always be meant when speaking of the absorption coefficient. The form given
in Eq. (4.87) will be called the absorption coefficient uncorrected for stimulated emission.
It is now possible to write RT'E (4.28) in terms of the Einstein coefficients,

dl, hv hv
— = —n9A - — Bio —n9Bo1) I,. 4.
FPalyC 216(v) = ¢(v) (n1B12 — naBay) (4.89)
We obtain the source function by dividing Eq. (4.84) by Eq. (4.88),
A
S, =2 (4.90)

n1B12 — naBay

Using relations (4.83), we write the absorption coefficient and source function, respectively, as

h 2hu3 !
= ZmBro (1-22) g(), S, =2 (21 _q1) . (4.91)
4m gany c? ginz

Equation (4.91) is a generalized Kirchhoff‘s law. We identify three qualitative cases:

Thermal Emission (LTE):

If the matter is in TE (but not necessarily with the radiation), Eq. (4.82) gives
R g (4.92)
n2 92

the matter is said to be in local thermodynamic equilibrium (LTE) with

h
@, = o Bia (1= ™™ ) o(v), S, = B(T). (4.93)
0
The LTE source function is just the Kirchhoff's law. However, the correction factor 1 — =5

in the absorption coefficient involves stimulated emission.
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Non-Thermal Emission:

If the matter is not in TE,

n
M L oy (4.94)
n2 g2

This occurs, for example, if the radiating particles in a plasma did not have a Maxwellian velocity

distribution or if the atomic populations did not obey the Maxwell-Boltzmann distribution law.

Equation (4.94) can also be applied to cases in which scattering is present.

Inverted Populations; Masers:
If a system is in TE (v and T are positive),

n n n
MOV _ =B 1 5o that &> 12, (4.95)
n1 g2 9 92

Even if the material is out of TE, Eq. (4.95) is usually satisfied and we say that there are normal

populations. If we put enough atoms in the upper state, we have inverted populations,

n n2
— < =

P (4.96)

the absorption coefficient is negative, a,, < 0 (see Eq. (4.91)), and the intensity along a ray
increases. Such a system is said to be a maser (microwave amplification by stimulated emission
of radiation) or laser for light.

The amplification involved here can be very large, a negative optical depth 7 = —100, for
example, leads to an amplification of the intensity by a factor of 1043 (cf. Eq. (4.30)). We will
not discuss here masers in detail, however, maser effect in molecular lines has been observed in
many astrophysical sources.

4.6 Scattering Effects

4.6.1 Pure Scattering

For a pure thermal emission the amount of radiation emitted by a mattter element does not
depend on the incident radiation, the source function is always B, (7") and depends only on the
local temperature. The element would emit the same whether it is isolated in free space or
embedded in a star with the ambient radiation field. This character of thermal radiation makes
it particularly easy to treat.

Another emission process is scattering, which completely depends on the amount of radi-
ation imcident to the element. Perhaps the most important is electron (Thomson) scattering
(see Sect. 6.4). At present we assume isotropic scattering, so that the emission coefficient is
directionally independent. We also assume that the total amount of radiation emitted per
unit frequency range is just equal to the total amount absorbed in that same frequency range.
This is called coherent, elastic or monochromatic scattering. Non-relativistic Thomson scatter-
ing is fairly coherent, repeated scatterings can build up substantial effects (see Appendix 9).
The emission coefficient for coherent, isotropic scattering can be found by equating the power
absorbed per unit volume and frequency to the corresponding power emitted,

Jv =0oudy, (4.97)
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where 0, is the absorption coefficient of the scattering process (scattering coefficient). Dividing
Eq. (4.97) by o, we find that the source function for scattering is equal to the mean intensity
within the emitting material,

Sy =J, =~ /L, Q. (4.98)

47
RTE for pure scattering therefore is

drl,
ds

=0, (J,—1). (4.99)

We cannot apply here the formal solution (4.34); since the source function is not known a priori
and depends on the I, it becomes an integro-differential equation. An approximate method
may be the Eddington approximation (see Sect. 4.7.2). A particularly useful way of treating
scattering is by means of random walks. We regard the absorption, emission, and propagation
as a probabilistic process of a single photon rather than the phenomenologic average behavior
of large ensemble. For example, the probability of a photon traveling an optical depth 7, before
absorption is e”7v. Similarly, in case of isotropic scattering, a single photon is scattered with
equal probabilities into equal solid angles. We speak of a typical path of a photon, and the
measured intensities can be interpreted as statistical averages over photons moving in such
paths.

Consider a photon emitted in an infinite, homogeneous scattering region. It travels a dis-
placement rq before being scattered, then travels in another over a displacement ry before being
scattered, and so on. The net displacement of the photon after N free paths is

R=ri+ro+r3+---+rpn. (4.100)

To estimate the distance |R| traveled by a typical photon, we square Eq. (4.100) and then
average,

d® = (R?) = (r}) + (r3) +(r) +- -+ (rR) + 2(ri-ra) +2(r - ra) + - . (4.101)

Each square term in (4.101) averages the square of photon mean free path A2. Since the cross
terms in (4.101) involve averaging the cosine of the scattering angle and vanish for isotropic
scattering as well as for any scattering with front-back symmetry, we obtain

d*> = NX?, sothat d=vVNA (4.102)

The quantity d is the mean net displacement of the photon.

We use this result to estimate the mean number of scatterings in a finite medium of typical
size L. Suppose a photon is generated somewhere in the medium, then it will scatter until it
escapes completely. For regions of large optical depth the number of required scatterings is
roughly determined by d ~ L, Eq. (4.102) gives N ~ L?/)\%. Since ) is (an order of) mean free
path, L/A ~ 7 of the medium and

N=~7% (1>1). (4.103)
For regions of small optical thickness the mean number of scatterings is of order 1 —e™" ~ T,
N~7 (1<1). (4.104)

For most estimates it is sufficient to take N ~ 72+7 or N ~ max(7, 72) for any optical thickness.
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4.6.2 Combined Scattering and Absorption

The real emission and absorption of radiation is usually more than one process. Let us assume
the material with an absorption coefficient «, describing thermal emission and a scattering
coefficient o, describing coherent isotropic scattering. RTE then has two terms on the right-
hand side,

dr,
s = a,(By—1)+o0,(J, —1,)= (o, +0,) (S, — 1) . (4.105)
The source function S, in Eq. (4.105) is (cf. Eq. (4.33)),
I/BV VJI/
s, = QD ovly, (4.106)
oy + 0oy

We define the net absorption coefficient x, = a, + o, that is also called the extinction
coefficient to distinguish it from the “true” absorption coefficient «,,. Using this, the optical
depth is d7, = x, ds = (o + 0,) ds

Consider a matter element deep inside a medium at some constant temperature, we expect
the nearly LTE radiation field, J, = B,(7). From Eq. (4.106) also S, = B,(7) in TE. On
the other hand, if the element is isolated in free space, J, = 0 and the source function S, =
a,By/(ay + 0y) is in general a priori unknown and must be calculated as a part of a self-
consistent solution of the entire radiation field.

We extend the random walk arguments to the case of combined scattering and absorption.
The mean free path of a photon before scattering or absorption is

Ao=x L (4.107)

During the random walk process, the probabilities that any free path will by ended by a true
absorption or by a scattering event is

= 1 =22 (4.108)
Xv Xv
where the quantity 1 — e, is called the single-scattering albedo. The source function (4.106) now
is

Sy, =(1-¢€,)J,+eB,. (4.109)

Counsider an infinite homogeneous medium. A random walk starts with thermal emission of
a photon (creation) and ends after a number of scatterings with a true absorption (destruction).
Since the walk can be terminated with probability € at the end of each free path, the mean
number of free paths is N = ¢~ 1. From Eq. (4.102), using Egs. (4.107) and (4.108), we have

A? —1/2
d>="-, sothat d=~ (a,x.) . (4.110)
€

The length d represents the net displacement between the points of creation and destruction of
a typical photon; it is called the diffusion length, thermalization length, or effective mean path,
d is generally frequency dependent.

The behavior of a finite medium can also be described in terms of random walks, it depends
strongly on whether its size L is larger or smaller than the effective free path d. We introduce
by convention the effective optical thickness of the medium 7. = L/d. Using Eq. (4.110),

Te A \/Ta(Ta + Ts), where 7, =a,L and 75 =0,L (4.111)
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are the absorption and scattering optical thickness.

When 7, < 1, the medium is said to be effectively thin or translucent and most photons will
escape out of the medium before being destroyed by a true absorption. The monochromatic
luminosity will correspond to total radiation created by thermal emission in the medium and

L, =dna, B,V (1. < 1), (4.112)

where £, is the emitted power per unit frequency and V' is the volume of the medium.

When 7, > 1, the medium is said to be effectively thick. Most thermally emitted photons
will be destroyed by true absorption before they can escape. The physical conditions at large
effective depths approach TE and we expect I, — B, and S, — B,. Due to this property
is the effective path length d sometimes called the thermalization length, since it describes the
distance over which radiative TE is established.

We estimate the monochromatic luminosity of an effectively thick medium (to within an
order of unity) by substituting the effective emitting volume by the surface area of the medium
times the effective path length. This is reasonable, because only the photons emitted within
an effective path length of the boundary have a chance to escape before being absorbed. Using
Egs. (4.107) and (4.108), we have

£, ~ droy, B, Ad ~ dm\ /e, B,A (1. >> 1). (4.113)

In the limiting case of no scattering, ¢, — 1, the emission will blackbody, £, = 7B, A, and
the factor 47 in Eq. (4.113) should be replaced by m. However, the exact form of the equation
depends on ¢, and on geometry of a problem in a more complex way, we should take such
solution only as an estimate.

4.7 Radiative Diffusion

4.7.1 The Rosseland Approximation

We have used random walk arguments to show that S, approaches B, at large effective optical
depths in a homogeneous medium. Real media are rarely homogeneous, however, it is possible
to derive a simple expression for the energy flux by relating it to the local temperature gradient.
This is called the Rosseland approxzimation.

First let us assume that the material properties (T, x,, etc.) depend only on depth in the
medium. This is called the plane-parallel approximation, where the intensity depends only on
the angle 6, which measures the direction of the ray with respect to normal to the planes of
constant properties. Using y = cos# and ds = dz !, RTE in this case is

oI, (z, 1) _ p 0L
0z Xv 02

When the studied point is deep in the material, the intensity changes slowly on the scale of
a mean free path, the derivative 0I,/0z is small and we write a “zeroth” approximation,

IO (2, 1) = SO(T). (4.115)

=xv(Sy— 1)), sothat I,(z,u)=2S5, (4.114)

This does not depend on pu, the zeroth-order mean intensity J,SO) = S,SO). Eq. (4.106) implies
L(,O) = S,(,O) = B,, just as we expected from the random walk arguments. We now get a “first”
approximation by using I, 50) = B, in the derivative,

p 0B,

i ~ B,(T) — .
D)~ BAT) — 5

(4.116)
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This is justified, because the derivative term is small, and any approximation there is not
critical. The angular dependence of the intensity to this order of approximation is linear in p.
We evaluate the flux F,(z) from Eq. (4.4),

+1
F,(z) :/I,Sl)(z,,u) cos 0dQ2 = 271'/1 IO (2, ) pdp. (4.117)

The angle-independent part of I,Sl) (i.e., By) does not contribute to the flux,

F,(z)= w= = (4.118)

27 0B, /+1 24, A7 OB/(T) _  4r 0B,(T)0T
Xy 0z J_3 a 3xv, 0z 3x, 0T 0z

for the monochromatic flux.
We obtain the total flux by integration over all frequencies:

[ ey - ATOT [ 1 0B
F(z)—/o F,(z)dv = 3 82/0 T dv (4.119)

and, using Eqgs. (4.51) and (4.52),

* OB, (T) g [ OB(T) 40T3
/0 ar Y= ar /0 dv="5r - (4.120)

Here o is the Stefan-Boltzmann constant (not to be confused with o,,).
We define the Rosseland mean absorption coefficient xr by

1 9B,(T)
1 /0 w or W

—=J0 , 4121
w R, 2
o 0T
which gives
16013 0T
F(z) = — = 4.122
(2) Svn 02 ( )

Equation (4.122) is the Rosseland approzimation for the energy flux. It is also called the equation
of radiative diffusion (although this term is often used for other equations, see Sect. 4.7.2). It
shows that radiative energy transport deep in a star is of the same nature as a heat conduction,
with an effective heat conductivity 160T%/(3xr). Tt also shows that the energy flux depends
on only one property of the extinction coefficient, on its Rosseland mean xr. The Rosseland
mean involves a weighted average of ! so that frequencies at which the extinction coefficient is
small (the transparent regions) tend to dominate the averaging process. The weighting function
0B, /0T (Eq. (4.67)) has a similar profile to the Planck function, but it now peaks at values of
hv /KT of order ~ 3.8 instead of ~ 2.8 as in the Wien’s displacement law. Although we used
a plane-parallel approximation to prove the Rosseland formula, the result is quite general: the
vector of the flux is parallel with the negative temperature gradient and its magnitude is given
by Eq. (4.122) (the necessary assumption is that all quantities change slowly on the radiation
mean free path scale).
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4.7.2 The Eddington Approximation; Two-Stream Approximation:

The basic idea of the Rosseland approximation was that the intensities approach the Planck
function at large effective depths in the medium. In the Eddington approximation we only
assume that the intensities approach isotropy, and not necessarily their thermal values. Because
thermal emission and scattering are isotropic, one expects isotropy of the intensities at depths
comparable to an ordinary mean free path. The domain of applicability of the Eddington
approximation is therefore potentially much larger than the Rosseland approximation, since
the latter requires depths of the order of the effective free path.

With use of appropriate boundary conditions (here introduced via the two-stream approxi-
mation), we obtain solutions to scattering problems of reasonable accuracy at all depths. Fol-
lowing the near isotropy assumption, we expand the intensity as power series in u, with terms
only up to linear:

I,(m,pu) = ay(7) + by (7). (4.123)

We integrate the frequency-dependent variables. Let us take the first three moments of intensity,

1 [+
J = 2/ Idp = a, (4.124)
-1
I b
H= 2/1 pldp = 3 (4.125)
1 [+
K= 2/1 P2 dp = g (4.126)

where J is the mean intensity and H and K are proportional to the flux and radiation pressure,
respectively. This gives the Eddington approzimation,

K= g (4.127)

Note the equivalence of Eqs. (4.14) and (4.127). The only difference is that Eq. (4.127) is valid
even for slightly non-isotropic fields, containing terms linear in p. We define the plane-parallel
optical depth

dr(z) = —xuv dz, (4.128)
and the corresponding RTE (Eq. (4.114)),

oI

poo=1-8. (4.129)
-

The source function S, given by Eqgs. (4.106) and (4.109), is isotropic. If we multiply Eq. (4.129)
by the factor 1/2 and integrate over p from —1 to +1, we obtain

Similarly, multiplying by an extra factor p before integrating, we obtain

IK _
or

10

H=—-—— 4131
307’ (4.131)
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using the Eddington approximation (4.127). The last two equations can be combined (with use
of Eq. (4.109)) to the single second-order non-homogeneous equation for J,

1027 1027
Y 7 _ h -7
39,2 J — S, so that 5 9.2

=e¢(J—DB). (4.132)
Equation (4.132) is also called the radiative diffusion equation. Given the temperature structure
of the medium, B(7), one can solve this equation for J and determine S from Eq. (4.109). The
problem is essentially solved, because the full intensity I(7, ) can be found by formal solution
of Eq. (4.129).

A significant form of Eq. (4.132) reflects the case when € does not depend on depth. Let us
define (cf. Eq. (4.111)) the new optical depth scale

Te = V3eT = \/374(Ta + 7). (4.133)

The corresponding RTE is
— =J—-B. (4.134)

We use Eq. (4.134) to demonstrate the properties of 7, as an effective optical depth.

To solve Eq. (4.132), we yet provide the boundary conditions. This can be done in several
ways, we use here the two-stream approzimation: we assume that the entire radiation field can
be represented by rays traveling at just two angles, p = +1/4/3. Let us denote the outward
and inward intensities by I () = I(7,+1/v/3) and I~ (7) = I(r,—1/+/3). In terms of I* and
17, the moments J, H, and K have the representations

1
= 72\/5

Equation (4.135) is simply the Eddington approximation; in fact, the choice of the angles
p = £1/4/3 is motivated by the requirement this relations to be valid.
We now solve Eq. (4.135) for IT and I~, using Eq. (4.131):

J=s(I"+I7), H (It-17), K:E(I++I_):§ (4.135)

6

DO | —

1 9J 1 9J
IT=J+—=-">, [T =J— —-">. 4.136
B or V3 or (4139)
These equations provide the necessary boundary conditions for Eq. (4.132). For example,
suppose the medium extending from 7 = 0 to 7 = 79 with no incident radiation. Then I~ (0) = 0,
It (19) = 0, and the boundary conditions are

La—J:JHL‘LT:O, iy:—J at 7 = T19. (4.137)
V30T V30T
The two conditions are sufficient to determine the solution of Eq. (4.132).
One has proposed various methods to obtain boundary conditions; they all give equations
similar to (4.137), with factors slightly different than 1/+/3. It is not worth for our purpose to
discuss here all the alternatives in detail.






Chapter 5

Radiation Field

5.1 Maxwell Equations

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We first review the theory for non-
relativistic particles (in SI units). The definitions of the electric field E(r,t) and the magnetic
field B(r,t) are made for a particle of charge ¢ at point r with velocity v, using the Lorentz
force:

F=q(E+vxB). (5.1)
The rate of work (power) exerted by the electromagnetic field on a particle is
v-F=qv-E, (5.2)
v because v - (v x B) = 0. Since F' = mdv/dt in case of non-relativistic particles, we have
qv - E = -— (mUQ) . (5.3)
This may be generalized to force density (force on a volume element containing many charges),
f=qE+jxB, (5.4)

where p and j are charge and current densities, respectively, defined as
1
= lim —— i J = iVi, -
A\l/IEOAV;(L J= oAVZqV (5:5)

and AV is the volume element. In Egs. (5.4) and (5.5) AV must be much smaller than
characteristic scales but much larger than the volume containing a single particle.
The rate of work done by the field per unit volume then is

1 .
A—VZqivi-EZJ-E. (5.6)

From Eq. (5.3) this is also the rate of change of mechanical energy per unit volume due to the
electromagnetic field:

d Umech

—i-E. 5.7
gr J (5.7)
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Maxwell equations relate E, B, p, and j. In ST units their basic form is

V-D=p V-B=0 (5.8)
0B oD

while in Gaussian units, they are

V- D =dnp V-B=0 (5.10)
10B 47 10D
VX c Ot VX cj+c8t (5.11)

The fields D and H are in the both systems related to E and B by the same linear relations
D=¢cE, B=_puH, (5.12)

where € and p are the dielectric constant and magnetic permeability of the medium.
An immediate consequence of Maxwell equations is conservation of charge: divergence of
the V x H equation gives

dp .
—+V.-j=0, 5.13
5 TV (5.13)
which expresses conservation of charge for a volume element.

We now define energy density and energy flux of the electromagnetic field. Consider the
work done per unit volume on a particle distribution, (cf. the second Eq. (5.9)):

j-Ez(V><H)-E—E~%?7 (5.14)
Using the vector identity
E-(VxH) =H-(VxE)—V-(ExH), (5.15)
we rewrite Eq. (5.14) into the form
jE=-H-2B v . ExH -2 (5.16)

ot ot

If € and p are not time-dependent, the above relation may be written as (using Eqgs. (5.12))

19 B2
i E+-—(eE?+—)=-V.-(ExH). 1
j +2&<e<+ﬂ> V- (ExH) (5.17)

Equation (5.17) represents the Poynting theorem in differential form: The rate of change of
mechanical energy per unit volume plus the rate of change of field energy per unit volume is
equal to negative divergence of the electromagnetic flux. We thus set the electromagnetic energy
density equal to

0 B?
ZeE?+ =) = d
g <e i M) Us + Up, (5.18)

DN |

Ufela =

and the vector of electromagnetic flux, or Poynting vector, equal to

S=ExH. (5.19)
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Integrating the above over a volume element and using the divergence theorem:

/j EdV + - 6/ (EMBQ) dv /s dA (5.20)
. —_—— € —_— — - . R .
v 20t Jy I >

Umech + Uﬁeld) = _/ S . dA. (5.21)
b

or shortly

0

ot (
That is, the rate of change of total (mechanical plus field) energy within the volume V' is equal
to the net inward flow of energy through the bounding surface X.

Although Uggq is called a field energy, there are contributions from the matter, because e
and p represent material properties. If we treat all charges (free and bound) as part of the
mechanical system, then we would use only the microscopic fields E and B. Then j would be
replaced by the sum of the conduction and induced molecular currents and S — E x B/p.
When matter and field is present, the allocation of energy into matter and field is somewhat
arbitrary, while the total energy is always conserved.

If we now consider only the microscopic energy flux or the flux in vacuum with use of
Eq. (4.10) where p = E//c for photons, we can write the electromagnetic momentum density as

) 1
The angular momentum carried by the field is given by the angular momentum density L,
L=rxg, (5.23)

where r is the position vector from the point about which the angular momentum is computed.

In electrostatics and magnetostatics both E and B decrease like 7~2 as r — co. This implies
that S decreases like 7—* in static problems. Thus the right-hand side integral in Eqgs. (5.20)
and (5.21) goes to zero, since the surface area increases only as r2. Because for time-varying
fields E and B may decrease only as 7!, the integral then contributes a finite amount to the
rate of change of energy of the system. This finite energy flowing outward (or inward) at large
distances is called radiation. Those parts of E and B that decrease as r~! at large distances
constitute the radiation field.

5.2 Electromagnetic Potentials

Following the Maxwell’s equations, we now express E and B fields in terms of a scalar potential
¢(r,t) and a vector potential A(r,t): Defining the vector potential as

B=V xA (5.24)
(so that we hold the V - B equation) and inserting it into V x E equation, we obtain
0A 0A

for any arbitrary scalar function (scalar potential) ¢. Substituting this into Maxwell equations,
we obtain

2 0 __p
Vit (V- A) =1, (5.26)

O’A 0 .
VZA - Pz v <V A+ e,u,a(f) =—pu. (5.27)
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The potentials are not uniquely determined, for example, the addition of the gradient of an
arbitrary scalar function ¢ to A will leave B unchanged. Following Eqgs. (5.24) and (5.25), we
may set

9

A — A+ Vi, ¢/_>¢_E' (5.28)
We can calibrate the potentials to satisfy the Lorentz gauge condition,
0
V-A+ eua—f =0, (5.29)

hence the term in bracket in Eq. (5.27) is zero. With this gauge, Egs. (5.26) and (5.27) become
inhomogeneous wave equations:

V2 — eu(?;f - —g, (5.30)
V2A - E,Ua;t? = —uj. (5.31)
The particular form of the Lorentz gauge (Eq. (5.29)) is the Coulomb gauge condition,
V.A=Vé=0. (5.32)
The solutions of Eqgs. (5.30) and (5.31) may be written as integrals over the sources:
3,
o(r,t) = 47360 ’[f]f rr,‘, (5.33)
Art) = Ho [ 1] r (5.34)

Cdw ) =1

Equations (5.33) and (5.34) are the retarded potentials, since the quantity [Q)] means that @
is evaluated at the retarded time, [Q] = Q(r',t — |r — r'|/c), which refers to conditions at the
point r’ that existed at a time earlier than ¢ by the time |r — r’|/c required for light to travel
between r and r’, so that the potentials at point r can only be affected by conditions at point
r’ at such a retarded time.

5.3 Plane Electromagnetic Waves
Maxwell equations in vacuum become (cf. Egs. (5.10))

0B OE

Solution of these equations proves the existence of traveling waves that carry energy. Taking
the curl of the third equation and combining it with the fourth and the first equation (using
the vector identity V x (V x E) = V (V- E) — V2E), we obtain the wave equation for E:

0’E , 2 0’E
W, that is V<E — GOMOW

An identical equation holds for B, since Eq. (5.35) is invariant under E — B, B — —E.

V X (V X E) = —€QMo =0. (536)
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Let us now suppose the solution of the form
E =a,Eyelkr=t B — 5,B,éllkr—b), (5.37)

where 31 and &9 are unit vectors, Fy and By are complex constants, and k = kn and w are the
“wave vector” and angular frequency, respectively. Such solutions represent waves traveling in
the direction n. By superposing such waves propagating in all directions with all frequencies,
we construct the most general solution to the source-free Maxwell equations. Substitution into
vacuum Maxwell’s equations (5.35) yields:

ik-a1Ey =0 ik -32By =0
ik x élE() =iw ézBO 1k x ézBo = —lw éleo,u[)Eo. (538)

From the top two equations we see that &; and &g are perpendicular to k. From the bottom
two equations we see that a1 and as are perpendicular to each other. The vectors a1, a2, and
k form a right-hand triad of perpendicular vectors, Fy and By are thus related by

2

2 k
Eo=2By, By=ZLeopoEo, sothat Ep= (3) comoFo and =" (5.39)
k k k EQMO

Taking k and w positive, we have

k 1
and Eo =

v €010 AVAS1 %)

The waves propagate with a phase velocity vpn = w/k, and, as expected, in a vacuum with the
group velocity, vy = Ow/0k, so that

w =

Bo. (5.40)

1 1
Uph = —— = C, Vg = =c. 5.41
1% g \/m ( )
We can now compute the energy flux and energy density of the waves. Since E and B
both vary sinusoidally in time, the Poynting vector and the energy density actually fluctuate;
however, we take a time average, since this is in most cases what is measured. If A(t) and B(t)
are two complex quantities with the same sinusoidal time dependence

A(t) = Ae“t,  B(t) = Bel“t, (5.42)

then the time average of the product of their real parts is
1 1
(ReA(t) - ReB(t)) = 3 Re (AB*) = 3 Re (A*B), (5.43)

where the asterisk denotes complex conjugation. The time-averaged Poynting vector satisfies
(cf. Eq. (5.19) with Ey = ¢By)

e 1 x 1 feg o 1 |Bof
(S) = T/o S0t = 5 Re(EoBi), sothat (5)= 5 [ 5 = o TEL (5.
Similarly, the time-averaged energy density is (cf. Eq. (5.18))
() = L Re (eoEoEg; + 1BOBg> . sothat (U) = LB = = |By[2. (5.45)
4 1o 2 2410

Therefore, the velocity of energy flow is also (S)/(U) = 1/\/eopo = c.

This was vacuum solution. Similar results hold if we use a constant permitivity and perme-
ability. However, in practice these quantities depend on frequency, so a more careful approach
is required.
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5.4 The Radiation Spectrum

The radiation spectrum depends on temporal variations of electric field (we can ignore the
magnetic field, since it mimics the electric field). One cannot give a meaning to the spectrum
at a precisely instant time, knowing only the electric field at one point. Instead, one must take
into account the spectrum of many waves, or of the radiation at one point during a sufficiently
long time At. However, having such a record of the radiation field in time At, we still can only
define the spectrum within a frequency resolution Aw, where

AwAEt > 1. (5.46)

This uncertainty relation is a property of any wave theory of light.

Let us assume, for simplicity, that the radiation is in the form of a finite pulse (in practice,
we only require that E(t) vanishes sufficiently rapidly for ¢ — +o00). Let us treat only one of
the two independent components of the transverse electric field, say E(t) = a- E(t). We may
thus express E(t) in terms of a Fourier integral (Fourier transform):

9 ) 1 0o .
= / E(t)e “'dt, Et) = — / B(w) et dw. (5.47)
NS 2 J_
The function E(w) is complex, however, E(t) is real, so we can write

/ E(t)e“tdt = E*(w), (5.48)

(the asterisk denotes a complex conjugate function) so that the negative frequencies can be
eliminated.

E(w) contains the whole information about the frequency behavior of E(t). To convert this
into frequency information about the energy, we express the work per unit time per unit area
in terms of the Poynting vector as a representative of directional energy flux (energy or work
transfer per unit area A per unit time t):

— - |2F 4
A o (t), (5.49)

while the total energy (or work) per unit area within the pulse is

- \/i /_ Z E2(t) dt. (5.50)

Equation (5.48) gives |E(w)|? = |E(—w)|? and from the Parseval’s theorem
o0 1 [e.e]
| RPa =g [ xR, (5.51)

(where X (w) = F{x(t)} represents the continuous Fourier transform in normalized, unitary
form) follows

- L[ a2 L EENT
E*(t)dt = — |E(w)]*dw = — |E(w)]” dw. (5.52)
—00 21 J 0

™

Inserting Eq. (5 52) into Eq. (5.50) gives the energy per unit area per unit frequency,

€0 2 dW 1 €0~ 2
h =—,/—|F . .
”,U«O/ w)|“dw, so that Ado — - HO‘ (w)] (5.53)
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We note that this is the total energy per area per frequency range in the entire pulse; we
do not write “per unit time”, because to write both d¢ and dw would lead to violation of the
uncertainty relation between w and t. However, if the pulse is repeated on an average time scale
T, then we may formally write

dw 1 [e |E(w)

- - 5.54
dAdwdt 7wV e T ( )

This formula can be used to define the portion of spectrum of a length 7" of much longer signal.
If a very long signal has more or less the same properties over its entire length (time stationarity)
then the result will be independent of ¢ for large T" and we may write

dw _1 € . 1, - 9
dAdwdt w\/; A i@l (5.55)

where the subscript T’ on FEp(w) emphasizes the transform of a portion of the function E(t) of
length 7. We can include infinitely long waves (such as sine waves) using the formulas based
on finite pulses.

The efficiency of the concept of local spectrum depends on whether the changes of character
of E(t) occur on a time scale long enough that one can still define time interval 7' in which
a suitable frequency resolution Aw ~ 1/T can be obtained. Otherwise one must consider the
spectrum of the entire pulse as the basic entity.

5.5 Polarization and Stokes Parameters

5.5.1 Monochromatic Waves

The monochromatic plane waves in Eq. (5.37) are linearly polarized; the electric vector oscillates
in the direction a7, which, together with k, defines the plane of polarization. By superposing two
such waves in perpendicular directions, we can construct the general state of polarization for a
given k and w. We consider only the electric vector E; the magnetic vector stays perpendicular
to it with the same magnitude as E. Let us examine the electric vector at an arbitrary point
(say, r = 0) and choose axes = and y with corresponding unit vectors X and y. The direction of
the wave is right-handed, along the axis z with corresponding unit vector Z. Then the electric
vector is the real part of

E = (XE| 4 yFo)e ! = Ege @t (5.56)

This generalization of Eq. (5.37) replaces 41 F; by the complex vector Ey. The complex ampli-
tudes £ and &> are

B =& €9, Fy=E&c, (5.57)
From the real part of E we find the physical components of the electric field along X and y,
E, =& cos(wt—¢1), Ey=E cos(wt—¢a). (5.58)

These equations describe the tip of the electric field vector in the x-y plane.

The figure traced out is an ellipse, the general wave is said to be elliptically polarized. The
equations for a general ellipse with its principal axes 2’ and v/, which are tilted at an angle ¢
to the axes x and y, are

E, = &cosfcoswt, K, = —Esin fsinwt, (5.59)
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where —7/2 < § < 7/2. The magnitudes of the principal axes are &|cos 3| and &l sin 3|,
since (B}, /& cos ) + (B, /Eysin 3)* = 1. The ellipse will be traced out in a clockwise sense for
0 < 8 < /2 and counter-clockwise sense for —w/2 < 8 < 0, as viewed by an observer toward
whom the wave is propagating. This is called right- and left-handed elliptical polarization (or
negative and positive helicity), respectively.

There are two degenerate cases of elliptical polarization: When = +x/4 the ellipse be-
comes a circle, the wave is circularly polarized. When 5 =0 or = £+7/2, the ellipse becomes
a straight line, the wave is linearly polarized. In the latter case the wave is neither right-handed
nor left-handed.

Let us now connect the quantities in Eq. (5.58) and those defining the principal axes of the
ellipse. We transform E components in Eq. (5.59) to the z- and y-axes by rotating through the
angle x. This yields

E, = &y (cos [ cos x cos wt 4 sin fsin y sinwt) , (5.60)
E, = & (cos fsin x coswt — sin B cos x sinwt) . (5.61)

This becomes identical with Eq. (5.58) if we take

&1 cos P = Ey cos fcos , &1 sin¢y = Eysin Bsin x,
&g cos o = & cos Bsin x;, &y sin g = —&y sin B cos x. (5.62)

Given &1, ¢1, &2, P2, these equations can be solved for &, B, and x by means of the Stokes
parameters for monochromatic waves:

I=E2462=¢;,

Q= 812 - 522 = Eg cos 23 cos 2,

U =2&1E cos(dr — ¢2) = Sg cos 23 sin 2y,

V = 2E1Esin(¢py — ¢o) = E5 sin 2. (5.63)

From Egs. (5.62) we have

v
=1, sin28= T

o

Since an elliptical polarization is determined by the three parameters &, [, and x, we relate

tan2y = (5.64)

I’=Q*+U*+V? (5.65)

for a monochromatic wave.

The meanings of the Stokes parameters are: [ is the flux or intensity, V' is the circularity
parameter that measures the ratio of principal axes of the ellipse (the wave has right- or left-
handed polarization when V is positive or negative, V' = 0 for linear polarization). There is only
one remaining independent parameter, () or U, which measures the orientation of the ellipse
relative to the z-axis; in case of a circular polarization Q = U = 0.

5.5.2 Quasi-monochromatic Waves

The monochromatic waves are 100% polarized if the electric vector displays a simple, nonran-
dom directional behavior in time. However, in practice we never see a single monochromatic
component but rather a superposition of many components, each with its own polarization. An
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important case of interest occurs when the amplitudes and phases of the wave relatively slowly
vary in time, so that instead of Eq. (5.57) we have

Ei(t) =& (1) D) By(t) = Ex(t) ), (5.66)

We assume that over short times, of order 1/w, the wave looks completely elliptically polarized
but over much longer times, At > 1/w, over which &1, &, ¢1, and ¢2 change substantially, this
state of polarization can change completely. Such a wave is no longer monochromatic; by the
uncertainty relation its frequency range Aw can be estimated as Aw > 1/At so that Aw < w.
The wave is called quasi-monochromatic; the frequency range Aw is called the bandwidth of the
wave, and the time At is called the coherence time.

The quantitative characterization of quasi-monochromatic waves depends on a kind of mea-
surements that can be made. In principle, for strong waves the precise time variations of the
quantities &1, &, ¢1, and ¢o could be measured; this would be the most detailed characteriza-
tion possible. On the other hand, most measurements usually involve some apparatus in which
the characteristics of radiation are delayed. If we suppose that any time delays involved are
short compared to the coherence time of the wave, then we can show that the outcome of a
measurement with such a device depends on simple extensions of the Stokes parameters.

The most general linear transformation of field components due to measuring devices can
be written

Ei = )\11E1 + )\12E2, Eé = )\21E1 + )\22E2 (567)

where the complex constants A; j characterize the measuring apparatus. We measure the average
sum of the squares of the 1’ and 2’ components of electric field, where 1’ is and 2’ are

—jwt) 2 * * * * * *

((Re B{e™)”) = |\ 2 (ByED) + M1 X (BLES) + AaXiy (B2 Ef) + Mol (B2E3), (5.68)
—iw 2 * * * * * *

<(Re Bye ) > = [An2[? (E2E3) + A2 Ay (B2 EY) + A5y (E1E3) + [hai|* (E1ET) . (5.69)

We modified Eq. (5.43) to average over the “fast” variations in the field described by the e~
term. The brackets ( ) on the right-hand side refer to only time averaging of the slowly varying
combinations of E;(t) and Es(t), where, for example,

T
(EAES) = o /0 Ey(®)E3(t)dt (5.70)

is the integral over the time interval of the measurement.
A set of four real quantities used to express (EZE]*> are the Stokes parameters for quasi-
monochromatic waves,

I = (B\Ey) + (E2E3) = (67 + &3), (5.71)
Q= (E\E}) — (ByE3) = (€1 - &3), (5.72)
U= <E1E§> + <E2ET> = <25152 COS(¢1 — ¢2)> R (5.73)

= < (B1BS) — (BaBD)) = (26:8a5in(61 — b)) (5:74)

where we used Eq. (5.57). Equations (5.71) - (5.74) are the time-dependent generalizations
of Egs. (5.63). The Stokes parameters most completely describe the radiation field, providing
that two waves with the same parameters cannot be distinguished by measurements that use
an apparatus of the above type.
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Equation (5.65) does not apply for arbitrary quasi-monochromatic waves. The Schwartz
inequality

(E\EY) (E2E5) > (EyEy) (E2EY) (5.75)
implies the equality sign in (5.75) only if Fy(t)/FE>(t) is a time-independent complex constant.
In this case the electric vector traces out an ellipse of fixed shape and fixed orientation and
only its overall size changes slowly with time. Such a wave is equivalent to a pure elliptically
polarized monochromatic wave because their Stokes parameters are the same. In other words,
Egs. (5.71) and (5.75) give

I’>Q*+U*+ V2, (5.76)
where the equality holds for a completely elliptically polarized wave.

The other extreme is the completely unpolarized wave with unrelated phases between Ej
and Ey and with no preferred orientation in the z-y plane, so that (£7) = (£3) and

Q=U=V=0, or Q®+U*+V?=0. (5.77)

An important property of the Stokes parameters is that they are additive for a superposition
of independent waves, that is, the waves with no permanent relations between phases of the
various waves, and which are randomly and uniformly distributed from 0 to 27 over the relevant
time scales. A superposition

E=Y EY, E=Y E (5.78)
k l

of different waves, each having its own Efk) and Eik), gives
BB =Y S (EVEY) =S (P ER), (5.79)
ko1

where, due to phase randomness, only terms with k = [ survive the averaging, as indicated. It

follows that
1=>"1" Q= QW, v=>v" v=>"v®, (5.80)

proving the additivity.
By the superposition principle, an arbitrary set of Stokes parameters can be represented as

I I—/Q*+U?+V?2 VU2 +V?2

QI _ 0 Q
ol = 0 + t : (5.81)
1% 0 1%

where the first term on the right-hand side represents a completely unpolarized wave of intensity

Q? + U? + V2 and the second term represents a completely (elliptically) polarized wave of
intensity \/Q? + U? + V2 (see Eq. (5.65)). The Stokes parameters for a quasi-monochromatic
wave can be decomposed into the previously given forms of the completely polarized plus the
unpolarized part. Such a wave is therefore said to be partially polarized. The degree of polar-
ization is defined as the ratio (percentage) of the intensity of the polarized part to the total
intensity,

I /02 2 2
= fot _ VEFUTHVE (5.82)

I I
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A special case is partial linear polarization, V = 0, with the maximum and minimum values
of intensity

1 1

Imax = ijunpol + Ipola Imin = §Iunp017 (5'83)
where Iinpol = I —1/Q? 4+ U? and I,q) = 1/Q? + U?. Equation (5.82) finally gives
Imax - Imin
I=—. 5.84
Imax + Imin ( )

This formula applies only if the polarization is of plane type, while in case of present circular
or elliptical polarization it underestimates its true degree.

5.5.3 Limits of Phenomenological Transfer Theory

The specific intensity and associated concept of rays was used as a fundamental variable. How-
ever, there are certain limitations imposed on transfer theory by the wave or quantum nature
of light. For example, we defined specific intensity by dF = I, dAdtdQdv (Eq. (4.2)), where
dA, d, dv, and dt were presumed to be infinitesimal. However, dA and df2 cannot be both
arbitrarily small because the uncertainty principle for photons constrains

dz dp, dydp, = p*dAdQ > k% so that dAdQ > A2 (5.85)

As soon as the linear size of dA is of order of the wavelength, the direction becomes uncertain
and the concept of rays breaks down. Another limitation results from the energy uncertainty
principle,

dEdt > k%, so that dvdt>1. (5.86)

Equations (5.85) and (5.86) imply that when the wavelength of light is larger than atomic
dimensions (like in the optics), we cannot describe the interaction of light on the atomic scale
in terms of specific intensity. However, we may regard transfer theory as a valid macroscopic
theory, provided the absorption and emission properties are correctly calculated from quantum
electrodynamics.

A more precise, classical treatment of the validity of rays is known as the eikonal approzrima-
tion. This approach treats a scalar field rather than the vector electromagnetic fields. Rays are
curves whose tangents at each point lie along the direction of the wave propagation. The rays
are well defined only if their direction and amplitude is practically constant over a distance of a
wavelength A. This limit is called the geometrical optics limit. Suppose the wave is represented
by a function

g(r,t) = a(r, ) e, (5.87)

where a(r,t) is the slowly varying amplitude and (r,t) is the rapidly varying phase. The
behavior of a and 1 is constrained by the wave equation

1 9%g

2

Substituting Eq. (5.87) in (5.88) gives
20,10 . (on 1PN o (G, vy L020¢
V<a 290 +ia | VY e +2i( Va- -V 29 ot

2
—a (V)? + % (%‘f) ~0. (5.89)
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The slow and fast variability of amplitude and phase, respectively, implies the constraints

1 1
| Va| < |V, [V <|Ve[, =~ |Via| <[y,
1|8a o 0% oy |?
a|ot '875 22| <o (5.90)
that reduce Eq. (5.89) to the eikonal equation:
2 1 (99)?
R 91
vor -5 (%) =0 (5.91)

If a in Eq. (5.87) is a constant, then the local wavevector k (normal to the surfaces of constant
phase 1) and the local frequency w are

oy

ot’
and, substituting Eq. (5.92) into Eq. (5.91), we obtain Eq. (5.39) as the relationship between
wavenumber and frequency of a plane wave.

k=Vi, w= (5.92)



Chapter 6

Radiation from Moving Charges

6.1 Liénard-Wiechert Potentials

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): Consider a particle of charge ¢ that
moves along a trajectory r = ro(t) whose velocity is u(t) = ro(t). We express its charge and
current as

q= /qé(r —ro(t)d3r, qu= /qué(r —ro(t)) d®r, (6.1)

where the charge and current densities are p = qo(r—ro(t)) and j = qué(r—ro(t)), respectively,
and where the general property of the Dirac d-function is a localization of an integral given by

[ f(@)é(x — wo) dz = f (o).
We evaluate the retarded potentials (5.33) and (5.34) via these charge and current densities.

Since the scalar potential is
1 I o
/dSr’/dt’p(r’)é popp iy (6.2)
47eg |r —r'| c

the substitution of the charge and current densities yields integrals over the single variable ¢/,

¢(r7t) =

o(r,t) = 4:60/1%—1(75’)6 [t’ —t+ R(Ct/)] d, (6.3)
A(r,t) = ‘f:/u(t’)R—l(t’)é [t’ —t+ R(j)} dt, (6.4)

where R(t") = r — ro(t') and R(t') = |R(t')].
The argument of the d-function vanishes for a value of ¢/ = t.e; given by

C (t - tret) == R(tret)- (65)

We substitute a new variable t” =t — t + R(t')/c whose differential
1. 1
dt” = [1 + CR(t’)} dt’ = [1 — En(t’) : u(t’)} dt’, (6.6)

where the latter we obtain by differentiating the identity R2(t') = R%(t) to 2R(tR(t) =
—2R(t') - u(t'), where R(t') = —u(t’) and the unit vector n = R/R. Equations (6.3) and (6.4)

97
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take the form

—1
o(r,t) = 4:60 /Rl(t’) [1 - %n(t/) : u(t’)] Sty at”, (6.7)
A _ MHogq Np—1(4 _1 / / _15 IR,
(r,t) = ym u(t YR (t) |1 Cn(t ) - u(t) (t")de”, (6.8)
Setting t” = 0 or equivalently ¢’ = t.e; yields
_ L ra _ Horgqu
~ dwe L{R} » A= 4 [HR] ’ (6.9)

where we keep the bracket notation for retarded potentials and where

K(trey) = 1 — %n(tret) : u<tret)- (6.10)

Equations (6.9) are the Liénard- Wiechert Potentials. They differ from static electromagnetic
theory in the factor k(trt) that becomes very important at velocities close to ¢, where it
concentrates the potentials into a narrow cone about the particle velocity (it is related to the
beaming effect - see Sect. 7.2.4).

The second difference is that the quantities are evaluated at the retarded time ¢, which
enables a particle to radiate. The potentials fall off as o 1/r so that the fields would decrease
o 1/r? if the differentiation of potentials acted solely on the oc 1/ factor. Retardation involves
an implicit dependence on position via the definition of retarded time, and differentiation with
respect to this dependence carries the 1/r behavior of the potentials into the fields themselves.
This allows radiation energy to flow to infinite distances.

6.2 The Velocity and Radiation Fields

The differentiation of the potentials to obtain the fields (using Eqs. (5.24) and (5.25)) is straight-
forward. We first determine the retarded position and time of the particle rye; and tpe, when
particle’s velocity u = Fo(trer) and acceleration & = Fo(tret). Using the notation

ﬂ:%, k=1—-n-6, (6.11)
the fields are
1 - 1—p2 .
E(rt) = 4meg {Q(n 53)152 : ) * %ﬁanR % {(n —B)x B] } ’ (6.12)
B(r.t) = %n X E(r.1). (6.13)

The electric field in Eq. (6.12) is composed of two terms. The first is the velocity field that
falls off as 1/r? and is the generalization of the Coulomb law to moving particles, for u < c
this becomes precisely Coulomb law. In case of a constant velocity, only this term contributes
to the fields. The electric field in this case always points along the line toward the current
position of the particle. This follows from the fact that the displacement to the field point
from the retarded point is nct, where t = t — tye; is the light travel time. In the same time
the particle undergoes a displacement Bct. The displacement between the field point and the
particle position is (n — 3)ct, which is the direction of the velocity field in Eq. (6.12).
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The second term, the acceleration field, falls off as 1/R, is proportional to the particle’s
acceleration and is perpendicular to n. This electric field, along with the corresponding magnetic
field, constitutes the radiation field,

1 gn .
Evaa(r,) = oo * |(n—8) x B (6.14)
1
Brad(r,t) = En X Erad~ (615)

E, B and n form a right-hand triad of mutually perpendicular vectors and |E;,q4| = |Byad|, this
is consistent with the radiation solution of the source-free Maxwell equations.

6.3 Radiation from Non-relativistic System of Particles

We could describe radiation processes involving particles moving relativistically. However, this
would be made easier after the section on special relativity. Therefore, we shall now focus to
nonrelativistic particles.

6.3.1 Larmor Formula

When |3]| < 1, we can simplify Eqgs. (6.14) and (6.15) to

1 gn .
rad = Imeo RE X (nx i), (6.16)
1
Brad = En X Erad~ (617)
The magnitudes of E,3q and B,aq are
1 U s
|Erad| = " sin®,  [Braal = K9 gine, (6.18)

drey R Re2 R02

where © is the angle between the Poynting vector (5.19) direction n and the particle’s acceler-
ation . The magnitude of the Poynting vector is
€0 9 1 g2
S=,/—FE,4="——5—
Mo rad (47‘() €0 RQC?’
We evaluate the energy dW emitted per unit time into solid angle d€2 about n can be
evaluated by multiplying the Poynting vector (Js~! m~2) by the area dA = R%2d(),
aw 1 g*?
dtdQ  (4m)2%¢p 3

sin? @. (6.19)

sin? @. (6.20)

We obtain the total power emitted into all angles by integrating (6.20),
dw 1 ¢ ) 1 %2 [T ) 1 g2
P = = in“©dQ = 1-— dp = . 6.21
dt  (4m)%eg 3 /Qsm 8mey 3 /_1( i) dp 6meg 3 (6:21)

This is the Larmor formula for emission from a single accelerated charge q.
There are two points to notice about Egs. (6.20) and (6.21):

1. The characteristic dipole pattern o sin? ©: no radiation is emitted along i, the maximum
is emitted perpendicular to i.

2. The instantaneous direction of E ,q is determined by & and n. If the particle accelerates
along a line, the radiation will be 100% linearly polarized in the plane of & and n.
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6.3.2 The dipole approximation

In a system of N particles with positions r;, velocities u;, and charges ¢;, ¢ = 1,2,..., N, we
can find the radiation field at large distances by the vector sum of the E; ;,q. However, the
radiation field refers to conditions at retarded times which differ for each particle. We must also
keep track of the phase relations between the various pieces of the radiating system introduced
by retardation.

In some situations, however, we may ignore this difficulty. Let the typical size of the system
be L, and let the typical time scale for changes within the system be 7. If 7 is much longer
than the time it takes light to travel a distance L, 7 > L/c, then the differences in retarded
time across the source are negligible. We may also characterize 7 as the time scale over which
significant changes in the radiation field E,;q occur, and this in turn determines the typical
characteristic frequency of the emitted radiation. Calling this frequency v, we write

1
v —, sothat SSL or A>L (6.22)
T v

The differences in retarded times can be ignored when the size of the system is small compared
to a wavelength.

We may also characterize T as the time a particle takes to change its motion substantially. If
¢ < L is a characteristic scale of the particle’s orbit and w its typical velocity, then 7 ~ ¢/u and
the condition 7 > L/c implies u/c < ¢/L, which is equivalent to the nonrelativistic condition
u < c¢. We may therefore consistently use the nonrelativistic form of the radiation fields for
these problems. This implies

1 qinx(nxui)

47 €0 02 RZ'
7

E g = (6'23)

Let Ry be the distance from a system point to the field point and d = ), ¢;r; is the dipole
moment. Because for Ry — oo are the differences in the actual R; negligible,

1 nx(nxd)
dmeg 2Ry

E.q= (6.24)
The right-hand side of Eq. (6.24) must still be evaluated at e, using any point within the
field, say, the point used to define Ry.

The generalization of Eqgs. (6.20) and (6.21) become

ap 1 d
A0~ () & sin® ©, (6.25)

This is the dipole approzimation, where the instantaneous polarization of E lies in the plane of
d and n.

Let us consider the spectrum of radiation in the dipole approximation. For simplicity we
assume that d always lies in a single direction. Equation (6.24) gives

By = . d(t)

= S 6.26
47T€0 02R0 S ( )

where E(t) and d(t) are the magnitudes of E(t) and d(t), respectively. The Fourier transform

d(t) = — / " d(w) et du, (6.27)

:% .
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implies
. 1 [ .. .
d(t) = -5 w?d(w) et dw = —w?d(t) (6.28)
T J -
and Eq. (6.26) gives
1 w? P 1 W
EFlt)=————— i h FE = —— i . .2
(t) pE——y e d(t)sin®, so that (w) Tmeo 2R d(w) sin © (6.29)

The energy per unit solid angle per frequency range and the total energy per frequency range,
using Eqs. (5.53), (6.28) and dA = R2dQ, is

dw 1w74

_ aw 1wt
dwdQ  16m3¢y 3

|d(w)|? sin” ©, = = Mcfs\cz@)y?. (6.30)

According to these formulas is the spectrum of the emitted radiation directly related to the
frequencies of oscillation of the dipole moment. However, this is not true for particles with
relativistic velocities.

6.3.3 The general multiple expansion

We now indicate the features of the general case. Since E and B are related well outside the
source, we may consider the vector potential A contains all the necessary information. A Fourier
analysis of the sources and fields is

J(r) = / j(retd,  Au(r) = / A(r.t) e dt. (6.31)

Using Eq. (6.4) for the vector potential in the form

1o jir't r—r
A(r,t) = 471/ d3r’/ dt’ "E - r’)\ J <t’ —t+ Ir=rl ; (6.32)

Cc

we take the Fourier transform of Eq. (6.32),

po [ Ju(r) ke o
Au(r) = yrw—ir/ye iklr=r'l 43¢/, (6.33)

where k|r —r'| = (w/c)|r — r'| = wt. Equation (6.33) relates single Fourier components of j and
A.

Suppose an origin of coordinates inside the source of size L. At field points such that r > L,
we approximate

r—r|~r—n-r, (6.34)

where n points toward the field point r and r = |r|. Substituting Eq. (6.34) in (6.33), we obtain

1o elkr . ,
A, (r)~ =2 /jw(r’)elk"" a3, (6.35)

A7 r

The factor exp(ikr) outside the integral expresses the effect of retardation from the source as
a whole. The factor exp(ikn - r') inside the integral expresses the relative retardation of each
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element of the source. In our slow-motion approximation, kL < 1, we expand the exponential
in the integral (6.35),

Moe
A,(r va /,w Y(ikn - )" d3r. (6.36)

“4r oy

Equation (6.36) is an expansion in the small dimensionless parameter kL = 2w L/). The dipole
approximation results from taking just n = 0,

1o eik:r . N3
Aw(r)’dipole ~ A Jw(r )d r (6'37)

A r

and the quadrupole term is the term n =1,

,UfO lkelkr

Aw (r) |quad A7 r

/Jw(r’)(n -r)d3r. (6.38)

Although the frequencies of the vector potential (and hence in the radiation) are identical
to those in the current density, these frequencies may differ from the frequencies of particle
orbits. For example, if a particle orbits in a circle with angular frequency wp, the function
Jw(r) contains frequencies not only at wp but at all harmonics 2wp, 3wp ... . In the dipole
approximation contributes only wg, in the quadrupole approximation only 2wg, and so on.

6.4 Thomson Scattering

We apply the dipole formula to the process when a free charge radiates in response to an incident
electromagnetic wave. If the charge oscillates at v < ¢, we neglect magnetic forces, B = E/c.
The force due to a linearly polarized wave is

F = mr = geEysin wot, (6.39)

where ¢ is the electric charge and e is the electric field direction. Equation (6.39) in terms of
the dipole moment, d = gr, describes an oscillating dipole,

2 2

. E E

d=""C¢sin wot, so that d=— (q g) e sinwyt, (6.40)
m mw

with an amplitude dy given by e times the bracket in Eq. (6.40).
Following Egs. (6.25), the time-averaged power is

472 472
P _ 9 By sin?@®, P = a Ly

_—_— = _— 6.41
dQ  32n2¢ym2c3 12megm2c3’ (6.41)

where the time average of sin? wot gives a factor 1/2. The incident flux (S) = £+/e0/po B¢ (see
Eq. (5.44)). We define the differential cross section do for scattering into d€2,

dpP do 1 [e ,odo
= (S\N—=—=Z, |2 — 6.42
dQ <>dQ 2\ o 0 dQ’ (6.42)
implying (using Eq. (6.41))
4
do q sin2© = rZsin2 ©. (6.43)

daQ - (4meg)?m?2ct

polarized
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The quantity ro gives a “size” of the point charge, assuming its rest energy moc? is purely

electromagnetic. For an electron rg = re =~ 2.82 X 10~ m is the classical electron radius. The
total cross section we obtain by integrating over solid angle, using y = cos ©,

4 1 4
q q 8
o= / / (1-— ,uz)du =0 = §r§ (6.44)

87T€ 8re2m2ct |, 6meam2ct

Electron or Thomson cross section o =~ 6.65 x 10729 m?

The total as well as the differential cross sections are frequency independent, so that the
scattering is equally effective at all frequencies. However, this is valid only for sufficiently low
frequencies, at high frequencies, where hv ~ mec? (X-rays with hv > 0.511 MeV), the quantum
mechanical effects must be involved (see Appendix 9). For intense radiation fields the electron
also moves relativistically and the dipole approximation ceases to be valid.

The scattered radiation is linearly polarized in the plane of the incident polarization vector
e and the direction of scattering n. We get the differential cross section for scattering of unpo-
larized radiation by recognizing that an unpolarized beam can be regarded as the superposition
of two linearly polarized beams with perpendicular axes. We choose one such beam along ey,
which is in the plane of the incident and scattered directions, and the second along es, per-
pendicular to this plane. We denote © the angle between e; and n, while the angle between
eo and n is w/2. We also classify the angle 6 between the scattered wave and incident wave,
0 = w/2 — ©. The differential cross section for unpolarized radiation is then the average of the
cross sections for scattering of linearly polarized radiation through angles © and 7/2,

do
dQ

do(0)
dQ

1

2

do(7/2)
dQ

7”2 7”2
=2 (1+sin’0) = 2 (1+cos?0),  (6.45)
ot| 2 2

unpol pol

which depends only on the angle between the incident and scattered directions.
There are several important features of electron scattering of unpolarized radiation:

e Forward-backward symmetry: The scattering cross section, Eq. (6.45), is symmetric under
the reflection 6 — —6.

e Total cross section: The total scattering cross sections of unpolarized and polarized in-
cident radiation are identical, ounpol = opol = (87/ 3)r2. This is because the electron at
rest has no net direction intrinsically defined.

e Polarization of scattered radiation: The last two terms in Eq. (6.45) refer to intensities in
two perpendicular directions in the plane normal to n, since they arise from the two per-
pendicular components of the incident wave. Because the ratio of polarized intensities in
the plane and perpendicular to the plane of scattering is cos? , the degree of polarization
of the scattered wave is (cf. Eq. (5.84))

1 —cos?0

= 1+ cos?6’ (6.46)
Since I > 0, the electron scattering of a completely unpolarized incident wave produces a
scattered wave with some degree of polarization that depends on the viewing angle with
respect to the incident direction. Looking along the incident direction (§ = 0), we see
no net polarization, since, by symmetry, all directions in the plane are equivalent. If we
look perpendicularly to the incident wave (6 = 7/2) we see 100% polarization, since the
electron’s motion is confined to a plane normal to the incident direction.
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6.5 Lorentz-Abraham Force (Radiation Reaction Force)

is a force exerted on a particle by the radiation it produces. An accelerating charge emits
radiation (according to the Larmor formula), which carries momentum away from the charge.
Since momentum is conserved, the charge is pushed in the direction opposite the direction of
the emitted radiation.

Let T be the time interval over which the particle’s kinetic energy is changed substantially
by the radiative emission. From the Larmor formula (6.21) with a = u,

v2 6meomed

e O o

where m is the mass of the particle, and v its velocity. Let us estimate v/a ~ t, as the typical
orbital time scale for the particle. The condition T'/t, > 1 requires t, > 7, where (in case of
an electron) the time for radiation to cross the classical electron radius (Eq. (6.41)) is
1 e?
T = ;
6meg mec?

~ 10725, (6.48)

If we are consider processes that occur on a time scale much longer than 7, we can treat radiation
reaction as a perturbation.

We derive the formula for the radiation reaction force from considerations of energy balance.
When the radiation reaction force is relatively small, we may define the force as a term added to
the existing external force, such that the radiated energy must be compensated by the work done
against the radiation reaction force. Following again the Larmor formula (6.21) for electrons,
we set

1 e%u?

6meg 3’

—Frad-u= (6.49)

However, Eq. (6.49) brings a contradiction; Fy,q cannot depend on u, because this would imply
a preferred frame relative to which u is measured. We satisfy this equation in an average sense,
by its integration (by parts) over a time interval (to — t1) > 7:

to 1 62 to 1 62 ' to
| Faqoudt=—C5 [ aoaat=—C (a-u2— [ w-udt). 6.50
/t rad U 6meq 3 /t1 v 67eo 3 (u uls; /t v ) (6.50)

1 1
We may assume that the initial and final states are the same (within the long term average) or
that & - u(t1) = - u(te), the first term on the right-hand side of Eq. (6.50) vanishes, leaving

t2 1 €% 1 ée%ir
—/ <Frad — 3> ~udt =0, sothat Frq=_———5 =meTil, (6.51)
t 6meg ¢ 6meg ¢

where i1 is the jerk (the derivative of acceleration, or the third derivative of displacement).
The radiation reaction force in Eq. (6.51) depends on the jerk, this increases the degree of the

particle’s equation of motion and implies a nonphysical behavior if not used consistently.
The equation of motion for a particle with zero total force,

m(ad—7i)=F=0 (6.52)

gives the trivial solution u = const., which is physically correct. However, there is also a
non-trivial solution

u=ugel, (6.53)

(“runaway” solution) which we must exclude, because i - u(t1) # U - u(tz) or, because of the
rapid velocity increase, it violates the restriction that the motion will not change on a time
scale short compared to 7 (we say that such solutions are spurious).
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6.6 Radiation from Harmonically Bound Particles

6.6.1 Undriven Harmonically Bound Particles

A harmonically bound particle to a center of force (F = —kr = —muw3r) will oscillate sinu-

soidally with frequency wgy. Such a system, although rarely found in nature, gives the only
possible classical model of a spectral line. Many of the quantum results are consistent with
this model (“oscillator strengths”, “classical damping widths”). Since there is always a small
damping by the radiation reaction force, the oscillation is not purely harmonic. We assume
woT < 1, so that the radiation reaction formula is valid. If the particle oscillates along the x

axis (cf. Eq. (6.51)),
i+ wir — T =0, (6.54)

which is a third-order differential equation with constant coefficients. Since the third derivative
term is small, we may approximate the motion as harmonic to first order,

z(t) o cos(wot + dp), so that 7' o< —wii. (6.55)

This approximation preserves an important feature of damping: it is expressed as an odd
number of time derivatives and is therefore not time reversible. Equation (6.54) becomes

i+ wi(ti4+2)=0, sothat o +wira+wl=0, (6.56)

by assuming z(t) is of the form e®. Expanding in powers of wy7, we obtain
wiT 3,2
a=——r +iwg + O(wpt?), (6.57)

where the discriminant of the solution of Eq. (6.56), w3T?—4 ~ —4. Taking the initial conditions
x(0) = g, ©(0) ~ 0, involving Eqs. (6.55), (6.57), and (6.48) gives

I't/2 1 Tt/2+i I't/2—i 2 1wy
z(t) = zoe "2 coswot = 5%0 (e_ t/2+iwot | =Tt/ _1w°t> , I'=wyr = 6o mec%' (6.58)
The Fourier transform of z(t) is (cf. Eq. (5.47)),
o ; 1 1
(w) = o(t)e @t dt = 20 + 6.59
() /0 (*) 2 [T/24i(w—wy) T/241i(w+wp) (6.59)

This is large near w = Fwy. Since we interested only in positive frequencies, and only in regions
where values are large, we approximate

. To 1 N 9 <m0)2 1
T(w) ~ — - , |2w)|T == . 6.60
The energy radiated per unit frequency is (cf. Eq. (6.30))
dWw _ 1 62w4|£(w)|2 _ w e2x3 . (6.61)
dw  672¢y 3 24m2ec3 (I'/2)2 + (w — wp)?

Equation (6.61) gives the frequency spectrum typical of a “decaying oscillator”, which has a
sharp maximum near w = wy, since I'/wg < 1 (cf. Eq. (6.58), for example, for the blue edge of
the visible light, I'/wy =~ 107?), where T is the full width at half maximum (FWHM).
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Using the definition of I and k = mew? = force constant of the spring, Eq. (6.61) is
dw 1 2wt ka2 I'/ (2w
- Fw)? = (0) rjem (6.:62)
2 ) (T/2)? + (w — wo)

dw  6m2¢y 3
The first factor gives the initial potential energy of the particle (of the spring) while the second
factor gives the distribution of the radiated energy over frequency. The integral over w is

© dW o0 Tka?/(4 kx? 2 (w— e kx?
W / AW = / g/ (4m) 5 dw = "0 o tan [(wwg)} _ o (6.63)
— 00 dw o (F/Q)Q + (w — WO) 2T T —o 2

The profile of the emitted spectrum,

r/(2r)
(L/2)% + (w — wo)*’

is known as a Lorentz profile. The line width Aw = I' is a universal constant for electron
oscillators. In terms of wavelength (cf. Eq. (6.58)) it is

(6.64)

2
A= SAv= L;Aw = 2mer ~ 1.2 x 1074A. (6.65)
w

v2
6.6.2 Driven Harmonically Bound Particles

We now consider forced oscillations due to an incident radiation. We write (cf. Eq. (6.54))
mMel + meng —meTZ = eFycoswt, (6.66)

where the right-hand side represents the force due to a sinusoidally varying field. Following

Eq. (6.56) and representing x by a complex variable, we have

ek

Me

where we take the real part of z. The steady-state solution of Eq. (6.67) (cf. Eq. (6.57) and
Sect. 3.2.1 in Kurfiirst (2017)) is

Ptwi(rid o) = Re (e!?), (6.67)

3

; ek - w
z = |zg| @) where m) = ——2 (w? — wh — iwT) ' §=atan <272> . (6.68)
Me w? — w§

There is a phase shift caused by the odd time derivative damping term. For w > wq the
particle “leads” the driving force and for w < wqg it “lags behind”. Taking the real part of = we
have an oscillating dipole of charge e and amplitude |zg| with frequency w. The time-averaged
total radiated power (cf. Egs. (6.21), (6.41) and (6.68)) is

p_ 1 ezof’wt  'E} w

- 12meg 3 ~ 12megm?c3 (w? — w%)Q + (wir)?

. (6.69)

Dividing Eq. (6.69) by the time-average Poynting vector (S) = $1/eo/po EZ (see Eq. (5.44)),
we obtain the scattering cross section as a function of frequency,

o(w)=or , (6.70)

(w? = w})” + (wir)?

where op is the Thomson cross section (6.44).
We identify from Eq. (6.70) three characteristic regimes for w:
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e w > wp: In this case o(w) — op, the value for free electrons, since at high incident
energies the binding becomes negligible.

w < wp: This gives

o(w) = o7 <°">4, (6.71)

wo

which corresponds to the electron fully responding to the incident field with no inertial
effects, so that kx ~ eF (since w < wy, the electric field appears nearly static and produces
a nearly static force). The dipole moment is directly proportional to the incident field,
the radiation is scattered as w?, and the scattering is called Rayleigh scattering. It is
responsible for the blue color of the sky and the red color of the sun at sunset, because it
favors the scattering of higher frequency (bluer) light.

w A~ wp: Since w? — w3 — 0, that is w? — w3 = (w — wp)(w + wp) ~ w — wo, so that
2 r/(2
o(w) ~ r (wo7) 5 = mor /é ™) , (6.72)
At o [wir 27 (w —wp)” + (I'/2)?
(w—wp)” + N

using I' = w37. With the definitions of o7 and 7 from (6.44) and (6.48), Eq. (6.72)
becomes
T e? r'/(2m)

) e et (& o) & (T/2)2 (6.73)

Near the resonance, w =& wq, the shape of the scattering cross section is the same as
the emission from the free oscillator (cf. Eq. (6.64)). This can be explained, since the
free oscillations are excited by a pulse of radiation, E(t) « d(¢). The spectrum of this
pulse is independent of w (white spectrum), so that we may regard the free oscillations as
the scattering of a white spectrum, yielding emission proportional to the scattering cross
section.

We obtain an important result by integrating o(w) over w (in SI units),

0 2 0 2
/ o(w)dw = e , or / o(v)dv = ¢ ) (6.74)
0 0

while in cgs units Eq. (6.74) becomes

o0 97202 o0 2
/ o(w)dw = e , or / o(v)dv = e (6.75)
0 0

MeC MeC

We have neglected a divergence, since the cross section actually approaches or for large w.
This may be justified as follows: the radiation reaction formula is only valid for wr < 1,
so that we must cut off the integral at wmax such that wpax < 1/7. The contribution to
the integral from the Thomson limit is less than

Wmax
/ ar dw = OTWmax (6.76)
0
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which is negligible comparing to the integral (6.74), since orwmax < 07/T = €2 /(egmec).
In the quantum theory one obtains similar formulas, which correspond to the above results,

00 2 2
/ o(v)dv = eifnn/ (: Efnn/ in cgs) , (6.77)
0 MeC

- degmec e

where f,,/ is called the oscillator strength or f-value for the transition between states n
and n/.
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Relativistic Effects

7.1 Tensor analysis

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): For basics of tensor algebra and analysis,
including the terminology and explanation of quantities and operations introduce in this Section
- see Kurfurst (2017), Sect. 2.3 (in Czech). We now extend it including the consequences of
special relativity which is based on two fundamental postulates:

e The laws of nature are identical in every inertial frame of reference.

e The speed of light is ¢ in all such frames.

Considering two inertial frames K and K', with a relative (constant) velocity v along the
x axis, whose origins coincide at t = 0. We emit a pulse of light at the origin at ¢ = 0; each
observer then detects a spherical wavefront centered on his own origin. This is a consequence
of the second postulate and is inconsistent with “classical” physics. This result implies the fact
that time and space are specific in each frame and not universal. The expanding “sphere of
light” is thus in each frame described as

A2 -2t -yt -2 =0, At — o — y’2 — = 0, (7.1)
where, unlike the Newtonian physics, t' # ¢ (we note that another formalisms express Eqs. (7.1)
with opposite signs, yielding however the same physics). The relations between z, y, z, t and
2,y 2/, t' are called the Lorentz transformation, which is represented (regarding a boost along
the z axis) by:

v p2\ 12
= y(x — vt), v =y, 2=z t=9 <t — ijb“) where 7y = <1 - cg) , (72)
while the inverse transformation is:
r=~" +vt), y=vy, z=2, t=x (t/ + :—Qx/) . (7.3)

Transformation relation in Eq. (7.2) can be written as the Lorentz matriz (where f = v/c)

Yy =By 00

. -3 00
Ay = o7 g 10 (74)

0 0 01
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Equation (7.2) can be thus written in the compact form
ot = ALY (7.5)
Lorentz transformation of a general second-rank tensor T is defined by
T = AF AV T, (7.6)

which explicitly means T'% = A%A% T 4+ A% A% 710 + AOGAO, 70T 4 A0 A0, 11 770t —
AOOAl(] 700 + A01A10 T10 + AOOAI1 01 + A01A11 Tll7 T102 _ A00A22 02 + A01A22 T12, etc.,
using all non-zero terms of A¥,. The resulting tensor T""", expressed in terms of T, using all
non-zero terms of A#,. The resulting tensor T""", expressed in terms of TH", is

(Too + BT ﬁTij) (T01 + B270 BT”) T02_pT'2  TO_pT!3
Y i
10 201 ;e 11 200 .. lefﬁT‘)? T13—,BT03
(T + g1 — pT%) (T 4 52T — BT -

wo_ 2
T — y T20_gT21 T21_ 3720 T22/ry2 T237/72 s (77)
TBO jﬁf_‘[ﬁl T31 jﬁTSO T32 2 T33 )
— — /Y /v
where in this case T% = T% + T and T% = 701 + 710,
We now define the 4 x 4 Minkowski metric
10 0 0
0O -1 0 O
= =
0O 0 0 -1
which represents the space-time “length”
ds? = 1, dat dz¥ = 9" dz,, dz,. (7.9)
We obtain the covariant components 7T}, by lowering indexes as
T = NuoNur T (7.10)

(cf. Eqgs. 2.59 - 2.61 in Kurfiirst (2017)). Lorentz transformaton of the covariant components
now becomes

T,,=A7AT,,, (7.11)

where the coefficients Au” = 1+ AT5n?". The explicit form of ]\M” is thus

v By 00

iv_ |6y v 00
A= (7.12)

0 0 01

while the explicit form of T}, is
(Too + B°T11 + BTij)  (Tor + B°Tho + BT) TOQ?'BT” TO3J;BT13

T2 (Two + B2Tor + BTy)  (Tui + B*Too + BT55) Tm:ﬁTOQ TBJCYBT% 13
pr =7 Too+BT21 T21+BT20 T22/’)/2 ng/,}/Q ’ ( : )

Y Y
T30+8T31 T314+B8T30 2 2
T - T3/ T3/



Chapter 7. Relativistic Effects 111
where in this case Tj; = Too + 111 and Tj; = T + Tho.
In a similar way we can also define mized components of a tensor T,
T, =n,, T, T," =nu,.T°". (7.14)
whose explicit forms, expressed in terms of contravariant tensors, are
TOO _T[)l _T02 _T03 TOO TOI T02 T03
T10 _Tll _T12 _T13 _Tl[] _Tll _T12 _T13
™, = T20 21 22 23 | Tuy = 20 _21 22 23 (7-15)
T30 _T31 _T32 _T33 _TSU _T31 _T32 _T33
The mixed tensors are Lorentz-transformed:
", = NGAJT,, T/ =ANIA T, (7.16)
The explicit forms in this case are
. . 0, _ 1 0, _ 1,
(TOO - ﬁQTll + ﬁle) (TO1 o BQTIO + IBTzZ) ;12 72;02 ;13 VZ;;
1 270 j 1 270 j - -
T 2 (Tho = B1% = BT)  (T"1 = B*T0% = BT';) igie Ao (7.17)
T%0+BT7y T°14B8T%¢ T22/72 T23/,YQ
T304 81" 7%, 4 51°
049/3 1 1+f 0 T32/72 T33/72
where T% = T% — T, and Tij =T% — Ty, and
. . 2 2 3 3
(TOO _ 52T11 . IBTZJ) (Tol . 52T10 _ ﬂTzZ) Ty J:{ﬁT1 To JtyﬁTl
. . 2 2 3 3
TV 72 (T10 - 502To1 TﬂTiZ) (T11 - BfTQO -Oi- ﬁTij) b J:,BTO b +76T0 (7.18)
p = _ 3 i
T2 ’yﬁT2 T VBTz T22/’YQ T23/,YQ
0_'n1 1 _ 37,0
Ts ﬁ/ﬁT.s T3 ’yﬁTs T32/72 T33/72
where T;' = To° — T1'' and T = Ty' — T,°.
Here are some other examples of Lorentz transformation of vector or tensor fields:
e Transformation of two vectors (which form a tensor product),
AMBY = AP AN ABT, (7.19)
which is another expression for (7.2).
e Transformation of the components of the second rank Minkowski metric tensor n**:
0 = AN (7.20)

where 7/ of — n®? (thus 7*? has the same components in all frames). The proof of this
identity is directly given by Eq. (7.20). Another proof follows from symmetricity of n*?
and from its decomposition into the sum of four tensor products n®n® where each of them

ra, 1B

can be transformed according to Eq. (7.19) as n/“n’” = A%nP AP ,n® = A5 AP ,nPne.
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e We can construct also the second rank Kronecker-delta tensor 0#, (represented by unit
matrix) following the identity

A7 Ap = 6M,. (7.21)
The proof is obtained from the following identities: 2 = 1y, 2727 = 2z, = 2'° 2/, (where
s? is the Lorentz invariant “space-time” squareNOf line length in the observer’s frame of
reference, cf. Eq. (7.9), so that /72, = A Af'e"x, = s* = 2¥x,6",. Multiplying
Eq. (7.5) by A, and using Eq. (7.21) thus yields the inverse transformation of Eq. (7.5):

% = ]\uo‘x’“. (7.22)

Higher-rank tensors can be defined in a similar way. The Lorentz transformation involves a
factor A for each contravariant index and a factor A for each covariant index.

All tensor operations follow the basic principles described in Sect. 2.3 of the lecture notes
Kurfiirst (2017). We introduce here only the specific rules that are connected with covariant
transformations:

e Raising and Lowering Indexes. We use Minkowski metric in special relativity to change
contravariant indexes into covariant ones, and vice versa. The proof of this is given by
the mutually commuting pair of transformation equations:

TI},LVAMO' = AVTUTU, 77”'/[\; = AVTnTJ' (723>
The lowering operator 7, thus changes the Lorentz transformation coeflicients A to A
while the latter changes a contravariant index into a covariant one.

e Contraction of Tensor. The scalar product of two vectors A*B,, can be regarded as the
contraction of the second-rank tensor A*B,. Let TH", being a third-order tensor, then
THY, is a vector. If F* G, is the fourth-rank tensor, we can form the invariant F**G .
We prove this property of contraction for the above example of a third-order tensor T#%,,.
From the transformation law for TH", we obtain

T, = AP N g AT . (7.24)
But AYgA,” = 675 (cf. Eq. (7.21)), so that
T, = AT, (7.25)

which shows, according to one A operator needed, that T+, is indeed a vector. In a
similar manner we can make the general proof of this property.

e Gradients of Tensor. A covariant tensor field is defined as a tensor that is a function of
the space-time coordinates x°, 21, 2%, #3. Then the gradient operation 9/dx* acting on
such a field produces a tensor field of one higher rank with p as a new covariant index.
A convenient notation for the gradient operation is a comma followed by the index pu.
Thus, for example, if A is a scalar, then X\, = dA\/0z" is a covariant vector. Similarly
TH , = 0T* [/0x? is a third-rank tensor. We shall prove this rule for the special case of

the vector field A*. Differentiating the transformation

A" = AP, A% (or reversely AH = A* A7) (7.26)
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gives

- g - o - o
ox'" oz’ oz’ Ozxe v ooge’

1 g « o - (e
OA™ _\, DAT ., O 0AT ¢ .04 (727

where we have used Eq. (7.22) to evaluate dz*/92’". This is the transformation for a
second-rank tensor with contravariant index p and covariant index v. However, introduc-
ing here only the partial derivatives, we have assumed that the velocity components in A
are constant, which applies only in Cartesian coordinate systems. In general (e.g., spher-
ical) coordinate systems we need covariant derivatives V,, (whose complete formalism for
various either orthogonal or general non-orthogonal coordinate systems is introduced in
Sects. A.1.1, A.2.1, A.3.1, and A.7.1, in Kurfiirst (2017).

We note that although the summation convention allows summation over any two indexes, in the
covariant formalism only a subscript-superscript pair forms a tensor. Thus we have to carefully
define superscripts and subscripts usage, to satisfy this principle, for example n*n,, = §*,
forms the Kronecker tensor, while n#*?n?” = Tr (§*,) which is its four-space trace.

Let us define some further rules: The divergence of a tensor is a gradient followed by a
contraction of the gradient index with one of the other contravariant indexes. For example,
0AF Ozt = AF |, while V, AF = AF,, = covariant divergence of the vector A*, and V,TH =
TH., = covariant divergence of the tensor T/ (noting the various types of notation).

A statement that two tensors of the same rank and type are equal is called tensor equation. If
a tensor equation holds in one Lorentz frame, then it holds in all Lorentz frames. This property
is called Lorentz covariance or simply covariance (this meaning of the word “covariance” has
nothing to do with covariant components of tensors).

7.2 Basic Relativistic Transformations

Since space and time are Lorentz-transformed simultaneously and mutually, the basic charac-
teristic is now called an event, specified by a location in space and by the time it happened.
We now describe some consequences of Lorentz transformations (whose elementary principles
we have already introduced in Sect. 7.1).

7.2.1 Dilation of Time

Suppose a clock device is at rest at the origin of the frame K’ and measures an interval of time
T" = t}, — t}. What is the time interval in 7 Note that in K’, the spatial part of an event is:
' =1y =2 = 0. We obtain

T=ty—t, =~(th—t) =~T, (7.28)

where the factor v = (1 — v%/c?)~/2, so that the moving clock appears to have slowed down.
The effect is quite symmetrical between the two frames: observer in K’ measures clocks in K also
have slowed down. This apparent contradiction is a result of measuring a time interval between
two events separated in space: K measures t; as a clock passes x1, and t as it passes xg; then
he subtracts to — t1, assuming that the clocks at z; and xo are synchronized. Observations of
K’ prove that the two clocks in K are not synchronized at all.
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7.2.2 Contraction of Length

A rigid rod of length L' = 2f, — 2/ is at rest in the frame K’. Its length measured in K is
L = z9 — x1, where xo and x; are the positions of the ends of the rod at the same time t in the
frame IC. We have the result

L'=a2f -2\ =v(2—21)=~L, L=1L"/y. (7.29)

The rod in K appears shorter by a factor y~! = (1 — v?/c?)1/2. The effect is again quite
symmetric between the two observers. If the rod were at rest in K, then K’ would measure its
length contracted. How it is possible? The point is that the measurements did not happen at
the same time by both observers. Since the Lorentz transformation of time depends on position
and vice versa, simultaneity of events is not Lorentz invariant.

In both the time-dilation and length-contraction effects plays a crucial role the synchro-
nization of clocks and the principle of simultaneity. Many of the apparent curiosities of special
relativity are simply a result of the relativity of simultaneity between two events separated in
space.

7.2.3 Proper Time

Although intervals of space and time differ in various frames of reference, there are some quan-
tities that are identical in all Lorentz frames. An important Lorentz invariant quantity is called
the proper time dr defined as

Adr? =c2dt? — dz? — dy? — d22 (7.30)

It is easily shown from Egs. (7.2) that d7 = d7’, and it gives the time intervals between events
that occur at the same spatial location (dx = dy = dz = 0), as measured by an observer in
his own time.

If we relate our measurements to another reference frame with relative velocity v, then we
have

dr =~71dt, (7.31)
where Eq. (7.31) is the time dilation formula (7.28) in which dr is measured by the observer
“in motion”.

7.2.4 Transformation of Velocities

How is related a velocity u’ of a point in frame K’ to a velocity u of the same point in frame
K? From the differential form of Lorentz transformations (7.2)

de = (dz’ +vdt), dy=dy, dz=ds, dt=r (dt’ + 6“—2 dac’) , (7.32)

we obtain the relations

de  ~(da’ +odt')  ul+wo Uy, U
v = v
dt ’y(dt’+c—2dx’> l—i—c—zu;
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The generalization of these equations to an arbitrary velocity v, not necessarily parallel to the
x axis, can be expressed in terms of the components of u perpendicular to and parallel to v:

ul +v /
Lo = (7.34)
v (1 + —u’)
2l

Direction of velocities in K’ and K are then related by aberration formula:

uj = v
14+ —u!
T 2Y

oo Ut wsind (7.35)
u (u\/l i v) v (u cos @' + v)

where v/ = |u’|, while the azimuthal angle ¢ remains unchanged. Identifying v’ = v = ¢, then
cos = uy /¢, sinf = u /c, and the aberration formula becomes the aberration of light,

sin 0/ cost + f3 sin 0/

Tcos0 T ) cos sin (7.36)

tg o =—— .
& 1+ Bcosh’ v (14 S cosb)

In case ' = 7/2, that is, a photon is emitted perpendicularly to v in XK', we have

tg&zi, sinﬁzl, and for~y >>1—>0~l. (7.37)
v Y Y
If photons are emitted in K’ isotropically, then for half of them 6’ < 7/2 and for the second half
0’ > 7/2. Equation (7.37) thus shows that in IC are the photons concentrated in the forward
direction, with half of them lying within a cone of half-angle 1/, while a minority will be
emitted having 6 > 1/~. This is called the beaming effect.

7.2.5 Doppler Effect

Any periodic phenomenon in the “moving” frame K’ will appear to have a longer period by
a factor v when measured by observers in K. If, on the other hand, we measure the arrival
times of periodic phenomena that propagate with the velocity of light, then there will be an
additional effect on the observed period due to the delay times for light propagation. The joint
effect is called the Doppler effect.

In the rest frame C of the observer, the moving source emits one period of radiation as
it moves from point 1 to point 2 with velocity v (Fig. 7.1). If the angular frequency of the
radiation in the rest frame K’ of the source is w’, then the time taken to move from point 1 to
point 2 in K is given by (time-dilation effect):

2
At = A = 27 (7.38)

w/

We note | = vAt and d = vAtcosf in Fig. 7.1. The difference in arrival times At4 of the
radiation emitted at 1 and at 2 is equal to

d
Aty =At— 2 = At (1 ~Yeos 9) (7.39)
C C

and the observed angular frequency w will be

2 /
w= 1 a; =Wy (1 4+ cos@’) , W =wy (1 Y 0059) . (7.40)
Aty ~ (1 — cos 0) ¢ ¢
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Figure 7.1: Hlustration of the relativistic Doppler effect and aberration.

which is the relativistic Doppler formula. The classical Doppler effect requires to take into
account not only the relative velocity between source and observer but also their velocities
relative to the medium carrying the waves (say, air in case of sound waves). The relativistic
formula does not refer to any medium for the propagation of light, it involves only the relative
velocity of source and observer.

7.3 Four-Vectors

A four-vectors are transformed in the same manner as coordinates of events (7.2). Most physical
quantities can be related to four-vectors or to their generalizations - the tensors. We should point
out that the invariance of (z*)2, is a general property of four-vectors. However, in Minkowski
space, it is possible for the “square” of a four-vector to be positive, zero, or negative; these
possibilities are called, respectively, a space-like, null (or light-like), or time-like four-vector.

Let us introduce some physically important four-vectors other than the general type 2. The
difference between two infinitesimally neighboring events, da*, is also a four-vector. Dividing
now da* by the element of proper time dr defines the four-velocity (where i = 1,2,3),

daz# cdt/dr c c
ll/ = — = . = . =
v dr <d:13’/d7‘) T <uz> T <u> ' (7:41)
where v, = (1 — u?/c®)~"/2, and u is the magnitude of the ordinary (or “three-velocity”),
u = dz/dt. The transformation of U* under the boost along the x-axis is

1

UIO = (UO _ BUI) , U/ = (_6U0 + Ul) , U/2 — U2, U/3 — U3. (742)

With the above definitions we have
1 2 3 :
e =y (c—=Bu'), yuu" =yy (=Be+u'), yuuT =yt e =y’ (743)

where the first two of them we can rewrite as

v 1
Yo' = Y Vu (1 - gul> ) FYU’U// = YYu (ul - ’U) . (744)
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1

Since u- = ucosf, we obtain the transformation for speed in terms of the factors v:

Yo' = Y Vu <1 — Z—g cos 9) . (7.45)

Dividing the second Eq. (7.44) by the first Eq. (7.44), we obtain the already derived formula
(7.33):

S (7.46)

The square of U* is clearly Lorentz invariant,
i _ 2 2 2
UrU, = (yue)” — (yuu)” = ¢ (7.47)

The four-velocity takes an especially simple form in the rest frame (where the ordinary
velocity u vanishes). We have

U™ =¢(1,0,0,0)", (7.48)

where only the time component is nonzero. This property makes four-velocity a useful tool in
picking out the time component of an arbitrary vector (since Uy, A" = U, A* is an invariant) as
measured by an observer with four-velocity U*:

o 1 1
Al - EUL’A/M - EUMA'M, (749)

where U, A" can be evaluated in any convenient frame, not necessarily in the rest frame. Two
examples of this formula can be checked immediately: First, setting A* = U*, we obtain the
trivial result U"° = c. Setting A* = a#, we find

o 1 dzt 1d 1d
. a4

_ = o - Y — 2_2 —
W dr T 2cdr (@u") 2cdr (%) =er, (7.50)

which is obviously correct, since the proper time is physically equal to the time of a clock in
the rest frame.

In a quite similar manner we can construct the four-acceleration (do not confuse its notation
A* with notation of an arbitrary four-vector)

u-a
dUr  dZgm ) "o -
T T a-—+ ’yﬁ —Q5u

which is defined as the rate of change of four-velocity with respect to the particle’s proper
time along its worldline, where a = du/dt is the three-acceleration and v is the three-velocity.
The four-acceleration geometrically represents a curvature vector of a worldline. Therefore, the
magnitude of the four-acceleration (which is a Lorentz scalar) is equal to the proper acceleration
that a moving particle “feels” when moving along a worldline. A worldline having constant four-
acceleration is a Minkowski-circle, i.e., hyperbola. The scalar product of a particle’s four-velocity
and its four-acceleration is always zero,

ua, = 0. (7.52)
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Another four-vector, the “wavenumber vector” k: A planar electromagnetic wave has space
and time dependence proportional to exp(ik - x — iwt). The phase of this wave must be an
invariant to all observers, since the vanishing of the electric and magnetic fields in one frame
implies their vanishing in all frames (a charged particle moving on an unaccelerated straight-line
trajectory in one frame must have such a trajectory in all frames, by the relativity principle).
Notice that we may write

k-x—wt=—kya", where k*= (“’IZC) . (7.53)
The product k,x* is an invariant and since x* is an arbitrary four-vector, then k* must be a
four-vector also. Therefore, we can write the transformation for k*,

KO=y (K= BkY), K'=ry (=B +EY), K=k, K=k (7.54)

Since |k| = w/c for electromagnetic waves, we have k' = (w/c) cos§, and the zeroth component
k'° of the transformation reduces to the Doppler formula

W= wy (1 - %cos 9) : (7.55)

Another way that leads to (7.55) is to use (7.49) with A# = k*, which is obviously a null vector,
since Eq. (5.39) gives

2
ky k= %2 — k|2 =0. (7.56)

The construction of four-vectors is by no means an automatic procedure; in two cases (z#
and k*) we have simply used a known three-vector for the spatial part and added an appropriate
time component. In one case (U*) we multiplied the speed of light and a three-velocity by a
factor 7, to make the four-vector. In some cases (electric and magnetic fields) there is no
four-vector that corresponds to a given three-vector. However, the best way to systematic
construction of four-vectors is using the means of tensor analysis, introduced in Sect. 7.1.

7.4 Transformation of Electromagnetic Fields

It is empirically confirmed that Maxwell equations are Lorentz invariant in form; then the speed

of light ¢ and the elementary charge e are the Lorentz invariants (Lorentz scalars). Since the

four-volume element dxgdx; dxg dzs is Lorentz invariant and setting p the charge density, we

have de = dpdz; daxo dxs, thus p must transform as the zeroth component of a four-vector.
We write the equation of charge conservation (5.13) using the notation introduced,

i, =0, where "= <§C> (7.57)

obtaining the four-vector of current density or simply the four-current. Following Egs. (5.30)
and (5.31), we define another four-vector, the four-potential

Al = (%‘3) . A= AM,AY AR = AP AT (7.58)
thus we can rewrite the Lorentz gauge condition (5.29) as a covariant scalar product

A* =0 (7.59)

)
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and Eqgs. (5.30) and (5.31) as tensor equations
AP = . (7.60)

Using the four-potential, we can construct the covariant tensor of electromagnetic field that
combines the electric and magnetic field as a whole (see Kurfiirst (2017), Sect. 2.3):

0 E./c Ey/c E./c
—Ey/c 0 -B B
_ N Vo T z y
=AM A, Bre B, o 8| (7.61)

~E.Je -B, B, 0

0A, B 0A,
ozt  Ozv

Fu =

while the contravariant tensor F* takes the form

o o 0 —-E;/c —E,/c —E./c

v K E /C 0 -B B

ur o o AV AR — T z Y

e e e P Y (7.62)
E.Je -B, By, 0

Using Egs. (7.61) and (7.62) we can construct Maxwell’s equations in tensor form: The two
Maxwell equations containing sources (for V - E and V x B) are

PR = —pig j*, (7.63)

while the other two Maxwell’s equations (for V - B and V x E) we find as
Fu?’+F,t+ Fy" =0. (7.64)
Since F),, is a second-rank tensor, its components are transformed in the usual way, that is,
F'" = AN gFP . F, = AMASF., (7.65)

Following Eq. (7.65) we obtain the transformation law for the fields E and B. For a boost with
velocity v, these equations can be written in the form:

E| =E| B =B (7.66)

E —~(E.+vxB) l:y(BL—Clsz). (7.67)

Let us apply Eqs. (7.66) to express the case of a constant velocity v = v, = v parallel with z
axis. Then we have

E. =E,, E,=~(E, —vB,), E.=~(E.+vBy), (7.68)
v v
B. = B,, B, =~ (By + gE) , B, =+ (BZ - gEy> , (7.69)

while the inverse transformations of the perpendicular components are
E, =~ (E, +vB.), E. =~ (E.,—vBy), (7.70)
v v
B, =~ (B; - szE;> : B. =~ (B; + C—QE;) . (7.71)

One consequence of these equations is that a pure electric or pure magnetic field is not Lorentz
invariant. If the field is purely electric (B = 0) in one frame, in another frame it will be, in
general, a mixed electric and magnetic field.
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Any scalar formed from F},, represents a function of E and B which is a Lorentz invariant.
One such scalar is just the dot product of F' with itself,

E2 9 E12
F,, F" =2 <82 — c2> =F, F" =2(B" - = | (7.72)
Another Lorentz scalar is the determinant of F':
E-B\?
det F' = < ) (7.73)
c

Thus E-B = E’- B’ is also an invariant. We can prove that the determinant of any second-rank
tensor is a Lorentz scalar, since

det A™ = det (ANQA"ﬁAaﬁ) — (det A)? det AP = det AP, (7.74)

7.5 Electromagnetic Field of a Uniformly Moving Charge

Let us apply Egs. (7.66) to find the fields of a charge ¢ moving with constant velocity v along
the z axis. In the rest frame of the charged particle (v/ = 0) the fields are

1 g7/

B =— B. =0 7.75
x 471_60 7ﬁ/,?, x ( )
1 qy
E = - B =0 7.76
Y 471'60 7“’3 Y ( )
1 q2
B=% B = .
© = Tneg 178 =0 (7.77)

where '3 = (22 + y/? + 2/%)3/2. We can Lorentz transform (Eqgs. (7.2) and (7.58)) the primed
coordinates to give

1 gy(z —vt)
E, = , B, = .
4e r3 0 (7.78)
1 qvy 1 Pz
Y dmey 13 Y dmeq 13 (7.79)
1 1
> = B abry (7.80)

7 deg 13 27 dmey 13
where 1% = [v*(z — vt)? + y? + 2% 32,

An important case is that of a highly relativistic charge, v > 1. For simplicity, we choose
the field point at a distance b from the origin along the y axis, so that its coordinates are (0, b, 0)
while the coordinates of a particle are (vt,0,0). Then we have

— gyt
E, = . B, =0 (7.81)
dreo (Y2022 + b2)%/
qb
E, = B,=0 (7.82)
Y dneg (y2022 + b2)3/2 Y
b
E.=0 B, = a5y = BE, (7.83)

 dre (72022 + b2)3/2
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For large v we have 8 ~ 1 and E, ~ B,. The fields are mostly transverse, since max (E,) =
q/(6v3meg b?) =~ 1072q/(meo b?) while max (E,) ~ max (B,) = qv/(4me b?) ~ 257 max (E,).
Therefore, the field of a highly relativistic charge appears to be a pulse of radiation traveling in
the same direction as the charge (Eq. (5.19)) and is confined to the transverse plane roughly to
a time interval At ~ b/(yv). This connection between the fields of a highly relativistic charge
and an associated radiation field is an important one and is used in the method of virtual quanta
(will be discussed in Appendix 8).
We can now Fourier transform this pulse of virtual radiation (cf. Sect. 5.4). We find

R 00 w qvb oo e—iwt dt
E(w) :/ E(t)e ™t dt = 1 / — (7.84)
oo €0 J—co (2022 + b2)

which we integrate using the solution

/°° e~loT dy im Ji(ia) + J-1(i0)

W =2a Kl(O{), where Kl(O{) = (785)

2 2sinm

is the modified Bessel function of order one that must be solved as limit. The functions in
Eq. (7.85)

. B o0 <_1)k i 2k+1 . B 00 (_Dk i 2k—1
Ji(ia) = ;) AT <2> and J_j(ia) = kzzo A1) <2> (7.86)

are the Bessel functions of the first kind of order one (see corresponding examples in Sect. B.2.4
in Kurfiirst (2017)).
Solving Eq. (5.4) we obtain

E(w) (LS (“b> , (7.87)

B 2megbv % %

thus the spectrum is (cf. Eq. (5.53))

dw c | - ¢’c wb\ 2 wb
= — JEwP=— 1 () K[ ). 7.88
dAdw 472 [Ew)] 167e2b?v? (’yv ) P\ (7.88)
The spectrum starts to cut off for w > yv/b, which we could have predicted on the basis of the
uncertainty principle, since the pulse is confined roughly to a time interval of order b/~yv. In fact,

the complete behavior of E(w) can be estimated to within a factor ~ 2 just by analysis of the
picture of E(t): E(t) has a maximum ¢v/b? for a time interval ~ b/~yv. Thus we approximate

; oy (b 1w
Brmax(w) ~ Bmax(t)At (62)<w>, Aw~ o~ (7.89)

We have thus found the spectrum per unit area at a distance b from the line of the charge’s
motion. To find the total energy per unit frequency range, we must integrate this over dA =
27b db:

dW bmax dW
—9 / bb. (7.90)
b

dw dA dw

The lower limit has been chosen not as zero but as some minimum distance byi,, such that the
approximation of the field by means of classical electrodynamics and a point charge is valid.
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Two possible choices are: either by,;, = radius of ion, if field is that of an ion, or by, ~ A/(mc) =
Compton wavelength of particle. The integral is now

dWw q2C & 2 wb Whmin
_— = K h = — = : 91
dw 87’(36(2)?}2 /x Y 1(y) dya wihere Yy 71}7 T v (7 9 )
This integral can be solved again via the Bessel functions:
dw q’c 2
do 8322 {CUKO(CU)Kl(x) Y (Klz(x) - Kg(x)) : (7.92)
0

Two limiting forms occur: w is small, w < yv/byin and w is large, w > yv/byin, which give the
two forms, respectively:

dW ’c 0.68vyv dW q’c 2wbmin
s — ex — .
whrmin dw  16m2€3v? P Y

dw 87‘(‘3631}2

(7.93)

These forms can be derived approximately by direct integration of x K?(x), using the asymptotic
results Ki(z) ~ 1/z, * < 1, and K;(z) ~ (7/2z)"/2e™® x> 1.

7.6 Relativistic Dynamics and Four-Force

For a particle of constant invariant rest mass is the four-momentum of a particle P* defined by
Pt = myU* (7.94)

In the nonrelativistic limit are the spatial components of the four-momentum just the compo-
nents of the ordinary three-momentum, mgv. For the relativistic expression of all the compo-
nents we consider the expansion of the time component P’c (using Eq. (7.41)) for v < ¢

1
PYc = mocU® = ymoc? ~ moc® + §m0v2 + ... (7.95)

The second term in the latter expression in (7.95) is the classical nonrelativistic expression for
the kinetic energy of the particle while the first term mgc? that is independent of u is the rest
energy of the particle. Therefore, we interpret £ = PO as the total energy of the particle. If
the spatial part of the relativistic momentum is p = ymgv then

Pt = (E;C) . (7.96)

Involving Eq. (7.41) and the Minkowski metric tensor Eq. (7.8), we thus obtain
E2
(P*)? = P'P, = m}c* = — = Ip|?, sothat E? = |p|*c® + m3ct. (7.97)
c

The four-momentum of massless photons cannot be defined by Eq. (7.95). We can however
define Eq. (7.96), where we use the quantum relations

E=hw and p=hk. (7.98)

From Eq. (7.53) we then have

P* = hkH = (h‘;;,fc> . (7.99)
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The photon four-momentum is a null (light-like) four-vector, P*#P, = 0, since E = |p|c = |hk|c.
Having defined the four-acceleration a* in Eq. (7.51), we introduce the four-force F* as a
relativistic form of second Newton’s law:

dpPH
FF =mga" = —. (7.100)
dr
Substituting Eq. (7.100) into Eq. (7.51), we have
u-a
Yo ——
FF = 2my ¢ : (7.101)

o Uu-a
a+')/u672u

Equation (7.101) can be also expressed in terms of ordinary three-force f = dp/dt as

FF =1, (” ':/‘3) , (7.102)

where the scalar product
u-f=d/dt (yumOCQ) =3 mou-a=dE/dt. (7.103)

We evaluate in electrodynamics F'*, having known the electromagnetic Lorentz three-force,
(A (E + u x B), in such a way that the Lorentz four-force involves the electromagnetic
field embodied in the tensor F'*¥ and the particle three-velocity embodied in the four-velocity
U* and should also be a four-vector proportional to the (scalar) charge ¢ of the body. The
simplest way is

FH = gF",, <o that a" = L FRV,. (7.104)
mo
We check Eq. (7.104) by substituting Eqs. (7.41), (7.62), and (7.103). Since F = 0 and
noting that, due to the formalism of raising and lowering indexes, the spatial part of U, =
— (the spatial part of) U, we have:
0_ 4 (01 02 03 Yuqu-E _yu-f ~yu-a
a :—(F U+ F~U;+ F U3>: = == , (7.105)

mo mocC moc C

which confirms the solution for the time componenta in Egs. (7.51) and (7.102). In a similar
way we check also the spatial part,

LF
o' = L (FUy + F2U, + FB3U3) = 2 (E + u x B), =y, -2, (7.106)

while the solution of a? and a? is obviously corresponding, confirming thus the spatial part of
Egs. (7.51) and (7.102).

In accordance with Eq. (7.52) is the four-force, regardless of its origin, always orthogonal
to the four-velocity:

FMU, = mgAPU, = 0. (7.107)

where Eq. (7.107) implies that every four-force is velocity dependent, which might be negligible
in the nonrelativistic limit. For example, for the Lorentz four-force we find

iU, = qF*"U,U, =viu-f—~2u-f =0, (7.108)
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which is however obvious from Eq. (7.108) remembering that F** (Eq. (7.62)) is antisymmetric
and the four-tensor

2
2 C —Ccu
U.U, =2 <_Cu |u|2> (7.109)

is symmetric.

7.7 Radiation from relativistically moving charges

7.7.1 Total emission

Let us consider an instantaneous rest frame K’, where a charged particle has zero velocity in
a certain, infinitesimally small time interval d¢’ (which is just the proper time of the particle),
so we can calculate the emitted radiation using the dipole (Larmor) formula. Suppose a total
amount of energy dW' is emitted within the time interval d¢’. Since the emission is isotropic,
the three-momentum of this radiation in this frame is zero, dp’ = 0.

The energy in a frame K moving with relative velocity —v with respect to the particle is
therefore dW = vdW’, while the time interval d¢ = vdt’. We can evaluate the total power P
and P’ emitted in frames K and K', respectively, as

aw AW’ dw

P=— — -
dt’ dt’ dt’

so that P =P’ (7.110)

Thus the total emitted power is a Lorentz invariant for any isotropic (or at least for front-back
symmetrical) emission in its instantaneous rest frame. We use this fact to express the power in
covariant form. From the Larmor formula (6.21), we have

P = 111
67r60 c5| ', (7.111)

however, since U = (¢, 0) in particle’s rest frame and since AU’ = 0, we have

1
A®=0, thus |a|?=A4"4,, sothat P =P= @ —AMA . (7.112)
6meg 3
The emitted power in any frame is thus the square of A* in that frame.

We now express the radiation power P in terms of the three-acceleration a rather than
in terms of the four-acceleration A*. If K’ is an instantaneous rest frame of a particle, then
uh =/, =0and u| = v, uy =0, so that 7, = 7. From A", = A YA, with use of Eq. (7.51),
we have

v2
a
@) = Brao +a) = =77 + Py + 7L =y, (7.113)
! 2 2“3 2
CU_Z’YCU_<1+VCQ>='yaJ_, (7.114)
We now write Eq. (7.112),
1 q2 12 12 1 q2 4 9 9 9
P = <a”+"’L> = ey 3 (cu +7 aH)- (7.115)
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7.7.2 Angular Distribution of Radiative Power

Let us now consider an amount of energy dW’ is emitted in K’ into the solid angle dQ) =
sin @' ¢’ d¢’ about the direction at angle 6" to the (say) z’ axis. We denote

p=cosf, u =cost sothat dQ=dude, dQ =du’ d¢'. (7.116)

Since energy and momentum are components of a four-momentum P* (Egs. (7.96) and (7.99)),
transformation of the radiation energy, according to P’ = W'/c and P'* = P'cost’ = P}/, is

AP’ =4 dP" + BydP" sothat dW =~ (AW’ +vdP™®) =~ (1+ Bu/)dW’.  (7.117)

Differentiating Eq. (7.36), and, since d¢ = d¢’, Eq. (7.116) yields

d d ! 1 dqY
“,:/<“ +5/> _ S, andso dQ=——— (7.118)
au ~ aw \ U+ 3 ) = 521+ o) 221+ i)
and Eq. (7.117) gives
aw 3 AW
PV _ s , 11
q =7 (14 81") 1o (7.119)

The power P’ emitted in the rest frame is simply given by dW’/dt'. However, in frame K
there are two possible choices We further outline two time intervals to divide dW in K:

e dt = ydt’ defines the time interval P, during which the emission occurs in K.

e dtg = v(1 — Bu)dt’ defines the time interval P; of reception of a radiative power by a
stationary observer in K (see Egs. (7.39) and (7.40)).

we thus obtain the two different results:

dp,  dw p3dP! 1 dP
_ (14 S 7.120
a0 ~aoa T W) gy V(1= By oY (7.120)
P, Aaw 1 dP! 1 dP
_ — (1 =—— _C 121
@ " ana, ) UTA) 4 (1= Byt A (7.121)

where we converted p to u/ and vice versa using Eq. (7.36).

Which of these two equations should we use? Since P, is the power actually measured by
an observer, it would seem to be the natural one. Also in favor of P, is that Eq. (7.121) has the
expected symmetry property of yielding the inverse transformation by interchanging primed
and unprimed variables, along with a change of sign of 5. For these reasons we hereafter in this
section deal with P;, calling it shortly P.

In practice, the distinction between emitted and received power is often not important, since
P, and P, are equal in an average sense for stationary distributions of particles. We will discuss
this further in the context of synchrotron emission (still in progress).

Let us now return to Eq. (7.121). If the radiation is isotropic in the particle’s frame (or
nearly isotropic), then the angular distribution in the observer’s frame will be more or less
peaked in the forward direction for relativistic velocities (8 — 1). Regarding small 6 angle and
B ~ 1, we may expand

62 [ 1 1 1 2 1
pel——, B=4/1-—5~1-->, thus 4%< 722> ) (7.122)
2 g 2y v (1= Bp) 1+9%0
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The latter factor is sharply peaked near 6 ~ 0 with an angular scale of order 1/7.
We apply the previous considerations to an emitting particle. In the instantaneous rest
frame of the particle the angular distribution is given by (cf. Eq. (6.20))
4P’ 1 g2

A~ (4m)2ep 3

sin? @', (7.123)

where ©’ is the angle between the acceleration and the direction of emission. Spitting a’ =
aﬁ + a'| and using Egs. (7.113), (7.114), and (7.121), we obtain

e _ ¢ (r?af +02)
A2 ~ (@m0 (1- Bp)

sin? @', (7.124)

To use this formula we relate ©' to the angles in the frame K. This is difficult in general case,
8o we work out the angular distribution of the received power for special cases:

e Acceleration is parallel to velocity: In this case © = §" and according to Eq. (7.36),

2
sin2 @' = QLQZ. (7.125)
72 (1= Bp)
Substituting Eq. (7.125) into Eq. (7.124) with a; = 0, we obtain
dP 2 . 29
-2 i (7.126)

dQ  (4m)2egc? “I (1— 8w

e Acceleration is perpendicular to velocity: Choosing a’ such that the angle ¢ = 0
(see Eq. (7.116)) gives cos © = sin €’ cos ¢, so that

sin® @ cos? ¢

sin® @' =1- ————— (7.127)
72 (1= Bp)
and substituting Eq. (7.127) into Eq. (7.124) with a)] = 0, we obtain
dPy qzczQL 1 1 sin? 6 cos? ¢ (7.128)

A2 (4m)?ec® (1-pu)* [ 2 (1-pw)’ ]

e Extreme Relativistic Limit: When ~ > 1, the quantity (1 — Su) in the denominators
becomes small and the radiation becomes strongly peaked in the forward direction. Using
the same arguments as in Eq. (7.122), we obtain

1— N — 7.129
Bu 27 (7.129)
which gives radiation power for the parallel acceleration,
dP 4q2 262
—_ 53 ’yloaﬁ —. (7.130)
dQ T2€qC (14 4262)
while for the perpendicular acceleration,
dP 2 1 — 27262 cos 2 191
1 _ q ’780'3_ i COS (Z)G"i")/ ] (7131)
dQ  7m2epc? (1 + 7262)

Since both the expressions in Egs. (7.130) and (7.131) are angle dependent merely through
the combination 6, the peaking is for angles 6 ~ 1/~.
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7.8 Relativistic Invariants and Specific Intensity

Consider a group of particles that occupy a spatial volume element d3x’ = da’dy’dz’ and a
momentum volume element d®p’ = dP. dP; dP] in a frame K’ comoving with the particles, but
no spread in energy, dW’ = dP] = 0, because the contribution to the energy from the space
momentum in the rest frame is quadratic and thus vanishes to the first order. The group occupies
a phase space element d’ = d®p’ d®x’. For any observer in any frame K not comoving with
the particles they occupy the same amount of phase space in his frame d%’' = dU = d®p d3x, a
phase space element is Lorentz invariant.

We prove it in the following way: Let the observer moves along the z axis with velocity
parameter 3 with respect to K'. Consider the spatial volume element d®x in K, occupied by
the particles. Perpendicular distances are unaffected, dy = dy’ and dz = dz2/, but there is a
length contraction in the z direction (cf. Eq. (7.29)). This yields

d®x =~y d®x. (7.132)

The momentum volume element measured in K is d®p. The momentum transforms as a four-
vector (Eq. (7.26)), dP, = fydP, +~ydF, dP,dP, = dP, dP,, but since the particles have the
same energy in K as in K, dP, = ydP,, we obtain

d®p =y d3p/ (7.133)
and, combining Eqs. (7.132) and (7.133),
dU = d¥’, sothat dU = Lorentz invariant. (7.134)

Equation (7.134) was derived for particles of finite mass, where K’ is a rest frame, however,
since there occurs no reference to particle mass, it is applicable also to the limiting case of
photons. From Eq. (7.134), it follows the phase space density

f= % = Lorentz invariant, (7.135)
because the number of particles dN within the phase volume element is a countable quantity
and therefore itself invariant.

We relate the phase space density of photons to the specific intensity I, by evaluating the
energy density u,(£2) per unit solid angle per frequency range (Egs. (4.9) and (4.10)), using f:
dE,(Q) = hvdN dQ = u, dQdv, so that hv f AU dQ = u, dQdv d3x, and, since U, u(Q) = I, /c,
p = hv/c, this yields

I, At . .
— = — f = Lorentz invariant. (7.136)
v c

Because the source function occurs in RTE as I, — S, it must have the same transformation
properties as I,

S
—; = Lorentz invariant. (7.137)
v

To find the transformation of absorption coefficient o, we assume material in K streaming
with velocity v between two planes parallel to the z-axis, while K’ is the rest frame of the
material. The optical depth 7 along the ray must be an invariant, since e~7 gives the fraction
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of photons flowing through the material, which involves direct counting. Denoting [, I’ the
distance of the two planes and 6, 6" the deviation angle of the ray from z-axis,

oy,

= 500" oo va, = Lorentz invariant. (7.138)

since v sin ¢ is proportional to the y component of the photon four-momentum k,. But k, = k;
and [ = I, being perpendicular to the motion. Therefore

va,, = Lorentz invariant. (7.139)
The transformation of the emission coefficient j, = «,, S, from Eqs. (7.137) and (7.139) is

‘7—1; = Lorentz invariant, (7.140)
v

where the derivation of Eq. (7.140) can be based also on Eq. (7.120). The emission coefficient
can be written as

dFe
dQdv’

Jv=n (7.141)

where n is the density of emitters (particles/m3). Since Eq. (7.40) gives dv = dv/y(1 + Bu'),
and also n = yn’ by Lorentz contraction along the motion,

/ 2
Jo =71+ Bu’)Qn'dgiy, = (5) Jus (7.142)

It is often convenient to determine the quantities «,,, j,, Sy, in the rest frame of the material.
By the above results we can then find them in any frame. Because the transformation of v
involves the direction 6 of the ray, these quantities will not, in general, be isotropic, even if they
are isotropic in the rest frame. The observed nonisotropy of the cosmic microwave background
can be used to find the velocity of the earth through the background.



Chapter 8

Free-Free Transitions (Bremsstrahlung)

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We call free-free emission or bremsstrahlung
the radiation produced by a charge acceleration in the Coulomb field. A classical treatment is
justified in some regimes, therefore, we first give a classical treatment and in Sect. 8.4 we add
the quantum corrections (Gaunt factors).

The bremsstrahlung due to the collision of identical particles (electron-electron, proton-
proton) is zero in the dipole approximation, because the dipole moment ), e;r; is simply
proportional to the (symmetric) center of mass ), m;r; = 0. In electron-ion bremsstrahlung
the electrons are the primary radiators, since the relative accelerations are inversely proportional
to the masses, while the charges are roughly equal. Since the ions are comparatively massive,
we may treat the electron as moving in a fixed Coulomb field of the ion.

8.1 Emission from a Single Electron

Let us assume that the electron moves rapidly enough so that the deviation of its path from
a straight line is negligible. This is the small-angle scattering regime. This approximation is
not necessary, however, it is highly instructive because it simplifies the analysis and leads to
equations of the correct form. Consider an electron of charge —e moving past an ion of charge
Ze with impact parameter b (see Fig. 5.1). The dipole moment is d = —eR and its second
derivative is d = —ev, where v is the velocity of the electron. The Fourier transform of this
equation (cf. Eq. (6.28)) is

—w?d(w) = —e/ ve “idt. (8.1)

We derive expressions for d (w) in the asymptotic limits of large and small frequencies. The
electron is in close interaction with the ion over a collision time interval, which is of order

T=—. (8.2)

For wr > 1 the exponential in the integral oscillates rapidly, and the integral is small. For
wT <K 1 the exponential is essentially unity, so we may write

(8.3)

e
N —A 1
d(w) _ {w2 v, wrLl1,

0, wT > 1,

129
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where Aw is the change of velocity during the collision. Using Eqs. (6.30) and (8.3) gives

1 2

dWw %]Av\z, wr L 1,
= c

m = 671'26() (84)

0, wT > 1.

Let us now estimate Av. Since the path is almost linear, the change in velocity is predomi-
nantly normal to the path and we integrate the normal component of acceleration,

1 Ze* [* bdt 1 Ze?
Av = c / - <. (8.5)
dmeg me J_o (b2 +022)3/2 2men mebu
For small angle scatterings, the emission from a single collision (Eq. (8.4)) is
1 720 he ¥
M — | 247%ed m2c3b20?’ w’ (8.6)
dw 0, b> .
w

We determine the total spectrum for a medium with ion density njoy, electron density ne
and for a fixed electron speed v. Note that the flux of electrons (electrons per unit area per unit
time) incident on one ion is nev. The element of area is 2wbdb about a single ion. The total
emission per unit time per unit volume per unit frequency range is then dW/(dw dV dt), which
we explicitly express as (AW dV)/[dw (dV)? dt], where dV/(dV)? we expand as (v dt dS) (nenion)
where the first bracket is dV of incident electron while the second bracket we may regard as
(NeNion dMe dmion )/ (dme dmion) = p?/(pdV)%. We write

aw < dW (b)
O enion2 bdb, .
dwdvae  elton=TY /b w (87)

min

where by is some minimum value of impact parameter whose choice we discuss below.

It would seem that the asymptotic limits in Eq. (8.4) are insufficient to evaluate the integral
in Eq. (8.7), which requires values of dW (b)/dw for a full range of impact parameters. However,
a very good approximation can be achieved using only its low frequency asymptotic limit. We
substitute the case b < v/w from Eq. (8.6) into Eq. (8.7). This gives

dW 1 66 bmax db 1 66 b
_ 2 QL O i, Z2 In ( max 8.8
dwdVdt 120863 m2cdy ¢ on /b b 1208 m2cdy e e < ) Y

min

where byayx is some value of b beyond which the contribution of b < v/w limit to the integral
becomes negligible. The (uncertain) value of bpmax is of order v/w. Since bmax is in the logarithm,
its precise value is of low importance, we take byax = v/w and make a small error. The use of
the asymptotic forms (8.6) is justified, because equal intervals in the logarithm of b contribute
equally to the emission, and over most of these intervals the emission is determined by its low
frequency asymptotic limit.

We can estimate by, in two ways. First we regard the value at which the straight-line
approximation ceases to be valid. Since this occurs when Av ~ v, we take from Eq. (8.5)
br(ii)n = Ze?/(4megmev?), where the half-factor comes due to integration from 0 to —oo. A
second way to find bpi, is quantum in nature and is based on treating the collision process
in terms of classical orbits. From the uncertainty principle AzAp < h; taking Az ~ b and

Ap ~ mev we have p@ = h/(mev).

min
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)

When b(l) > b(2) a classical approach is valid and we use byin = b(1 This occurs when

min min’ min*
§mv < Z?Ry, where Ry = me*/(2h?) is the Rydberg energy for the hydrogen atom. When
bgl)n < bgl)n, or, equivalently, %mvg > Z?Ry, the uncertainty principle plays an important role,

and the classical calculation cannot strictly be used. Nonetheless, results of the correct order

(2)

of magnitude are obtained by simply setting bymin = b,,7, -
For any regime, we may state the exact results in terms of a Gaunt factor gg (v,w), using
which Eq. (8.8) is

dW 1 b

- onZ” : 8.9
dwdV dt 12\/§W268mgc3vnenlon gr (v,w) (8.9)

Comparison of Egs. (8.8) and (8.9) gives

g (v, w) = ﬁln (bm‘”‘> : (8.10)

7T brmin

The Gaunt factor is a function of the electron energy and of the frequency of the emission.
Extensive tables and graphs of it exist in the literature.

8.2 Thermal Free-Free Emission:

We apply these formulas to thermal bremsstrahlung by averaging the above single-speed expres-
sions over a thermal distribution of speeds. A particle has a Maxwellian speed range (v, v+ dv)
as dP oc v2exp[—mv?/(2kT)]dv. Now we integrate Eq. (8.8) over this probability function,
setting 0 < v < 0co. At frequency v, the incident velocity must be at least hv < %meqﬂ, because
otherwise a photon of energy hv could not be created. This lower limit cutoff over electron
velocities is called a photon discreteness effect. From the integral

19 Mev?
/ dW(v,w) 2o~ B o
dW( ) vy dwdV dt

— Lo 8.11
dwdV dt _ mev? ’ ( )
f v2e” 2kT dov

where vpin = (2h1//me)1/2 and dw = 27 dv, by substituting Eq. (8.9) we obtain

[e%¢) mev2
, e 2kT d
dW(T7 V) 1 66 Z2 Alllil] gﬂ (/U V) i ’ (8 12)
= NeNj : ’
3.9 .3 tellion o2
dV dV dt 6\/57760 mec fooo 7)2 e_% dU

Integration of the denominator gives /7/2 (kT /me)3/?, we integrate the numerator by sub-
stituting mev?/(2kT) = x, from mev2. /(2kT) to oo, giving gg (T, v) —exp( hv/kT). The
integral (8.12) becomes

dvdvVdt 6megcdme

AW (T 6 2\ e
(T,v) € <37rkm > T-1/2 nenionZ2€ KT gg (T, v). (8.13)
e

Evaluation of Eq. (8.13) in ST units (radiation energy density [Js~'m~3 Hz"1]) gives

h
e~ 6.78 x 101 T2 penion 22 ¢~ *T gg (T, ), (8.14)
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where gg (T, v) is a velocity averaged Gaunt factor. In cgs units the numerical factor in Eq. (8.14)
is ~ 6.83 x 10738 noting that the value of elementary charge e ~ 4.803 x 10~ ¥statC, ey = 1,
and Eq. (8.14) must be multiplied by (47)3.

The values of gg for hv/(kT) > 1 are not important, since the spectrum here cuts off. gg is
of order unity for hv/(kT) ~ 1 and ranges within 1 - 5 for 107* < hv/(kT) < 1. Good order of
magnitude estimates are made by setting gg to unity. The spectrum of bremsstrahlung is rather
“flat” in a log-log plot up to its cutoff at about hv ~ kT (this is however true only for optically
thin sources, we have not yet considered absorption of photons by free electrons). To obtain
the formulas for non-thermal bremsstrahlung, we need to know the distribution of velocities,
the emission formula from a single-speed electron must be averaged over that distribution, and
one also must have the appropriate Gaunt factors.

We give formulas for the total power per unit volume emitted by thermal bremsstrahlung,
that we obtain by integrating Eq. (8.13) over frequency:

dW(T) e’ 2k \'? ., .
dvat — 6meshcdme <3wme> T nemion 2”91 (T), (8.15)

or, evaluated in SI (radiation power density [Js~!m™3]),
T~ 1.42 x 107° T2 nenion 22 gg (T). (8.16)

The frequency (and velocity) averaged Gaunt factor gp (7) is in the range 1.1 - 1.5, setting the
value 1.2 will give a 20% accuracy.

8.3 Thermal Free-Free Absorption:

It is possible to relate the (thermal) absorption of radiation to the bremsstrahlung emission
process. In that case we have the Kirchhoff’s law,

T =aB,(T), (8.17)

where B, (T) is the Planck function, off is the free-free absorption coefficient, and 57 is related
to the emission formula (8.13) by

dW

AL 1
dvdvde v (8.18)

Using the Planck function B, (T) = 2hv®c™2 [exp () — 1] _1, Egs. (8.17) and (8.18) give

T 66 2 1/2 1/2 9 3 _hv
o, = 487T263hm c (37Tkm > T / nenionZ v <1 —e ]CT) gﬁ' (T’ 1/). (819)
0 (S e

Evaluating Eq. (8.19) in ST units, off (m™1) is:

v

h
off ~3.69 x 1072772 nenion 22 v=3 (1 — ek::'?> g (T, v). (8.20)
For hv > kT the exponential is negligible and a,f/f ~ v73. In the Rayleigh-Jeans regime,
hv < kT, Eq. (8.19) becomes
id e 2 12 3/2 2 -2
= T ionZ° v 2 gg (T 8.21
Y 48m2e3kmec <S7Tkme> nemion” v g1 (T, ), (8.21)
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or, with numerically evaluated constant factor,
off = 177 x 1072 7732 nonion 22 12 g (T, v). (8.22)

We find the Rosseland mean ag of the free-free absorption by

/0 (af,f + ag)_laBéjéT) dv

1
ot — > 9B, (T) ’
OzR v

/0 a7 dv

(8.23)

where off is the scattering coefficient. We find the temperature derivative of the Planck function,

(T 254 [ by 2w
aBa:ﬁ ) _ thk;Q <ekT _ 1> N (8.24)

integration over v gives the denominator equal to 87*k*T3/(15¢2h3). Neglecting ol and using
Eq. (8.19), the integral (8.23) is

1 15¢e <6me>3/2 (kT)7/? /°° . aTetda (8.25)
of ~ 126 \ nenionZ? Jo 7T (er 1P (1—e7) '

The integral in Eq. (8.25) is $(945((7) + n%) gi' ~ 5104.74g", ¢ is Riemann zeta function,
and gg is a (order of unity) weighted frequency average of gg. We evaluate Eq. (8.25) in SI
units,

off, ~2.07 x 107 7772 nenion 22 gg, (8.26)

while in cgs units the numerical factor in Eq. (8.26) is ~ 2.07 x 1072%, noting that the value of
elementary charge e ~ 4.803 x 10~ ¥statC, ¢g = 1, and Eq. (8.25) must be divided by (47)3
(RL introduce the numerical factor ~ 1.7 x 1072% in Eq. (8.26), they likely take into account
also the scattering coefficient and numerical adjustment of Gaunt factor).

8.4 Relativistic Bremsstrahlung

We now treat relativistic particles by the method of virtual quanta, a full understanding would
require quantum electrodynamics. Consider the collision between an electron and a heavy ion
of charge Ze. Normally, the ions move slowly in comparison to the electrons (in the rest frame
of the medium as a whole), but it is possible to view the process in a frame of reference in
which the electron is initially at rest. In that case the ion moves rapidly toward the electron
along the x axis with velocity v while the electron is initially at rest on the y axis, in a distance
b from the origin. We recall from Sect. 7.5 that the electrostatic field of the ion is transformed
into an essentially transverse pulse with |E| ~ |B|, which the electron “sees” as a pulse of
electromagnetic radiation. This radiation then Compton scatters off the electron to produce
emitted radiation. Transforming back to the rest frame of the ion (lab frame), we obtain the
bremsstrahlung emission of the electron. The relativistic bremsstrahlung can be regarded as
the Compton scattering of the virtual quanta of the ion’s electrostatic field as “seen” in the
electron’s frame.
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In the (primed) electron rest frame, setting v = ¢ in the ultrarelativistic limit, the spectrum
of the virtual quanta pulse (cf. Eq. (7.88)) is

aw’  (Ze) <w’b’>2K12 <w'b'>, (8.27)

dA’ dw’ 1671'46(2)6’26 ye e

In the primed frame the virtual quanta are scattered by the electron according to the Thomson
cross section for i’ < mec?, and according to the Klein-Nishina cross section for Aw’ > mec?
(see Chapter 9). In the low-frequency limit, where we may regard dw’ as the single Thomson
cross section o7, the scattered radiation is

dw’ dw’

e UTidA’dw/. (8.28)

Since energy and frequency are Lorentz transformed identically, the energy per frequency emit-
ted in the lab frame is dW/dw = dW'/dw’. To write dWW/dw as a function of b and w, rather than
b’ and w’, we note that transverse lengths are unchanged, b = ¥, and that w = yw'(1+ S cos '),
(cf. Eq. (7.40)), where ¢’ is the scattering angle in the electron rest frame. Because such scatter-
ing is forward-backward symmetric, we have the averaged relation w = yw’. Thus the emission

in the lab frame is
dw Z2¢5 wb \? wb
= ) KZ(=2). 2
dw  967m5etbZmcd (’y%) ! (720) (8:29)

Equation (8.29) is the energy per unit frequency emitted by the collision of an ion and a
relativistic electron at impact parameter b. For a plasma with electron and ion densities n, and
Nion, respectively, we repeat the arguments leading to Eq. (8.7), where v is replaced by ¢ and
where byin ~ h/(mec) according to the uncertainty principle. The integral in Egs. (8.7) and
(8.29) is identical to that in Eq. (7.91), except for an additional factor  in the argument. Thus
we have the low-frequency limit, hw < ymec?,

dw Z2e5nenion (0.68721))

dwdvdt ~ 48mtelmzet (8.30)

Whmin

At higher frequencies Klein-Nishina corrections must be used.
For a thermal distribution of electrons, a useful approximate expression for the frequency
integrated power (J s~'m™2) in SI units is (see Novikov and Thorne 1973, cf. Eq. (8.15))

% = 1.4 x 107972 2% nniongp (1 + 4.4 x 1071°T) . (8.31)

The second term in brackets is a relativistic correction to Eq. (8.16).



Chapter 9

Compton scattering

9.1 The Kompaneets Equation

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We make a short excursion to Thomson
and Compton scattering basics to explain following principles. Thomson scattering, or the
scattering of a photon by an electron at rest, strictly only applies at low photon energy, i.e.,
when hv < mec?®. If the photon energy is comparable to or greater than the electron energy,
non-classical effects must be taken into account, and the process is called Compton scattering.
A further interesting situation develops when the electron is moving - in this case energy can
be transferred to the photon, and the process is called inverse Compton scattering. This last
process is an important mechanism in high energy astrophysics.
In Thomson scattering, we have (in cgs)

dor e \? (1 + cos? X) 9.1)
dQ  \mec? 2 ’ '

where e now denotes the electron charge, 2 is solid angle and x is an angle of scattering. In
Thomson scattering the incident photon and scattered photon have the same wavelength or
energy, so this scattering is also called coherent or elastic. If we now move to photons of energy
hv = mec?, the scattering is modified by the appearence of quantum effects, through a change
in the kinematics of the collision, and an alteration of the cross-section.

To do the kinematics of the collision correctly at high photon energy, momentum and energy
must be conserved. Let the incident photon have energy hr; and momentum huv;/c, the scattered
photon have energy hvy and momentum hvg/c, and the electron (initially at rest with rest energy
mec?) acquires energy E = \/y2m2v2c2 + m2c* (where v is the Lorentz factor) and momentum
Pe = 7meVve. The photon scattering angle is again x. From equality of energy and momenta
components before and after scattering we obtain

)\f — )\i = (1 — COS X) 5 (92)

MeC

where A¢ and ); are the wavelength of scattered and incident photon, respectively, and the
Compton wavelength Ao = h/(mec) = 0.02426 A. The energy of a scattered photon (expressed
using frequency v instead of wavelength \) is

_ hy;
14 M5 (1 —cosy)’

mec?

hug (9.3)

135
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The compton wavelength can be regarded as a wavelength change A\ in the incident photon.
Note that for A > A¢ the change is negligible and we get back to the Thomson scattering. In
full treatment of the problem yields the Klein-Nishina formula for the scattering cross-section:

do 1, (v 2 Vf+Vj . 9 (9.4)
— =1 = — 4+ — —sin .
dQ 2 °\y v Uf X

where 7o = €2/(mec?) = ah/(mec) ~ 2.81794 x 10713 cm (o = 1/137 is the fine structure

constant) is the classical electron radius. Note that in case vy ~ 1 (for hv < mec?, see
Eq. (9.3)), Eq. (9.4) approaches the Thomson regime:

do 3 2
— = — 1 9.5
a0~ 1erT (e 9:5)
where the Thomson cross-section o = (87/3) r2 ~ 6.652 x 1072% cm?.
Integration over solid angle gives total cross-section (where z = hv;/(mec?)),

0—271/ d—asinﬁdﬁ
0

a0
3 1+ [22(1+x) 1 1+ 3z
=2 CIn(1+2 S ln(1+22)— —2* L .
4JT{ 23 [ 1o, O+ x)}+2m n (1 +22) (1+2x)2} (9:6)

Equation (9.6) can be expanded in the limits 2 — 0 and  — oo to yield the following formulae
for the total cross-section

2627
020T<12x+ : +> for z < 1, (9.7)

3 1 1
o= cor <ln2m—|—2+...> forz > 1 (9.8)

for the non-relativistic and ultra-relativistic cases, respectively. The main effect is thus to
reduce the cross-section at high photon energies, i.e., the scattering of the photons becomes less
efficient.

An important case arises when the electrons are no longer considered to be at rest. In
inverse scattering, energy is transferred from the electrons to the photons, i.e., it is the opposite
of Compton scattering, in which the photons transfer energy to the electrons. Inverse Compton
scattering can produce substantial fluxes of photons in the optical to X-ray region. Fig. 7.1
describes the frequency relation between that received by observer (in a rest frame K) and in
a frame K’ emitted radiation, taking travel time into account. In a rest frame K of observer,
emitting source moves from 1 to 2 with velocity v. Photons emitted in interval dt’ in K’ are
separated in KC by (time-dilation)

dt = ydt’. (9.9)

By that time, a source has moved in I to distance [ = v dt, and d = v dt cos 6 towards observer.
Difference in arrival times for radiation emitted at 1 and 2 as seen by observer then is
d vdtcosf

At=tog—t1=dt+1ls -l =dt — — =dt

. =7 (1—Bcosh)dt, (9.10)

where [1, [y are distances between the points 1, 2 and observer, and 3 is v/c. From the definition

of frequencies v = 1/At and v/ = 1/dt’ we obtain

V/

= o) = DV (9.11)

14
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with D = Doppler factor. Note that the Doppler factor depends on angle between observer and
direction of source motion and it can be very large, e.g., for large speeds v — ¢ and for head-on
motion (6 = 0)

1 148
T1-8) ~(1-p?)

We can use Eq. (9.11) also for photon energies hv’ and hv in K’ and K. We denote € = hv/
and €; = hyf the energies of incident and scattered photon in emitted radiation frame K', and
€i = hy; and ¢ = hyy the energies of incident and scattered photon in observers rest frame
K. We also have to note that Eq. (9.2) may be now split into the two frames as (while in the
observer’s frame /C this will be analogous)

D=

~ 2. (9.12)

€l

€ = — , (9.13)
1+ —5 (1 —cosx/)

€
mec2

where the angle cosy’, regarding the radiation rest frame K’, i.e., the frame in which the
scatterin electron is at rest (or amnalogously cosy), is defined as cosy’ = n/- n{, which in
spherical coordinates (where n = sin 6 cos ¢, sin 0 sin ¢, cos #) gives

cos ' = cos b cos b + sin 6 sin 6f cos (¢ — &) . (9.14)

For further solution we need to employ the aberration formula (see Sect. 7.2.4) that results
in the following relations:

/

3 ,

i — 71 = 1 1 — 91 B .].

€ B p— & g =¢67(1—Bcosb) (9.15)
/

€ = S S—— ety (14 Beosby) . (9.16)

v (1 = Bcosbr)
In Thomson regime where €/ < mec?, € ~ €}, employing Eqgs. (9.15) and (9.16) gives

1 — B cos 6;

€ = 6172 (1 _500591) (1+ﬂc089§) zéim.

(9.17)
For head-on scattering with maximum energy gain (where 6; = w and 6y = 0, scattered photons
thus turn around) and for large speeds v — ¢ we obtain

1
s = 6 g = 6%+ 9 = e, (918)

This analysis shows that the mean frequency of the photons after the collision may increase
up to a factor v2, so that high frequency radio photons in collisions with relativistic electrons
for which « is of order 103 to 10* can be boosted in the UV and X-ray regions. There is however
a practical limit to the amount of boosting possible beyond the Thomson limit (Klein-Nishina
limit where €/ > mec? thus € > mec?/7), which can be seen from the conservation of energy

Etmax S YMeC” + €, (9.19)

scattered photon energies (in the lab frame) are thus limited to ymec?,

It is convenient to define the scattering cross-section as the equivalent area of the in-
cident wavefront that delivers the same power as that re-radiated by the particle: that is,
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o = total re-radiated power/(u), where (u) is the time-averaged radiative flux of incident pho-
tons. The power emitted in a single scattering in case of an isotropic distribution of photons in
Thomson regime in an electron rest frame K’ is given as

dE’
dt/

=or(u) = opcUly = UTc/n;h(e{) er(el, Q') del dSY, (9.20)

where Uy, is the radiative energy density and ny, () def is number density of incident pho-
tons with energy in the interval (e, e/ + del), and €’ is the solid angle. The emitted power
dE'/dt' = dE/dt, the phase space volume d®x 'd®p’ = d3x d3p, are the Lorentz invariants be-
tween inertial frames. The number of particles within phase volume element, dN is countable
(conserved) quantity, thus dN' = dN and for the same reason also the phase space distribution
flix’,p")=dN'/(d3x'd®p") = f(x,p) = AN/(d*x d3p) is also the Lorentz invariant between
inertial frames.

We are now interested in the rate of arrival of photons at the origin of the frame K’
from the direction 6. Let us consider two photons which arrive there at times ¢} and
(see Fig. 7.1). The coordinates of these events in K are [x1,0,0,¢;] = [yvt],0,0,~t]] and
[z2,0,0,t2] = [yvth,0,0,~th], respectively. This calculation makes the important point that the
photons in the beam are propagated along parallel but separate trajectories in I as illustrated
by Fig. 7.1. From the geometry of the figure, it is apparent that the time difference when the
photons arrive at a plane perpendicular to their direction of propagation in K (to the steeply
dropping line at the lower left end of the image) is

T2 — X1

At =t9 + cosf —ty = (ty —t]) v (1 + Bcosh), (9.21)

that is, the time interval between the arrival of photons from the direction 8 is shorter by a factor
v[1 4 (v/c)cosf] in K’ than it is in . Thus, the rate of arrival of photons, and correspondingly
their number density, is greater by this factor v [1 + S cosf] in K’ as compared with K’. This
is exactly the same factor by which the energy of the photon has increased in Eq. (9.20). On
reflection, we should not be surprised by this result because these are two different aspects of
the same relativistic transformation between the frames K and K’, in one case the frequency
interval and, in the other, the time interval.
Thus, as observed in K’, the energy density of the beam is therefore

;ad = [’Y (1 + /B COSs 9)]2 Urada (9.22)

Now, this energy density is associated with the photons incident at angle 6 in the frame X and
it consequently arrives within solid angle 27 sin 6 df in . We assume that the radiation field in
K is isotropic and therefore we can now work out the total energy density seen by the electron
in K’ by integrating over solid angle (steradian) in &, that is,

T 1 2
tad = Urad/ 7 (14 Bcosf)? 5 sinfdf = 7 <1 + %) Urad; (9.23)

0
Therefore, substituting directly into Eq. (9.20), we find the average energy (E,) gained by the
photon field due to the scattering of the low energy photons as dE/dt = orc(U/,q — Urad)-
We have therefore to subtract the energy of these photons to find the total energy gain to the
photon field in S. The rate at which energy is removed from the low energy photon field is

orcUraqd and therefore, subtracting, we find an emitted power for a single scattering

dE 3

2
4
E = orcC [72 (1 + 3> - 1:| Urad = gUTC 62'}’2Urad- (9.24)
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We can now calculate the total Compton power per unit volume, for a medium of relativistic
electrons. Let Ng(v)dy be the number of electrons per unit volume with v in the interval
(7,7 +dv). Then total Compton power is given as

dE dE
— = [ —N, d~. 9.25
(&) = [ Gmns (9.25)

The total Compton power can be thus calculated, provided the distribution of the electrons is
known (see RL).

However, we can now calculate the average power of the photon field gained from the elec-
trons as follows. For thermal distribution of non-relativistic electrons, (3?) = 3kT/(mec?), v ~

1, Eq. (9.24) becomes
dE 4kT
&) = NolUsad, 9.26

< dt >tot (mec2) e etad (5:26)

where N, is total number of electrons. Hence, if 4kT, > (E,), the net energy is from electrons
to photons (inverse Compton scattering) and gas heats up, while if 4kT, < (E,) the net en-
ergy transfer is from photons to electrons and gas cools down. In other words, we may say
that in a typical collision between an electron and a photon, the electron energy changes by
[4kTe/ (mec?)] (E,).

Compton y-parameter gives the condition for a significant change of energy of photon due
to repeated scattering, that is,

y = ((A(hv)) of a photon per scattering) x (mean # of scatterings). (9.27)

When electrons and photons co-exist in a region of size [, the repeated scattering of photons
by the electrons will distort the original spectrum of the photons (i.e., Comptonization). The
mean free path of the photon due to Thomson scattering is Ay = (neor)~t. If the size of the
region [ is such that [/A\, > 1, then the photon will undergo several collisions in this region.
On the other hand, if [/\, < 1, then we may expect only few collisions. Therefore let us define
optical depth as 7. = [/\, = neorl, so that 7, > 1 implies strong scattering. If 7. > 1, then the
photon undergoes Ng.(>> 1) collisions in traveling a distance [. From standard random-walk
arguments, we have Ny, = TeQ. On the other hand, if 7 < 1, then Ng. ~ 7. Therefore an
estimate for the number of scattering is Ny =~ max(7e,72). The average fractional change in
the photon energy per collision (see Eq. (9.26)) is given by the term 4kT/(mec?). Hence the
condition for a significant change of energy is

y >~ Ny ( ART > = < KT ) max (7e, 7¢) - (9.28)

MeC2 MeC2

The photon must thus undergo ~ mec?/(4kT) collisions to significantly increase its energy.

Note that the Compton y-parameter is generally given by Kompaneets equation of the
spectrum for Comptonization, whose detailed derivation we do not introduce here since it is
difficult and is obtained by solving the non-relativistic diffusion equation for the motion of
photons through phase-space (Kompaneets, 1957). Kompaneets equation is the specialized
form of a Fokker-Planck equation with its general form

on(v,t) “h 1 0 [ 4 (kT on(v) 9
T —neUTmeCV2 ey [1/ ( W oy +n(v,t) +n°(v,t) )|, (9.29)
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where n(v, t) is the time-dependent photon distribution function (photon number density. Equa-
tion (9.29) is usually written in the form

on 1 0 on
@ = 29, {x‘l (&r +n+ n2>} (9.30)

where we substitute dy = [kT/(mec)| neor dt and = = hv/(kT).

Within the thermal Comptonization in far downstream (Katz et al. 2010; Nakar & Sari
2010) which relate Ng. = d?/\? = ct/) to thermalization length Ly and fq in case of thermally
determined distribution of free electrons, yielding Ny = L7 /(8qA) = Lrngor/Ba) the relevant
Compton y-parameter in our case is

4kT
y =

4kT -
2 (LTnu or 5s) Bs 2

2LTnd ar ﬂd_l =49
meC meC

L kT _
~4x1074 ~ (Lrng or Bs) 572, (9.31)

hence it has 4 times higher value than the Kompaneets y-parameter. It is much larger than
unity for Lyny o7 Bs > 2.5x 103 (KT'/ e\/)_1 /32. Photon effective generation rate Q. off includes,
therefore, all photons produced down to an energy that allows them to be upscattered to kTy.
For bremsstrahlung emission, which we assume to be the main source of photons, the number
of photons generated diverges logarithmically at low energy, so that Q. . may be significantly
larger than the bremsstrahlung generation rate of photons at kTy. In order for the photon
energy to significantly increase by scattering, it must be scattered ~ mec?/(4kT) times before
getting re-absorbed.

We need also the standard equation for the mean number of photons N per unit volume
(given by statistical physics basics, where n(v,t) has the form n(v) = [e* — 1]~} with 2z =
hv/(kT) in case of the equilibrium Planck distribution)

— 81 [ 9
N = = n(v,t) v°dv. (9.32)
Let us now assume that n(v, 0) corresponds to a bremsstrahlung spectrum and that the electron
temperature is constant in time. If we neglect the variation with photon energy of the Gaunt
factor, this means that we can write n(v,0) = ng, where

9.2 Cutoff in the Bremsstrahlung Spectrum

In order to study the up-scattering of the low-energy bremsstrahlung photons, we assume here
that the cutoff in the bremsstrahlung spectrum due to self-absorption occurs at frequency vmin
such that hvpyin < kT, which implies n(v,t) > 1 (from Eq. (9.32), since C {exp[hv/(kT)| —
1}7! =~ kT/(hv). However, when n(v,t) > 1, the Kompaneets equation (9.29) can be approxi-
mated by the equation

onrt) o h 10
ot — Ne0T

(V2 (v, 1)] . (9.33)

We consider the situation (see Sunyaev & Zeldovich 1970 for this paragraph) when a slow
change of temperature occurs due to a flow of heat. The kinetic equation for photons with
mec? > kT, including the variation of electron temperature has the form (cf. also Eq. (9.29))

on(x,t) a 0 [ 4 (871 2)} N Ke™® on 0InT,
= x

%—l—n—i—n 3 [1—n(e —1)]—3:% 5

(9.34)

ox 22 Oz
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where x = hv/kT,. The first term describes the change of frequency due to Compton scattering
for which a = oocnekT,/(mec?) (Kompaneets 1956; Weymann 1965) and the second term -
bremsstrahlung together with the corresponding reverse and induced processes where

_ 87 eSh2g(z) n? n2

= ~ 1.25 x 10712 © 9.35
3 me(6mmekTy) /2(KT,)3 9(z) T35 (9.35)

and g(z) is the Gaunt factor. Finally the third term is connected with the fact that the
temperature T, enters into a determination of the variable x. In fact, if no processes occur
among the quanta, than dn(v,t)/0t|, = 0 and for n(x) we have

_on _on
. Ot , Ot

an
ot

on 0
ox Ot

on z dT

- — 9.36
phys Oz T dt ’ ( )

v

where On/0t|, . corresponds to first two terms in Eq. (9.34). The general properties of
Eq. (9.34) are obvious: the first term vanishes not only for Planck distribution n(x) = (e*—1)71,
but also for a Bose-Einstein equilibrium distribution n(z) = (e*™ — 1)~! with a given num-
ber of quanta. The reason is that the Compton effect does not change the number of quanta,
although it redistributes the quanta in frequency. The second term vanishes only in true equi-
librium n = (e* —1)~!. The third term describes the perturbing influence of the energy supply
in the case when this energy is given primarily to the electrons.

Compton scattering will thus tend to depress a bremsstrahlung spectrum when the frequency
is near to the self-absorption cutoff (following Chapline & Stevens 1973, who express the time
t in units of neore, cf. Eq. (9.34)). If we assume that the rate of change of the bremsstrahlung
spectrum due to Compton scattering is greater than the rate of change due to bremsstrahlung
emission, then for large ¢ (but not so large that the photons are absorbed) the distribution
function will approach a distribution n.(r) (where the subscript ¢ is abbreviated from “cutoff”)
such that

m]elcQVlQ@au [V4n2(y)} = -S(v), (9.37)
where S(v) = [(he)?/(87)] [32mme/ (3KT2)]Y? (€2 /h) ne G exp|—hv /(KT)]/(hv)® is the contri-
bution of bremsstrahlung emission to dn/dt (which comes from Fokker-Planck solution of
bremsstrahlung emission equation (8.13), for the explanation see Chapline & Stevens 1973).
Comparing the term S(v) with the terms = and K from Eq. (9.34), we have neorcS(v) =
Ke /23 [where op = (87/3) e*/(m2c?) in cgs]. Solving equation (9.37) for n.(v) gives

310\ 1/4 o0 —u 1/2
e mac e
= — —d 9.38
nc(l/) hl/2 <67T kTe> (ne /}W/kTe gff u u) 5 ( )

where the solution of the integral approximately is a function —gg Ei(—hv/kTe) = —gg [In(hv/kTe)+
v—hv/kTe+hv/4kT,+...] where v is the Euler-Mascheroni constant. The range of frequencies

for which the photon distribution function has the form given in equation (9.38) is determined

by those values of hv for which the rate of change of the bremsstrahlung spectrum due to
Compton scattering exceeds the rate of change of the spectrum due to bremsstrahlung emission
and absorption. The lower limit of this range, hvmin, can be found by equating n.(v) and the
Planck function:

hvgin -1 kT
nc(”min) = (e ke — 1) ~ . (9'39)
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for small hv/(kTe). The factor in brackets in equation (9.38) is approximately equal to ne g In [kTe /(hv)]
for small hv/(kTe). If we assume that the logarithm in this factor is of order unity, then we
obtain

3,10
mgc

™

1/4
hvmin = eh ( ) (kTo) ™ (ne gn) /2. (9.40)
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Radiative Transitions

10.1 Semi-Classical Theory

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We investigate the transitions between
atomic states. There are two major objectives: the selection rules for radiative transitions and
the strengths of the radiation. The first of these is in some sense a special case of the second,
but we shall regard it separately.

We use the so-called semi-classical theory, in which the atom is treated quantum mechani-
cally, but the radiation is treated classically. It is known that this approach correctly predicts
the induced radiation processes described by Einstein B coefficients, but that it fails to predict
the spontaneous process, described by the Einstein A coefficient. However, this is not a great
difficulty, because the Einstein coefficients are related, and any one of them can be used to
derive the other two. The physical argument used to justify the semi-classical approach is the
following: in the classical limit of radiation is the number of photons per photon state large.
Thus the induced processes, which are proportional to the number of photons, dominate the
spontaneous processes, which are independent of the number of photons. Because of the lin-
earity of the induced processes in the number of photons, these processes may be extrapolated
to small photon numbers, that is, to the quantum regime. The spontaneous rate can then be
quantified by the Einstein relations.

10.1.1 The Electromagnetic Hamiltonian

The relativistic kinetic energy for an uncharged particle of rest mass mg is T' = F — Ey, where
E = mc? is the total particle’s energy and Eg = mgoc? is its rest energy. Following Eqs. (7.95) -
(7.97), T = moc?(y — 1), and we may naively regard this as the kinetic part of the relativistic
Lagrangian L. However, it is not, because its velocity derivative does not give relativistic
momentum p = ymov.

The correct Lagrangian we obtain by integrating the relativistic momentum equation

oL
p=5, % that L:/'y(v)movdv—V: —moc?y =V, (10.1)
v
where V is the potential energy and where the arbitrary constant of integration becomes the
(calibrated) part of V.
For a particle of charge ¢ with a rest mass mg in an electromagnetic field represented by
the potentials ¢ and A, the relativistic Lagrangian is given by

L=—mo*y 1 4+qv-A—qo, (10.2)

143
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so that the particle’s momentum

oL
M=2"=p+A (10.3)

To verify Eq. (10.2), we use the vector identity
vXx (VXA +Ax(Vxv)=V(v-A)—(v - V)A-(A-V)v (10.4)

(cf. Sect. 2.3 in (Kurfiirst 2017)), noting that v does not depend on r so the last terms on both
sides of Eq. (10.4) drop. The explicit Euler-Lagrange equation 0L/dq = %(8L /9q) becomes

oL
By — V(- A)—qVo=qvx (V xA)+q(v:V)A-qV9,
d fOLY\ d _dp 0A
yielding the Lorentz force (Eq. (5.1))
(E:q[—ng—%?—kvx(VxA)}:q(E+v><B). (10.6)

The relativistic Hamiltonian for a particle in an external electromagnetic field is
H=M-v—L=p-v+ mOCny_l +q¢ = [(M — qA)202 + m%cﬂ 1/2 + qo, (10.7)

where we used Eq. (10.3). Expanding Eq. (10.7) in the nonrelativistic limit, H = p?/(2mq) +V
and ignoring the (constant) rest mass, we obtain
(M —qA)? _ M q > A?

H=-—"" =——*M-A
2m0 +q¢ 2m0 mo + 2m0

+ qo. (10.8)

Using the Coulomb gauge (Eq. (5.32)) we have A = const. and the operators M and A commute,
_ihV A = —ihAVY, sothat M-A—A-M. (10.9)

Regarding the particle is an electron, ¢ = e, my = m,, we may estimate the ratio of the two
terms in Eq. (10.8) that contain A:

_eMA/me 2M _ ev/c?

_ - ___ -7z 10.10
" e2A2/2m, eA  2mepalapA’ ( )

where a = €?/(4meohc) ~ 1/137 is the fine-structure constant and ag = 4megh?/(mee?) =
5.291 x 10~ m is the Bohr radius.

The ratio v/c ~ « for electrons in atom, which we estimate from Bohr model of H-atom,
where we compare mev?/ag = €?/(4mega?). Another ratio A/E ~ \/c, where E is the electric
field and X is the wavelength, we approximate by comparing the relations V x A and B = E/c.
We rewrite Eq. (10.10) as

9 hew

~— 10.11
2m2egaa \E? ( )

Ui

Since from Bohr model of H-atom, comparing mev?/2 = E ~ 27nhc/ ), it follows that A ~ ag/«a,
while the average energy density (5.45) implies the number of photons npp ~ €9E?/hw, we have

n? ~ (npnag) Tt > 1 (10.12)
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as the condition that the linear term in A in Eq. (10.8) dominates the quadratic one. In other
words, the number of photons inside the atom at one time is small. In fact, the term quadratic
in A contributes to two-photon processes, which we ignore here under the assumption that the
number of photons is sufficiently small. Note that the photon density at which this assumption
fails is npp ~ 103! m~3, whereas at the sun’s surface we have only Nph ~ 10®¥ m~3. Ordinarily,
the neglect of the A? term is justified. We now want to apply this to an atomic system of
electrons. To do this we regard the sum of terms of the sort (—e/mec)M - A as a perturbation
to the atomic Hamiltonian, and we use time-dependent perturbation theory to calculate the
transition probabilities between the atomic states (we continue to work in the Coulomb gauge
V-A=V¢=0).

10.1.2 The Transition Probability

We split the Hamiltonian (Eq. (10.8)) into a stationary and a time-dependent piece:
H=H"+H', (10.13)

where HO is the time-independent atomic Hamiltonian and H' is the perturbation due to the
external electromagnetic field. The atomic eigenvalues Ej, and eigenfunctions ¢ of H? are
given by

HO¢), = By (10.14)

and the zeroth-order time dependent wave functions are ¢y exp(—iExt/h). Resuming the time-
dependent Schrédinger equation i40vy /0t = Ht, we may expand the actual wave function
as

D(t) =Y ap(t)gp e i (10.15)
k

The Schrédinger equation implies the probability per unit time Py; for a transition from state
i to state f is given by

472

Pr=er

|Hii(wy)], (10.16)
where

T
H]{i(w):/o HE () e ™" dt, H]{i(t):/gzb*}H]gbid%, and fhwp = Ep — B (10.17)

10.2 Line Broadening

Since atomic levels are not infinitely sharp, nor are the lines. We introduced in Sect. 4.5 the
line profile function ¢(v) to account for the nonzero width of the line. Many physical effects
determine the line shape, we describe only a few here (see, e.g., Mihalas 1978).

10.2.1 Doppler Broadening

The simplest mechanism for line broadening is the Doppler effect. An atom is in thermal
motion, so that the frequency of emission or absorption in its own frame corresponds to a
different frequency for an observer. Each atom has its own Doppler shift, so that the net
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effect is to spread the line out, but not to change its total strength. The change in frequency
associated with an atom with velocity component v, along the line of sight (say, z-axis) is, to
lowest order in v/¢, given by Eq. (7.40),

- %, so that v, = elv = vo) and dv, = £ aw. (10.18)
1240 C 140 140

where 1 is the frequency in the rest frame of an atom. The number of atoms having velocities
in the range v, to v 4+ dv, is proportional to the Maxwellian distribution exponential (see the
principles in Kurflirst 2017, Sect. 12.2),

mav2 _M 00 _M
e 2kT dv, ~e 26kT  dy, so that 1= C’/ e 25kT ), (10.19)
—00

where C' is a constant which is normalized by the condition [ ¢(v)dv = 1, and where we
integrate over the whole bracket in the exponential. The profile function is

mac?(v—up)?
_cfma T L w2/ 10.20
o) = e T = B

where we define the (temperature dependent) Doppler width Avp by

T
Avp =2 . Avp < . (10.21)
c\V my

The center-of-line cross section for each atom, neglecting stimulated emission, is

hvg 1 hvg 1 e?

= B —_— e -
Tvo 2y ¢(0) Avpy/T 47 12 Avpy/T degmec

fio (10.22)

in SI units, while in cgs units it is

1 e

_ e~ 10.2
AVDﬁmeCfn (10.23)

Ouy

for the case of Doppler broadening (cf. Egs. (6.74) and (6.77)). Numerically this is

Ouy ~ 1.16 x 1078 \g\/A/T f1om?, (10.24)

where Ao isin A, T in K, and A is the atomic weight for the atom.

In addition to thermal motions, we include also macroscopic turbulent velocities. When the
turbulent scale is small in comparison with a photon’s mean free path (microturbulence) these
motions are often accounted for by an effective Doppler width

2kT 1/2
Avp =2 ( + vmic) : (10.25)

c \ my

where vpjc is a root mean-square measure of the turbulent velocities. This assumes that the
turbulent velocities also have a Gaussian distribution.
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10.2.2 Natural Broadening

A certain width of the atomic level is implied by the uncertainty principle, AEAt > h. A rate
of the spontaneous decay of an atomic state n is

Y= A, (10.26)

where we sum over all states n’ of lower energy. If radiation is present, we should add the induced
rates. The coefficient of the wave function of state n, therefore, is of the form e~ 72 and leads
to a decay of the electric field by the same factor (the energy then decays proportional to e~ 7).
Therefore, we have an emitted spectrum determined by the damped sinusoid (oscillator) type
of electric field, as given in Sect. 3.2.1 in Kurfiirst (2017). The profile is (cf. Eq. (6.64))

L )
) = O L /AP (10.27)

This is called a Lorentz (or natural) profile. Actually, the above result applies to cases in which
only the upper state is broadened (e.g., transitions to the ground state). If both the upper and
lower state are broadened, then the appropriate definition for « is

Y = Yup + Yiows (10.28)

where vy, and 70, are the widths of the upper and lower states involved in the transition. We
can have, for example, a weak but broad line if the lower state is broadened substantially.

10.2.3 Collisional Broadening

The Lorentz profile applies more generally to certain types of collisional broadening mechanisms.
For example, if the atom collides with other particles during its emission, the phase of the
emitted radiation can be suddenly altered. If the phase changes completely randomly at the
collision times, then information about the emitting frequencies is lost. If the collisions occur
with frequency vgo1, that is, each atom experiences vo collisions per unit time on the average,
then the profile is

1/
)= = (1029)
where
' =7+ 2v¢. (10.30)

10.2.4 Combined Doppler and Lorentz Broadening

An atom very often shows both a Lorentz profile plus the Doppler effect. In these case the
profile is as an average of the Lorentz profile over the various velocity states of the atom:

mavz

Tr My, & e 2kT
= —54/ dv,, 10.31
P(v) a2\ 2nkT /OO< VOU2)2 <F>2 v ( )
+

Vo In

Cc
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Substituting

may
_ _ d y= N 10.32
@ AtAvp’ b Avp and ¥ T (10.32)

we can write Eq. (10.31) more compactly using the Voigt function H(a,u),

1 a [ e v’ dy
o(v) Aop i (a,u), where H(a,u) W/oo PR — (10.33)

For small values of a, the center of the line is dominated by the Doppler profile, whereas the
“wings” are dominated by the Lorentz profile.
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