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Chapter 1

Gas Dynamics

1.1 Boltzmann Kinetic Equation

(Kurfürst 2015): The Boltzmann kinetic equation (hereafter BKE) for a particle α, used in the
gas (plasma) kinetic theory (see Bittencourt 2004, for details), is

∂fα
∂t

+ v ·∇fα + aext ·∇v fα =

(
δfα
δt

)
coll

. (1.1)

The distribution function fα(r , v , t) is de�ned as the density of the particles α in the phase
space,

fα(r , v , t) d3r d3v = d6Nα(r , v , t), (1.2)

where the quantity d6Nα(r , v , t) denotes the number of the particles α in the phase space

volume d3r d3v with coordinates (r , v) at instant time t. The quantity aext in Eq. (1.1) is the
acceleration due to an external force, ∇v is the velocity gradient ∂/∂v and the collision term

on the right-hand side quanti�es the rate of change of fα due to particle collisions. The average
value of a general physical quantity χ(r , v , t) for the particles α is given by

〈χ(r , v , t)〉α =
1

nα(r , t)

ˆ
χ(r , v , t) fα(r , v , t) d3v , (1.3)

where nα(r , t) is the number density (number of particles α per unit volume) at instant time t,
de�ned as integral of fα(r , v , t) over the velocity space,

nα(r , t) =

ˆ
fα(r , v , t) d3v . (1.4)

We multiply BKE for a particle α by a general physical quantity χ(v), independent of time
and space (a function of only the particle's velocity) and integrate it over the velocity space asˆ

χ
∂fα
∂t

d3v +

ˆ
χ v ·∇fα d3v +

ˆ
χ aext ·∇v fα d3v =

ˆ
χ

(
δfα
δt

)
coll

d3v . (1.5)

Since r , v and t are independent, the spatial derivatives of the velocity dependent quantities,
∇ ·v and ∇χ(v), vanish. The force component Fi is independent of the velocity vi, the velocity
gradient of the acceleration, ∇v · aext, also vanishes (this is not true in case of the magnetic
force, where FL, i = qα εijk vjBk). The solution of Eq. (1.5) gives,

∂

∂t
(nα〈χ〉α) + ∇ · (nα〈χv〉α)− nα〈aext ·∇v χ〉α =

[
δ

δt
(nα〈χ〉α)

]
coll

, (1.6)

1



Chapter 1. Gas Dynamics 2

where the terms in 〈 〉 are the average values of the corresponding quantities. We also de�ne
the mass density for the particles α as ρα = nαmα.

The velocity v of the particle α is the vector sum

v = V α + Cα, (1.7)

where V α(r , t) is the �ow (macroscopic drift) velocity of the particles α at the position r at
time t,

V α(r , t) =
1

nα(r , t)

ˆ
v fα(r , v , t) d3v , (1.8)

and Cα(r , t) is the random or peculiar velocity of thermal motion, relative to V α(r , t). The
average value of the �ow velocity (as a macroscopic collective property) is 〈V α〉 = V α, while
the average thermal velocity 〈Cα〉 = 0 . The average total velocity of the particle α therefore is

〈v〉α = 〈V α〉 = V α. (1.9)

From the kinetic theory of gases follows the mass and momentum density of the matter,

ρ =
∑
α

ρα, ρV =
∑
α

ραV α, (1.10)

where ρ and V are the density and the �ow velocity of the whole medium. We introduce the
di�usion velocity wα, de�ned as the vector subtraction of velocity V α of particle α and the
�ow velocity V of the medium,

wα = V α − V , (1.11)

which we regard as the velocity of the particle α in a co-moving frame of the medium. Since
the di�usion velocity wα is clearly the macroscopic quantity, 〈wα〉 = wα. We de�ne also the
global thermal velocity Cα0 for particles α relative to the velocity of the �uid. Equations (1.7)
and (1.11) give

Cα0 = v − V , that is, Cα0 = Cα + wα. (1.12)

We de�ne the kinetic stress tensor Tαij (see Sects. 1.4 and 1.4) for the particle α (where i, j
are spatial components) and the global kinetic stress tensor Tij as

Tαij = −ρα〈CαiCαj〉, Tij = −
∑
α

ρα〈Cα0iCα0j〉. (1.13)

The scalar pressure pα for the particle α and the global scalar pressure p are de�ned as (cf.
Sect. 1.5.1)

pα =
1

3
ρα〈C2

α〉, p =
1

3

∑
α

ρα〈C2
α0〉. (1.14)

The thermal energy �ux qα for the particle α and the global thermal energy �ux q are

qα =
1

2
ρα〈C2

αCα〉, q =
1

2

∑
α

ρα〈C2
α0Cα0〉. (1.15)
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1.2 Mass Conservation (Continuity) Equation

(We hereafter use R, V for radial distance and velocity in Cartesian and cylindrical coordinates,
while r, v are used in the spherical coordinates.)

Substituting the mass mα of the particle α for the general quantity χ into Eq. (1.6), we
obtain the mass conservation (continuity) equation (0-th moment of BKE, the mass conservation
law) for the particle α,

∂ρα
∂t

+∇ · (ραV α) = Sα, (1.16)

where the collision term Sα is (cf. Eq. (1.5))

Sα = mα

ˆ (
δfα
δt

)
coll

d3v =

(
δ ρα
δt

)
coll

. (1.17)

The term Sα refers to the rate of production or destruction of particles α due to particle
interactions, i.e., due to ionization, recombination, charge transfer, etc. In case of non-isolated
physical system it may also refer to source (or sink) of mass (it is also called the source term).
The detail form of Sα may be very complex in general. It involves the inelastic collisions that
lead to production or loss of a particle type. In case of electrons, for example, the most important
interactions are ionization and recombination (neglecting the electron capture ionization, etc.).
If ki and kr denote the ionization and recombination collision rates, respectively, we may express
such (simpli�ed) collision term for electrons, Se, as (Bittencourt 2004)

Se = me

(
kine − krn2

e + . . .
)
, (1.18)

while the inclusion of the radiative rates would lead to equations of statistical equilibrium (see
Sect. 10). If we sum Eq. (1.16) over all particle types α in the isolated system, the collision
term Sα vanishes due to the total mass conservation, and we obtain the continuity equation for
the whole medium,

∂ρ

∂t
+ ∇ · (ρV ) = 0. (1.19)

An alternative derivation of the continuity equation is based on assumption of an equilibrium
between the number of particles leaving some volume Ω through its closed surface A (particle
�ux) and the time rate of particle number density decrease within the volume Ω,∑

α

ˆ
A
nαmαV α · dA = −

∑
α

∂

∂t

ˆ
Ω
nαmα dΩ, (1.20)

where nαmα is the mass density ρα of the particle α. Since Eq. (1.20) must hold for any
arbitrary volume Ω, by applying the Gauss's theorem and summing over all particles α, we
obtain Eq. (1.19).

1.2.1 Equation of continuity in curvilinear coordinates

The general form of continuity equation is given by Eq. (1.19). To transform the continu-
ity equation into cylindrical coordinates, we use Eq. A.44 in Kurfürst (2017), the cylindrical
continuity equation is

∂ρ

∂t
+

1

R

∂

∂R
(RρVR) +

1

R

∂ (ρVφ)

∂φ
+
∂ (ρVz)

∂z
= 0. (1.21)
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Using Eq. A.70 in Kurfürst (2017), we transform the continuity equation into spherical coordi-
nates,

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρ vR

)
+

1

r sin θ
∂

∂θ
(sin θ ρ vθ) +

1

r sin θ
∂ (ρ vφ)

∂φ
= 0. (1.22)

In axisymmetric or spherically symmetric case the terms with angular (and vertical) derivatives
vanish, reducing Eq. (1.21) to the frequently used axisymmetric radial continuity equation

∂ρ

∂t
+

1

R

∂

∂R
(RρVR) = 0, (1.23)

or the spherically symmetric continuity equation,

∂ρ

∂t
+

1

r2

∂

∂r

(
r2ρ vR

)
= 0. (1.24)

1.3 Equation of Motion

Substituting the particle's momentum, mαv , for the general quantity χ(v) into Eq. (1.6), we
obtain the equation of motion (momentum equation) (1st moment of BKE, the momentum
conservation law) for the particle α,

∂

∂t
(ραV α) + ∇ · [ρα (V α ⊗ V α + 〈Cα ⊗ Cα〉)]− nαFα = Aα, (1.25)

where V α⊗V α and Cα⊗Cα are the tensor (dyadic) products of vectors. The third left-hand side
term ∇ · (ρα 〈Cα ⊗ Cα〉) expresses the divergence of the stress tensor −∇jT ijα (cf. Eq. (1.13)),
the fourth term −nαFα is the sum of external forces (multiplied by particle number density)
acting on the particle α, i.e., the gravity, radiative force, etc. The collision term Aα quanti�es
the momentum change due to collisions, creation, and destruction of particles. It is usually
given as the linear approximation for a small di�erence in velocities (Bittencourt 2004),

Aα = −ρα
∑
β

ναβ (V α − V β) , (1.26)

where we assume that the force exerted on particles α by colliding particles β, is proportional
to the di�erence of the velocities V α − V β of the particles. The constant of proportionality,
ναβ , is called the collision frequency for transfer of momentum.

If we subtract the continuity equation (1.16), multiplied by Vα, from Eq. (1.25) (noting that
aα = dV α/dt = ∂V α/∂t+ V α ·∇V α), we obtain the momentum equation in the form

ραa
i
α = ∇jT ijα + F iα +Aiα, (1.27)

where i, j are the spatial components. If we sum Eq. (1.27) over all particle types α in the
isolated system, the collision term Aiα vanishes due to the conservation of the total momentum.
Equation (1.27) becomes the momentum equation for the whole �uid,

ρai = ∇jT ij + F i. (1.28)

We expand the acceleration term on the left-hand side of Eq. (1.28) as

ρai = ρ
dVi
dt

= ρ

(
∂Vi
∂t

+ V j∇jV i

)
, so that ρa = ρ

[
∂V

∂t
+ ρ (V ·∇)V

]
, (1.29)
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where the term (see the vector identities in Sect. 5.3 in Kurfürst (2017))

(V ·∇)V =
1

2
∇V 2 − V × (∇× V ) , (1.30)

splits into two terms, to a separated laminar �ow and to a rotational (turbulent) motion,
respectively.

An alternative derivation of the momentum equation is based on Newton's second law,
ma = F , written as the sum of forces acting on the particle α,∑

α

ˆ
Ω

d (ραV α)

dt
dΩ =

∑
α

(ˆ
Ω
FΩ
αdΩ +

ˆ
A
FAαdA

)
. (1.31)

Following the notation used in Eq. (1.20), we denote FΩ
α the volume forces that act throughout

the volume Ω and FAα the surface forces that act on the surface A. By applying the divergence
theorem on Eq. (1.31), we obtain Eq. (1.28).

1.3.1 Equation of motion in curvilinear coordinates

We omit in this section the viscosity terms in the right-hand side of the equation, since they
are described in detail in Sect. 1.4. Following the acceleration term expressed in Eq. (1.29) and
the cylindrical gradient described in Sect. A.2.1 in Kurfürst (2017), the radial component of
the momentum equation in cylindrical coordinates is

∂VR
∂t

+ VR
∂VR
∂R

+
Vφ
R

∂VR
∂φ

+ Vz
∂VR
∂z

=
V 2
φ

R
− 1

ρ

∂p

∂R
+ FR, (1.32)

where the right-hand side terms express the centrifugal force, pressure force, and sum of the
external forces (e.g., gravitation). The azimuthal component of the momentum equation is

∂Vφ
∂t

+ VR
∂Vφ
∂R

+
Vφ
R

∂Vφ
∂φ

+ Vz
∂Vφ
∂z

= −
VRVφ
R
− 1

ρR

∂p

∂φ
+ Fφ, (1.33)

where the meaning of the right-hand side terms is similar. The vertical component of the
momentum equation is

∂Vz
∂t

+ VR
∂Vz
∂R

+
Vφ
R

∂Vz
∂φ

+ Vz
∂Vz
∂z

= −1

ρ

∂p

∂z
+ Fz. (1.34)

The most frequent source of external gravity within the external forces F is that of a spherical
body (astronomical objects), whose gravitational potential Φ = −GM?/r (whereM? is the mass
of a central object and r denotes the spherical radial distance, r2 = R2 + z2 in cylindrical coor-
dinates). Including this expression, the nonzero components of the axisymmetric gravitational
acceleration term −∇Φ in cylindrical coordinates are

gR = − GM?R

(R2 + z2)3/2
, gz = − GM?z

(R2 + z2)3/2
. (1.35)

In spherical coordinates, following the acceleration in Eq. (1.29) and using the spherical
gradient described in A.3.1 in Kurfürst (2017), the radial component of momentum equation is

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vφ

r sin θ

∂vr
∂φ

=
v2
θ + v2

φ

r
− 1

ρ

∂p

∂r
− ∂Φ

∂r
, (1.36)
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the polar component is

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vφ

r sin θ

∂vθ
∂φ

=
v2
φ cot θ

r
− vrvθ

r
− 1

ρr

∂p

∂θ
− 1

r

∂Φ

∂θ
, (1.37)

and the azimuthal component is

∂vφ
∂t

+ vr
∂vφ
∂r

+
vθ
r

∂vφ
∂θ

+
vφ

r sin θ

∂vφ
∂φ

= −
vθvφ cot θ

r
−
vrvφ
r
− 1

ρr sin θ
∂p

∂θ
− 1

r sin θ
∂Φ

∂θ
. (1.38)

The meaning of the right-hand side terms is analogous to Eqs. (1.32) and (1.33). The external
gravity induced by a spherically symmetric body is

gr = −GM?

r2
. (1.39)

1.4 Stress Tensor

The stress tensor for a Newtonian �uid (cf. Eq. (1.13)) may be written in a general form as

Tij = −p δij + σij , (1.40)

where p is the scalar pressure and σij is a symmetric nondiagonal viscous stress tensor. Since
the tensor components must have physical dimension of the pressure, where the i-th component
of the force Fi = dΠi/dt is tangential to a surface area Aj , we may write

σij =
1

Aj

dΠi

dt
, where

dΠi

dt
= ρΩ

dVi
dt

= ρAj`
dVi
dt
. (1.41)

The quantity Πi in Eq. (1.41) denotes the i-th component of momentum of �uid particles, Ω is
a �uid volume, Ω = Aj`, where the distance ` expresses the mean free path of the particles. We
denote the mean random velocity of those particles as ṽ. Considering one-dimensional planar
shear viscous stress (Fig. 1.1), Eq. (1.41) is

σxz = ρ`
dVx
dz

dz
dt

= ρ` ṽz
dVx
dz

= η
dVx
dz

. (1.42)

The factor of proportionality η in Eq. (1.42) is called the coe�cient of dynamic viscosity.
Its physical meaning is ρ` ṽz or fρ` ṽ, where the numerical factor f is approximated as 1/3,
which corresponds to an average fraction of �uid particles moving in z direction (its exact value
depends on the type of particle interactions (Maeder 2009)). Assuming large deformations, one
can write the expression for the viscous stress tensor of the form

σij = η (∇iVj +∇jVi +∇iVk∇jVk) + λ∇kV kδij = 2η Eij + λ∇kV k δij , (1.43)

where λ is the dilatation or second viscosity coe�cient. The symbol ∇i represents the covariant
derivative, de�ned for orthogonal coordinate systems by Eq. A.43 of Kurfürst (2017). The
components of stress and the strain tensor Eij thus take the elementary form

Tij = −pδij + η

(
∂Vj
∂xi

+
∂Vi
∂xj

)
+ (ζ − 2

3
η)∇kV kδij , Eij =

1

2

(
∂Vj
∂xi

+
∂Vi
∂xj

)
. (1.44)
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V (z0 − `/2)

V (z0 + `/2)

z0 + `

z0

z0 − `

ṽz

ṽz

Figure 1.1: Schema of the planar shear stress with vertically increasing magnitude of velocity V . The
reference horizontal plane is denoted z0, while ` is the mean free path of a particle (regarded as a
subject of the stress force) and ṽz is the z-component of a mean velocity of random motion. Adapted
from Kurfürst (2015).

In Eq. (1.43) we use the full Green-Lagrangian strain tensor,

Eij =
1

2
(∇iVj +∇jVi +∇iVk∇jVk) . (1.45)

In case of small deformations the nonlinear term in the Green-Lagrangian strain tensor drops,
and we obtain the symmetric Cauchy strain tensor,

Eij =
1

2
(∇iVj +∇jVi) . (1.46)

Using Eq. (1.45), the viscous stress tensor can be written in the form

σij = η

(
∇iVj +∇jVi +∇iVk∇jVk −

2

3
∇kV k δij

)
+ ζ∇kV kδij , (1.47)

where ζ = λ+ 2
3η is the coe�cient of bulk viscosity. Using η and ζ, the stress tensor is

Tij = −p δij + η (∇iVj +∇jVi +∇iVk∇jVk) +

(
ζ − 2

3
η

)
∇kV kδij , (1.48)

or, using the strain tensor,

Tij = −p δij + 2η Eij +

(
ζ − 2

3
η

)
∇kV kδij . (1.49)

Another characteristic quantities, which describe the viscosity, are the kinematic viscosity
ν, de�ned as the ratio of the dynamic viscosity η to the �uid density ρ, and the characteristic
timescale tvisc of the viscous e�ects (viscous timescale),

ν =
η

ρ
=

1

3
`ṽ, tvisc ∼

L2

ν
, (1.50)

where L is a typical length scale of the system. In �uid mechanics the in�uence of viscosity is
usually expressed using a dimensionless Reynolds number Re, given as

Re =
ρLV

η
=
LV

ν
, (1.51)

where V is a typical velocity. The Reynolds number expresses the ratio of inertial forces to
viscous forces. The extent of viscous e�ects is scaled by a critical value Recrit, which varies
according to the �uid type and the geometry of the system.
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1.4.1 Stress tensor in Cartesian coordinates

The components of the Cauchy strain tensor Eij in Cartesian coordinates are

Exx =
∂Vx
∂x

, Exy =
1

2

(
∂Vy
∂x

+
∂Vx
∂y

)
,

Eyy =
∂Vy
∂y

, Exz =
1

2

(
∂Vz
∂x

+
∂Vx
∂z

)
,

Ezz =
∂Vz
∂z

, Eyz =
1

2

(
∂Vz
∂y

+
∂Vy
∂z

)
. (1.52)

The components of the stress tensor Tij in Cartesian coordinates are

Txx = −p+ 2η

(
∂Vx
∂x

)
+

(
ζ − 2

3
η

)
(∇ · V ) , Txy = η

(
∂Vy
∂x

+
∂Vx
∂y

)
,

Tyy = −p+ 2η

(
∂Vy
∂y

)
+

(
ζ − 2

3
η

)
(∇ · V ) , Txz = η

(
∂Vz
∂x

+
∂Vx
∂z

)
,

Tzz = −p+ 2η

(
∂Vz
∂z

)
+

(
ζ − 2

3
η

)
(∇ · V ) , Tyz = η

(
∂Vz
∂y

+
∂Vy
∂z

)
. (1.53)

The general expression of momentum equation is

ρ
dVi
dt

= Fi + ∂jTij . (1.54)

The components of momentum equation in Cartesian coordinates are

ρ
dVx
dt

= Fx −
∂p

∂x
+

∂

∂x

[
2η

(
∂Vx
∂x

)
+

(
ζ − 2

3
η

)
(∇ · V )

]
+

∂

∂y

[
η

(
∂Vy
∂x

+
∂Vx
∂y

)]
+

∂

∂z

[
η

(
∂Vz
∂x

+
∂Vx
∂z

)]
, (1.55)

ρ
dVy
dt

= Fy −
∂p

∂y
+

∂

∂y

[
2η

(
∂Vy
∂y

)
+

(
ζ − 2

3
η

)
(∇ · V )

]
+

∂

∂x

[
η

(
∂Vy
∂x

+
∂Vx
∂y

)]
+

∂

∂z

[
η

(
∂Vz
∂y

+
∂Vy
∂z

)]
, (1.56)

ρ
dVz
dt

= Fz −
∂p

∂z
+

∂

∂z

[
2η

(
∂Vz
∂z

)
+

(
ζ − 2

3
η

)
(∇ · V )

]
+

∂

∂x

[
η

(
∂Vz
∂x

+
∂Vx
∂z

)]
+

∂

∂y

[
η

(
∂Vz
∂y

+
∂Vy
∂z

)]
. (1.57)

Neglecting the bulk viscosity coe�cient ζ and the mixed derivatives, we write the simpli�ed
Eq. (1.54) in the frequently used form usually called the Navier-Stokes equation,

ρ
dV
dt

= F −∇p+ η

[
∇2V +

1

3
∇ (∇ · V )

]
. (1.58)
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1.4.2 Stress tensor in cylindrical polar coordinates

Following Eq. (1.44), all the independent components of symmetric stress tensor in cylindrical
coordinates are

TRR = −p+ 2η

(
∂VR
∂R

)
+ (ζ − 2

3
η)∇ · V , TRφ = η

[
1

R

∂VR
∂φ

+R
∂

∂R

(
Vφ
R

)]
,

Tφφ = −p+
2η

R

(
∂Vφ
∂φ

+ VR

)
+ (ζ − 2

3
η)∇ · V , TRz = η

(
∂Vz
∂R

+
∂VR
∂z

)
, (1.59)

Tzz = −p+ 2η

(
∂Vz
∂z

)
+ (ζ − 2

3
η)∇ · V , Tφz = η

(
1

R

∂Vz
∂φ

+
∂Vφ
∂z

)
,

where p is the diagonal component of stress tensor (scalar pressure) and all the non-diagonal
terms form the viscous stress tensor that includes the bulk viscosity terms (containing the
velocity divergence) and the shear stress terms. Including the stress tensor, the general form of
the momentum equation (Eqs. (1.32)-(1.34)) is

ρai = ∇jTij − ρ∇iΦ, (1.60)

where the left-hand side represents the advective force, the �rst term on the right-hand side is
the pressure (including viscous) force and the last term on the right-hand side is the external
force.

Following Eq. (1.60) and including stress tensor components from Eq. (1.59), the radial
component of momentum equation in cylindrical coordinates is

ρaR = FR +∇RTRR +∇φTRφ +∇zTRz = FR + ∂RTRR +
1

R
∂φTRφ + ∂zTRz +

1

R
TRR −

1

R
Tφφ

= FR −
∂p

∂R
+

∂

∂R

[
2η

(
∂VR
∂R

)
+ (ζ − 2

3
η)(∇ · V )

]
+

1

R

∂

∂φ

{
η

[
1

R

∂VR
∂φ

+R
∂

∂R

(
Vφ
R

)]}
+

∂

∂z

[
η

(
∂Vz
∂R

+
∂VR
∂z

)]
+

2η

R

[
R
∂

∂R

(
VR
R

)
− 1

R

∂Vφ
∂φ

]
, (1.61)

where FR is the radial gravitational force ρgR (cf. Eq. (1.35)). Analogously, the azimuthal
component of momentum equation is

ρaφ = Fφ +∇RTφR +∇φTφφ +∇zTφz = Fφ + ∂RTφR +
1

R
∂φTφφ + ∂zTφz +

2

R
TφR

= Fφ −
1

R

∂p

∂φ
+

∂

∂R

{
η

[
1

R

∂VR
∂φ

+R
∂

∂R

(
Vφ
R

)]}
+

1

R

∂

∂φ

[
2η

(
1

R

∂Vφ
∂φ

+
VR
R

)
+ (ζ − 2

3
η)(∇ · V )

]
+

∂

∂z

[
η

(
1

R

∂Vz
∂φ

+
∂Vφ
∂z

)]
+

2η

R

[
1

R

∂VR
∂φ

+R
∂

∂R

(
Vφ
R

)]
, (1.62)

and the vertical component of momentum equation is

ρaz = Fz +∇RTzR +∇φTzφ +∇zTzz = Fz + ∂RTzR +
1

R
∂φTzφ + ∂zTzz +

1

R
TRz

= Fz −
∂p

∂z
+

∂

∂R

[
η

(
∂Vz
∂R

+
∂VR
∂z

)]
+

1

R

∂

∂φ

[
η

(
1

R

∂Vz
∂φ

+
∂Vφ
∂z

)]
+

∂

∂z

[
2η

(
∂Vz
∂z

)
+ (ζ − 2

3
η)(∇ · V )

]
+
η

R

(
∂Vz
∂R

+
∂VR
∂z

)
. (1.63)
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1.4.3 Stress tensor in spherical polar coordinates

Similarly to Sect. 1.4.2, we write all independent components of symmetric stress tensor in
spherical coordinates,

Trr = −p+ 2η

(
∂vr
∂r

)
+ (ζ − 2

3
η)∇ · v ,

Trθ = η

[
1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)]
,

Trφ = η

[
1

r sin θ
∂vr
∂φ

+ r
∂

∂r

(vφ
r

)]
,

Tθθ = −p+ 2η

(
1

r

∂vθ
∂θ

+
vr
r

)
+ (ζ − 2

3
η)∇ · v ,

Tθφ = η

[
1

r sin θ
∂vθ
∂φ

+
sin θ
r

∂

∂θ

( vφ
sin θ

)]
Tφφ = −p+ 2η

(
1

r sin θ
∂vφ
∂φ

+
vr + vθ cot θ

r

)
+ (ζ − 2

3
η)∇ · v . (1.64)

Following Eq. (1.60) and including spherical stress tensor components introduced in Eq. (1.64),
we write the radial component of momentum equation in spherical coordinates,

ρar = Fr +∇rTrr +∇θTrθ +∇φTrφ

= Fr +
1

r2
∂r
(
r2 Trr

)
+

1

r sin θ
∂θ (sin θ Trθ) +

1

r sin θ
∂φTrφ −

1

r
(Tθθ + Tφφ)

= Fr −
∂p

∂r
+

∂

∂r

[
2η

(
∂vr
∂r

)
+ (ζ − 2

3
η)(∇ · v)

]
+

1

r

∂

∂θ

{
η

[
1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)]}
+

1

r sin θ
∂

∂φ

{
η

[
1

r sin θ
∂vr
∂φ

+ r
∂

∂r

(vφ
r

)]}
+
η

r

[
4r

∂

∂r

(vr
r

)
− 2

r sin θ
∂

∂θ
(vθ sin θ)

− 2

r sin θ
∂vφ
∂φ

+ r cot θ
∂

∂r

(vθ
r

)
+

cot θ
r

∂vr
∂θ

]
, (1.65)

where Fr is the radial gravitational force ρgr (see Eq. 1.39). The polar component of momentum
equation is

ρaθ = Fθ +∇rTθr +∇θTθθ +∇φTθφ

= Fθ +
1

r2
∂r
(
r2 Tθr

)
+

1

r sin θ
∂θ (sin θ Tθθ) +

1

r sin θ
∂φTθφ +

1

r
(Tθr − cot θ Tφφ)

= Fθ −
1

r

∂p

∂θ
+

∂

∂r

{
η

[
1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)]}
+

1

r

∂

∂θ

[
2η

(
1

r

∂vθ
∂θ

+
vr
r

)
+ (ζ − 2

3
η)(∇ · v)

]
+

1

r sin θ
∂

∂φ

{
η

[
1

r sin θ
∂vθ
∂φ

+
sin θ
r

∂

∂θ

( vφ
sin θ

)]}
+
η

r

{
2 cot θ
r

[
sin θ

∂

∂θ

( vθ
sin θ

)
− 1

sin θ
∂vφ
∂φ

]
+ 3r

∂

∂r

(vθ
r

)
+

3

r

∂vr
∂θ

}
. (1.66)
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The azimuthal component of momentum equation is

ρaφ = Fφ +∇rTφr +∇θTφθ +∇φTφφ

= Fφ +
1

r2
∂r
(
r2 Tφr

)
+

1

r sin θ
∂θ (sin θ Tφθ) +

1

r sin θ
∂φTφφ +

1

r
(Tφr + cot θ Tθφ)

= Fφ −
1

r sin θ
∂p

∂φ
+

∂

∂r

{
η

[
1

r sin θ
∂vr
∂φ

+ r
∂

∂r

(vφ
r

)]}
+

1

r

∂

∂θ

{
η

[
1

r sin θ
∂vθ
∂φ

+
sin θ
r

∂

∂θ

( vφ
sin θ

)]}
+

1

r sin θ
∂

∂φ

[
2η

(
1

r sin θ
∂vφ
∂φ

+
vr
r

+
vθ cot θ
r

)
+ (ζ − 2

3
η)(∇ · v)

]
+
η

r

{
2 cot θ
r

[
sin θ

∂

∂θ

( vφ
sin θ

)
+

1

sin θ
∂vθ
∂φ

]
+ 3r

∂

∂r

(vφ
r

)
+

3

r sin θ
∂vr
∂φ

}
. (1.67)

1.5 Equation of Energy

1.5.1 General form

Substituting the kinetic energy 1
2mαv

2 for the general quantity χ(v) in Eq. (1.6), we obtain the
energy equation for the particle α (2. moment of BKE, the energy conservation law),

∂

∂t

(
1

2
ραV

2
α

)
+
∂

∂t

(
1

2
ρα
〈
C2
α

〉)
+∇ ·

(
1

2
ραV

2
αV α

)
+∇ ·

(
1

2
ρα
〈
C2
α

〉
V α

)
+

+∇ · (ρα 〈Cα ⊗ Cα〉V α) +∇ ·
(

1

2
ρα
〈
C2
αCα

〉)
− nα (F · V )α = Mα. (1.68)

The term nα (F · V )α is the �ux of external forces that act on the particle α The collision term
Mα on the right-hand side represents the rate of energy change due to collisions, creation and
destruction of particles (cf. the collision terms Sα in Eq. (1.16) and Aα in Eq. (1.25)),

Mα =
1

2
mα

ˆ
v2

(
δfα
δt

)
coll

d3v =

[
δ
(

1
2ρα

〈
v2
〉
α

)
δt

]
coll

. (1.69)

If we sum Eq. (1.68) over all particle types α (cf. Eqs. (1.10)-(1.15)), we obtain the energy
equation for the whole medium,

∂

∂t

(
1

2
ρV 2 +

3p

2

)
+∇j

(
1

2
ρV 2V j +

3p

2
V j − ViT ij + qj

)
− ViF i = 0, (1.70)

where, due to the conservation of the total energy in the isolated system, the collision term
Mα (taking into account only particle collisions and omitting the radiation) vanishes when
summed over all particle species. The terms 1

2ρα
〈
V 2
α

〉
and 1

2ρα
〈
C2
α

〉
in Eq. (1.68) represent

the kinetic and internal (thermal) energy of the particle α, while the corresponding expression
1
2

∑
α ρα

〈
C2
α0

〉
(cf. Eq. (1.14)) represents the internal energy ρε of the whole �uid. Following

Eq. (1.14), we set

3p

2
= ρε, (1.71)
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where ε denotes the speci�c internal energy (internal energy per unit mass). Equation (1.70)
therefore is

∂

∂t

(
ρε+

1

2
ρV 2

)
+∇j

[
ρV j

(
ε+

1

2
V 2

)
− ViT ij + qj

]
= ViF

i. (1.72)

Multiplying the equation of motion (1.28) by the velocity Vi and subtracting the continuity
equation, we obtain the equation of the mechanic (kinetic) energy for the whole medium,

∂

∂t

(
1

2
ρV 2

)
+∇j

(
ρV j 1

2
V 2

)
= Vi∇jT ij + ViF

i. (1.73)

Subtraction of Eq. (1.73) from the total energy equation (1.72) gives the equation of internal
(thermal) energy in the form

∂ (ρε)

∂t
+∇j

(
ρε V j

)
≡ d (ρε)

dt
+ ρε∇jV j = T ij∇jVi −∇j qj , (1.74)

which can be written with use of Eq. (1.71) also as

d
dt

(
3p

2

)
+

3p

2
(∇ · V ) = (T ·∇) · V −∇ · q. (1.75)

Subtracting equation of continuity (1.19) from Eq. (1.74) and following the identity d/dt =
∂/∂t+ V j ∇j , we write Eq. (1.74) as

ρ
dε
dt

= T ij∇jVi −∇j qj . (1.76)

Using expression (1.49) for the stress tensor, we write the �rst right-hand side term of
Eq. (1.76),

T ij∇jVi =

[
−pδij + 2ηEij +

(
ζ − 2

3
η

)
∇kV kδij

]
∇jVi. (1.77)

Equation (1.77) can then be explicitly written in the form

T ij∇jVi = −p∇iV i + 2ηEij∇jVi +

(
ζ − 2

3
η

)(
∇iV i

)2
. (1.78)

Using the Cauchy strain tensor formalism, Eq. (1.78) becomes

T ij∇jVi = −p∇iV i + 2ηEijE
ij +

(
ζ − 2

3
η

)(
∇iV i

)2
(1.79)

(see also Eq. (1.95) in Appendix 1.5.2). The �rst right-hand side term of Eq. (1.79) is the
reversible work done by the expanding matter, while the second and third terms represent the
dissipation function, i.e., the energy of the viscous dissipation of the gas (Mihalas & Mihalas
1984). The dissipation function is usually written as Φ, we denote it here Ψ (while Φ is the
gravitational potential),

Ψ = 2ηEijE
ij +

(
ζ − 2

3
η

)
(∇ · V )2 . (1.80)
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The dissipation function is always nonnegative, Ψ ≥ 0 (see Mihalas & Mihalas (1984) for the
proof). The equation of the internal (thermal) energy (1.76) in the vector notation then becomes

ρ
dε
dt

= −p∇ · V + Ψ−∇ · q. (1.81)

The reversible work done by pressure forces (the �rst right-hand side term of Eq. (1.81))
vanishes in case of incompressible �uid (∇ · V = 0). The other terms contribute to the heat
energy - the second right-hand side term of Eq. (1.81) is the (already introduced) energy of
dissipation, while the third term is a reversible contribution of the heat conduction and of other
energy sources (radiation, chemical reactions, etc.). It corresponds to the divergence of q in
Eq. (1.15).

The energy equation can be alternatively derived from the �rst law of thermodynamics,
using the continuity equation (1.19) and the equation of motion (1.28). Time derivative of the
energy (all the quantities are per unit volume) gives

∂

∂t

(
ρε+

ρV 2

2

)
= ρ

∂ε

∂t
−
(
ε+

V 2

2

)
∇ · ρV + ρV

∂V

∂t
, (1.82)

where, noting that ∂ε = dε−V ·∇ε, the �rst term on the right-hand side of Eq. (1.82) can be
written as

ρ
∂ε

∂t
= ρT

ds
dt
− p∇ · V − ρV ·∇ε, (1.83)

where s is the speci�c entropy (entropy per unit mass). We can expand the third term on the
right-hand side of Eq. (1.82), using Eqs. (1.28), (1.29) and the vector identity (1.30),

ρV
∂V

∂t
= −ρV ·∇1

2
V 2 − ρV · (∇× V )× V − V ·∇ · P + V · F , (1.84)

where the second term on the right-hand side vanishes (since A · (B × A) = 0) and where P is
the pressure tensor Pij = −Tij . In that sense, the pressure tensor represents the same physics
as the stress tensor, with the opposite sign. Using Eqs. (1.82), (1.83), and (1.84), we write the
equation of the total energy (1.70),

∂

∂t

(
ρε+

ρV 2

2

)
+ ∇ ·

[
ρV

(
ε+

V 2

2

)
+ pV

]
= V ·∇ · σp + ρT

ds
dt

+ V · F , (1.85)

where the quantity σp denotes the non-diagonal part of the pressure tensor, i.e., the tensor of
the viscous pressure. Equation (1.83) can be compactly written as

ρ
dε
dt

= ρT
ds
dt
− p∇ · V , (1.86)

and, comparing Eqs. (1.86) and (1.76), we obtain

ρT
ds
dt

= Ψ−∇ · q. (1.87)

From Eq. (1.80) follows the relation Ψ = σp ·∇V (cf. Eqs. (1.77)-(1.79)). Including this into
Eq. (1.82), we obtain

∂

∂t

(
ρε+

ρV 2

2

)
+ ∇ ·

[
ρV

(
ε+

V 2

2

)
+ PV + q

]
= V · F , (1.88)
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which is identical to the total energy expression given in Eq. (1.72).
Another frequently used form of the energy equation involves the Fourier's law of heat

conduction: The heat �ux in any material is proportional to its internal temperature gradient;
the heat �ows from hotter to cooler regions (Mihalas & Mihalas 1984). The term −∇ · q for
the heat energy �ux can be expanded as

−∇ · q = ∇ · (K∇T ) + qR, (1.89)

where the constant of proportionality K is the material heat conductivity and the term qR
refers to the heat sources other than conduction, i.e., to radiation, chemical reactions, etc. The
structure of the term qR can be quite complex, it depends on the detailed physics of internal and
external heat sources. We may rewrite Eq. (1.81), using Eq. (1.89) and assuming no macroscopic
mass transfer (V = 0), no work done (p = const., dε = cp dT , where cp is the speci�c heat at
constant pressure) and no dissipation (Ψ = 0), in the following form,

ρcp
dT
dt
−∇ · (K∇T ) = qR, or

dT
dt
≈ D∇2T + qR, (1.90)

where D = K/(ρcp) is the thermal di�usivity. Equation (1.90) is thus a inhomogeneous
parabolic partial di�erential equation that describes the distribution of heat (variations in tem-
perature) in a given region over time.

1.5.2 Energy dissipation

Following the formalism of the stress tensor introduced in Sect. 1.4, we now discuss the term
T ij∇jVi in the internal energy equation (1.76),

ρ
dε
dt

= T ij∇jVi −∇jqj . (1.91)

We expand the �rst term on right-hand side of Eq. (1.91) into

T ij∇jVi =

[
−pδij + 2ηEij +

(
ζ − 2

3
η

)
∇kV kδij

]
∇jVi

= −p∇iV i + 2ηEij∇jVi +

(
ζ − 2

3
η

)(
∇iV i

)2
, (1.92)

where in the right-hand side term we contract the indexes using Kronecker deltas. Using the
de�nition of the symmetric strain tensor Eij , we expand the second term on the right-hand side
of Eq. (1.92),

Eij∇jVi =
1

2

(
∇jV i +∇iV j

)
∇jVi =

1

2

(
∇jV i∇jVi +∇iV j∇jVi

)
. (1.93)

The symmetry of the strain tensor Eij = Eji in i, j as well as the orthogonality of the
coordinates, and implying EijEij = EijE

ij , gives the identity

EijEij =
1

4

(
∇jV i +∇iV j

)
(∇jVi +∇iVj)

=
1

4

(
∇jV i∇jVi +∇jV i∇iVj +∇iV j∇jVi +∇iV j∇iVj

)
=

1

2

(
∇jV i∇jVi +∇iV j∇jVi

)
= EijE

ij . (1.94)
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Equation (1.92) thus becomes the form of Eq. (1.79),

T ij∇jVi = −p∇iV i + 2ηEijE
ij +

(
ζ − 2

3
η

)(
∇iV i

)2
. (1.95)

Using Eq. (1.44), the explicit form of the dissipation function in Cartesian coordinates is

Ψ = 2η

[(
∂Vx
∂x

)2

+

(
∂Vy
∂y

)2

+

(
∂Vz
∂z

)2

+
1

2

(
∂Vx
∂y

+
∂Vy
∂x

)2

+
1

2

(
∂Vx
∂z

+
∂Vz
∂x

)2

+
1

2

(
∂Vy
∂z

+
∂Vz
∂y

)2
]

+

(
ζ − 2

3
η

)
(∇ · V )2 . (1.96)

In cylindrical coordinates the dissipation function is

Ψ = 2η

{(
∂VR
∂R

)2

+

(
1

R

∂Vφ
∂φ

+
VR
R

)2

+

(
∂Vz
∂z

)2

+
1

2

[
1

R

∂VR
∂φ

+R
∂

∂R

(
Vφ
R

)]2

+
1

2

(
∂Vz
∂R

+
∂VR
∂z

)2

+
1

2

(
1

R

∂Vz
∂φ

+
∂Vφ
∂z

)2
}

+

(
ζ − 2

3
η

)[
1

R

∂

∂R
(RVR) +

1

R

∂Vφ
∂φ

+
∂Vz
∂z

]2

. (1.97)

In spherical coordinates the dissipation function is

Ψ = 2η

{(
∂vr
∂r

)2

+

(
1

r

∂vθ
∂θ

+
vr
r

)2

+

(
1

r sin θ
∂vφ
∂φ

+
vr
r

+
vθ cot θ
r

)2

+
1

2

[
1

r

∂vr
∂θ

+ r
∂

∂r

(vθ
r

)]2

+
1

2

[
1

r sin θ
∂vr
∂φ

+ r
∂

∂r

(vφ
r

)]2

+
1

2

[
1

r sin θ
∂vθ
∂φ

+
sin θ
r

∂

∂θ

( vφ
sin θ

)]2
}

+

(
ζ − 2

3
η

)[
1

r2

∂

∂r

(
r2vr

)
+

1

r sin θ
∂

∂θ
(sin θ vθ) +

1

r sin θ
∂vφ
∂φ

]2

. (1.98)

1.6 Equation of State of an Ideal Gas

We close the above system of hydrodynamic equations using the equation of state that describes
the (thermodynamic) properties of the variables in the �uid. Following the notation introduced
in Sect. 1.5.1, we write the �rst law of thermodynamics in the form

dq = dε− p

ρ2
dρ, (1.99)

which in adiabatic case is equal to zero. The adiabatic transformation of a perfect (ideal) gas
is given by the relation p/ργ = const., where the adiabatic exponent γ is de�ned as the ratio
of speci�c heats at a constant pressure and a constant volume, γ = cp/cV = (d ln p/d ln ρ)ad.
Since cp, cV are de�ned as cp = (dq/dT )p and cV = (dq/dT )V , Eq. (1.99) gives

dh = cp dT, where h = ε+ p/ρ (enthalpy), and dε = cV dT. (1.100)
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For adiabatic transformations in a �uid described by general equation of state (in case of
nonideal gas), the basic relation is similar, p/ρΓ1 = const., where Γ1 is the general adiabatic
exponent (see Maeder 2009, for details).

The law of ideal gas relates the pressure p, volume V , and temperature T by the equation
pV/T = const. Assuming V is the volume occupied by one particle, V = µmu/ρ, where µ is
the mean molecular weight (see Eq. (1.102)) and mu is the atomic mass unit (i.e., 1/12 of the
mass of the neutral 12C atom), the law of ideal gas becomes

p =
k

µmu
ρT, (1.101)

where k is the Boltzmann constant and the term µmu is the average mass of the particles
(electrons, ions, atoms or molecules) in the gas. The mean molecular weight µ is de�ned in a
medium with various elements j (see Maeder 2009) as

1

µ
=
∑
j

Xj

Aj
(1 + ne,j) , (1.102)

where Xj is the mass fraction of element j with atomic mass Aj and ne,j is the number of free
electrons per 1 atom (ion) of element j. The number density nα of particles of the type α, is
ρα/(µαmu), where µα is the mean molecular weight of the particle α. Equation (1.101) in this
case gives pα = nαkT , so that p = nkT when summed over all the particle types.

Integrating the equation for speci�c internal energy (the latter equation in (1.100)), we
obtain ε = cV T . For a perfect gas one has cp − cV = R = k/(µmu), where R is the speci�c gas
constant. The equation of state (1.101) then becomes

p = (γ − 1) ρε. (1.103)

This corresponds to Eq. (1.71), where we implicitly assume mono-atomic ideal gas, where
γ = 5/3.

We can relate the pressure, density, and temperature by the speed of sound a, given by
a2 = ∂p/∂ρ. In adiabatic case we obtain the following relations between pressure and density,
and the relation between adiabatic speed of sound and temperature, respectively,

∇p = a2∇ρ, so that p =
a2
adρ

γ
, a2

ad =
γ

µmu
kT. (1.104)

In isothermal case the index of polytrope is γ = 1. Following Eqs. (1.101) and (1.104) (with
T = const.), we obtain the corresponding relations in the form

p = a2
isoρ, a2

iso =
kT

µmu
. (1.105)

The speed of sound is the key gas dynamics characteristics. The �ow of matter is basically
determined by whether the �ow velocity is subsonic or supersonic. In astrophysics, the tem-
perature of the gas is often determined by thermal balance between heat sources and radiative
cooling; the isothermal speed of sound may be applied if the cooling time is much shorter than
the propagation speed of the sound waves. We use the isothermal speed of sound in situations
where the temperature of the gas (plasma) is determined by external processes (by irradiation
of external sources, etc.).



Chapter 2

Shock wave in a non-uniform gas

2.1 Rankine-Hugoniot relations

The 1D basic hydro equations (involving only the principal terms that are important for non-
viscous, non self-gravitating gas expansion) take the following Cartesian explicit form (Sedov
1959; Zel'dovich & Raizer 1967)

∂ρ

∂t
+ u

∂ρ

∂x
+ ρ

∂u

∂x
= 0, (2.1)

∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x
− F0 = 0, (2.2)

∂(pρ−γ)

∂t
+ u

∂(pρ−γ)

∂x
= 0, (2.3)

where ρ is the density, u is the �ow velocity, p is the pressure, γ is the adiabatic constant, and
F0 is the volume force density (gravity). In a spherical case Eqs. (2.1) - (2.3) take the explicit
form

∂ρ

∂t
+ u

∂ρ

∂r
+ ρ

∂u

∂r
+

2ρu

r
= 0, (2.4)

∂u

∂t
+ u

∂u

∂r
+

1

ρ

∂p

∂r
− F0 = 0, (2.5)

∂(Pρ−γ)

∂t
+ u

∂(pρ−γ)

∂r
= 0. (2.6)

Neglecting the volume force term in Eqs. (2.2) and (2.5) and assuming the coordinate frame
that is co-moving with the shock front and the constant speci�c heat ratio within the system,
we can express the adiabatic hydro equations in their stationary form as simple conservation
laws,

ρ1u1 = ρ0u0, (2.7)

ρ1u
2
1 + p1 = ρ0u

2
0 + p0, (2.8)

γ

γ − 1

p1

ρ1
+
u2

1

2
=

γ

γ − 1

p0

ρ0
+
u2

0

2
, (2.9)

where the upstream versus downstream quantities are distinguished using the subscripts 0 and
1 (keeping in mind that we now �live� in the shock co-moving frame). In the lab frame are the

17
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corresponding velocities transformed as u1 → D − u1 and u0 → D − u0 = D, where D is the
propagation speed of the shock front.

Eliminating the particular quantities from Eqs. (2.7) - (2.9), we obtain in the shock co-
moving frame the following relations,

u2
0 =

ρ1 (p1 − p0)

ρ0 (ρ1 − ρ0)
, u2

1 =
ρ0 (p1 − p0)

ρ1 (ρ1 − ρ0)
, (2.10)

p1

p0
=
ρ1

γ+1
γ−1 − ρ0

ρ0
γ+1
γ−1 − ρ1

,
ρ1

ρ0
=
p1

γ+1
γ−1 + p0

p1 + γ+1
γ−1p0

,
u1

u0
=
p1 + γ+1

γ−1p0

p1
γ+1
γ−1 + p0

, (2.11)

p1 =

[
γ − 1

γ + 1

(
ρ1

ρ0

)2

− 1

]
ρ1u

2
1 + p0.

Assuming now the strong shock, where p1 � p0, Eq. (2.11) becomes,

ρ1

ρ0
=
γ + 1

γ − 1
,

u1

u0
=
γ − 1

γ + 1
, p1 =

2

γ − 1
ρ1u

2
1 =

2

γ + 1
ρ0u

2
0. (2.12)

Transforming to lab frame, Eq. (2.11) becomes

p1

p0
=
ρ1

γ+1
γ−1 − ρ0

ρ0
γ+1
γ−1 − ρ1

,
ρ1

ρ0
=
p1

γ+1
γ−1 + p0

p1 + γ+1
γ−1p0

, u1 =

2
γ−1(p1 − p0)

p1
γ+1
γ−1 + p0

D, (2.13)

p1 =

[
γ − 1

γ + 1

(
ρ1

ρ0

)2

− 1

]
ρ1(D − u1)2 + p0,

while the strong shock condition turns Eq. (2.12) into the form

ρ1

ρ0
=
γ + 1

γ − 1
, u1 =

2

γ + 1
D, p1 =

2

γ − 1
ρ1(D − u1)2 =

2

γ + 1
ρ0D

2. (2.14)

Using Eq. (2.11), we can rewrite Eq. (2.10) into the form

u2
0 =

1

2ρ0
[(γ + 1) p1 + (γ − 1) p0] , u2

1 =
1

2ρ0

[(γ − 1) p1 + (γ + 1) p0]2

[(γ + 1) p1 + (γ − 1) p0]
. (2.15)

From the ideal gas law we obtain the temperature ratio

T1

T0
=
p1ρ0

p0ρ1
. (2.16)

Very important results can be obtained by comparing velocities of gas on both sides of shock
with corresponding speeds of sound. In ideal gas with constant heat capacity, a2 = γp/ρ,
Eq. (2.15) becomes(

u0

a0

)2

=
(γ + 1) p1p0 + (γ − 1)

2γ
=M2

0,

(
u1

a1

)2

=
(γ + 1) p0p1 + (γ − 1)

2γ
=M2

1, (2.17)

where M is the Mach number in the corresponding region. Substituting Eq. (2.17) into
Eq. (2.15), we obtain

u1

u0
=
ρ0

ρ1
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

,
p1

p0
=

γ + 1

2γM2
1 − γ + 1

, (2.18)

T1

T0
=

(γ + 1)2M2
1[

2γM2
1 − γ + 1

] [
(γ − 1)M2

1 + 2
] , M2

0 =
(γ − 1)M2

1 + 2

2γM2
1 − γ + 1

. (2.19)
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X x

ρ

ρ0(x)

0

U
S

Figure 2.1: x-axis is directed into the gas perpendicular to the boundary x = 0 where ρ0(x) = 0 while
the shock wave located at x = X(t) is asumed to propagate in the negative x-direction with (lab frame)
velocity U . The boundary condition is given as X = 0 at t = 0, hence the time is negative until the
shock reaches the edge (Sakurai 1960).

Substituting Eq. (2.1) into Eq. (2.3) in Cartesian case and Eq. (2.4) into Eq. (2.6) in spherical
case, we get respectively

∂p

∂t
+ u

∂p

∂x
+ γp

∂u

∂x
= 0, (2.20)

∂p

∂t
+ u

∂p

∂r
+ γp

(
∂u

∂r
+

2u

r

)
= 0. (2.21)

However, the Rankine-Hugoniot relations (2.7) - (2.9) are in the spherical case same as in
Cartesian geometry, due to the fact that the thickness dsh of the shock wave region is in vicinity
of the stellar edge much smaller than the stellar radius, dsh � R?.

2.2 Shock wave arriving at the edge of a gas

Assuming a gas with decreasing density towards the edge of the gas-�lled region, the shock wave
that drives through that region can be described using the following considerations (Sakurai
1960). Figure 2.1 shows the con�guration of the shock wave arriving at the edge of a gas with
lab velocity

U =
dX
dt
. (2.22)

We also assume the following power law relations for density ρ0(x) and shock front velocity
U(X),

ρ0(x) = k1x
n, (2.23)

U(X) = k2X
−λ, (2.24)

where k1, k2, n, and λ are constants. Setting F0 = 0, we introduce the similarity relations for
the progressing wave type,

ρ = ρ0(x) f(η),

u = U(x) g(η), (2.25)

p = ρ0(x)U2(x)h(η),
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noting that U(x) in Eq. (2.25) satis�es the equality U(x) = k2x
−λ.

We introduce in Eq. (2.25) the similarity variable η which is de�ned as

η =

(
X

x

)λ+1

(2.26)

Substituting Eq. (2.24) into Eq. (2.22) gives

Xλ+1 = k2(λ+ 1) t, (2.27)

η = k2(λ+ 1)x−λ−1t, (2.28)

where, according to the boundary condition X(t = 0) = 0, the integration constant in Eq. (2.27)
is zero. The corresponding partial derivatives of η with respect to t and x are

∂η

∂t
= k2(λ+ 1)x−λ−1 =

η

t
, (2.29)

∂η

∂x
= −k2(λ+ 1)2x−λ−2t = −(λ+ 1)

η

x
. (2.30)

Following the formalism, we can rewrite Eqs. (2.1), (2.2), and (2.20) with use of Eq. (2.25)
(where the prime values mean the derivatives with respect to η) respectively as

(1− ηg)
f ′

f
− ηg′ + n− λ

1 + λ
g = 0, (2.31)

(1− ηg)g′ − ηh
′

f
− λ

1 + λ
g2 +

n− 2λ

1 + λ

h

f
= 0,

{
=

F0x

(1 + λ)U2

}
, (2.32)

(1− ηg)
h′

h
− η γg′ + n− λ(γ + 2)

1 + λ
g = 0, (2.33)

where the additional right-hand side in curly brackets in Eq. (2.32) is involved if the volume
force F0 is not zero. In spherical case will Eqs. (2.31) and (2.33) (following the corresponding
notation x→ r and involving Eqs. (2.4), (2.5), and (2.21)) be modi�ed respectively to

(1− ηg)
f ′

f
− ηg′ + n− λ+ 2

1 + λ
g = 0, (2.34)

(1− ηg)
h′

h
− η γg′ + n− λ(γ + 2) + 2γ

1 + λ
g = 0. (2.35)

The Rankine-Hugoniot conditions for a strong shock at x = X (η = 1) reduce to

(ρ)x=X =
γ + 1

γ − 1
ρ0(X), (u)x=X =

2

γ + 1
U(X), (p)x=X =

2

γ + 1
ρ0(X)U2(X). (2.36)

Substituting Eq. (2.36) into Eq (2.25), we get boundary conditions for f , g, and h at η = 1 in
the form (cf. Eqs. (2.12) and (2.14))

f(1) =
γ + 1

γ − 1
, g(1) =

2

γ + 1
, h(1) =

2

γ + 1
. (2.37)

We now have a system of nonlinear ordinary di�erential equations (2.31), (2.32), and (2.33)
and boundary conditions (2.37) at η = 1. However, even providing this, a solution in the region
0 ≤ η ≤ 1 for arbitrary n, γ, and λ cannot be found in general, while it is continuous only for
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one special value of λ which is thus appropriate for the system. This value has to be found
semi-analytically using the principles described in detail as follows.

Subtracting Eq. (2.31) from Eq. (2.33) (or Eq. (2.34) from Eq. (2.35) in spherical case) gives

(1− ηg)

(
ln
h

f

)′
− ηg′(γ − 1)− λgγ + 1

1 + λ
= 0,

{
= −2g

γ − 1

1 + λ

}
, (2.38)

where, with respect to following considerations, we combine the variables f and h as a fraction
h/f . Substituting the expression for h′ from Eq. (2.33) (or from Eq. (2.35)) into Eq. (2.32) and
omitting the volume force term, we obtain

(1− ηg)g′ − λg2

1 + λ
−
η
[
η γg′ − n−λ(γ+2) +{2γ}

1+λ g
]

1− ηg
h

f
+
n− 2λ

1 + λ

h

f
= 0, (2.39)

where again the additional term 2γ in curly brackets denotes the spherical geometry. We
now de�ne new substitutional variables x and y (not to confuse with original inverse radial x
coordinate), entering relations

g =
1

η

(
1− 1

y

)
,

h

f
=

1

γη2

x

y2
, (2.40)

whose derivatives (noting that η′ = 1) are

g′ = − 1

η2

(
1− 1

y

)
+

1

ηy

y′

y
,

(
ln
h

f

)′
=
x′

x
− 2

(
1

η
+
y′

y

)
. (2.41)

Substituting Eqs. (2.40) and (2.41) to Eqs. (2.38) and (2.39) respectively gives

η
x′

x
− η(γ + 1)

y′

y
=

2λ− (γ − 1)

1 + λ
y +

γ + 1

1 + λ

{
+

2(γ − 1)(1− y)

1 + λ

}
, (2.42)

(1− x) η
y′

y
= (1− x)(y − 1)− λ

1 + λ

[
x− (y − 1)2

]
− n− λ(γ + 2)

γ(1 + λ)
xy (2.43){

−2x(1− y)

1 + λ

}
,

which are two di�erential equations in x′ = dx/dη and y′ = dy/dη. By eliminating dη/η
from both equations and denoting R1 and R2 the right-hand sides of Eqs. (2.42) and (2.43),
respectively, we get one di�erential equation in dy/dx in the form

x
dy
dx

=
y R2

(1− x)R1 + (γ + 1)R2
= (2.44)

=
λy2 + x− 1−

[
λ− 1 + n+γ−2λ

γ x
]
y −

{
2x(1−y)

1+λ y
}

λ [(γ + 1) y − (γ − 1)]−
[
n+ 2 + n−2λ

γ

]
x+ 2 +

{
2(1−y)(γ−1−4x)

1+λ

} .
Substituting Eq. (2.37) into Eq. (2.40) gives the values of the variables x and y at the shock
wave point (η = 1),

x(1) =
2γ

γ − 1
, y(1) =

γ + 1

γ − 1
. (2.45)
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We �nd the correct value of λ starting at x = 1 (singularity point in Eq. (2.43)) which gives
the Dirichlet y boundary value, y = [n − λ(2 − γ)]/γλ. Then integrate eq. (2.44) up to the
shock front point where x = 2γ/(γ− 1) with a trial value of λ while the correct value of y there
should be y = (γ + 1)/(γ − 1). The semi-analytical solution is found using, e.g., the simple
Euler method.

For our purpose it is convenient to choose the polytrope index as γ = 4/3. We found the
following values of λ for selected values of n:

Cartesian case:
n λ

1.0 0.194
1.5 0.287
2.0 0.378
2.5 0.468
3.0 0.553

Spherical case:
n λ

1.0 0.163
1.5 0.241
2.0 0.321
2.5 0.408
3.0 0.479

Table 2.1: Table of values of calculated λ parameter for various selected n values in planar (Cartesian)
and spherical case.

The values of parameter λ in Tab. 2.1 show almost linear relation to the selected density
slopes n: in Cartesian geometry λ ≈ 0.19n while in spherical geometry λ ≈ 0.16n (where the
spherical dependence is even stronger than the Cartesian). From Eqs. (2.23), (2.24), and (2.25)
we may conclude that the shock front propagates with velocity U ∝ (ρ0)−λ/n in the lab frame
which corresponds to

U ∝ (ρ0)−0.19, and U ∝ (ρ0)−0.16 (2.46)

in Cartesian and spherical case, respectively. As the density decreases towards the edge, the
velocity fairly increases. To avoid the singularity in velocity at the point x = 0, we need to
involve the following considerations regarding the further expansion of a gas into surrounding
vacuum.

Employing the values of λ from Tab. 2.1 we can numerically integrate system of Eqs. (2.31)
- (2.33) (or Eqs. (2.34) - (2.35) in spherical case) for γ = 4/3 in range 0 ≤ η ≤ 1. Starting
from boundary values at η = 1 given in Eq. (2.37) (using the Runge-Kutta method) we found
the values f(0), g(0), and h(0) for η = 0 at time t = 0 (at X = 0) when the shock arrives at
the boundary x = 0, which are of special interest for the following chapter. We summarize the
values for various parameters n in Tab. 2.2. The calculation of f(0), g(0), and h(0) also provides

Cartesian case:
n f(0) g(0) h(0)

1.0 19.419 0.774 1.145
1.5 26.870 0.735 1.254
2.0 38.137 0.714 1.463
2.5 47.713 0.688 1.573
3.0 58.182 0.669 1.703

Spherical case:
n f(0) g(0) h(0)

1.0 44.639 0.661 0.291
1.5 36.091 0.606 0.260
2.0 31.367 0.566 0.196
2.5 75.979 0.611 0.525
3.0 116.870 0.620 0.787

Table 2.2: Table of values of f(0), g(0), h(0) at η = 0 in Cartesian and spherical case.

a check of correctly found valus of λ (which is very sensitive of, in the spherical case even much
more) because the graphs in this case show smooth curves without particular singularities.
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2.3 Gas expanding into vacuum

For the stage of gas expansion into vacuum outside the edge of the initially gas �lled region we
use the Lagrangian coordinate a which coincides with Eulerian coordinate x(a, t) at t = 0. We
denote the pro�les of ρ, u, and p behind the shock front at time t = 0 (following Eq. (2.25)
subscripted with 1, setting η = 0) as

ρ1 = ρ0(x) f(0) = f(0) k1x
n,

u1 = U(x) g(0) = g(0) k2x
−λ, (2.47)

p1 = ρ0(x)U2(x)h(0) = h(0) k1k
2
2x

n−2λ.

Following Eq. (2.47), we write Lagrangian equations for outward expansion at time t = 0 (noting
that time of further outward expansion grows negatively) as

x1 = x(a, 0) = a,

ρ1 = ρ(a, 0) = ρ0(a) f(0) = f(0) k1a
n,

u1 = u(a, 0) = U(a) g(0) = g(0) k2a
−λ, a ≥ 0 (2.48)

p1 = p(a, 0) = ρ0(a)U2(a)h(0) = h(0) k1k
2
2a
n−2λ,

ρ1 = u1 = p1 = 0, a < 0. (2.49)

From correspondence of the continuity equations at x = 0 follows that the already introduced
Eulerian density ρ1 is in the Lagrangian (material) frame de�ned as

∂ρ

∂t
= −ρ1

∂u

∂x
= −ρ∂u

∂a
, (2.50)

and using the stationary Rankine-Hugoniot relation for energy (Eq. (2.9)), we transform the
equation for the velocity u and the basic hydro equations (2.1) - (2.6) into the form (we intro-
duce hereafter only the Cartesian solution because the spherical approach becomes analytically
extremely complicated in this region while it does not signi�cantly a�ect the results)

∂x

∂t
= u, (2.51)

∂x

∂a
=
ρ1

ρ
, (2.52)

∂u

∂t
= − 1

ρ1

∂p

∂a
+ F0, (2.53)

pρ−γ = p1ρ
−γ
1 = k1−γ

1 k2
2 f(0)−γh(0) an(1−γ)−2λ, (2.54)

where we use (from the practical point of view fully realistic) partial derivative instead of
conventional total derivative. We use the quantity ρ1 in the �rst term on the right-hand side
of Eq. (2.53) due to equality ρ1 da = ρ dx which follows from Eq. (2.52).

Assuming F0 = const., we may express the solution of Eqs. (2.52) - (2.54), with use of
initial conditions (2.48), by a similarity solution with functions r(ξ), F (ξ), G(ξ), and H(ξ),
determined as

x = a r(ξ) + 1
2F0t

2,

ρ = ρ1(a)F (ξ),

u = u1(a)G(ξ) + F0t, (2.55)

p = p1(a)H(ξ).
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The similarity variable ξ is now de�ned as (where U(a) = k2a
−λ, cf. Eq. (2.24))

ξ =
U(a)t

a
= k2 a

−λ−1t, (2.56)

where −∞ ≤ ξ ≤ 0 since U(a) ≤ 0. The similarity solution particularly �ts the singularity at
a = 0 where both u and x must be −∞. Comparing Eqs. (2.48) and (2.55), we can easily verify
that

r(0) = F (0) = G(0) = H(0) = 1. (2.57)

n Gmax

1.0 2
1.5 1.88
2.0 1.777
2.5 1.72
3.0 1.68

Table 2.3: Table of asymptotic maximum values of G (Gmax) at ξ = 1000.

Substituting Eqs. (2.55) into Eqs. (2.51) - (2.54), with use of Eqs. (2.48), (2.50), and (2.56),
we obtain

r′ = g(0)G, (2.58)

− (1 + λ) ξr′ + r =
1

F
, (2.59)

f(0)g(0)

h(0)
G′ = −(n− 2λ)H + (1 + λ) ξH ′, (2.60)

F−γH = 1, (2.61)

where the prime quantities denote their derivatives with respect of ξ.
Since λ, f(0), g(0), and h(0) are given by the solution of equations in Sect. 2.2, we can

integrate numerically the system of Eqs. (2.58) - (2.61) from the starting value ξ = 0 to ξ = −∞.
However, �rst we modify Eqs. (2.58) - (2.61) by eliminating r and F into the more convenient
system of two equations for G and H,

H−(γ+1)/γ

γg(0)
H ′ = λG+ (1 + λ) ξG′,

f(0)g(0)

h(0)
G′ = −(n− 2λ)H + (1 + λ) ξH ′. (2.62)

Solution of Eq. (2.62) must �t the boundary conditions

G(0) = H(0) = 1, (2.63)

while the resulting functions r and F are given by

r = 1 + g(0)

ˆ ξ

0
G dξ, F = H1/γ , (2.64)
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Figure 2.2: Pro�les of F (ξ), G(ξ), and H(ξ) up to ξ = −10 in Cartesian geometry for n = 1, 2, 3.
The curves approach the asymptotic maxima, the approximate maximum Gmax for the relative velocity
pro�le is given in Tab. 2.3.

where the integral in the last equation is expressed as an antiderivative, hence the integration
constant r(0) is evaluated using Eq. (2.57).

Equations (2.62) are integrated numericaly (using again Runge-Kutta) with implemented
values of λ, f(0), g(0), and h(0) given in Tables 2.1 and 2.2. The functions r and F are
subsequently obtained from Eq. (2.64). We show the results up to ξ = −10 in Fig. 2.2 and
the asymptotic values of G in Table 2.3. Since the similarity variable G(ξ) is connected with
velocity, Tab. 2.3 proves that the expansion velocity increases almost twice during the outward
expansion.

2.4 Flow past �nite bodies

Simple arguments show that, in supersonic �ow past an arbitrary body, a shock wave must be
formed in front of the body. For the disturbances in the supersonic �ow caused by the presence
of the body are propagated only downstream. Hence a uniform supersonic stream incident on
the body would be unperturbed as far as the leading end of the body. The normal component of
the gas velocity would then be non-zero at the surface there, in contradiction to the necessary
boundary condition. The resolution of this di�culty can only be the occurrence of a shock
wave, as a result of which the gas �ow between it and the leading end of the body becomes
subsonic.

Thus a shock wave is formed in front of the body when the incident �ow is supersonic; it
is called the bow wave. When the leading end of the body is blunt, the bow wave does not
touch the body. In front of the shock wave, the �ow is uniform; behind it, the �ow is modi�ed
and bends round the body. The surface of the shock wave extends to in�nity, and at great
distances from the body, where the shock is weak, it intersects the incident streamlines at an
angle approaching the Mach angle. A characteristic feature of �ow past a blunt-ended body is
the existence of a subsonic �ow region behind the shock wave at the most forward part of its
surface; this region extends to the body itself, and thus lies between the discontinuity surface,
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the body, and a lateral sonic surface.
The values of quantities in the incident stream will be denoted, as usual, by the su�x 1,

and the values behind the shock wave by the su�x 0, while the stagnation point, where the
shock �rst meets the body, we denote by the su�x 2. The values behind the shock wave are
determined from formulae (2.17) and (2.18),

u0

a1
=

(γ − 1)M2
1 + 2

(γ + 1)M1
,

ρ0

ρ1
=

(γ + 1)M2
1

(γ − 1)M2
1 + 2

,
p0

p1
=

2γM2
1 − γ + 1

γ + 1
. (2.65)

The pressure p2 at the stagnation point (where the gas velocity u = 0) can now be obtained
by means of the formulae which give the variation of quantities along a streamline. Comparing
the enthalpy h = cpT = γcV T and the pressure p = (γ − 1)ρε = (γ − 1)ρcpT/γ gives

h =
γ

γ − 1

p

ρ
=

a2

γ − 1
. (2.66)

We obtain from Bernoulli's equation a number of general results concerning adiabatic steady
�ow of a gas. The equation is, for steady �ow, h + v2/2 = constant along each streamline; if
we have potential �ow, then the constant is the same for every streamline, i.e., at every point
in the �uid. If there is a point on some streamline at which the gas velocity is zero, then we
can write Bernoulli's equation as

h+
v2

2
= h2 =

a2
2

γ − 1
, (2.67)

where h2 is the value of the heat function at the point where v = 0. The equation of conservation
of entropy for steady �ow is v ·∇s = v ds/ dl = 0, i.e., s is constant along each streamline. We
can write this in a form analogous to (2.67)

s = s2. (2.68)

We see from equation (2.67) that the velocity v is greater at points where the heat function
h is smaller. The maximum value of the velocity (on the streamline considered) is found at
the point where h is least. For constant entropy, however, we have dh = dp/ρ; since p > 0,
the di�erentials dh and dp have equal signs, and so h and p vary in the same sense. We can
therefore say that the velocity increases along a streamline when the pressure decreases, and
vice versa. The smallest possible values of the pressure and the heat function (in adiabatic �ow)
are obtained when the absolute temperature T = 0. The corresponding pressure is p = 0, and
the value of h for T = 0 can be arbitrarily taken as the zero of energy; then h = 0 for T = 0.
We can now deduce from (2.67) that the greatest possible value of the velocity (for given values
of the thermodynamic quantities at the point where v = 0) is

vmax =
√

2h2. (2.69)

This velocity can be attained when a gas �ows steadily out into a vacuum.
Let us now consider how the mass �ux density j = ρv varies along a streamline. From

Euler's equation (v ·∇)v = −(1/ρ)∇p, we �nd that the relation v dv = −dp/ρ between the
di�erentials dp and dρ holds along a streamline. Putting dp = a2 dρ, we have

dρ
dv

= −ρv
a2

(2.70)
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and, substituting in d(ρv) = ρ dv + v dρ, we obtain

d(ρv)

dv
= ρ

(
1− v2

a2

)
. (2.71)

We see that, as the velocity increases along a streamline, the mass �ux density increases as long
as the �ow remains subsonic. In the supersonic range, however, the mass �ux density diminishes
with increasing velocity, and vanishes together with ρ when v = vmax. This important di�erence
between subsonic and supersonic steady �ows can be simply interpreted as follows. In a subsonic
�ow, the streamlines approach in the direction of increasing velocity. In a supersonic �ow,
however, they diverge in that direction.

The �ux j = ρv has its maximum value j∗ at the point where the gas velocity is equal to
the local velocity of sound:

j∗ = ρ∗a∗, (2.72)

where the asterisk su�x indicates values corresponding to this point. The velocity v∗c∗ is called
the critical velocity. In the general case of an arbitrary gas, the critical values of quantities can
be expressed in terms of their values at the point v = 0, by solving the simultaneous equations

s∗ = s2, h∗ +
a2
∗

2
= h2. (2.73)

It is evident from the previous that, whenever M = v/a < 1, we have also v/a∗ < 1, and if
M > 1 then v/a∗ > 1. Hence the ratioM∗ = v/a∗ serves in this case as a criterion analogous
toM, and is more convenient, since a∗ is a constant, unlike a, which varies along the stream.

In applications of the general equations of gas dynamics, the case of a perfect gas is of par-
ticular importance. For a perfect gas we shall always assume (except where otherwise speci�ed)
that the speci�c heat is a constant independent of temperature in the range considered. Such
a gas is often called a polytropic gas, and we shall use this term in order to emphasize that
the assumption made goes much further than that of a perfect gas. The relations between the
thermodynamic quantities for a polytropic gas are given by very simple formulae, and this often
allows a complete solution of the equations of gas dynamics.

First law of thermodynamics (noting that dε = cV dT ) in case of an ideal gas where p/(ρT ) =
R gives

cV dT = T ds+
p

ρ2
dρ. (2.74)

Dividing this by T and integrating, we obtain

s = cV ln(pρ−γ) = cp ln(p1/γρ−1). (2.75)

Let us now investigate steady �ow, applying the general relations previously obtained to
the case of a polytropic gas. Substituting (2.66) in (2.69), we �nd that the maximum velocity
of steady �ow is

vmax = a2

√
2

γ − 1
. (2.76)

For the critical velocity we obtain from the second equation (2.73)

a2
∗

γ − 1
+
a2
∗

2
= h2 =

a2
2

γ − 1
, (2.77)
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whence

a∗ = a2

√
2

γ + 1
. (2.78)

From Eq. (1.104) we deduce T/T2 = a2/a2
2, combining this with Eqs. (2.66), (2.67), and

(2.78), we obtain the important particular result

T = T2

[
1− (γ − 1)

v2

2a2
2

]
= T2

[
1− γ − 1

γ + 1

v2

a2
∗

]
. (2.79)

Following the adiabatic and ideal gas prescriptions p = p2 (ρ/ρ2)γ and ρ = ρ2 (T/T2)1/(γ−1), we
further obtain

ρ = ρ2

[
1− (γ − 1)

v2

2a2
2

]1/(γ−1)

= ρ2

[
1− γ − 1

γ + 1

v2

a2
∗

]1/(γ−1)

, (2.80)

p = p2

[
1− (γ − 1)

v2

2a2
2

]γ/(γ−1)

= p2

[
1− γ − 1

γ + 1

v2

a2
∗

]γ/(γ−1)

, (2.81)

It is sometimes convenient to use these relations in a form which gives the velocity and sound
speed in terms of other quantities:

v2 =
2γ

γ − 1

p2

ρ2

[
1−

(
ρ

ρ2

)γ−1
]

=
2γ

γ − 1

p2

ρ2

[
1−

(
p

p2

)(γ−1)/γ
]
. (2.82)

Using Eqs. (2.77) and (2.78), we relate the velocity of sound and the velocity v:

a2 = a2
2 − (γ − 1)

v2

2
= (γ + 1)

a2
∗

2
− (γ − 1)

v2

2
. (2.83)

Hence we �nd that the numbersM andM∗ are related by

M2
∗ =

γ + 1

γ − 1 + 2/M2
; (2.84)

whenM varies from 0 to ∞,M2
∗ varies from 0 to (γ + 1)/(γ − 1).

Finally, we may give expressions for the critical temperature, pressure and density: they are
obtained by putting v = c∗ in Eqs. (2.79) - (2.81):

T∗ =
2T2

γ + 1
, (2.85)

ρ∗ = ρ2

(
2

γ + 1

)1/(γ−1)

, (2.86)

p∗ = p2

(
2

γ + 1

)γ/(γ−1)

. (2.87)

In conclusion, it should be emphasized that the results derived above are valid only for �ow
in which shock waves do not occur. When shock waves are present, equation (2.68) does not
hold; the entropy of the gas increases when a streamline passes through a shock wave. We shall
see, however, that Bernoulli's equation (2.67) remains valid even when there are shock waves,
since h+ v2/2 is a quantity which is conserved across a surface of discontinuity (see Eq. 2.9).
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Following now Bernoulli's equation (2.67) with use of Eq. (1.102), a simple calculation gives

M2

[
1

2
(γ − 1) +

1

M2

]
=
a2

2

v2

v2

a2
, that is

T2

T
= 1 +

1

2
(γ − 1)M2. (2.88)

Analogously to Eqs. (2.79) - (2.81) we obtain

ρ2

ρ
=

[
1 +

1

2
(γ − 1)M2

]1/(γ−1)

,
p2

p
=

[
1 +

1

2
(γ − 1)M2

]γ/(γ−1)

(2.89)

and, since Eq. (2.89) holds in an arbitrary point along a streamline, we may write

p2 = p0

[
1 +

1

2
(γ − 1)

v2
0

a2
0

]γ/(γ−1)

. (2.90)

A simple combination of Eqs. (2.90) with the last Eq. (2.65) with use of the second Eq. (2.19)
gives

p2 = p1

(
γ + 1

2

)(γ+1)/(γ−1) M2
1[

γ − (γ − 1)/(2M2
1)
]1/(γ−1)

. (2.91)

This determines the pressure at the leading end for a supersonic incident �ow (M1 > 1).
For comparison, we give the formula for the pressure at the stagnation point obtained for a

continuous adiabatic retardation of the gas, with no shock wave (as would be true for a subsonic
incident �ow, cf. Eq. (2.89)):

p2 = p1

[
1 +

1

2
(γ − 1)M2

1

]γ/(γ−1)

. (2.92)

ForM1 = 1, the two formulae give the same value of p2, but forM1 > 1 the pressure given by
formula (2.92) is always greater than the true pressure p2 given by formula (2.91).

In the limit of very large velocities (M1 � 1), formula (2.91) gives

p2 = p1

(
γ + 1

2

)(γ+1)/(γ−1)

γ−1/(γ−1)M2
1, (2.93)

i.e., the pressure p2 is proportional to the square of the incident velocity. From this result we
can conclude that the total drag force on the body at velocities large compared with that of
sound is proportional to the square of the velocity. It should be noticed that this is the same
as the law governing the drag force at velocities small compared with that of sound but yet so
large that the Reynolds number is large.





Chapter 3

Basics of Magnetohydrodynamics
(MHD)

3.1 Fundamental Equations of Ideal MHD

(Kurfürst 2015): We review the vacuum di�erential form of Maxwell equations:

∇ · E =
ρ

ε0
, (3.1)

∇× E = −∂B
∂t
, (3.2)

∇ · B = 0, (3.3)

∇× B = µ0J + µ0ε0
∂E

∂t
, (3.4)

where ρ is the electric charge density, E is the electric �eld intensity, V is the �ow velocity of the
matter (ionized gas), B is the magnetic induction, ε0 and µ0 are the vacuum electric permittivity
and magnetic permeability, respectively, and J is the electric current density, J = ρV . The
general expression for the electromagnetic Lorentz force is

FL = ρ(E + V × B). (3.5)

This equation we may further expand by the vacuum form of the �fourth� Maxwell equation
(Maxwell-Ampère's law) (3.4) Neglecting the term µ0ε0 ∂E/∂t we obtain the Ampère's law

∇× B = µ0J , (3.6)

which is often used in MHD calculations.
We involve the generalized Ohm's law,

J = σ(E + V × B), (3.7)

where σ is the material-dependent conductivity, which for most of the �uids is typically greater
than Siemens per meter, S/m. The dimensional analysis of Eq. (3.4) shows that ε0E/τ ∼ σE in
case of extremely small characteristic time τ for changes in the electric �eld (i.e., that the term
∂E/∂t cannot be neglected only in case of τ is of order 10−11 s or less) and we may simplify
Eq. (3.7) as J = σE.

Now we use analogous dimensional analysis with the ��rst� Maxwell equation (Gauss's law)
in the vacuum form ∇ · E = ρ/ε0 ≈ E/` (where ` is the characteristic length scale of the

31
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system), using Eq. (3.4) in the described approximation ∇× B = µ0J ≈ B/`. Combining the
two approximations and the ideal Ohm's law for a perfect conductor given by

E = −V × B (3.8)

(whose dimension is −BV and noting that ε0µ0 = c−2), we obtain the approximate ratio
ρE/(J × B) ≈ (V/c)2) � 1 for the non-relativistic ideal MHD. We may therefore neglect the
electrostatic force term in Eq. (3.5), writing the magnetic Lorentz force equation in the modi�ed
form

FL = J × B =
1

µ0
(∇× B)× B. (3.9)

Using the vector identity ∇× (∇×B) = ∇(∇ ·B)−∇2B (with ∇ ·B = 0), for the right-hand
side cross product of vector rotation, Eq. (3.9) becomes

FL =
1

µ0
(B ·∇)B − 1

2

∇B2

µ0
, (3.10)

where the �rst right-hand side term in Eq. (3.10) expresses the advection of the magnetic �eld
and the second term expresses the gradient of the magnetic energy density (Bittencourt 2004).

Basic hydrodynamic equations, including the Lorentz force and the induction equation
(3.14), that is, the basic MHD equations, can be written in the following way: the continu-
ity equation (1.23) remains

∂ρ

∂t
+ ∇ · ρV = 0, (3.11)

while the equation of motion (1.29) now is

∂V

∂t
+ (V ·∇)V +

1

ρ
∇ · P +

1

2

∇B2

µ0ρ
− 1

µ0ρ
(B ·∇)B + ∇Φ = 0, (3.12)

where P is the pressure tensor and Φ is the gravitational potential. Including the Ohm's law
for ideally conductive plasma (where the electrical conductivity σ →∞) in the form (3.8), from
the �second� Maxwell equation (Faraday's law),

∇× E = −∂B
∂t
, (3.13)

we obtain the Maxwell-Faraday equation (usually called the induction equation),

∂B

∂t
−∇× (V × B) = 0. (3.14)

We neglect the di�usion term η∇2B in Eq. (3.14) where η = 1/(µ0σ) denotes the magnetic
di�usivity (Bittencourt 2004). The di�usion term plays a signi�cant role only in case of very
low gas velocity or very small electric conductivity.

To derive the MHD terms, which enter the energy equation, we expand the term V ·F on the
right-hand side of Eq. (1.85) where we assume the force F is the magnetic Lorentz force (3.9).
Multiplying Eq. (3.9) by velocity, FL ·V = (J ×B) ·V = −(V ×B) ·J , and using Eq. (3.8), we
obtain FL · V = E · J = E · (∇ × B)/µ0, where the last expression comes from the Ampère's
law (3.6). We expand the term E · (∇ × B)/µ0 as [B · (∇ × E ) −∇ · (E × B)]/µ0, where we
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rewrite the �rst term using the Faraday's law of induction (3.13) and the second term using the
Ohm's law for ideally conducting �uid (Eq. (3.8)), into the form

FL · V =
1

µ0

{
−B · ∂B

∂t
+ ∇ · [(V × B)× B]

}
. (3.15)

Using the vector identity for the triple cross product, the term FL · V becomes

FL · V = − ∂

∂t

(
B2

2µ0

)
+

1

µ0
∇ ·

[
(B · V )B −B2V

]
. (3.16)

Inserting Eq. (3.16) into the energy equation (1.88), we obtain the ideal MHD energy equation,

∂E

∂t
+ ∇ · [(E + P)V + q] =

1

µ0
∇ ·

[
(B · V )B − B2V

2

]
+ ρg · V , (3.17)

where the �rst right-hand side term in the square bracket is the magnetic tension force that
is trying to straighten the magnetic �eld lines, the second term in the right-hand side's square
bracket is the magnetic pressure �ux, and g denotes the vector of external gravitational accel-
eration. The explicit form of the total energy density E in Eq. (3.17) is

E = ρε+
ρV 2

2
+
B2

2µ0
, (3.18)

consisting from the densities of internal, kinetic, and magnetic energy, respectively.

3.2 Parker Modi�ed Momentum Equation

Bittencourt (2004): In the presence of a strong B �eld the pressure tensor of an inviscid
conducting �uid is anisotropic. When the cyclotron frequency Ωc = −(q/m)B much larger
than the collision frequency νcoll, a charged particle gyrates many times around a magnetic
force line during the time between collisions, so that there is equipartition between the particle
kinetic energies in the two independent directions normal to B but not, in general, in the
direction along B. If we denote by p⊥ and p|| the scalar pressures in the plane normal to B

and along B, respectively, and consider a local coordinate system in which the z-axis is in the
direction of B, we can write the pressure tensor of an inviscid �uid as

P =

p⊥ 0 0
0 p⊥ 0
0 0 p||

 . (3.19)

The parallel and perpendicular pressure indexes do not refer to vector components but indicate
the part of the scalar pressures associated with the kinetic energy densities of the particle
motions along B and perpendicular to B, respectively.

When the magnetic �eld is not constant, the orientation of the axes of the local coordinate
system changes from point to point and this change in direction must be taken into account
when evaluating the divergence of the pressure tensor. We express P, in (3.19), as the sum of
a hydrostatic scalar pressure p⊥ and another tensor referred to the local coordinate system, as

P = p⊥1 + (p|| − p⊥)B̂B̂, (3.20)
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where 1 is the unit dyad (3× 3 unit matrix in this case) and B̂B̂ = BB/B2 is the dyad formed
from the unit vector B̂,

B̂B̂ =

0 0 0
0 0 0
0 0 1

 . (3.21)

The momentum equation, in the form (3.12), must be modi�ed to include the anisotropy of
the pressure dyad. To evaluate ∇ · P given by (3.12), we note that

∇ · (p⊥1) = ∇p⊥ (3.22)

and using the following identity,

∇ · [(p|| − p⊥)B̂B̂] = (B ·∇)

[
(p|| − p⊥)

B

B2

]
+

[
(p|| − p⊥)

B

B2

]
(∇ · B), (3.23)

where the second term in the right-hand side vanishes due to ∇ · B = 0, we obtain

∇ · P = ∇p⊥ + (B ·∇)

[
(p|| − p⊥)

B

B2

]
. (3.24)

Substituting expressions (3.24) into the momentum equation (3.12), we obtain

ρ
∂V

∂t
+ ρ(V ·∇)V + ∇

(
p⊥ +

B2

2µ0

)
+ (B ·∇)

[
(p|| − p⊥)

B

B2
− B

µ0

]
+ ρ∇Φ = 0. (3.25)

This equation di�ers from the usual momentum equation for a highly conducting inviscid
�uid only through the term (p|| − p⊥)/B2. It is usually referred to as the Parker modi�ed

momentum equation.

3.3 The Double Adiabatic Equations (DAE)

3.3.1 Chew, Goldberger, and Low (CGL) solution

(Chew et al. 1956): To complete the momentum equation (3.25), we need equations for the
time rate of change of p|| and p⊥. These equations will take the place of the adiabatic energy
equation (1.104), which applies for the isotropic case. From the internal energy equation (1.75),
assuming a conducting �uid and omitting heat conduction and external forces, we have

d
dt

(
3p

2

)
+

3p

2
(∇ · V ) + (P ·∇) · V = 0, (3.26)

where the pressure dyad P is given by (3.20) and the scalar pressure p is one-third the trace of
P,

p =
1

3

(
2p⊥ + p||

)
. (3.27)

Note that 3p/2 represents the total thermal energy density. By direct expansion of the last term
in the left-hand side of (3.26), using (3.20) for P, we �nd

(P ·∇) · V =
[
p⊥∇ + (p|| − p⊥)(B̂B̂ ·∇)

]
· V , (3.28)
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and inserting this expression, together with (3.27), into (3.26), we obtain

d
dt

(
2p⊥ + p||

)
+
(
4p⊥ + p||

)
(∇ · V ) + 2(p|| − p⊥)(B̂B̂ ·∇) · V = 0. (3.29)

A strong magnetic �eld constrains the charged particle motion only in the direction trans-
verse to B, but the particles are still free to move large distances along B. Thus, it is reasonable
to suppose that the contribution to the total thermal energy, arising from the particle motion
parallel to B, also satis�es an energy conservation equation similar to (3.26). This leads to the
following equation for the part of the total thermal energy due to the random particle motions
along B:

dp||
dt

+ p||∇ · V + 2p||(B̂B̂ ·∇) · V = 0 (3.30)

and, decoupling the parallel and perpendicular motions, the equation for p⊥ becomes

dp⊥
dt

+ 2p⊥(∇ · V )− p⊥(B̂B̂ ·∇) · V = 0. (3.31)

Equations (3.30) and (3.31) enable to calculate p|| and p⊥. They can be written in a more
succinct form, as follows. First we note that if we expand the right-hand side of the induction
equation (3.14), using the vector identity ∇× (V ×B) = (B ·∇)V −B(∇ ·V )− (V ·∇)B +
V (∇ · B), and noting that ∇ · B = 0, we obtain

dB
dt

= (B ·∇)V − B(∇ · V ) (3.32)

If we now take the scalar product of (3.32) with B/B2, we obtain

1

B2

dB2

dt
= B̂ · (B̂ ·∇)V −∇ · V , that is,

1

B

dB
dt

= (B̂B̂ ·∇) · V −∇ · V . (3.33)

Equation of continuity (1.19) gives

∇ · V = − 1

ρm

dρm
dt

(3.34)

(where ρm is the mass density, to distinguish it from the electric charge density ρ) and using
Eqs. (3.33) and (3.34), to eliminate the terms (B̂B̂ ·∇) · V and ∇ · V , we obtain

d ln p||

dt
− 3

ρm

dρm
dt

+
2

B

dB
dt

= 0,
d ln p⊥
dt

− 1

ρm

dρm
dt
− 1

B

dB
dt

= 0, (3.35)

which can be written in even compact form as

d
dt

(
p||B

2

ρ3
m

)
= 0,

d
dt

(
p⊥
ρmB

)
= 0. (3.36)

Equation (3.36) are known as the double adiabatic equations for a conducting �uid in a strong
magnetic �eld. They are also known as the Chew, Goldberger, and Low (CGL) equations (Chew
et al. 1956). They form the MHD equivalent of the adiabatic energy equation for isotropic
plasma:

d
dt

(
pρ−γm

)
= 0. (3.37)
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3.3.2 Special Cases of DAE

As a simple application of the double adiabatic equations, consider initially the case in which
the only variations are parallel to the magnetic �eld as, for example, in sound waves traveling
along the �eld lines. This situation is usually referred to as linear compression parallel to the
magnetic �eld or one-dimensional compression. The magnetic �eld is assumed to be straight
and uniform, and directed along the z-axis. Thus, Bx = By = 0 and B = Bz ẑ , as well as
∂/∂x = ∂/∂y = 0. In this case, we �nd

(B̂B̂ ·∇) · V = ∇ · V =
∂Vz
∂z

(3.38)

and from Eq. (3.33), we see that B is constant. Equations (3.35), with dB/dt = 0, then yield

d
dt

(
p||

ρ3
m

)
= 0,

d
dt

(
p⊥
ρm

)
= 0. (3.39)

If we compare these results with (3.37), we �nd that we may assign γ = 3 along the �eld lines
(one-dimensional compression), and γ = 1 across the �eld lines.

It is useful to introduce a parallel and a perpendicular temperature through the relations

p|| = nkT||, p⊥ = nkT⊥. (3.40)

For the case of one-dimensional compression parallel to B, noting that ρm = nm in Eq. (3.39),
we thus have

T|| ∝ n2, T⊥ = const., (3.41)

which shows that this type of compression is isothermal with respect to the perpendicular
temperature T⊥. The perpendicular pressure p⊥ therefore entirely changes due to changes in
the number density n, whereas p|| changes due to changes in both n and T||.

Another special case of interest is the two-dimensional compression perpendicular to the
magnetic �eld, in which all motion is transverse to the �eld lines. This situation can be pictured
as the motion of magnetic �ux tubes, identi�ed by the particles contained in them. Assuming
straight �eld lines along the z-axis (Bx = By = 0,B = Bz ẑ) and variations only in the transverse
direction (∂/∂z = 0), we �nd

(B̂B̂ ·∇) · V =

(
ẑ
∂

∂z

)
· V = 0 (3.42)

and Eqs. (3.30) and (3.31) together with the continuity equation (1.19) yield

dp||
dt
−
p||

ρm

dρm
dt

= 0,
dp⊥
dt
− 2p⊥

ρm

dρm
dt

= 0. (3.43)

which we write in the compact form as

d
dt

(
p||

ρm

)
= 0,

d
dt

(
p⊥
ρ2
m

)
= 0. (3.44)

Comparing with (3.37), we see that γ = 1 parallel to the magnetic �eld and γ = 2 transverse
to it. From (3.40) we �nd that for a two-dimensional (cylindrically symmetric) compression
perpendicular to B,

T||const., T⊥ =∝ n, (3.45)
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so that this type of compression is isothermal with respect to the parallel temperature. The
changes in p|| are due entirely to variations in the number density n, whereas those of p⊥ result
from variations in n as well as in T||.

In the case of three-dimensional spherically symmetric compression, we have

p⊥ = p|| = p (3.46)

and (3.29) reduces to

3
dp
dt
− 5p

ρm

dρm
dt

= 0, so that
d
dt

(
p

ρ
5/3
m

)
= 0, (3.47)

which is again the familiar adiabatic equation (3.37) of gas dynamics, with γ = 5/3. In any of
the cases of adiabatic compression, the �uid has to be subjected to a certain system of forces in
order to achieve the desired type of adiabatic compression. The required system of forces has
to be determined from the momentum equation in conjunction with the conditions appropriate
to the analyzed problem.

3.4 Magnetic Viscosity and Reynolds Number

The behavior of the magnetic �eld is important in many MHD problems. To obtain a simple
equation for the variations of B, let us start with the curl of the generalized Ohm's law (3.7),

∇× J = σ [∇× E + ∇× (V × B)] , (3.48)

where, using Maxwell curl equations (3.2) and (3.4), and the Ampère's law (3.6),

∇× (∇× B) = µ0σ

[
−∂B
∂t

+ ∇× (V × B)

]
. (3.49)

Using the identity ∇× (∇× B) = ∇(∇ · B)−∇2B (with ∇ · B = 0), Eq. (3.49) reduces to

∂B

∂t
= ∇× (V × B) + ηm∇2B, (3.50)

where ηm is called the magnetic viscosity,

ηm =
1

µ0σ
. (3.51)

This is in fact the extension of the induction equation (3.14), where the �rst term in the
right-hand side of (3.50) is called the �ow term, while the second term is called the di�usion

term. To compare the relative magnitude of these two terms, we can use dimensional analysis
and approximate,

|∇× (V × B)| ' BV

L
, ηm|∇2B| ' ηm

B

L2
, (3.52)

where L denotes some characteristic length for variation of the parameters. The ratio of the
�ow term to the di�usion term is called the magnetic Reynolds number and is given by

Rm =
LV

ηm
. (3.53)
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In most MHD problems one or the other of these two terms dominates and Rm is either very
large or very small compared to unity. It is instructive to compare the magnetic viscosity ηm
and the magnetic Reynolds number Rm with the ordinary hydrodynamic kinematic viscosity
ν and hydrodynamic Reynolds number Re = LV/ν (Eq. (1.51)). For this purpose, consider
the Navier-Stokes equation of hydrodynamics (1.58), where η = ρν is the dynamic viscosity
(kinematic viscosity multiplied by density). Comparing this equation with (3.50) we see that
the role played by ηm, in the rate of change of B, is completely analogous to the role played
by ν, in the rate of change of the mean �uid velocity V . The hydrodynamic Reynolds number
is de�ned as the ratio of the inertia term (V ·∇)V to the main viscosity term ν∇2V from
Eq. (1.58). Using dimensional analysis, we have

|(V ·∇)V | ' V 2

L
, ν|∇2V | ' ν V

L2
, (3.54)

which con�rms the expression (completely analogous to Rm) for the hydrodynamic Reynolds
number, Re = LV/ν (Eq. (1.51)).

3.5 Di�usion of Magnetic Field Lines

When Rm � 1, that is when the di�usion term dominates, Eq. (3.50) becomes approximately,

∂B

∂t
= ηm∇2B (Rm � 1) . (3.55)

This is the equation of di�usion of a magnetic �eld in a stationary conductor, resulting in the
decay of the magnetic �eld. It is analogous to the particle di�usion equation studied in Chapter
(add). We obtain the characteristic decay time τD of the magnetic �eld by dimensional analysis,∣∣∣∣∂B∂t

∣∣∣∣ ' B

τD
, ηm|∇2B| ' ηm

B

L2
, (3.56)

where τD represents a characteristic time for variation of the plasma parameters. According to
(3.55), the magnetic �eld di�uses away with a characteristic decay time of the order of

τD =
L2

ηm
= L2µ0σ. (3.57)

For ordinary conductors the time of decay is very small. For example, for a copper sphere
of radius 1m, we �nd that τD is less than 10 s. For an astronomical body, because of the large
dimensions, τD can be very large. For the Earth's core, considering it to be molten iron, the
time of free decay is approximately 104 yr, while for the general magnetic �eld of the sun it is
found to be of the order of 1010 yr.

3.6 Freezing of a Magnetic Field

A completely di�erent type of behavior appears when Rm � 1. In this case, the �ow term
dominates over the di�usion term and Eq. (3.50) reduces to

∂B

∂t
= ∇× (V × B) (Rm � 1) . (3.58)

This equation implies that in a highly conducting �uid the magnetic �eld lines move along
exactly with the �uid, rather than simply di�using out, we say that the magnetic �eld lines are
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frozen in the conducting �uid. In e�ect, the �uid can �ow freely along the magnetic �eld lines,
but any motion of the conducting �uid, perpendicular to the �eld lines, carries them with the
�uid. To show this implication of (3.58), we consider initially the concept of magnetic tubes
of force that are used to visually describe the direction and magnitude of B at various points
in space. One can think of the space pervaded by a magnetic �eld as divided into a large
number of elementary magnetic tubes of force, all of them enclosing the same magnetic �ux
∆ΦB. If ∆S is the local cross-sectional area of an elementary magnetic tube of force (see Fig.
1), then the magnitude of B, at the local point P , is equal to ∆ΦB/∆S. According to this
de�nition, the magnitude of B is everywhere inversely proportional to the cross-sectional area
of the elementary tube of force.

Let us now consider a closed line whose points move with velocity V in a space pervaded
by a magnetic �eld. Assume, for the moment, that V is an arbitrary function of position and
time (not necessarily equal to the �uid velocity), with the result that the closed curve may
change in shape, as well as undergo translational and rotational motion. Let C1 denote this
closed line at time t, bounding the open surface S(t) = S1. At a time ∆t later, let C2 and
S(t + ∆t) = S2 denote the corresponding closed line and open surface (refer to Fig. 2). The
�ux of the magnetic �eld through an open surface S , at time t, is given by

ΦB(t) =

ˆ
S
B(r , t) · dS . (3.59)

The rate of change of the magnetic �ux through an open surface S can be written as

d
dt

[ˆ
S
B(r , t) · dS

]
= lim

∆t→0

1

∆t

[ˆ
S2

B(r , t+ ∆t) · dS −
ˆ
S1

B(r , t) · dS
]
. (3.60)

Expanding B(r , t+ ∆t) to the �rst order about B(r , t), we obtain

B(r , t+ ∆t) = B(r , t) +
∂B(r , t)

∂t
∆t+ . . . , (3.61)

so that, in the limit ∆t→ 0, the right-hand side of Eq. (3.60) reduces to

lim
∆t→0

[
1

∆t

ˆ
S2

B(r , t) · dS +

ˆ
S2

∂B(r , t)

∂t
· dS − 1

∆t

ˆ
S1

B(r , t) · dS
]
. (3.62)

To evaluate Eq. (3.62), we use the divergence theorem for any closed surface. If we apply this
result to the closed surface consisting of S1, S2, and the sides of the cylindrical surface of length
V∆t, we obtain

−
ˆ
S1

B(r , t) · dS +

ˆ
S2

B(r , t) · dS −
˛
C1
B(r , t) · [V∆t× dl ] = 0, (3.63)

where the minus sign in the �rst term on the left-hand side is due to the fact that the outwardly
drawn unit vector normal to the surface S1 is in a direction opposite to that of the surface S2,
and − [V∆t× dl ] is the element of area (pointing outwards) covered by the vector element dl of
the closed line bounding the surface S1 (or S2) in the time interval ∆t. If (3.63) is substituted
into (3.62) and the limit ∆t → 0 is evaluated, noting that in this limit S2 = S1 = S(t), we
obtain

d
dt

[ˆ
S
B(r , t) · dS

]
=

ˆ
S

∂B(r , t)

∂t
· dS +

˛
C
B(r , t) · (V × dl) . (3.64)
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Using the vector identity B(r , t) · (V × dl) = −[V × B(r , t)] · dl and the Stokes's theorem,
Eq. (3.64) becomes

d
dt

[ˆ
S
B(r , t) · dS

]
=

ˆ
S

{
∂B(r , t)

∂t
−∇× [V × B(r , t)]

}
· dS . (3.65)

Suppose now that the space is �lled with a highly conducting �uid so that (3.58), valid for
Rm � 1, applies. If the velocity V in (3.65) is the �uid velocity, we conclude, from (3.58) and
(3.65), that

d
dt

[ˆ
S
B(r , t) · dS

]
= 0, (3.66)

which is a mathematical statement of the fact that the magnetic �ux linked by a closed line

(bounding the open surface S) moving with the �uid velocity V is constant. Note that this
conclusion requires that only the velocity component of the closed line perpendicular to B be
the same as the �uid velocity component perpendicular to B, since the velocity component
parallel to B does not contribute to the term V × B. Thus, (3.58) implies that the lines of
magnetic �ux are frozen into the highly conducting �uid and are carried by any motion of the
�uid perpendicular to the �eld lines. There is no restriction, however, on the motion along the
�eld lines so that the conducting �uid can �ow freely in the direction parallel to B.

This result is expected on physical grounds since, as the conducting �uid moves across the
magnetic �eld, it induces an electric �eld that is proportional to the �uid velocity component
perpendicular to B. However, if the �uid conductivity is in�nite, this perpendicular velocity
component must be in�nitesimally small if the �ow of electric current is to remain �nite.

In a �uid of �nite conductivity the result (3.66) is no longer true. Using (3.50) in Eq. (3.65),
this yields

∂ΦB

∂t
= ηm

ˆ
S
∇2B · dS , (3.67)

where the right-hand side of Eq. (3.67) gives rise to a slipping of magnetic �ux through a closed
line of the material.

3.7 Magnetic Pressure

3.7.1 Pressure dyad

The concept of magnetic pressure is very useful in the study of high-temperature plasma con-
�nement. Under steady-state conditions and neglecting the external forces, the MHD equations
(3.3), (3.4), and (3.12), reduce to the following closed set of magnetohydrostatic equations:

∇ · B = 0, ∇× B = µ0J , ∇p = J × B. (3.68)

Eliminating J , we obtain

∇ · B = 0, ∇p =
1

µ0
(∇× B)× B. (3.69)

The term in the right-hand side of the �rst Eq. (3.69) can be written as the divergence of
the magnetic part of the electromagnetic stress dyad. Using the vector identity

(∇× B)× B = (B ·∇)B − 1

2
∇(B2) = ∇ · (BB)− 1

2
∇ · (1B2) (3.70)
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where 1 is the unit dyad, and using the following de�nition of the magnetic stress dyad,

T m =
1

µ0

(
BB − 1

2
1B2

)
=

1

µ0

(B2
x −B2/2

)
BxBy BxBz

ByBx
(
B2
y −B2/2

)
ByBz

BzBx BzBy
(
B2
z −B2/2

)
 , (3.71)

Eq. (3.69) we write as

∇p = ∇ · T m, or ∇ · [1p− T m] = 0 (3.72)

Since the stress is considered to be positive if it is tensile, and negative if it is compressive,
we may de�ne −T m as the magnetic pressure dyad, playing the same role as the �uid pressure
dyad.

It is instructive to consider a local magnetic coordinate system in which the third axis points
along the local direction of B. For this local coordinate system, the o�-diagonal elements of
the magnetic stress dyad vanish, since B = Bẑ , so that

T m =
1

µ0

−B2/2 0 0
0 −B2/2 0
0 0 B2/2

 . (3.73)

Therefore, the principal stresses are equivalent to a tension B2/(2µ0) along the magnetic �eld
lines, and a pressure B2/(2µ0) perpendicular to the magnetic �eld lines, which is similar to a
mutual repulsion of the �eld lines. We express (3.73) alternatively in the form

T m =
1

µ0

0 0 0
0 0 0
0 0 B2

+
1

µ0

−B2/2 0 0
0 −B2/2 0
0 0 −B2/2

 , (3.74)

so that the stress caused by the magnetic �ux can also be thought of as an isotropic magnetic

pressure B2/(2µ0) and a tension B2/µ0 along the magnetic �ux lines as if they were elastic
cords. The latter representation is very useful, since the isotropic pressure B2/(2µ0) can always
be superposed on the �uid pressure, resulting in a decrease in the pressure exerted by the �uid.

3.7.2 Isobaric surfaces

It is convenient to consider hypothetical surfaces, called isobaric surfaces, in the plasma, over
which the kinetic pressure is constant. At any point, the vector ∇p is normal to the isobaric
surface passing through the point considered. From the third Eq. (3.68) we see that ∇p is
normal to the plane containing J and B, that is

J ·∇p = 0, B ·∇p = 0. (3.75)

Therefore, both J and B lie on isobaric surfaces. To illustrate this point, consider the particular
case in which the isobaric surfaces are closed concentric cylindrical surfaces, with the kinetic
pressure increasing in the direction towards the central axis of the concentric cylindrical surfaces.
Thus, ∇p is along a radial line directed towards the axis. From Eqs. (3.75) we see that neither
B nor J passes through the isobaric surfaces and therefore it follows that the cylindrical isobaric
surfaces are formed by a network of magnetic �eld lines and electric currents. Further, in view
of Eq. (3.68), the magnetic �eld lines and electric currents, lying on the isobaric surfaces, must
cross each other in such a way that J×B is equal to ∇p. The maximum kinetic pressure occurs
along the central axis, which also coincides with a magnetic �eld line. For this reason, this axis
is usually called the magnetic axis of the magnetoplasma con�guration.
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3.8 Plasma Con�nement in a Magnetic Field

The subject of plasma con�nement by magnetic �elds is of considerable interest in the theory of
controlled thermonuclear fusion. Consider, for simplicity, the special case in which the magnetic
�eld is along the z-axis, that is B = Bz ẑ , so that Eq. (3.72) simpli�es to

∇ ·

p+B2/(2µ0) 0 0
0 p+B2/(2µ0) 0
0 0 p−B2/(2µ0)

 = 0, (3.76)

so that, in other words,

∂

∂x

(
p+

B2

2µ0

)
= 0,

∂

∂y

(
p+

B2

2µ0

)
= 0,

∂

∂z

(
p+

B2

2µ0

)
= 0, (3.77)

From ∇ · B = 0, we have

∂Bz
∂z

= 0, (3.78)

since, in the local coordinate system, B is parallel to the z-axis. Equation (3.78), together
with (3.77), imply that both p and B do not vary in the z-direction. The solutions of (3.77),
combined with this result, give (

p+
B2

2µ0

)
= const. (3.79)

Therefore, in the presence of an externally applied magnetic �eld, if the plasma is bounded,
the plasma kinetic pressure decreases from the axis radially outwards, whereas the magnetic
pressure increases in the same direction in such a manner that their sum remains constant at
each point, according to (3.79). The plasma kinetic pressure can be forced to vanish on an
outer surface if the applied magnetic �eld is su�ciently strong, with the result that the plasma
is con�ned within this outer surface by the magnetic �eld.

Let B0 be the value of the magnetic induction at the plasma boundary. Since the kinetic
pressure at the plasma boundary is zero (ideally), we can evaluate the constant in (3.79) from
the pressure equilibrium condition at the plasma boundary. Therefore,

p+
B2

2µ0
=

B2
0

2µ0
. (3.80)

The maximum �uid pressure that can be con�ned for a given applied �eld B0 is,

pmax =
B2

0

2µ0
. (3.81)

A device that can be used to con�ne a magnetoplasma by straight parallel �eld lines is
called a theta (θ) pinch, since the e�ect responsible for the con�nement is due to electric
currents �owing in the plasma in the azimuthal (θ) direction. The plasma is initially con�ned
inside a hollow cylindrical metal tube, whose side is split in the longitudinal direction in such a
way as to form a capacitor. When a high voltage is discharged through the capacitor, the large
azimuthal current produced in the metal tube generates a magnetic �eld in the longitudinal
direction inside the plasma. The electric current induced in the plasma is also in the azimuthal
direction, but in a sense opposite to that on the metal tube. The resulting J×B force acting on
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the plasma pushes it inwards, towards the axis, until a balance is reached between the kinetic
pressure due to the random particle thermal motions and the magnetic pressure that acts to
constrict or pinch the plasma.

A parameter β, de�ned as the ratio of the kinetic pressure at a point inside the plasma, to
the con�ning magnetic pressure at the plasma boundary, is usually introduced as a measure of
the relative magnitudes of the kinetic and magnetic pressures. It is given by

β =
p

B2
0/(2µ0)

. (3.82)

Note that β ranges between 0 and 1, since the �eld inside the plasma is less than B0. From
(3.80) we can also express the parameter β as

β = 1−
(
B

B0

)2

. (3.83)

Two special cases of plasma con�nement schemes are the so-called low -β and high-β devices.
In the low-β devices, the kinetic pressure is small in comparison to the magnetic pressure at
the plasma boundary, whereas in the high-β devices they are of an equal order of magnitude
(β ' 1).

An important property of a plasma is its diamagnetic character. Equation (3.80) implies
that the magnetic �eld inside the plasma is less than its value at the plasma boundary. As the
kinetic pressure increases inside the plasma, the magnetic �eld decreases. Under the action of
the externally applied B �eld, the particle motions give rise to internal electric currents that
induce a magnetic �eld opposite to the externally applied �eld. Consequently, the resultant

magnetic �eld inside the plasma is reduced to a value less than that at the plasma boundary.
The electric current, induced in the plasma, depends on the number density of the charged
particles and on their velocity. As the plasma kinetic pressure increases, the induced electric
current and the induced magnetic �eld also increase, thus enhancing the diamagnetic e�ect.

3.9 MHD Waves

3.9.1 Linear perturbations in MHD equations

Consider a static (V 0 = 0), homegenous medium with constant density ρ0 and pressure p0

threaded by a uniform magnetic �eld B0, neglecting other external forces. Assuming small
perturbations (|q1| � |q0|), we linearize the perturbed MHD equations (3.11), (3.12), (3.14),
and (3.37), respectively, to �rst order,

∂ρ1

∂t
+ ρ0∇ · V 1 = 0, (3.84)

ρ0
∂V 1

∂t
+ ∇p1 −

1

µ0
(∇× B1)× B0 = 0, (3.85)

∂B1

∂t
−∇× (V 1 × B0) = 0, (3.86)

∂p1

∂t
+ γρ0∇ · V 1 = 0, (3.87)

where we perform the last equation using Eq. (3.84). Given the linear nature of the system, we
can employ a one-dimensional (plane) wave decomposition and write a generic perturbation in
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the form ∝ ei(k·x−ωt). Using also the identity ∇ × (∇ × A) = ∇(∇ · A) −∇2A for the triple
vector product, the system (3.84) - (3.87) becomes

ωρ1 − ρ0k · V 1 = 0, (3.88)

ωρ0V 1 − kp1 −
1

µ0
k (B0 · B1) +

1

µ0
(k · B0)B1 = 0, (3.89)

ωB1 − (k · V 1)B0 + (k · B0)V 1 = 0, (3.90)

ωp1 − a2ρ0k · V 1 = 0, (3.91)

where a is the speed of sound. Note that the �rst term in the Lorentz force in Eq. (3.89) is
related to magnetic pressure while the second one corresponds to magnetic tension.

We subsitute α ≡ k · B0, multiply Eq. (3.89) by ω, express the term ωB1 from Eq. (3.90),
and use Eq. (3.91) to eliminate p1, obtaining

ω2ρ0V 1 = a2ρ0 (k · V 1) k +
1

µ0
k {B0 · [(k · V 1)B0 − αV 1]} − α

µ0
[(k · V 1)B0 − αV 1] , (3.92)

and we rearrange it into the more illustrative form,(
ω2ρ0 −

α2

µ0

)
V 1 = (k · V 1)

[(
a2ρ0 +

B2
0

µ0

)
k − α

µ0
B0

]
− α

µ0
(B0 · V 1) k . (3.93)

Without loss of generality, we now assume that the equilibrium magnetic �eld B0 is directed
along the z-axis and that the wave vector k lies in the x-z plane (ky = 0). Let θ be the angle
between B0 and k , so that

k = kxx̂ + kz ẑ , kx = k sin θ, kz = k cos θ (3.94)

k · V 1 = kxV1x + kzV1z, B0 · V 1 = B0V1z, α = kzB0, (3.95)

where k is the magnitude of the wavevector k . Note also that the solenoidal condition in Fourier
space becomes k ·B1 = 0, implying that no �eld perturbation can be developed in the direction
of wave propagation.

Dividing Eq. (3.93) by ρ0 and substituting α = k · B0 = kzB0 = kzVa
√
µ0ρ0 (where

Va = |B0|/
√
µ0ρ is the Alfvén speed), we obtain(
ω2 − k2

zV
2
a

)
V 1 − (k · V 1)

[(
a2 + V 2

a

)
k − kzV 2

a ẑ
]

+ kzV
2
a V1zk = 0. (3.96)

Equation (3.96) is a linear homogeneous equation in V 1 and, using matrix notation, we rewrite
it as

AV 1 = 0, (3.97)

where the matrix A is

A =

ω
2 − k2V 2

a − a2k2
x 0 −a2kxkz

0 ω2 − k2
zV

2
a 0

−a2kzkx 0 ω2 − a2k2
z

 . (3.98)

In the �rst matrix element, A11, we have used −V 2
a (k2

x + k2
z) = −k2V 2

a . Equation (3.98) has a
non-trivial solution if the determinant of the matrix A is zero,

det(A) =
(
ω2 − k2

zV
2
a

) [(
ω2 − k2V 2

a − a2k2
x

) (
ω2 − a2k2

z

)
− a4k2

xk
2
z

]
= 0, (3.99)
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which, after simpli�cation, gives the dispersion relation[(ω
k

)2
− V 2

a cos2 θ

] [(ω
k

)4
−
(ω
k

)2 (
a2 + V 2

a

)
+ a2V 2

a cos2 θ

]
= 0. (3.100)

Eq. (3.100) has three independent roots in ω2, corresponding to three di�erent types of waves
that can propagate through a magnetized �uid:

3.9.2 Alfvén waves

The �rst root corresponds to the Alfvén wave (also known as the shear Alfvén wave) and is
given by

ω = ±kVa cos θ ≡ ±kzVa ≡ ±
k · B0√
µ0ρ0

(3.101)

and the corresponding eigenvector from Eq. (3.98) is V 1 = (0, V1y, 0). Thus the velocity pertur-
bation must lie in the y-direction and therefore k ·V 1 = V 1 ·B0 = 0. By looking at Eqs. (3.88)
and (3.91), we see that this wave carries zero perturbation in density and pressure and it has
an incompressible nature. This does not mean that the plasma is incompressible, but just the
Alfvén wave carries oscillations in velocity and magnetic �eld only. In addition, since k ·B1 = 0
always, perturbations in both velocity and magnetic �eld are always orthogonal to the direction
of wave propagation: the Alfvén wave mode is a transverse wave. In addition, from Eqs. (3.90),
with use of Eq. (3.101), we obtain a relation between the perturbations of magnetic �eld and
velocity:

B1 = −k · B0

ω
V 1, so that

B1

B0
= ∓V 1

Va
. (3.102)

Taking the square of the previous relation yields

ρ0V
2
1

B2
1/µ0

= 1, (3.103)

that is, the perturbation carries equal kinetic and magnetic energy contributions. We also note
that taking the scalar product of Eq. (3.102) with B0, we also have B0 · B1 = 0 which means
that Alfvén waves are generated by magnetic tension only, thereby strenghtening the analogy
between a �eld line and an elastic string.

Finally, we notice that the Alfvén wave solution found so far, is also an exact solution of
the full MHD equations without requiring that |B1| � |B0| but assuming that

|B0 + B1| = const.,
B1

B0
= ±V 1

Va
. (3.104)

Large perturbations of velocity and magnetic �eld can be related to nonlinear Alfvén wave
modes, as observed in the solar wind.

3.9.3 Fast and slow magnetosonic waves

The other two roots are given by(ω
k

)2
=
a2 + V 2

a ±
√

(a2 + V 2
a )2 − 4V 2

a a
2 cos2 θ

2
. (3.105)
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The two solutions are always real and correspond to the fast magnetosonic (+) and slow mag-
netosonic (−) waves. The corresponding eigenvectors, from Eq. (3.98), lie in the x-z plane,
V 1 = (V1x, 0, V1z). As a consequence, we have k · V 1 6= 0, and, similarly, V 1 · B0 6= 0:
these waves are compressive in nature and involve plasma motion in both the parallel and the
perpendicular �eld direction.

Notice that, in general (ω/k)slow ≤ a while (ω/k)fast ≥ a. The properties of these waves
depend on the ratio between a2 and V 2

a and on the relative orientation between k and B0.

� For parallel propagation (k ||B0 or θ = 0) the matrix A in Eq. (3.98) is diagonal and the
solutions given by Eq. (3.105) are reduced to

(ω
k

)2

fast
=
a2 + V 2

a + |V 2
a − a2|

2
=

{
a2 for a > Va

V 2
a for a < Va

, (3.106)

(ω
k

)2

slow
=
a2 + V 2

a − |V 2
a − a2|

2
=

{
V 2
a for a > Va

a2 for a < Va
. (3.107)

In a weakly magnetized medium (a > Va), the fast magnetosonic wave becomes an acoustic
(or sound) wave whereas the slow mode propagates at the Alfvén speed. Conversely, in
a strongly magnetized medium where Va > a, the fast and slow modes propagate at the
Alfvén and sound speed, respectively.

Note that the acoustic mode (ω/k = ±a) is characterized by V 1 = (0, 0, V1z) ∝ k and
by no �eld perturbation, (B1 = 0), the wave is longitudinal. For ω/k = ±Va, implying
V 1 = (V1x, 0, 0), and the wave becomes identical to a transverse Alfvén wave.

� For perpendicular propagation (k⊥B0 or θ = ±π/2) the matrix A in Eq. (3.98) is again
diagonal and the solutions of dispersion relation are reduced to(ω

k

)2

fast
=
a2 + V 2

a + |a2 + V 2
a |

2
= a2 + V 2

a , (3.108)(ω
k

)2

slow
=
a2 + V 2

a − |a2 + V 2
a |

2
= 0. (3.109)

Thus the fast mode becomes the magnetoacoustic wave with phase velocity equal to√
a2 + V 2

a : this is a longitudinal wave (k ∝ V 1, as it can be veri�ed from Eq. (3.89),
keeping in mind that k · B0 = 0) and it is driven by magnetic pressure. Magnetic per-
turbations develop along the background �eld (see Eq. (3.90)) and consist of compression
and rarefaction of the �eld without line bending. On the contrary, the slow waves tend
to zero.

As a �nal remark we note that taking the scalar product of Eq. (3.89) with k , using (3.91) to
express k · V 1, and remembering that k · B1 = 0, we obtain

p1

(
ω2

k2a2
− 1

)
=

1

µ0
B0 · B1. (3.110)

The previous equation shows that for fast waves, (ω2/k2 ≥ a2), pressure and magnetic �uc-
tuations have the same sign and tend to reinforce one another. However, for slow waves,
(ω2/k2 ≤ a2), an increase of gas pressure is accompanied by a decrease of magnetic pressure,
and vice versa.
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3.10 Magnetorotational Instability (MRI)

3.10.1 Linear analysis of MRI

The problem of the hydrodynamic stability of a �uid, subjected to a magnetic �eld and rotation,
has been studied for a long time. The analysis of MRI is however �rst systematically described
in Balbus & Hawley (1991). Because of the ubiquity of magnetic �elds can the turbulences
of magnetized rotating matter (the gas is partially or fully ionized) act as a main source of
anomalous viscosity. The matter is subjected to very strong shear instabilities caused by weak
magnetic �eld that can be far more destabilizing than a strong one (the strong �eld would
rather enforce the matter to rotate as a rigid body). Arbitrarily small magnetic �eld cannot
therefore be neglected in linear analysis of the disk disturbances.

The basic destabilizing mechanism act as follows: consider a di�erentially rotating material
that is perpendicularly threaded by magnetic �eld, whose �eld lines are therefore �vertically�
oriented. The motion of the volume element that is displaced in the outward direction from its
orbit, is elastically controlled by the magnetic �eld. The �eld is trying to eliminate the e�ects
caused by shear friction between radial rotating segments by enforcement of rigid rotation
while it simultaneously returns this element back to its original position (and thus eliminates
stretching). The second e�ect is stabilizing, while the �rst e�ect acts as the source of the
instability. Magnetic �eld is trying to force the gas element to rotate too fast for its new radial
location, the excess of centrifugal force drives the element further outward. At su�ciently long
wavelengths (longer than a critical wavelength that corresponds to a critical wavenumber) is the
returning force too weak and destabilization wins. The presence of the �nite value of the vertical
wavenumber of the magnetic �eld is essential, otherwise no axisymmetric instability occurs. The
MRI generates the viscous couple in the rotating matter, caused by an interpenetration of the
gas volume elements with higher and lower angular momentum, leading to turbulence.

The dispersion relation is described in Balbus & Hawley (1991) with the following assump-
tions: the radial component of the magnetic �eld is in the linear analysis of the axisymmetric
case set to zero (BR = 0), while in the more advanced study there is analyzed also the case with
the nonzero radial component (BR 6= 0). The behavior of the �uid is subject to the Boussinesq
approximation (Boussinesq 1897), which is considered to be valid for the incompressible dis-
turbances of interest. This approximation assumes that the variations of density are negligible
(we set ρ → ρ0 = const. in the continuity equation and in the advection term of equation of
motion). However, the weak density variations are important for buoyancy, so that we retain
the density variations in the right-hand side of the equation of motion and in the equation of
state, while the pressure perturbations are neglected in the equation of state (Fricke 1969). In
�uid �ows driven by buoyancy (buoyancy-driven �ows) are the density perturbations connected
only with the reduced gravity via the equation

δg =
δρ

ρ
g with δρ = 0 otherwise, (3.111)

the �uid is thus essentially incompressible.
The Boussinesq approximation enables us to eliminate acoustic waves, since acoustic waves

are the density perturbations. We consider constant angular velocity Ω on radial (cylindrical)
segments with VR ≈ 0, Vz ≈ 0 and ∂Ω/∂z = 0. Axisymmetric (∂/∂φ = 0) Eulerian space-time
dependent perturbation δξ of a general quantity ξ with radial and vertical wavenumbers kR and
kz and the angular frequency ω of the MRI can be described as

δξ = ξ0 ei(kRR+kzz−ωt). (3.112)
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The set of seven basic ideal MHD equations, that is, equation of continuity (3.11), three mo-
mentum equations (3.12) and three Maxwell-Faraday (induction) equations (3.14), we expand
to �rst order. Since the density in the continuity equation does not vary, we set ∇ ·V = 0, and
the equation takes the explicit form (with only the largest terms retained)

1

R

∂

∂R
[R(VR + δVr)] +

∂

∂z
(Vz + δVz) = 0. (3.113)

We do not take into account the constant unperturbed radial and vertical components of velocity
and we also neglect any variations in radius R. After linearization of perturbations according
to Eq. (3.112), we write Eq. (3.113) as

kRδVR + kzδVz = 0. (3.114)

The radial component of momentum equation (3.12), where the terms that contain the
radial derivative of the radial magnetic �eld, ∂BR/∂R, cancel, is

∂VR
∂t

+ VR
∂VR
∂R

+
Vφ
R

∂VR
∂φ

+ Vz
∂VR
∂z
−
V 2
φ

R
+

1

ρ

∂p

∂R
+

1

2µ0ρ

∂

∂R

(
B2
φ +B2

z

)
−

− 1

µ0ρ

(
Bφ
R

∂BR
∂φ

+Bz
∂BR
∂z
−
B2
φ

R

)
+ gR = 0. (3.115)

According to the Boussinesq approximation (3.111), the radial component of the density per-
turbation (assuming the hydrostatic equilibrium) is

δgR = −δρ
ρ2

∂p

∂R
. (3.116)

After linearization of perturbations according to Eq. (3.112), with use of Eq. (3.116), we write

−iωδVR − 2ΩδVφ +
ikR
ρ
δp+

ikR
µ0ρ

(BφδBφ +BzδBz)−
ikz
µ0ρ

BzδBR −
δρ

ρ2

∂p

∂R
= 0. (3.117)

In a similar way we analyze the vertical component of the momentum equation (3.12). Its
explicit form (after cancellation of the terms containing ∂Bz/∂z) is

∂Vz
∂t

+ VR
∂Vz
∂R

+
Vφ
R

∂Vz
∂φ

+ Vz
∂Vz
∂z

+
1

ρ

∂p

∂z
+

1

2µ0ρ

∂

∂z

(
B2
R +B2

φ

)
−

− 1

µ0ρ

(
BR

∂Bz
∂R

+
Bφ
R

∂Bz
∂φ

)
+ g′z = 0. (3.118)

The same linearization of perturbations, using the analog of Eq. (3.116), leads to

−iωδVz +
ikz
ρ
δp+

ikz
µ0ρ

BφδBφ −
δρ

ρ2

∂p

∂z
= 0. (3.119)

The explicit form of the azimuthal momentum equation (3.12), omitting the negligible viscous
terms (we employ only the scalar pressure, while the terms containing the derivative ∂Bφ/∂φ
cancel), is

∂Vφ
∂t

+ VR
∂Vφ
∂R

+
Vφ
R

∂Vφ
∂φ

+ Vz
∂Vφ
∂z

+
VRVφ
R

+
1

ρ

∂p

∂φ
+

1

2µ0ρ

1

R

∂

∂φ

(
B2
R +B2

z

)
−

− 1

µ0ρ

(
BR

∂Bφ
∂R

+Bz
∂Bφ
∂z

+
BRBφ
R

)
= 0. (3.120)
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Linearization of perturbations in Eq. (3.120), according to Eq. (3.112), leads to

−iωδVφ + δVR

(
∂Vφ
∂R

+
Vφ
R

)
− ikz
µ0ρ

BzδBφ = 0. (3.121)

We rewrite the term in bracket in Eq. (3.121) as 2Ω + R dΩ/dR = κ2/(2Ω), where κ is the
epicyclic frequency, κ2 = 4Ω2 +dΩ2/d(lnR). We derived the epicyclic frequency by considering
a small radial displacement of an arbitrary particle (body or �uid parcel), orbiting at the circular
trajectory with radius R0 in a gravitational potential Φ. The acceleration of the displacement,
described by its only nonzero radial component, aR = R̈ − Rφ̇2. However, since aR is the
derivative of Φ, aR = −∂Φ/∂R, we obtain R̈ = −∂Φ/∂R + j 2/R3, where j is the speci�c
angular momentum of the displaced body. Expansion of the radial acceleration R̈ to �rst order
in R0 leads to

R̈+

[
∂2Φ

∂R2

∣∣∣∣∣
R0

+
3j 2

R4
0

]
(R−R0) = 0, (3.122)

where the term in bracket represents the square of the epicyclic frequency, κ2.
Equation (3.121) we rewrite into the simpli�ed form

−iωδVφ +
κ2

2Ω
δVR −

ikz
µ0ρ

BzδBφ = 0. (3.123)

We rewrite the radial component of the induction equation (3.14), using the vector identity
∇ × (V × B) = V (∇ · B) + (B ·∇)V − (V ·∇)B − B(∇ · V ), and involving the Maxwell
equation ∇ · B = 0,

∂BR
∂t
−
Bφ
R

∂VR
∂φ
−Bz

∂VR
∂z

+ VR
∂BR
∂R

+
Vφ
R

∂BR
∂φ

+ Vz
∂BR
∂z

+BR

(
1

R

∂Vφ
∂φ

+
∂Vz
∂z

+
VR
R

)
= 0. (3.124)

Linearization of perturbations in Eq. (3.124), according to Eq. (3.112) and with use of Eq. (3.116),
taking into account the above constraints (including the assumption BR = 0), leads to

−iωδBR − ikzBzδVR = 0. (3.125)

The vertical component of the induction equation (3.14) is

∂Bz
∂t
−BR

∂Vz
∂R
−
Bφ
R

∂Vz
∂φ

+ VR
∂Bz
∂R

+
Vφ
R

∂Bz
∂φ

+ Vz
∂Bz
∂z

+Bz

(
∂VR
∂R

+
1

R

∂Vφ
∂φ

+
VR
R

)
= 0. (3.126)

Linearization of perturbations in Eq. (3.126) according to Eq. (3.112) and with use of Eq. (3.116),
including the same constraints as in Eq. (3.125), gives

−iωδBz + ikRBzδVR = 0, so that (see Eq. (3.114)) − iωδBz − ikzBzδVz = 0, (3.127)

while the azimuthal component of the induction equation (3.14) is

∂Bφ
∂t
−BR

∂Vφ
∂R
−Bz

∂Vφ
∂z

+ VR
∂Bφ
∂R

+
Vφ
R

∂Bφ
∂φ

+ Vz
∂Bφ
∂z

+
BRVφ
R

+Bφ

(
∂VR
∂R

+
∂Vz
∂z

)
= 0. (3.128)
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Linearization of perturbations in Eq. (3.128), according to Eq. (3.112), with use of Eqs. (3.116)
and (3.114), including the same constraints as in Eq. (3.125), gives

−iωδBφ −
∂Vφ
∂R

δBR − ikzBzδVφ +
Vφ
R
δBR = 0, (3.129)

which can be further simpli�ed as

−iωδBφ −
dΩ

d lnR
δBR − ikzBzδVφ = 0. (3.130)

The set of Eqs. (3.114), (3.117), (3.119), (3.123), (3.125), (3.127), and (3.130) is closed
by conditions of entropy of the adiabatic perturbations (where s is the density of the entropy
(1.83)),

ds
dt

=
∂s

∂t
+ V ·∇s = 0. (3.131)

The �rst law of thermodynamics (dε = cV dT ) for the ideal gas gives

ds = cV
dT
T
−Rdρ

ρ
= cV

(
dp
p
− γdρ

ρ

)
. (3.132)

By integrating Eq. (3.132) in case of monoatomic gas (γ = 5/3) between two states �0� and �1�,
we obtain

∆s = cV ln

[
p1

p0

(
ρ1

ρ0

)−5/3
]
, so that s = cV ln

(
pρ−5/3

)
, (3.133)

where s is the entropy of an ideal gas with constant speci�c heats to within an arbitrary constant
of integration (Zel'dovich & Raizer 1967).

Linearization of isentropic perturbations (i.e., of a process that is reversible and adiabatic,
the entropy of a considered system therefore does not change) in Eq. (3.133), according to
Eq. (3.112) with use of Eq. (3.116), valid for the Boussinesq approximation, gives

iω
5

3

δρ

ρ
+ δVR

∂ ln
(
pρ−5/3

)
∂R

+ δVz
∂ ln

(
pρ−5/3

)
∂z

= 0. (3.134)

Further strategy is to express all perturbations in terms of δVz, by eliminating all terms δVR.
We can rewrite Eq. (3.134) with use of Eq. (3.114),

δρ

ρ
=

3

5iω
δVz

(
kz
kR

∂ ln
(
pρ−5/3

)
∂R

−
∂ ln

(
pρ−5/3

)
∂z

)
. (3.135)

Combining Eqs. (3.119) and (3.135), we obtain

δp

ρ
+
Bφ δBφ
µ0ρ

=
δVz
kz

[
ω − 3

5ω

1

ρ

∂p

∂z

(
kz
kR

∂ ln
(
pρ−5/3

)
∂R

−
∂ ln

(
pρ−5/3

)
∂z

)]
. (3.136)

Using the expression for Bφ from Eq. (3.130), we write

δVφ =
δVz
iω

kz
kR

(
− κ

2

2Ω
+
k2
zV

2
Az

ω2

dΩ

d lnR

)(
1−

k2
zV

2
Az

ω2

)−1

, (3.137)
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where we introduce the Alfvén speed (Bittencourt 2004), V 2
Az = B2

z/(µ0ρ) in SI units. With
use of Eq. (3.114) we rewrite Eqs. (3.125) and (3.127) as

δBR =
k2
z

kR
Bz

δVz
ω
, δBz = −kzBz

δVz
ω
. (3.138)

By substituting Eq. (3.137) and Eq. (3.138) into Eq. (3.130), we obtain

δBφ = 2Ω
Bz
iω2

k2
z

kR

(
1−

k2
zV

2
Az

ω2

)−1

δVz. (3.139)

Substituting Eqs. (3.135)-(3.138) into Eq. (3.115) and simplifying, we obtain the dispersion
relation

ω̃4 +
k2
z

k2

[
3

5ρ

(
kR
kz

∂p

∂z
− ∂p

∂R

)(
kR
kz

∂ ln
(
pρ−5/3

)
∂z

−
∂ ln

(
pρ−5/3

)
∂R

)
− κ2

]
ω̃2

− 4Ω2k
4
zV

2
Az

k2
= 0, (3.140)

where ω̃2 = ω2 − k2
zV

2
Az and k2 = k2

R + k2
z . We can yet simplify the relation by setting

∂p

∂z

∂ ln
(
pρ−5/3

)
∂R

=
∂p

∂R

∂ ln
(
pρ−5/3

)
∂z

, (3.141)

which follows from the assumption of rotation on cylinders, or equivalently, that isobaric and
isochoric surfaces coincide (Balbus & Hawley 1991).

The Brunt-Väisälä frequency is de�ned as a frequency of the �uid parcel with density
ρint that oscillates due to small displacement ξ′ = ξ − ξ0 around equilibrium position ξ0 in
surrounding medium with density ρext, where ξ is the general coordinate direction. If the �uid
parcel is displaced along the coordinate ξ and the motion is adiabatic without viscous e�ects,
the equation of motion is

ρint ξ̈ = −g [ρint − ρext] . (3.142)

Expanding the right-hand side of Eq. (3.142) to �rst order in ξ around the equilibrium position
ξ0, we obtain the equation of harmonic oscillator

ξ̈′ +

 g

ρint

∂∆ρ

∂ξ

∣∣∣∣∣
ξ0

 ξ′ = 0, (3.143)

where ∆ρ = ρint − ρext. The term in bracket in Eq. (3.143) represents the square of the Brunt-
Väisälä frequency N2

ξ that corresponds to oscillations in the direction of the coordinate ξ (in
case of ∂(∆ρ)/∂ξ < 0 we obtain unstable solution, diverging to in�nity).

We assume the adiabatic behavior of �uid parcel interior, we also consider the pressure
equilibrium of the �uid parcel with surrounding medium, pint = pext (this approximation is
valid only for the subsonic motion). Including the de�nition of the adiabatic exponent γ =
(d ln p/d ln ρint)ad from Sect. 1.6, we obtain from Eq. (3.143) the adiabatic expression for the
Brunt-Väisälä frequency in the form

N2
ξ, ad = g

(
1

γp

∂p

∂ξ
− 1

ρ

∂ρ

∂ξ

)
, (3.144)
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where ρext we hereafter denote as ρ. Applying the latter expression for the Brunt-Väisälä
frequency for the monoatomic ideal gas in hydrostatic equilibrium, we simplify Eq. (3.141) into
the form (for example for the piece Nz),

− 3

5ρ

∂p

∂z

∂ ln
(
pρ−5/3

)
∂z

= N2
z . (3.145)

We thus obtain the expression for the piece of the Brunt-Väisälä frequency that corresponds to
vertical oscillations. Analogously we obtain the expression for the piece of the Brunt-Väisälä
frequency that corresponds to radial oscillations, NR. The quantities NR and Nz are the pieces
of a scalar quantity N , (see Eq. (3.145))

N2 = − 3

5ρ
(∇p) ·

[
∇ ln

(
pρ−5/3

)]
= N2

R +N2
z . (3.146)

Using the pieces of Brunt-Väisälä frequency, we express the dispersion relation (3.140) as

k2

k2
z

ω̃4 −

[
κ2 +

(
kR
kz
Nz −NR

)2
]
ω̃2 − 4Ω2k2

zV
2
Az = 0. (3.147)

From Eq. (3.140) follows that only z-component of magnetic �eld enters the dispersion
relation (as a part of term VAz or as a part of term ω̃), and that it is always multiplied by
the wavenumber kz. The importance of arbitrarily small magnetic �elds can thus be readily
understood: strong magnetic tension forces can be generated at su�ciently small perturbation
wavelengths. We also see that by absence of the magnetic �eld the wavenumbers are not
scaled: internal waves propagate with a frequency that depends only on the direction of the
wavenumber. The presence of the magnetic �eld however enables us to establish the inverse
length scale for the wavenumbers, Ω/VAz. By normalizing the components of the wavenumber
k with use of the characteristic value Ω/VAz, we can completely scale the magnetic �eld out of
the problem. Only the values of the wavenumbers that are relative to the scaled characteristic
Ω/VAz play a role, not the values of magnetic �eld induction themselves.

We can also analyze the more general case with nonzero radial component of magnetic
�eld (BR 6= 0). Considering the ideal MHD Faraday's law of electromagnetic induction (3.14),
assuming axial symmetry (∂/∂φ = 0) with Ω = Ω(R), and neglecting VR and Vz in Eqs. (3.124),
(3.126), (3.128), we have the only relevant �eld freezing equation,

∂Bφ
∂t

= BR
∂Vφ
∂R
−
BRVφ
R

= BR
dΩ

d lnR
. (3.148)

Since BR does not change with time, the solution of the equation (3.148) is

Bφ(t) = Bφ(0)

[
1 +

BR
Bφ(0)

dΩ

d lnR
t

]
. (3.149)

The presence of radial �eld component leads to a linear growth of Bφ with time in the un-
perturbed disk. However, since the azimuthal �eld component is not present in the dispersion
relation (3.147) and the inclusion of radial �eld component does not change that (the ω fre-
quency is also not explicitly time-dependent), no generality is lost by considering only the
special case BR = 0.
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3.10.2 Analysis of stability limit of perturbations caused by shears

Since Eq. (3.147) is a quadratic relation for the squared scaled angular MRI frequency ω̃2 (and
thus for ω2), it is always a real and continuous function of its parameters in the dispersion
relation. We further investigate the stability of the weakly magnetized disk by conditions in
the neighborhood of the values ω2 = 0 or ω̃2 = −k2

zV
2
Az. In this limit the equation (3.147) is

written as

k2
R

(
k2
zV

2
Az +N2

z

)
− 2kRkzNRNz + k2

z

(
dΩ2

d lnR
+N2

R + k2
zV

2
Az

)
= 0. (3.150)

We regard Eq. (3.150) as a quadratic equation for kR, noting that this equation would not allow
real solutions for kR in case its discriminant D is negative,

D ≡ −
[
k4
zV

4
Az + k2

zV
2
Az

(
N2 +

dΩ2

d lnR

)
+N2

z

dΩ2

d lnR

]
, (3.151)

and thereby assuring stability, since ω2 could not then pass through zero. This requirement of
stability we express as

−D > 0. (3.152)

From the assumption N2
z > 0, the inequality (3.152) holds for all non-vanishing kz by satisfying

dΩ2

dR
≥ 0, (3.153)

which we regard as the criterion of stability. The violation of this criterion leads to instability
for kz < kz, crit. The value kz, crit we obtain from Eq. (3.151) by setting D = 0,

(kz)
2
crit =

1

2V 2
Az


[(

N2 +
dΩ2

d lnR

)2

− 4N2
z

dΩ2

d lnR

]1/2

−
[
N2 +

dΩ2

d lnR

] . (3.154)

If N2
R � N2

z , the critical vertical wavenumber becomes

∣∣ (kz)crit ∣∣ =
1

VAz

∣∣∣∣ dΩ2

d lnR

∣∣∣∣1/2 . (3.155)

Moreover, if the Brunt-Väisälä frequency N2 = 0 or if it is quite negligible (noting that
the square root of the quadratic term (dΩ2/d lnR)2 may become negative), the solution of
Eq. (3.154) becomes (3.155). If N2

z = 0, the criterion of stability is

N2
R +

dΩ2

dR
≥ 0. (3.156)

In case of supersonic rotational velocity (where NR becomes negligible), the relation (3.156)
equals the criterion expressed in Eq. (3.153).
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3.11 Rigid Rotators

Force equilibrium for a mass element δm located in the position r in stellar proximity is given
by the balance of the components of the gravitational and centrifugal forces tangential to the
local magnetic �eld line (Preuss et al. 2004),

(FG + FC) · B = 0 . (3.157)

We may write the expressions for centrifugal force in cylindrical frame and in spherical frame,
respectively, in the form (where the boldface-typed quantities with �hat� are unit vectors)

FC = δmΩ2RR̂, FC = δmΩ2r
[
r̂ − Ω̂

(
r̂ · Ω̂

)]
. (3.158)

Considering the dipole stellar magnetic �eld, we denote the angle between magnetic and rotation
axes as ψ and the azimuthal angle of the magnetic moment vector m as φ. Magnetic dipole
�eld with a magnetic dipole moment m = mm̂ in spherical coordinates is

B(r) =
µ0m

4πr3
[3 (m̂ · r̂) r̂ − m̂] . (3.159)

Inserting Eqs. (3.158) (spherical equation) and (3.159) together with the expression for the
gravitational force FG = −r̂ GM?δm/r

2 in Eq. (3.157) consequently yields (Preuss et al. 2004),[
r̂

(
1− GM?

Ω2r3

)
− Ω̂

(
r̂ · Ω̂

)]
·
[
3 (m̂ · r̂) r̂ − m̂

]
= 0, (3.160)

where (GM?/Ω
2)1/3 = Rco denotes the corotation radius. We distinguish three possible con�g-

urations of distribution of magnetically con�ned circumstellar matter in oblique rotators:

� Aligned rotator where ψ = 0 (m̂ = Ω̂) gives the following equilibrium condition for the
con�ned matter, {

2

[
1−

(
Rco

r

)3
]
− 3

(
r̂ · Ω̂

)2
+ 1

}(
r̂ · Ω̂

)
= 0. (3.161)

Equation (3.161) implies two solutions:

1. cos θ ≡ r̂ · Ω̂ = 0: accumulation of matter in (coinciding magnetic and rotational)
equatorial plane of the star.

2. r̂ · Ω̂ 6= 0, cos2θ = 1− 2

3

(
Rco

r

)3

: matter accumulation in chimney-shaped surfaces

above and below the equatorial plane whose axes coincide with the stellar rotational
axis. This solution only exists for r ≥ (2/3)1/3Rco, the stability tests however show
that the �chimney� solution is unstable while the equatorial solution is stable for
r > Rco.

� Perpendicular rotator, ψ = π/2 (m̂ · Ω̂ = 0) where Eq. (3.160) gives the following equi-
librium, {

2

[
1−

(
Rco

r

)3
]
− 3

(
r̂ · Ω̂

)2
}(

r̂ · m̂
)

= 0. (3.162)

Equation (3.162) again implies two solutions:
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1. cos θ ≡ r̂ · m̂ = 0: the solution corresponds to the equatorial plane, however now
with respect to the magnetic axis.

2. r̂ · m̂ 6= 0, cos2θ =
2

3

[
1−

(
Rco

r

)3
]
: chimney-shaped structure of con�ned matter

that is axisymmetric with respect to the rotation axis of the star. The solution only
exists for r > Rco. The stability analysis in this case shows that both solutions are
unstable near the star (up to 1-2 Rco) while they are stable further out.

� Oblique rotators where the equilibrium condition from Eq. (3.160) gives{[
2

(
1−

(
Rco

r

)3
)
− 3

(
r̂ · Ω̂

)2
]
m̂ + cosψ Ω̂

}
· r̂ = 0. (3.163)

This indicates more complicated structure of the equilibrium regions: in case of small ψ
there forms a disk-like and a chimney- shaped structure (with a disk plane in the magnetic
equatorial plane and with the the chimney axis tilted with respect to the rotation axis)
while for large ψ the chimney shapes become more curved and tilted and the disk becomes
somewhat warped (see (Preuss et al. 2004) for details).

The study of Preuss et al. (2004) presents a formulation of a strong magnetic �eld limit based
on the condition of the balance of forces that are tangential to the �eld lines and maps out
the complex surfaces on which the circumstellar material can accumulate (Townsend & Owocki
2005).

3.11.1 Rigidly rotating magnetosphere (RRM) model

The model of a magnetosphere that is at rest in a corotating reference frame whose basic princi-
ples follow the considerations of Townsend & Owocki (2005): if the magnetic �eld line potential
Ψ(s) exhibits an extremum along the �eld line (where s is the coordinate direction along the �eld
line), so that dΨ/ds ≡ Ψ′ = 0 at some point, then the plasma parcel remains at rest. Whether
the parcel can remain at such an equilibrium point at rest over signi�cant timescales depends
however on the nature of the extremum. At a local maximum where d2Ψ/ds2 ≡ Ψ′′ < 0 the
equilibrium is unstable: small displacements away from the extremal point perpetually grow.
On the other hand, at a local minimum with Ψ′′ > 0, the equilibrium is stable: any small
displacement along the local magnetic �eld line produces a restoring force directed toward the
equilibrium point. Such minima represent the locations for circumstellar matter to accumulate,
it forms a magnetosphere that is at rest in a corotating reference frame.

Comparing the potentials that arise from Eq. 3.157: within the Roche limit (where the
most of the stellar mass is assumed to be concentrated centrally with a spherically symmetric
distribution) the e�ective potential Ψ is in spherical coordinates (r, θ, φ) given by

Ψ(r, θ) = −GM?

r(θ)
− 1

2
Ω2r2(θ) sin2 θ. (3.164)

Using the dimensionless coordinate ξ = r/Rco, Eq. (3.164) becomes

Ψ(ξ) =
GM?

Rco

(
−1

ξ
− 1

2
ξ2 sin2 θ

)
. (3.165)

We introduce the dimensionless potential Ξ, independent of the angular (rotational) velocity Ω:

Ξ(ξ) =
Rco

GM?
Ψ(ξ) = −1

ξ
− 1

2
ξ2 sin2 θ. (3.166)
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In Eq. (3.166) we can identify two regimes: if r is much smaller than the corotation radius
Rco (ξ � 1), the potential Ξ is spherically symmetric and increases outwards. Conversely, if
r greatly exceeds Rco (ξ sin θ � 1), the potential Ξ exhibits the cylindrical symmetry about
the same axis and decreases outwards. In the latter regime the �eld line potential exhibits the
minimum near which circumstellar plasma accumulates.

In a corotating spherical frame with aligned axes Eq. (3.159) becomes

B(r) =
µ0

4π

m

r3

(
2 cos θ r̂ + sin θ θ̂

)
. (3.167)

We obtain the projection Bs of the �eld measured along the �eld line as Bs = (B2
r +B2

θ )1/2 = B,

B =
µ0

4π

m

r3

√
1 + 3 cos2 θ. (3.168)

By integrating the spherical �eld-line identity dr/Br = r dθ/Bθ, where from Eq. (3.167) follows
Br/Bθ = 2 cos θ/sin θ, we obtain the parametric equation

ξ = γ sin2θ, (3.169)

where the parameter γ speci�es the maximum radius Rpeak (θ = π/2) of the �eld line in units
of the corotation radius γ = Rpeak/Rco. Inserting Eq. (3.169) into Eq. (3.166), we obtain the
dimensionless potential of a dipole �eld line in case of aligned dipole con�guration (m̂ · Ω̂ = 1),

Ξ(θ) = − 1

γ sin2θ
− 1

2
γ2 sin6θ, (3.170)

By integrating the �eld-line identity ds/B = r dθ/Bθ, from Eqs. (3.167), (3.169) and (3.168)
we obtain

ds
dθ

= Rcoγ sin θ
√

1 + 3 cos2 θ. (3.171)

For θ = π/2 we use the identity ξ = γ. Di�erentiation Ξ′′ = (θ′)2(d2Ξ/dθ2) + θ′′(dΞ/dθ) gives

d2Ξ

ds2
= Ξ′′ =

1

R2
co

(
− 2

ξ3
+ 3

)
. (3.172)

Since Ξ′′ must be positive in order to constitute an accumulation surface, the inner truncation
radius is thus given by ξin ≈ 0.87 at which Ξ′′ changes from positive (ξ > ξin) to negative
(ξ < ξin) values. Throughout the region in the equatorial plane between this truncation radius
ξin and the corotation radius (ξ = 1) magnetic tension supports material against the net inward
pull caused by gravity that exceeds here the centrifugal force. Beyond this region, when (ξ > 1)
the centrifugal force surpasses gravity and the e�ect of magnetic tension holds the material down
against the net outward pull (Townsend & Owocki 2005). In Keplerian disks the gravitational
and centrifugal force is in exact balance, this is not required in a RRM inasmuch the magnetic
tension can absorb any net resultant force perpendicular to �eld lines.

Hydrostatic strati�cation along the �eld line is governed by the equation of hydrostatic
balance dP/ds = −ρ dΨ/ds where the gas pressure is given by Eq. (1.101). For simplicity we
assume the constant temperature T , by integrating the hydrostatic equilibrium condition we
obtain the density distribution along the �eld line,

ρ(s) = ρm exp
[
−µmu

Ψ(s)−Ψm

kT

]
, (3.173)
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where the subscript m denotes the value at the potential minimum where s = sm. Taylor
expansion of the e�ective potential Ψ(s) about this minimum gives

Ψ(s) = Ψm +
1

2
Ψ′′(s− sm)2 + . . . , (3.174)

where we have used the fact that by the de�nition Ψ′m = 0. In the neighborhood of the minimum
the density distribution Eq. (3.173) may be thus well approximated by

ρ(s) ≈ ρm exp
[
−µmu

Ψ′′(s− sm)2

2kT

]
≈ ρm exp

[
−(s− sm)2

h2
m

]
. (3.175)

The density scale height hm of the RRM (using Eq. (3.166) and Eq. (3.172) that gives Ξ′′ =
3/R2

co for ξ � 1) therefore is

hm =

√
2kT

µmu

1

Ψ′′
=

√
2kT

µmu

Rco

GM?

√
1

Ξ′′
, hm =

√
2kT

3µmuGM?
R3/2
co for r � Rco. (3.176)

Similar vertical strati�cation, H ∼ R3/2, formally applies for Keplerian disks, however, for the
RRM this remains constant even far from the origin (it does not produce the �aring disk). By
integrating Eq. (3.175) over the Gaussian hydrostatic strati�cation, we obtain the relation for
the local surface density σm

σm =

ˆ ∞
−∞

ρ(s) ds ≈ µm ρm
ˆ ∞
−∞

exp
[
−(s− sm)2

h2
m

]
ds, i.e. σm ≈ µm ρm

√
πhm, (3.177)

where µm denotes the projection cosine to the surface normal.
Model of the global distribution of the surface density that is proportional to the accumu-

lation rate of material loaded from the star's radiatively driven wind has been proposed by
Townsend & Owocki (2005): for a dipole �ux-tube bundle intersecting the stellar surface at
r = R? with a projection cosine µ? and having a cross-sectional area dA?, the rate of mass
increase is

ṁ =
2µ?Ṁ

4πR2
?

dA?, (3.178)

where the factor 2 takes into account the mass injection at two distinct footpoints. Considering
the simple case with a single minimum at �eld line coordinate sm where the �ux-tube area is
dAm and the projection cosine to the accumulation surface normal is µm, the corresponding
rate of increase of the surface density (where σ̇m dAm = ṁµm) can be written as

σ̇m = µm
2µ?Ṁ

4πR2
?

dA?
dAm

. (3.179)

Due to the divergence free constraint ∇ ·B = 0 we have the identity dA?B? = dAmBm, whose
substitution into Eq. (3.179) gives

σ̇m = µm
2µ?Ṁ

4πR2
?

Bm
B?

. (3.180)

For a dipole �eld thus the material feeding rate of the disk obviously declines with radius,
according to σ̇m ∼ B ∼ r−3 (cf. Eq. (3.167), see Townsend & Owocki (2005) for further
details).
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3.12 Dynamo E�ect

Dynamo theory describes the process through which a rotating, convecting, and electrically
conducting �uid acts to maintain a magnetic �eld. This theory is used to explain the presence
of anomalously long-lived magnetic �elds in astrophysical bodies. The conductive �uid in the
geodynamo is liquid iron in the outer core, and in the solar dynamo it is an ionized gas in
the transition region between the radiative interior and the di�erentially rotating outer con-
vective zone. Dynamo theory of astrophysical bodies uses magnetohydrodynamic equations to
investigate how the �uid can continuously regenerate the magnetic �eld.

There are three factors necessary for a dynamo to operate:

� An electrically conductive �uid medium

� Kinetic energy provided by rotation of the body

� An internal energy source to drive convective motions within the �uid.

For example, in case of the Earth, the magnetic �eld is induced and constantly maintained by
the convection of liquid iron in the outer core. Rotation in the outer core is supplied by the
Coriolis e�ect caused by the rotation of the Earth. The coriolis force tends to organize �uid
motions and electric currents into columns aligned with the rotation axis. Induction or creation
of magnetic �eld is described by the induction equation (3.50).

3.12.1 Equation of motion in a rotating frame

We now extend the expressions (1.32) - (1.34) derived in Sect. 1.3.1 by adding the terms for
non-inertial (�ctitious) forces in a rotating frame with a �xed axis of rotation that coincides
with the z-axis in a static frame. Denoting the quantities in rotating frame as primed and the
quantities in static (inertial) frame as unprimed (due to �xed rotation axis we have R′ ≡ R for
the magnitudes of cylindrical position vectors), we obtain the vector of velocity

V = V ′ + Ω× R ′, (3.181)

where Ω is the angular velocity of the rotating frame (cf. Sect. A.2.3 in Kurfürst (2017)).
Substituting the velocity V ′ into the Lagrangian L of the free particle in the inertial frame,

L = mV 2/2, (3.182)

and di�erentiating it, we obtain the expression for the acceleration term in the rotating frame,

dV
dt

=
dV ′

dt
+ Ω×

(
Ω× R ′

)
+

dΩ

dt
× R ′ + 2Ω× V ′. (3.183)

The second term in the right-hand side of Eq. (3.183) represents the centrifugal acceleration

that in case of a stationary axisymmetric rotation can be written as

Ω2R′ = V 2
φ /R

′ = V 2
φ /R, (3.184)

where Vφ is the azimuthal (rotation) velocity of the rotating frame point in the distance R from
the axis. The third term in the right-hand side of Eq. (3.183) is the so-called Euler acceleration

that in uniformly rotating frame vanishes. The last term is the Coriolis acceleration that in
case of a stationary axisymmetric rotation is perpendicular to V ′ and can be written as

2ΩV ′ = 2V φV ′/R. (3.185)
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3.12.2 Kinematic dynamo theory

In kinematic dynamo theory the velocity �eld is prescribed, instead of being a dynamic variable.
This method cannot provide the time variable behavior of a fully nonlinear chaotic dynamo but
it is useful in studying how magnetic �eld strength varies with the �ow structure and rotational
speed. Using Maxwell's equations simultaneously with the curl of Ohm's Law, one can derive
what is basically the linear eigenvalue equation for magnetic �elds B which can be done when
assuming that the magnetic �eld is independent from the velocity �eld. One arrives at a critical
magnetic Reynolds number Rm,crit, above which the �ow strength is su�cient to amplify the
imposed magnetic �eld, and below which it decays. The most functional feature of kinematic
dynamo theory is that it can be used to test whether a velocity �eld is or is not capable
of dynamo action. By applying a certain velocity �eld to a small magnetic �eld, it can be
determined through observation whether the magnetic �eld tends to grow or not in reaction to
the applied �ow. If the magnetic �eld does grow, then the system is either capable of dynamo
action or is a dynamo, but if the magnetic �eld does not grow, then it is simply referred to as
non-dynamo.

3.12.3 Nonlinear dynamo theory

The kinematic approximation becomes invalid when the magnetic �eld becomes strong enough
to a�ect the �uid motions. In that case the velocity �eld becomes a�ected by the Lorentz force,
and so the induction equation is no longer linear in the magnetic �eld. In most cases this leads
to a quenching of the amplitude of the dynamo. Such dynamos are sometimes also referred to
as hydromagnetic dynamos.

Virtually all dynamos in astrophysics and geophysics are hydromagnetic dynamos. In fact,
we need numerical approach to simulate fully nonlinear dynamos where a minimum of �ve
following equations are needed: The induction equation in the form (3.50),

∂B

∂t
= ∇× (V × B) + ηm∇2B, (3.186)

Maxwell magnetic �eld constraint (3.3).

∇ · B = 0, (3.187)

We use the simpli�cation given by Boussinesq approximation (see Eq. (3.111) and Sect. 3.10),
which reduces the continuity equation to

∇ · V = 0, (3.188)

in which density variations are ignored except where they are multiplied by the gravitational
acceleration g so that the buoyancy forces can be included. Although this approximation may
not be always strictly valid (for example, in the Earth's core the density variations of order 20%
can occur), it is nevertheless a useful simpli�cation of equations which are di�cult to solve.

Assuming now that we are in the uniformly rotating frame of reference, we write the equation
of motion (3.12), using Eq. (3.183) and omitting the prime notation, as

ρ

[
dV
dt

+ Ω× (Ω× R) + 2Ω× V

]
= −∇ · P + J × B + ρg , (3.189)

where g = −∇Φ is the gravitational acceleration. Finally, we involve a heat transport equation
(1.90), noting that it particularly �ts the Boussinesq approximation (3.188),

dT
dt

= D∇2T + qR, (3.190)
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where D is the thermal di�usivity and the term qR refers to non-conduction heat sources.
Following the de�nition of perturbations in Eqs. (3.84) together with the Boussinesq approx-

imation (3.111) and using the simpli�ed Navier-Stokes equation (1.58), the equation of motion
(3.189) becomes

dV
dt

+ Ω× (Ω× R) + 2Ω× V ≈ ρ1

ρ0
g − 1

ρ0
∇p+ ν∇2V +

1

ρ0
J × B, (3.191)

where ν = η/ρ0 is the kinematic viscosity, ρ1 is the density perturbation that provides buoyancy,
and J is the electric current density.

Multiplying Eq. (3.191) by ρ0V gives the rate of increase of kinetic energy density, ρ0V
2/2,

on the left-hand side. The last term on the right-hand side then is V · (J ×B) = V ·FL, which
represents the local contribution to the kinetic energy due to Lorentz force. However, following
Eqs. (3.15) and (3.16), we obtain

V · FL = − ∂

∂t

(
B2

2µ0

)
, (3.192)

because the last term in the right-hand side of Eq. (3.16) obviously vanishes due to the Maxwell
equation (3.187) and due to the Boussinesq approximation (3.188).

The scalar product of the induction equation (3.186) with B/µ0 gives the rate of increase of
the magnetic energy density, B2/(2µ0), on the left-hand side. The �rst term on the right-hand
side of (3.186) is then B · [∇× (V × B)] /µ0. Following the discussion in Sect. 3.1 and using
Eq. (3.2), we have

1

µ0
B · [∇× (V × B)] = − 1

µ0
B · [∇× E ] =

∂

∂t

(
B2

2µ0

)
(3.193)

Comparing Eqs. (3.192) and (3.193), we see that the term −V · FL = −V · (J ×B) represents
the rate of transformation of kinetic energy to magnetic energy. This has to be non-negative at
least in part of the volume, for the dynamo to produce magnetic �eld.

Equation (3.193) for the rate of conversion of kinetic energy to magnetic energy, is equivalent
to a rate of work (power) done by a Lorentz force FL = J × B on the matter, whose velocity
is V . This work is the result of nonconservative, non-inertial, and non-magnetic forces acting
on the �uid (particularly of the Coriolis force in case of the geomagnetic �eld).

A number of non-dimensional parameters can be found from the previous equations. The
Ekman number, E = ν/(2ΩL2 cos θ), where L is a characteristic length scale of a phenomenon
and θ is the colatitude, measures the relative importance of the viscous force to the Coriolis
force. The Prandtl number Pr = ν/D and the magnetic Prandtl number Pm = ν/ηm, where L
is a characteristic length scale of a phenomenon and θ is the colatitude, measures the relative
importance of the viscous force to the Coriolis force. Particularly useful in the geophysics is
the Elsasser number, Λ, that represents the ratio of the Lorentz force to the Coriolis force,
Λ = JB/(2ρΩV ) = σB2/(2ρΩ), where σ is the conductivity of the �uid, B is the magnetic �eld
induction, ρ is the mass density, and Ω is the angular velocity of rotation of the body.



Chapter 4

Radiative Transfer

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): Electromagnetic radiation can be decom-
posed into a spectrum that corresponds to waves of various wavelengths and frequencies, related
by νλ = c, where ν is the frequency, λ is the wavelength, and c ≈ 3× 108 ms−1 is the velocity
of light in vacuum (for waves not traveling in a vacuum, c is replaced by the velocity of the
wave in the medium). We divide the spectrum into various regions. The frequency dependent
energy E = hν and temperature T = E/k, where h is Planck constant ≈ 6.625× 10−34 J s, and
k is Boltzmann constant ≈ 1.38× 10−23 JK−1.

4.1 Radiative Flux

4.1.1 Macroscopic Description of the Propagation of Radiation

When the scale of a system greatly exceeds the wavelength of radiation (e.g., light shining
through a keyhole), we can consider radiation to travel in straight lines (rays) in free space or
homogeneous media - from this fact a transfer theory can be built. One of the most essential
concepts is that of energy �ux: consider an element of area dA exposed to radiation for a time
dt. The amount of energy passing through the element should be proportional to dA dt, and we
quantify it as F dA dt where the energy �ux F is measured in J s−1 m−2. Note that F depends
on the orientation of the element.

4.1.2 Flux from an Isotropic Source - the Inverse Square Law

A source of radiation is called isotropic if it emits energy equally in all directions. As an example
we take a spherically symmetric, isolated star. If we put imaginary spherical surfaces S1, and S
at radii r1 and r, respectively, about the source, conservation of energy dictates the total energy
passing through S1 must be the same as that passing through S (we assume for simplicity no
energy losses or gains between S1, and S). Regarding a �xed sphere S1,

F (r1) 4πr2
1 = F (r) 4πr2, so that F (r) =

const.
r2

. (4.1)
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normal

ray

dA

dΩ

Figure 4.1: Geometry for normally incident rays.

4.2 The Speci�c Intensity and its Moments

4.2.1 Speci�c Intensity

The �ux measures an amount of the energy carried by all rays passing through a given area. A
more detailed description of radiation is to carry energy by individual rays: Construct an area
dA normal to the direction of the given ray and consider all rays passing through dA directed
within a solid angle dΩ of the given ray (see Fig. 4.1). The energy crossing dA in time dt and
in frequency range dν is de�ned by

dE = Iν dA dt dΩ dν, (4.2)

where Iν(ν,Ω) [J s−1 m−2 ster−1 Hz−1] is the speci�c intensity or brightness. Note that Iν de-
pends on position, on direction, and on frequency.

4.2.2 Net Flux and Momentum Flux

Suppose a radiation �eld (rays in all directions) and construct a small area element dA at
arbitrary orientation n (see Fig. 4.2). The di�erential amount of �ux (reduced according to the
lowered e�ective area dA cos θ) from the solid angle dΩ is

dFν
(
J s−1 m−2 Hz−1

)
= Iν cos θ dΩ. (4.3)

The net �ux Fν(n) in the direction n is

Fν =

ˆ
Ω
Iν cos θ dΩ. (4.4)

If Iν is an isotropic (angle independent) radiation �eld, then Fν = 0 because
´

Ω cos θ dΩ = 0.
In other words, the same amount of energy crosses dA in the n direction as in the −n direction.

To get the �ux of momentum normal to dA (noting that momentum per unit time per unit
area = pressure) we involve the photon momentum E/c. Then the di�erential momentum �ux

along the ray at angle θ is dFν/c. The component of momentum �ux normal to dA then is
dFν cos θ/c. Integration gives the monochromatic radiation pressure

pν
(
kg s−2 m−1 Hz−1

)
=

1

c

ˆ
Ω
Iν cos2 θ dΩ. (4.5)
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Figure 4.2: Geometry for obliquely incident rays.

Fν and pν are moments of the intensity Iν (we multiply by powers of cos θ and integrate over
dΩ). Integrating over frequency we obtain the total quantities,

F
(
J s−1 m−2

)
=

ˆ
ν
Fν dν, (4.6)

p
(
kg s−2 m−1

)
=

ˆ
ν
pν dν, (4.7)

I
(
J s−1 m−2 ster−1

)
=

ˆ
ν
Iν dν. (4.8)

4.2.3 Radiative Energy Density

The speci�c energy density uν is de�ned as the energy per unit volume per unit frequency range.
We �rst consider the energy density per unit solid angle uν(Ω) by dE = uν(Ω) dV dΩ dν, where
dV is a volume element. Energy in a volume c dA dt of a cylinder about a ray of length ct is

dE = uν(Ω) dAc dt dΩ dν. (4.9)

Due to radiation velocity c, all the radiation escapes cylinder in time dt. Equating (4.2) and
(4.9) gives

uν(Ω) =
Iν
c
. (4.10)

Integration over solid angle gives the mean intensity Jν :

uν =

ˆ
Ω
uν(Ω) dΩ =

1

c

ˆ
Ω
Iν dΩ =

4π

c
Jν , Jν =

1

4π

ˆ
Ω
Iν dΩ. (4.11)

The total radiation density (J m−3) is obtained by integrating uν over all frequencies,

u =

ˆ
ν
uν dν =

4π

c

ˆ
ν
Jν dν. (4.12)
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4.2.4 Radiation Pressure in an Enclosure Containing an Isotropic Radiation
Field

Consider an enclosure with re�ecting walls containing an isotropic radiation �eld. Each photon
transfers twice its normal component of momentum on re�ecting. We have the relation

pν =
2

c

ˆ
Ω
Iν cos2 θ dΩ. (4.13)

This agrees with our previous formula (4.5), since now we integrate over only 2π steradians.
From isotropy, Iν = Jν , so

p =
2

c

ˆ
ν
Jν dν

ˆ
Ω

cos2 θ dΩ = u

ˆ π/2

0
cos2 θ sin θ dθ =

1

3
u. (4.14)

The radiation pressure of an isotropic �eld is just one-third of the energy density. This result
is essential for the thermodynamics of blackbody radiation.

4.2.5 Constancy of Speci�c Intensity Along Rays in Free Space

Consider a ray L with two points along the ray, and areas dA1, dA2, normal to the ray at these
points. Due to energy conservation we can express the energy carried by the set of rays passing
through both area elements dA1, dA2, equivalently as (cf. Eq. (4.2)):

dE1 = Iν1 dA1 dt dΩ1 dν1 = dE2 = Iν2 dA2 dt dΩ2 dν2, (4.15)

where dΩ1 is the solid angle subtended by dA2 at dA1 and vice versa. Since dΩ1 = dA2/R
2,

dΩ2 = dA1/R
2, and dν1 = dν2 in identical ray, we have a constant intensity along a ray,

Iν1 = Iν2 . (4.16)

We obtain the above result also from the di�erential relation dIν/ds = 0, where ds is an element
of length along the ray.

4.2.6 Proof of the Inverse Square Law for a Uniformly Bright Sphere

To show the connection between the constant speci�c intensity and the inverse square law, let
us calculate the �ux at an arbitrary distance from a radiating sphere of uniform brightness B.
At an arbitrary point P outside the sphere, the speci�c intensity is B if the ray intersects the
radiating sphere and zero otherwise. The corresponding �ux is

F =

ˆ
Ω
I cos θ dΩ = B

ˆ 2π

0
dφ
ˆ θc

0
cos θ sin θ dθ = πB sin2 θc = πB

(
R

r

)2

, (4.17)

where R is radius of the radiating sphere, r is distance of P to the center of the sphere, and
θc = asin (R/r) is the angle at which a ray from P is tangent to the sphere. The speci�c
intensity is constant but the solid angle subtended by the given object decreases as the inverse
square law. The �ux at a surface of uniform brightness B is obtained by setting r = R:

F = πB. (4.18)
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4.3 Radiative Transfer

If a ray passes through matter, energy may be added or subtracted from it by emission or
absorption, and the speci�c intensity does not remain constant in general. Scattering of photons
into and out of the beam also a�ects the intensity.

4.3.1 Emission

The coe�cient of spontaneous emission j is de�ned as the energy emitted per unit time per
unit solid angle and per unit volume:

dE = j dV dΩ dt = jν dV dΩ dt dν, (4.19)

where dimension of monochromatic emission coe�cient jν is J m−3 s−1 ster−1 Hz−1.
The emission coe�cient depends in general on the direction of emission. For an isotropic

emitter or for a superposition of randomly oriented emitters, we can write

jν =
1

4π
Pν , (4.20)

where Pν is the radiated power per unit volume per unit frequency. Sometimes the spontaneous
emission is de�ned by the (angle integrated) emissivity εν de�ned as the energy emitted spon-
taneously per unit frequency per unit time per unit mass, with units of J kg−1 s−1 ster−1 Hz−1.
In case of isotropic emission

dE = εν ρ dV dt dν
dΩ

4π
, (4.21)

where ρ is the mass density of the emitting medium. Comparing Eqs. (4.19) and (4.21) gives
the relation between jν and εν :

jν =
εν ρ

4π
(4.22)

for isotropic emission. Traveling a distance ds, a beam of cross section dA passes through a
volume dV = dA ds, and, combining Eqs. (4.15) and (4.19), the intensity added to the beam
by spontaneous emission is:

dIν = jν ds. (4.23)

4.3.2 Absorption

We de�ne the absorption coe�cient αν (m−1) as a measure of loss of intensity in a beam traveling
a distance ds (αν is positive if a beam loses energy):

dIν = −ανIν ds. (4.24)

This phenomenological law can be understood microscopically for particles with number density
n (number of particles per unit volume) where each represents an e�ective absorbing area, or
cross section, of magnitude σν (m2). These absorbers are assumed to be randomly distributed.
The number of absorbers in the volume element is n dV = n dA ds and the total absorbing area
equals nσν dA ds. The energy absorbed out of the beam within solid angle dΩ is

−dIν dA dΩ dt dν = Iν (nσν dA ds) dΩ dt dν, thus dIν = −nσνIν ds. (4.25)
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This is identical to the phenomenological law (4.24), where

αν = nσν . (4.26)

Often αν is introduced as

αν = ρκν , (4.27)

where ρ is the mass density and κν (m2 kg−1) is the mass absorption coe�cient or the opacity
coe�cient.

There are some constraints for validity of the microscopic picture: The most important are

1. the linear scale of the cross section must be small in comparison to the mean inter-particle
distance d, thus σ1/2

ν � d ∼ n−1/3 and thus αν d� 1,

2. the absorbers are independent and randomly distributed.

Fortunately are these conditions almost always met for astrophysical problems.
We consider �absorption� to include both �true absorption� and stimulated emission, because

both are proportional to the intensity of the incoming beam (unlike spontaneous emission).
Thus the net absorption may be positive or negative, depending on whether �true absorption�
or stimulated emission dominates. Although this combination may seem arti�cial, it will prove
convenient and obviate the need for a quantum mechanical addition to our classical formulas.

4.3.3 The Radiative Transfer Equation (RTE)

We can now include the e�ects of emission and absorption into a single equation for a speci�c
intensity along a ray,

dIν
ds

= jν − ανIν , (4.28)

RTE incorporates most of the macroscopic aspects of radiation, relating them to the two co-
e�cients αν and jν . A task is to �nd forms for these coe�cients corresponding to particular
physical processes.

Once αν and jν are known, it is relatively easy to solve RTE for the speci�c intensity Iν .
Scattering however complicates the solution, because emission into dΩ depends on Iν in dΩ′;
RTE thus becomes an integrodi�erential equation solved partly by numerical techniques.

We introduce a formal solution of the complete RTE showing two simple limiting cases:

� Emission only: αν = 0. In this case

dIν
ds

= jν , so that Iν(s) = Iν(s0) +

ˆ s

s0

jν(s′) ds′. (4.29)

The increase in brightness is thus equal to the emission coe�cient integrated along the

line of sight.

� Absorption only: jν = 0. In this case

dIν
ds

= −ανIν , so that Iν(s) = Iν(s0) exp

[
−
ˆ s

s0

αν(s′) ds′
]
. (4.30)

The brightness decreases along the ray by the exponential of the absorption coe�cient

integrated along the line of sight.
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4.3.4 Optical Depth and Source Function

RTE takes a particularly simple form if, instead of s, we use the optical depth τν , de�ned as

dτν = αν ds or τν =

ˆ s

s0

αν(s′) ds′. (4.31)

The optical depth is measured along the path of a traveling ray; occasionally, τν is measured
backward along the ray and a minus sign appears in (4.31). In plane-parallel media, a standard
optical depth is sometimes used to measure distance normal to the surface, so that ds is replaced
by dz and τν = τν(z). The zero point point s0 (or z0) for the optical depth scale is arbitrary.

A medium is said to be optically thick or opaque when τν , integrated along a typical path,
satis�es τν > 1. When τν < 1, the medium is said to be optically thin or transparent. In other
words, in an optically thin medium the typical photon of frequency ν can pass through the
medium without being absorbed, whereas in an optically thick medium the photon of frequency
ν cannot traverse the entire medium without being absorbed.

RTE now can be written, after dividing by αν ,

dIν
dτν

= Sν − Iν , (4.32)

where the source function Sν is de�ned as:

Sν ≡
jν
αν
. (4.33)

The source function Sν is often a simpler physical quantity than jν . Also, the optical depth
scale τν reveals more clearly the important intervals along a ray than αν . The variables τν and
Sν are therefore often used instead of αν and jν .

We now formally solve RTE by regarding all quantities as functions of τν instead of s.
Solving Eq. (4.32) as a standard non-homogeneous 1st order ODE, we obtain

Iν(τν) = Iν(0) e−τν +

ˆ τν

0
e−(τν−τ ′ν)Sν (τ ′ν) dτ ′ν . (4.34)

The above equation is interpreted as the sum of two terms: the initial intensity diminished
by absorption plus the integrated source diminished by absorption. As an example consider a
constant source function Sν , then Eq. (4.34) becomes

Iν(τν) = Iν(0) e−τν + Sν
(
1− e−τν

)
= Sν + e−τν [Iν(0)− Sν ] . (4.35)

As τν →∞, in Eq. (4.35) Iν → Sν . But, when scattering is present, Sν contains a contribution
from Iν , so that we cannot specify Sν a priori.

We see from RTE that if Iν > Sν , then dIν/dτν < 0 and Iν tends to decrease along the ray.
If Iν < Sν , then Iν tends to increase along the ray, thus Iν tries to approach Sν . In case of a
su�cient optical depth, Iν does approach Sν , and RTE describes a �relaxation� process.

4.3.5 Mean Free Path

describes absorption of radiation in an equivalent way, and is de�ned as the average distance
that a photon can travel without being absorbed. It may be easily related to the absorption
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coe�cient of a homogeneous material. From the absorption law (4.30), the probability of a
photon traveling at least an optical depth τν is e−τν . The mean traveled optical depth is:

〈τν〉 =

ˆ ∞
0

τν e−τν dτν = 1. (4.36)

The mean distance traveled in a homogeneous medium is de�ned as the mean free path λν and
is determined by 〈τν〉 = ανλν = 1 or

λν = α−1
ν =

1

nσν
. (4.37)

The mean free path λν is the inverted value of the absorption coe�cient for homogeneous
material. We also de�ne a local mean path at a point in an inhomogeneous material as an
equivalent to the mean free path of the photon in a homogeneous region of the same properties.

4.3.6 Radiation Force

Radiation exerts a force on the absorbing medium, because radiation carries momentum. We
de�ne a radiation �ux vector

F ν =

ˆ
Iν n dΩ, (4.38)

where n is a unit vector along the direction of the ray. Since a photon momentum is E/c, the
vector of absorbed momentum per unit area per unit time per unit path length is

F =
1

c

ˆ
αν F ν dν. (4.39)

Since dA ds = dV , F is the force density exerted on the medium by the radiation �eld. The
speci�c force (per unit mass) is f = F/ρ or

f =
1

c

ˆ
κν F ν dν. (4.40)

Equations (4.39) and (4.40) are simpli�ed because they assume the isotropic absorption coef-
�cient. They also assume no momentum imparted by emission; it is true only for isotropic
emission.

4.4 Thermal Radiation

Thermal radiation is a radiation emitted by matter in thermal equilibrium (TE).

4.4.1 Blackbody Radiation

We �rst investigate the blackbody radiation, which is in TE by de�nition. Consider an enclosure
at temperature T and do not let radiation in or out until TE has been achieved. Following
general thermodynamic arguments, we can derive several important properties of blackbody
radiation.

Since photons are massless, they can be created and destroyed in arbitrary number by
the walls of the container (assuming negligible self-interaction between photons). There is no
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conservation law of photon number (unlike baryon number), we expect that the number of
photons will adjust itself in equilibrium at temperature T .

Iν is independent of the properties of the enclosure and depends only on the temperature.
To prove this, we connect the enclosure to another enclosure of arbitrary shape and place a
�lter between the two, which passes only a single particular frequency ν. If Iν 6= I ′ν , energy
will �ow between the two enclosures. Since these are at the same temperature, this violates the
second law of thermodynamics. Therefore, we have the relation

Iν = (universal function of T and ν) ≡ Bν(T ). (4.41)

Iν must be independent of the shape of the enclosure, this implies that it is also isotropic,
Iν 6= Iν(Ω). The function Bν(T ) is called the Planck function.

4.4.2 Kirchho�`s Law for Thermal Emission

Consider an element of some thermally emitting material at temperature T , its emission depends
on its temperature and internal properties. Put this into a blackbody enclosure at the same
temperature T . Let the source function of the material be Sν . If Sν > Bν , then Iν > Bν , and
vice versa (cf. the discussion after Eq. (4.35)). But the new con�guration does not a�ect the
radiation, since it also a blackbody enclosure at temperature T . We have

Sν = Bν(T ), jν = ανBν(T ). (4.42)

Equation (4.42) is the Kirchho�'s law. It relates αν and jν to the temperature T of the material.
RTE for thermal radiation is (cf. Eq. (4.28)),

dIν
ds

= ανBν(T )− ανIν or
dIν
dτν

= Bν(T )− Iν . (4.43)

Since Sν = Bν throughout a blackbody enclosure, we also have Iν = Bν . Blackbody radiation
is homogeneous and isotropic, p = u/3.

We note the distinction between blackbody radiation, where Iν = Bν , and thermal radiation,
where Sν = Bν . Thermal radiation becomes blackbody only for optically thick media.

4.4.3 Thermodynamics of Blackbody Radiation

Blackbody radiation, like any system in TE, can be treated by thermodynamic methods. Con-
sider a blackbody enclosure with a piston, so that work may be done on, or extracted from the
radiation. From the �rst and second law of thermodynamics we have

dQ = dU + p dV, dS =
dQ
T
, (4.44)

where Q is heat, U is internal energy, and S is entropy. But U = uV , p = u/3, and u depends
only on T , since u = (4π/c)

´
Jν dν where Jν = Bν(T ). We have

dS =
V

T

du
dT

dT +
u

T
dV +

1

3

u

T
dV =

V

T

du
dT

dT +
4

3

u

T
dV, (4.45)

where dS is a total di�erential. Eq. (4.45) gives(
∂S

∂T

)
V

=
V

T

du
dT

and
(
∂S

∂V

)
T

=
4u

3T
. (4.46)
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Di�erentiating again Eq. (4.46), we obtain

∂2S

∂T∂V
=

1

T

du
dT

=
4

3T

(
du
dT
− u

T

)
, (4.47)

giving

du
dT

=
4u

T
,

du
u

= 4
dT
T
, lnu = ln

(
aT 4

)
, (4.48)

where ln a is a constant of integration. We obtain the Stefan-Boltzmann law

u(T ) = aT 4. (4.49)

This may be related to the Planck function, Iν = Jν for isotropic radiation (cf. Eq. (4.11)),

u =
4π

c

ˆ
Bν(T ) dν =

4π

c
B(T ), (4.50)

where the integrated Planck function is

B(T ) =
ac

4π
T 4. (4.51)

The emergent �ux from an isotropically emitting surface is π× brightness (see Eq. (4.18)),
which gives another form of the Stefan-Boltzmann law,

F =

ˆ
Fν dν = π

ˆ
Bν dν = πB(T ), F = σT 4, (4.52)

where σ ≡ ac/4 ≡ 2π5k4/(15c2h3) ≈ 5.67 × 10−8 J s−1 m−2 K−4 is the Stefan-Boltzmann con-

stant and a ≡ 4σ/c ≡ 8π5k4/(15c3h3) ≈ 7.56 × 10−16 Jm−3 K−4 is the radiation (or radiation
density) constant. The constants a and σ cannot be determined by macroscopic thermody-
namic arguments, (they are derived below). Combining Eqs. (4.46) and (4.49), the entropy S
of blackbody radiation is

S =
4

3
aT 3V (4.53)

and the adiabatic expansion law (S = const. and p = u/3) for blackbody radiation is

TV 1/3 = const. or pV 4/3 = const.. (4.54)

Equations (4.54) give the adiabatic law pV γ = const. with γ = 4/3.

4.4.4 The Planck Spectrum

We now derive the Planck function in two steps: First, we quantify the density of photon states
in a blackbody enclosure; second we evaluate the average energy per photon state. Consider a
photon of frequency ν propagating in direction n inside a box. The wave vector of the photon
is k = (2π/λ)n = (2πν/c)n. Each dimension of the box, Lx, Ly, Lz � λ, the photon can be
represented by a standing wave. The number of nodes in the wave in each direction i = x, y, z
is ni = kiLi/(2π). If ni � 1, the number of node changes in a wave number interval is

∆ni =
Li∆ki

2π
. (4.55)
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The number of states in the three-dimensional wavevector element ∆kx∆ky∆kz = d3k is

∆N = ∆nx∆ny∆nz =
LxLyLz d3k

(2π)3
. (4.56)

Using LxLyLz = V (the volume of the enclosure) and using two independent photon po-
larizations (two states per wave vector k), the number of states per unit volume, per unit
three-dimensional wavenumber, is 2/(2π)3. In isotropic case

d3k = k2 dk dΩ =
(2π)3ν2 dν dΩ

c3
(4.57)

and the density of states (the number of states per solid angle per volume per frequency) is

ρstates =
2ν2

c3
. (4.58)

What is the average energy of each state? Each photon of frequency ν has energy hν, so we
ask what is the average energy of the state with frequency ν. Each state contains n photons of
energy hν, the total energy may be En = nhν. The probability of a state with En ∼ e−βEn ,
where β = (kT )−1, k is the Boltzmann constant. The average energy is,

〈E〉 =

∞∑
n=0

En e−βEn

∞∑
n=0

e−βEn
= − ∂

∂β
ln

( ∞∑
n=0

e−βEn
)

(4.59)

and the sum of a geometric series gives,

∞∑
n=0

e−βEn =
∞∑
n=0

e−nhνβ =
(

1− e−βhν
)−1

. (4.60)

We have the result:

〈E〉 = − ∂

∂β

[
ln
(

1− e−βhν
)−1

]
=

hν e−βhν

1− e−βhν
=

hν

eβhν − 1
(4.61)

which states that the average number nν (the �occupation number�) is

nν =
(
eβhν − 1

)−1
. (4.62)

Equation (4.61) is the Bose-Einstein statistics with an in�nite number of particles (chemical
potential µ = 0). The energy per solid angle per volume per frequency is the product of 〈E〉
and ρstates (Eq. (4.58)). This can also be written in terms of uν(Ω) (see Eqs. (4.9) and (4.10)).
We have

uν(Ω) dV dΩ dν =
2ν2

c3

hν

eβhν − 1
dV dΩ dν, so that uν(Ω) =

2h

c3

ν3

eβhν − 1
. (4.63)

Equation (4.10) relates uν(Ω) and Iν . Now we have Iν = Bν , and expressing Bν(T ) as
Bλ(T ) (Bν dν = Bλ dλ), we have the Planck law,

Bν(T ) =
2h

c2

ν3

eβhν − 1
, Bλ(T ) =

2hc2/λ5

eβhc/λ − 1
. (4.64)
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4.4.5 Properties of the Planck Law

We now describe basic properties of this law:

The Rayleigh-Jeans Law, hν � kT :

We expand the exponential,

eβhν − 1 = βhν + . . . so that IRJν (T ) =
2ν2

c2
kT. (4.65)

This result does not contain Planck constant. The Rayleigh-Jeans law applies at low frequencies
(in the radio region). If Eq. (4.65) is applied to all frequencies, the total amount of energy
∝
´
jν dν would diverge. It is known as the ultraviolet catastrophe. This indicates that for

hν � kT , the quantum nature of photons must be taken into account.

The Wien Law, hν � kT :

In this limit the unity term in the denominator of Planck law can be dropped and we have:

IWν (T ) =
2hν3

c2
e−βhν . (4.66)

The monochromatic brightness of a blackbody decreases very rapidly with frequency once the
maximum is reached.

Monotonicity with Temperature:

The blackbody curve with higher temperature lies entirely above the one with lower tempera-
ture. To prove this we note that

∂Bν(T )

∂T
=

2h2ν4

c2kT 2

eβhν

(eβhν − 1)
2 (4.67)

is positive. At any frequency the increasing temperature leads to increase of Bν(T ). Note that
B → 0 as T → 0 and B →∞ as T →∞.

Wien Displacement Law:

The frequency νmax at which the peak of Bν(T ) occurs is

∂Bν(T )

∂ν

∣∣∣∣
ν=νmax

= 0, so that hνmax ≈ 2.82kT or
νmax

T
≈ 5.88× 1010 HzK−1. (4.68)

The peak frequency of the blackbody law shifts linearly with temperature. Similarly, a wave-
length λmax at which the maximum of Bλ(T ) occurs can be found by

∂Bλ(T )

∂λ

∣∣∣∣
λ=λmax

= 0, so that λmaxT ≈ 2.9× 10−3 mK. (4.69)

Eqs. (4.68) and (4.69) are known as the Wien displacement law.
The peaks of Bν and Bλ given by Eqs. (4.68) and (4.69) however do not occur at the same

points in wavelength or frequency, νmaxλmax 6= c. For example, if T = 7300K the peak of Bν is
at λ ≈ 7000Å while the peak of Bλ is at λ ≈ 4000Å. The Wien displacement characterizes the
frequency range for which the Rayleigh-Jeans law is valid, ν � νmax. Similarly for the Wien
law, ν � νmax.
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4.4.6 Characteristic Temperatures Related to Planck Spectrum

Brightness Temperature:

We may characterize the speci�c intensity (brightness) at a certain frequency by setting it equal
to the corresponding blackbody temperature, that is, for any value Iν we de�ne Tb(ν) by

Iν = Bν(Tb). (4.70)

Tb is the brightness temperature. This way of specifying brightness is closely connected with the
physical properties of the emitter, and has the dimension (K) instead of (J m−2 s−1 Hz−1 ster−1).
This is used mainly in radio astronomy (the Rayleigh-Jeans law domain), where for hν � kT :

Iν =
2ν2

c2
kTb. (4.71)

RTE for thermal emission takes a particularly simple form in terms of brightness temperature
in the Rayleigh-Jeans limit (cf. Eq. (4.43))

∂Tb
∂τν

= −Tb + T. (4.72)

where T is the temperature of the material. For a constant T we have

Tb = Tb(0) e−τν + T
(
1− e−τν

)
, hν � kT. (4.73)

If τν � 1, Tb → T . We also note that, in general, the brightness temperature is a function of ν,
only if the source is blackbody, Tb(ν) = Tb. In the Wien region, where hν � kT , the concept
of brightness temperature is not so useful because of the rapid decrease of Bν with ν and due
to impossibility to formulate RTE linear in the brightness temperature.

Color Temperature:

A spectrum has often more or less blackbody pro�le, but not necessarily the proper absolute
value. For example, by measuring Fν from an unknown source we cannot quantify Iν unless we
know the distance to the source and its size. By �tting the measured data to a blackbody curve
without regard to vertical scale, we obtain a color temperature Tc. Often the ��tting� procedure
is merely an estimate of the peak of the spectrum and applying Wien's displacement law to �nd
a temperature. The color temperature Tc will correctly give the temperature of a blackbody
source of unknown absolute size. Tc will also give the temperature of a thermal emitter that
is optically thin, providing that the optical thickness is fairly constant for frequencies near
the peak. In this case the brightness temperature Tb will be less than the temperature of the
emitter, since the blackbody spectrum gives the maximum attainable intensity of a thermal
emitter at temperature T .

E�ective Temperature:

The e�ective temperature Te� of a source is derived from the total amount of radiated �ux,
integrated over all frequencies. We de�ne Te� by equating the actual �ux F to the �ux of a
blackbody:

F =

ˆ
Iν cos θ dν dΩ ≡ σT 4

e�. (4.74)

Note that both Te� and Tb depend on the absolute value of the source intensity, but Tc depends
only on the shape of the observed spectrum.
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4.5 The Einstein Coe�cients

4.5.1 De�nition of Coe�cients

From a Kirchho�'s law, jν = ανBν , must clearly imply a relationship between emission and
absorption at a microscopic level. This relationship was �rst discovered by Einstein who con-
sidered the case of two discrete energy levels: the �rst of energy E with statistical weight g1,
the second of energy E + hν0 with statistical weight g2. A transition from 1 to 2 occurs due to
absorption of a photon of energy hν0. Similarly, a transition from 2 to 1 occurs when a photon
is emitted. We identify three processes:

Spontaneous Emission:

occurs when the system drops from level 2 to level 1 by emitting a photon; it occurs even in
the absence of a radiation �eld. We de�ne the Einstein A-coe�cient by

A21 = transition probability per unit time for spontaneous emission (s−1). (4.75)

Absorption:

A transition from level 1 to level 2 occurs due absorption of a photon of energy hν0. Since we
do not assume any self-interaction within the radiation �eld, we expect the probability of this
process per unit time will be proportional to the density of photons (to the mean intensity) at
frequency ν0. However, the energy di�erence between the two levels is not in�nitely sharp but
is described by a line-pro�le function φ(ν), which is peaked at ν = ν0 and which is normalized
by a convention

ˆ ∞
0

φ(ν) dν = 1. (4.76)

This line pro�le function describes the relative e�ectiveness of frequencies in the neighborhood
of ν0 for causing transitions. Following these arguments, we write

B12J̄ = transition probability per unit time for absorption, (4.77)

where

J̄ =

ˆ ∞
0

Jν φ(ν) dν = 1. (4.78)

The constant of proportionality B12 is the Einstein B-coe�cient.

Stimulated Emission:

Einstein found that there was yet another process required to derive Planck law, that was
proportional to J̄ and caused emission of a photon. It was de�ned:

B21J̄ = transition probability per unit time for stimulated emission, (4.79)

where B21 is another Einstein B-coe�cient.
When Jν changes slowly over the width ∆ν of the line, φ(ν) behaves like a δ−function, and

the probabilities per unit time for absorption and stimulated emission become simply B12Jν0 ,
and B21Jν0 , respectively. To de�ne the Einstein B-coe�cients, there is often used the energy
density uν instead of Jν , which di�ers in value by c/4π (cf. Eq. (4.11)).
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4.5.2 Relations between Einstein Coe�cients

In thermodynamic equilibrium (TE) the number of transitions per unit time per unit volume
out of state 1 precisely equals the number of transitions per unit time per unit volume into
state 1. Let n1 and n2 be the number densities of atoms in levels 1 and 2, respectively, then

n1B12J̄ = n2A21 + n2B21J̄ . (4.80)

Solving for J̄ from Eq. (4.80):

J̄ =
A21

B21

(
n1

n2

B12

B21
− 1

)−1

. (4.81)

Since the ratio of n1 to n2 in TE is

n1

n2
=

g1 e−βE

g2 e−β(E+hν0)
=
g1

g2
eβhν0 , then J̄ =

A21

B21

(
g1

g2

B12

B21
eβhν0 − 1

)−1

. (4.82)

In TE Jν = Bν , and since Bν varies slowly on the scale of ∆ν, this implies J̄ = Bν . For
Eq. (4.82) to equal the Planck law at all temperatures, we must have the following relations:

g1B12 = g2B21, A21 =
2hν3

c2
B21. (4.83)

Equations (4.83) connect atomic properties and have no reference (unlike Kirhho�'s law) to the
temperature T , they must therefore hold whether or not are the atoms in TE. Equations (4.83)
represent what is generally known as detailed balance relations that connect any microscopic
process and its inverse process. These Einstein relations are the extensions of Kirchho�'s law
to include the non-thermal emission that occurs when the matter is not in TE. If we determine
any one of the coe�cients A21, B21, or B12, these relations allow us to determine the other two.

Einstein included the process of stimulated emission, because without it he could not get
Planck law, but only Wien law, which was known to be incorrect. Why we obtain the Wien
law when stimulated emission is neglected? The Wien law represents the Planck spectrum
when hν � kT , but in this case the level 2 is very sparsely populated relative to level 1,
n2 � n1, and the stimulated emission is unimportant compared to absorption (Eq. (4.80)).
A property of stimulated emission that is not clear from the preceding discussion is that the
emitted photon has precisely the same direction and frequency (is precisely coherent) as the
photon that stimulated the emission.

4.5.3 Absorption and Emission Coe�cients in Terms of Einstein Coe�cients

To obtain the emission coe�cient jν , we must make some assumption about the frequency
distribution of the emitted radiation during a spontaneous transition from level 2 to level 1. The
simplest assumption is that this emission is distributed in accordance with the same line pro�le
function φν that describes absorption (this assumption is very often a good one in astrophysics).
The amount of energy emitted in volume dV , solid angle dΩ, frequency range dν, and time
dt, is jν dV dΩ dν dt. Since the energy contribution of each atom is hν for each transition,
distributed over 4π solid angle, this may also be expressed as (hν0/4π)φ(ν)n2A21 dV dΩ dν dt,
so that the emission coe�cient is

jν =
hν

4π
n2A21φ(ν). (4.84)
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To obtain the absorption coe�cient αν , we �rst note from Eqs. (4.77) and (4.78) that the
total energy absorbed in time dt and volume dV is

dt dV (hν0/4π)n1B12

ˆ
dΩ

ˆ
φ(ν)Iν dν. (4.85)

The energy absorbed out of a beam in a frequency range dν, solid angle dΩ, time dt, and
volume dV , is

dt dV dΩ dν
hν0

4π
n1B12 φ(ν)Iν . (4.86)

The volume element dV = dA ds, and using Eqs. (4.2) and (4.24), we have the absorption
coe�cient (uncorrected for stimulated emission):

αν =
hν

4π
n1B12 φ(ν). (4.87)

To express the stimulated emission, since it is proportional to the intensity and a�ects
only the photons along the given beam, in close analogy to the process of absorption, we
treat stimulated emission as negative absorption and include its e�ect through the absorption
coe�cient. These two processes always occur together, analogously to reasons that led to
Eq. (4.87) we �nd the contribution of stimulated emission to the absorption coe�cient,

αν =
hν

4π
φ(ν) (n1B12 − n2B21) . (4.88)

This quantity will always be meant when speaking of the absorption coe�cient. The form given
in Eq. (4.87) will be called the absorption coe�cient uncorrected for stimulated emission.

It is now possible to write RTE (4.28) in terms of the Einstein coe�cients,

dIν
ds

=
hν

4π
n2A21φ(ν)− hν

4π
φ(ν) (n1B12 − n2B21) Iν . (4.89)

We obtain the source function by dividing Eq. (4.84) by Eq. (4.88),

Sν =
n2A21

n1B12 − n2B21
. (4.90)

Using relations (4.83), we write the absorption coe�cient and source function, respectively, as

αν =
hν

4π
n1B12

(
1− g1n2

g2n1

)
φ(ν), Sν =

2hν3

c2

(
g2n1

g1n2
− 1

)−1

. (4.91)

Equation (4.91) is a generalized Kirchho�`s law. We identify three qualitative cases:

Thermal Emission (LTE):

If the matter is in TE (but not necessarily with the radiation), Eq. (4.82) gives

n1

n2
=
g1

g2
eβhν , (4.92)

the matter is said to be in local thermodynamic equilibrium (LTE) with

αν =
hν

4π
n1B12

(
1− e−βhν

)
φ(ν), Sν = Bν(T ). (4.93)

The LTE source function is just the Kirchho�`s law. However, the correction factor 1− e−βhν

in the absorption coe�cient involves stimulated emission.
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Non-Thermal Emission:

If the matter is not in TE,

n1

n2
6= g1

g2
eβhν . (4.94)

This occurs, for example, if the radiating particles in a plasma did not have a Maxwellian velocity
distribution or if the atomic populations did not obey the Maxwell-Boltzmann distribution law.
Equation (4.94) can also be applied to cases in which scattering is present.

Inverted Populations; Masers:

If a system is in TE (ν and T are positive),

n2

n1

g1

g2
= e−βhν < 1 so that

n1

g1
>
n2

g2
. (4.95)

Even if the material is out of TE, Eq. (4.95) is usually satis�ed and we say that there are normal
populations. If we put enough atoms in the upper state, we have inverted populations,

n1

g1
<
n2

g2
, (4.96)

the absorption coe�cient is negative, αν < 0 (see Eq. (4.91)), and the intensity along a ray
increases. Such a system is said to be a maser (microwave ampli�cation by stimulated emission
of radiation) or laser for light.

The ampli�cation involved here can be very large, a negative optical depth τ = −100, for
example, leads to an ampli�cation of the intensity by a factor of 1043 (cf. Eq. (4.30)). We will
not discuss here masers in detail, however, maser e�ect in molecular lines has been observed in
many astrophysical sources.

4.6 Scattering E�ects

4.6.1 Pure Scattering

For a pure thermal emission the amount of radiation emitted by a mattter element does not
depend on the incident radiation, the source function is always Bν(T ) and depends only on the
local temperature. The element would emit the same whether it is isolated in free space or
embedded in a star with the ambient radiation �eld. This character of thermal radiation makes
it particularly easy to treat.

Another emission process is scattering, which completely depends on the amount of radi-
ation imcident to the element. Perhaps the most important is electron (Thomson) scattering
(see Sect. 6.4). At present we assume isotropic scattering, so that the emission coe�cient is
directionally independent. We also assume that the total amount of radiation emitted per
unit frequency range is just equal to the total amount absorbed in that same frequency range.
This is called coherent, elastic or monochromatic scattering. Non-relativistic Thomson scatter-
ing is fairly coherent, repeated scatterings can build up substantial e�ects (see Appendix 9).
The emission coe�cient for coherent, isotropic scattering can be found by equating the power
absorbed per unit volume and frequency to the corresponding power emitted,

jν = σνJν , (4.97)
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where σν is the absorption coe�cient of the scattering process (scattering coe�cient). Dividing
Eq. (4.97) by σν , we �nd that the source function for scattering is equal to the mean intensity
within the emitting material,

Sν = Jν =
1

4π

ˆ
Iν dΩ. (4.98)

RTE for pure scattering therefore is

dIν
ds

= σν (Jν − Iν) . (4.99)

We cannot apply here the formal solution (4.34); since the source function is not known a priori
and depends on the Iν , it becomes an integro-di�erential equation. An approximate method
may be the Eddington approximation (see Sect. 4.7.2). A particularly useful way of treating
scattering is by means of random walks. We regard the absorption, emission, and propagation
as a probabilistic process of a single photon rather than the phenomenologic average behavior
of large ensemble. For example, the probability of a photon traveling an optical depth τν before
absorption is e−τν . Similarly, in case of isotropic scattering, a single photon is scattered with
equal probabilities into equal solid angles. We speak of a typical path of a photon, and the
measured intensities can be interpreted as statistical averages over photons moving in such
paths.

Consider a photon emitted in an in�nite, homogeneous scattering region. It travels a dis-
placement r1 before being scattered, then travels in another over a displacement r2 before being
scattered, and so on. The net displacement of the photon after N free paths is

R = r1 + r2 + r3 + · · ·+ rN . (4.100)

To estimate the distance |R| traveled by a typical photon, we square Eq. (4.100) and then
average,

d2 = 〈R2〉 = 〈r2
1〉+ 〈r2

2〉+ 〈r2
3〉+ · · ·+ 〈r2

N 〉+ 2〈r1 · r2〉+ 2〈r1 · r3〉+ · · · . (4.101)

Each square term in (4.101) averages the square of photon mean free path λ2. Since the cross
terms in (4.101) involve averaging the cosine of the scattering angle and vanish for isotropic
scattering as well as for any scattering with front-back symmetry, we obtain

d2 = Nλ2, so that d =
√
Nλ. (4.102)

The quantity d is the mean net displacement of the photon.
We use this result to estimate the mean number of scatterings in a �nite medium of typical

size L. Suppose a photon is generated somewhere in the medium, then it will scatter until it
escapes completely. For regions of large optical depth the number of required scatterings is
roughly determined by d ∼ L, Eq. (4.102) gives N ≈ L2/λ2. Since λ is (an order of) mean free
path, L/λ ≈ τ of the medium and

N ≈ τ2 (τ � 1). (4.103)

For regions of small optical thickness the mean number of scatterings is of order 1− e−τ ≈ τ ,

N ≈ τ (τ � 1). (4.104)

For most estimates it is su�cient to takeN ≈ τ2+τ or N ≈ max(τ, τ2) for any optical thickness.
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4.6.2 Combined Scattering and Absorption

The real emission and absorption of radiation is usually more than one process. Let us assume
the material with an absorption coe�cient αν describing thermal emission and a scattering
coe�cient σν describing coherent isotropic scattering. RTE then has two terms on the right-
hand side,

dIν
ds

= αν (Bν − Iν) + σν (Jν − Iν) = (αν + σν) (Sν − Iν) . (4.105)

The source function Sν in Eq. (4.105) is (cf. Eq. (4.33)),

Sν =
ανBν + σνJν
αν + σν

. (4.106)

We de�ne the net absorption coe�cient χν = αν + σν that is also called the extinction

coe�cient to distinguish it from the �true� absorption coe�cient αν . Using this, the optical
depth is dτν = χν ds = (αν + σν) ds

Consider a matter element deep inside a medium at some constant temperature, we expect
the nearly LTE radiation �eld, Jν = Bν(τ). From Eq. (4.106) also Sν = Bν(τ) in TE. On
the other hand, if the element is isolated in free space, Jν = 0 and the source function Sν =
ανBν/(αν + σν) is in general a priori unknown and must be calculated as a part of a self-
consistent solution of the entire radiation �eld.

We extend the random walk arguments to the case of combined scattering and absorption.
The mean free path of a photon before scattering or absorption is

λν = χ−1
ν . (4.107)

During the random walk process, the probabilities that any free path will by ended by a true
absorption or by a scattering event is

εν =
αν
χν
, 1− εν =

σν
χν
, (4.108)

where the quantity 1− εν is called the single-scattering albedo. The source function (4.106) now
is

Sν = (1− εν) Jν + ενBν . (4.109)

Consider an in�nite homogeneous medium. A random walk starts with thermal emission of
a photon (creation) and ends after a number of scatterings with a true absorption (destruction).
Since the walk can be terminated with probability ε at the end of each free path, the mean
number of free paths is N = ε−1. From Eq. (4.102), using Eqs. (4.107) and (4.108), we have

d2 =
λ2

ε
, so that d ≈ (ανχν)−1/2 . (4.110)

The length d represents the net displacement between the points of creation and destruction of
a typical photon; it is called the di�usion length, thermalization length, or e�ective mean path,
d is generally frequency dependent.

The behavior of a �nite medium can also be described in terms of random walks, it depends
strongly on whether its size L is larger or smaller than the e�ective free path d. We introduce
by convention the e�ective optical thickness of the medium τ∗ = L/d. Using Eq. (4.110),

τ∗ ≈
√
τa(τa + τs), where τa = ανL and τs = σνL (4.111)
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are the absorption and scattering optical thickness.
When τ∗ � 1, the medium is said to be e�ectively thin or translucent and most photons will

escape out of the medium before being destroyed by a true absorption. The monochromatic
luminosity will correspond to total radiation created by thermal emission in the medium and

Lν = 4πανBνV (τ∗ � 1), (4.112)

where Lν is the emitted power per unit frequency and V is the volume of the medium.
When τ∗ � 1, the medium is said to be e�ectively thick. Most thermally emitted photons

will be destroyed by true absorption before they can escape. The physical conditions at large
e�ective depths approach TE and we expect Iν → Bν and Sν → Bν . Due to this property
is the e�ective path length d sometimes called the thermalization length, since it describes the
distance over which radiative TE is established.

We estimate the monochromatic luminosity of an e�ectively thick medium (to within an
order of unity) by substituting the e�ective emitting volume by the surface area of the medium
times the e�ective path length. This is reasonable, because only the photons emitted within
an e�ective path length of the boundary have a chance to escape before being absorbed. Using
Eqs. (4.107) and (4.108), we have

Lν ≈ 4πανBνAd ≈ 4π
√
ενBνA (τ∗ � 1). (4.113)

In the limiting case of no scattering, εν → 1, the emission will blackbody, Lν = πBνA, and
the factor 4π in Eq. (4.113) should be replaced by π. However, the exact form of the equation
depends on εν and on geometry of a problem in a more complex way, we should take such
solution only as an estimate.

4.7 Radiative Di�usion

4.7.1 The Rosseland Approximation

We have used random walk arguments to show that Sν approaches Bν at large e�ective optical
depths in a homogeneous medium. Real media are rarely homogeneous, however, it is possible
to derive a simple expression for the energy �ux by relating it to the local temperature gradient.
This is called the Rosseland approximation.

First let us assume that the material properties (T , χν , etc.) depend only on depth in the
medium. This is called the plane-parallel approximation, where the intensity depends only on
the angle θ, which measures the direction of the ray with respect to normal to the planes of
constant properties. Using µ = cos θ and ds = dz µ−1, RTE in this case is

µ
∂Iν(z, µ)

∂z
= χν (Sν − Iν) , so that Iν(z, µ) = Sν −

µ

χν

∂Iν
∂z

. (4.114)

When the studied point is deep in the material, the intensity changes slowly on the scale of
a mean free path, the derivative ∂Iν/∂z is small and we write a �zeroth� approximation,

I(0)
ν (z, µ) ≈ S(0)

ν (T ). (4.115)

This does not depend on µ, the zeroth-order mean intensity J (0)
ν = S

(0)
ν . Eq. (4.106) implies

I
(0)
ν = S

(0)
ν = Bν , just as we expected from the random walk arguments. We now get a ��rst�

approximation by using I(0)
ν = Bν in the derivative,

I(1)
ν (z, µ) ≈ Bν(T )− µ

χν

∂Bν
∂z

. (4.116)
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This is justi�ed, because the derivative term is small, and any approximation there is not
critical. The angular dependence of the intensity to this order of approximation is linear in µ.

We evaluate the �ux Fν(z) from Eq. (4.4),

Fν(z) =

ˆ
I(1)
ν (z, µ) cos θ dΩ = 2π

ˆ +1

−1
I(1)
ν (z, µ)µ dµ. (4.117)

The angle-independent part of I(1)
ν (i.e., Bν) does not contribute to the �ux,

Fν(z) = −2π

χν

∂Bν
∂z

ˆ +1

−1
µ2 dµ = − 4π

3χν

∂Bν(T )

∂z
= − 4π

3χν

∂Bν(T )

∂T

∂T

∂z
(4.118)

for the monochromatic �ux.
We obtain the total �ux by integration over all frequencies:

F (z) =

ˆ ∞
0

Fν(z) dν = −4π

3

∂T

∂z

ˆ ∞
0

1

χν

∂Bν(T )

∂T
dν (4.119)

and, using Eqs. (4.51) and (4.52),

ˆ ∞
0

∂Bν(T )

∂T
dν =

∂

∂T

ˆ ∞
0

Bν dν =
∂B(T )

∂T
=

4σT 3

π
(4.120)

Here σ is the Stefan-Boltzmann constant (not to be confused with σν).
We de�ne the Rosseland mean absorption coe�cient χR by

1

χR
≡

ˆ ∞
0

1

χν

∂Bν(T )

∂T
dν

ˆ ∞
0

∂Bν(T )

∂T
dν

, (4.121)

which gives

F (z) = −16σT 3

3χR

∂T

∂z
. (4.122)

Equation (4.122) is the Rosseland approximation for the energy �ux. It is also called the equation
of radiative di�usion (although this term is often used for other equations, see Sect. 4.7.2). It
shows that radiative energy transport deep in a star is of the same nature as a heat conduction,
with an e�ective heat conductivity 16σT 3/(3χR). It also shows that the energy �ux depends
on only one property of the extinction coe�cient, on its Rosseland mean χR. The Rosseland
mean involves a weighted average of χ−1

ν so that frequencies at which the extinction coe�cient is
small (the transparent regions) tend to dominate the averaging process. The weighting function
∂Bν/∂T (Eq. (4.67)) has a similar pro�le to the Planck function, but it now peaks at values of
hν/kT of order ∼ 3.8 instead of ∼ 2.8 as in the Wien's displacement law. Although we used
a plane-parallel approximation to prove the Rosseland formula, the result is quite general: the
vector of the �ux is parallel with the negative temperature gradient and its magnitude is given
by Eq. (4.122) (the necessary assumption is that all quantities change slowly on the radiation
mean free path scale).
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4.7.2 The Eddington Approximation; Two-Stream Approximation:

The basic idea of the Rosseland approximation was that the intensities approach the Planck
function at large e�ective depths in the medium. In the Eddington approximation we only
assume that the intensities approach isotropy, and not necessarily their thermal values. Because
thermal emission and scattering are isotropic, one expects isotropy of the intensities at depths
comparable to an ordinary mean free path. The domain of applicability of the Eddington
approximation is therefore potentially much larger than the Rosseland approximation, since
the latter requires depths of the order of the e�ective free path.

With use of appropriate boundary conditions (here introduced via the two-stream approxi-
mation), we obtain solutions to scattering problems of reasonable accuracy at all depths. Fol-
lowing the near isotropy assumption, we expand the intensity as power series in µ, with terms
only up to linear:

Iν(τ, µ) = aν(τ) + bν(τ)µ. (4.123)

We integrate the frequency-dependent variables. Let us take the �rst three moments of intensity,

J ≡ 1

2

ˆ +1

−1
I dµ = a, (4.124)

H ≡ 1

2

ˆ +1

−1
µI dµ =

b

3
, (4.125)

K ≡ 1

2

ˆ +1

−1
µ2I dµ =

a

3
, (4.126)

where J is the mean intensity and H and K are proportional to the �ux and radiation pressure,
respectively. This gives the Eddington approximation,

K =
J

3
. (4.127)

Note the equivalence of Eqs. (4.14) and (4.127). The only di�erence is that Eq. (4.127) is valid
even for slightly non-isotropic �elds, containing terms linear in µ. We de�ne the plane-parallel
optical depth

dτ(z) = −χν dz, (4.128)

and the corresponding RTE (Eq. (4.114)),

µ
∂I

∂τ
= I − S. (4.129)

The source function S, given by Eqs. (4.106) and (4.109), is isotropic. If we multiply Eq. (4.129)
by the factor 1/2 and integrate over µ from −1 to +1, we obtain

∂H

∂τ
= J − S. (4.130)

Similarly, multiplying by an extra factor µ before integrating, we obtain

∂K

∂τ
= H =

1

3

∂J

∂τ
, (4.131)
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using the Eddington approximation (4.127). The last two equations can be combined (with use
of Eq. (4.109)) to the single second-order non-homogeneous equation for J ,

1

3

∂2J

∂τ2
= J − S, so that

1

3

∂2J

∂τ2
= ε (J −B) . (4.132)

Equation (4.132) is also called the radiative di�usion equation. Given the temperature structure
of the medium, B(τ), one can solve this equation for J and determine S from Eq. (4.109). The
problem is essentially solved, because the full intensity I(τ, µ) can be found by formal solution
of Eq. (4.129).

A signi�cant form of Eq. (4.132) re�ects the case when ε does not depend on depth. Let us
de�ne (cf. Eq. (4.111)) the new optical depth scale

τ∗ =
√

3ε τ =
√

3τa(τa + τs). (4.133)

The corresponding RTE is

∂2J

∂τ2
∗

= J −B. (4.134)

We use Eq. (4.134) to demonstrate the properties of τ∗ as an e�ective optical depth.
To solve Eq. (4.132), we yet provide the boundary conditions. This can be done in several

ways, we use here the two-stream approximation: we assume that the entire radiation �eld can
be represented by rays traveling at just two angles, µ = ±1/

√
3. Let us denote the outward

and inward intensities by I+(τ) ≡ I(τ,+1/
√

3) and I−(τ) ≡ I(τ,−1/
√

3). In terms of I+ and
I−, the moments J , H, and K have the representations

J =
1

2

(
I+ + I−

)
, H =

1

2
√

3

(
I+ − I−

)
, K =

1

6

(
I+ + I−

)
=
J

3
. (4.135)

Equation (4.135) is simply the Eddington approximation; in fact, the choice of the angles
µ = ±1/

√
3 is motivated by the requirement this relations to be valid.

We now solve Eq. (4.135) for I+ and I−, using Eq. (4.131):

I+ = J +
1√
3

∂J

∂τ
, I− = J − 1√

3

∂J

∂τ
. (4.136)

These equations provide the necessary boundary conditions for Eq. (4.132). For example,
suppose the medium extending from τ = 0 to τ = τ0 with no incident radiation. Then I−(0) = 0,
I+(τ0) = 0, and the boundary conditions are

1√
3

∂J

∂τ
= J at τ = 0,

1√
3

∂J

∂τ
= −J at τ = τ0. (4.137)

The two conditions are su�cient to determine the solution of Eq. (4.132).
One has proposed various methods to obtain boundary conditions; they all give equations

similar to (4.137), with factors slightly di�erent than 1/
√

3. It is not worth for our purpose to
discuss here all the alternatives in detail.





Chapter 5

Radiation Field

5.1 Maxwell Equations

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We �rst review the theory for non-
relativistic particles (in SI units). The de�nitions of the electric �eld E (r , t) and the magnetic
�eld B(r , t) are made for a particle of charge q at point r with velocity v , using the Lorentz

force:

F = q (E + v × B) . (5.1)

The rate of work (power) exerted by the electromagnetic �eld on a particle is

v · F = qv · E , (5.2)

v because v · (v × B) = 0. Since F = m dv/ dt in case of non-relativistic particles, we have

qv · E =
1

2

d
dt

(
mv2

)
. (5.3)

This may be generalized to force density (force on a volume element containing many charges),

f = qE + j × B, (5.4)

where ρ and j are charge and current densities, respectively, de�ned as

ρ = lim
∆V→0

1

∆V

∑
i

qi, j = lim
∆V→0

1

∆V

∑
i

qiv i, (5.5)

and ∆V is the volume element. In Eqs. (5.4) and (5.5) ∆V must be much smaller than
characteristic scales but much larger than the volume containing a single particle.

The rate of work done by the �eld per unit volume then is

1

∆V

∑
i

qiv i · E = j · E . (5.6)

From Eq. (5.3) this is also the rate of change of mechanical energy per unit volume due to the
electromagnetic �eld:

dUmech

dt
= j · E . (5.7)
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Maxwell equations relate E , B, ρ, and j . In SI units their basic form is

∇ ·D = ρ ∇ · B = 0 (5.8)

∇× E = −∂B
∂t

∇×H = j +
∂D

∂t
, (5.9)

while in Gaussian units, they are

∇ ·D = 4πρ ∇ · B = 0 (5.10)

∇× E = −1

c

∂B

∂t
∇×H =

4π

c
j +

1

c

∂D

∂t
. (5.11)

The �elds D and H are in the both systems related to E and B by the same linear relations

D = εE , B = µH , (5.12)

where ε and µ are the dielectric constant and magnetic permeability of the medium.
An immediate consequence of Maxwell equations is conservation of charge: divergence of

the ∇×H equation gives

∂ρ

∂t
+ ∇ · j = 0, (5.13)

which expresses conservation of charge for a volume element.
We now de�ne energy density and energy �ux of the electromagnetic �eld. Consider the

work done per unit volume on a particle distribution, (cf. the second Eq. (5.9)):

j · E = (∇×H) · E − E · ∂D
∂t

, (5.14)

Using the vector identity

E · (∇×H) = H · (∇× E )−∇ · (E ×H) , (5.15)

we rewrite Eq. (5.14) into the form

j · E = −H · ∂B
∂t
−∇ · (E ×H)− E · ∂D

∂t
. (5.16)

If ε and µ are not time-dependent, the above relation may be written as (using Eqs. (5.12))

j · E +
1

2

∂

∂t

(
εE2 +

B2

µ

)
= −∇ · (E ×H) . (5.17)

Equation (5.17) represents the Poynting theorem in di�erential form: The rate of change of
mechanical energy per unit volume plus the rate of change of �eld energy per unit volume is
equal to negative divergence of the electromagnetic �ux. We thus set the electromagnetic energy
density equal to

U�eld =
1

2

∂

∂t

(
εE2 +

B2

µ

)
= UE + UB, (5.18)

and the vector of electromagnetic �ux, or Poynting vector, equal to

S = E ×H . (5.19)
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Integrating the above over a volume element and using the divergence theorem:ˆ
V
j · E dV +

1

2

∂

∂t

ˆ
V

(
εE2 +

B2

µ

)
dV = −

ˆ
Σ
S · dA, (5.20)

or shortly

∂

∂t
(Umech + U�eld) = −

ˆ
Σ
S · dA. (5.21)

That is, the rate of change of total (mechanical plus �eld) energy within the volume V is equal
to the net inward �ow of energy through the bounding surface Σ.

Although U�eld is called a �eld energy, there are contributions from the matter, because ε
and µ represent material properties. If we treat all charges (free and bound) as part of the
mechanical system, then we would use only the microscopic �elds E and B. Then j would be
replaced by the sum of the conduction and induced molecular currents and S → E × B/µ.
When matter and �eld is present, the allocation of energy into matter and �eld is somewhat
arbitrary, while the total energy is always conserved.

If we now consider only the microscopic energy �ux or the �ux in vacuum with use of
Eq. (4.10) where p = E/c for photons, we can write the electromagnetic momentum density as

g =
S

c2
=

1

µc2
E × B. (5.22)

The angular momentum carried by the �eld is given by the angular momentum density L,

L = r × g , (5.23)

where r is the position vector from the point about which the angular momentum is computed.
In electrostatics and magnetostatics both E and B decrease like r−2 as r →∞. This implies

that S decreases like r−4 in static problems. Thus the right-hand side integral in Eqs. (5.20)
and (5.21) goes to zero, since the surface area increases only as r2. Because for time-varying
�elds E and B may decrease only as r−1, the integral then contributes a �nite amount to the
rate of change of energy of the system. This �nite energy �owing outward (or inward) at large
distances is called radiation. Those parts of E and B that decrease as r−1 at large distances
constitute the radiation �eld.

5.2 Electromagnetic Potentials

Following the Maxwell's equations, we now express E and B �elds in terms of a scalar potential
φ(r , t) and a vector potential A(r , t): De�ning the vector potential as

B = ∇× A (5.24)

(so that we hold the ∇ · B equation) and inserting it into ∇× E equation, we obtain

∇×
(
E +

∂A

∂t

)
= 0, which yields E = −∇φ− ∂A

∂t
(5.25)

for any arbitrary scalar function (scalar potential) φ. Substituting this into Maxwell equations,
we obtain

∇2φ+
∂

∂t
(∇ · A) = −ρ

ε
, (5.26)

∇2A− εµ∂
2A

∂t2
−∇

(
∇ · A + εµ

∂φ

∂t

)
= −µj . (5.27)
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The potentials are not uniquely determined, for example, the addition of the gradient of an
arbitrary scalar function ψ to A will leave B unchanged. Following Eqs. (5.24) and (5.25), we
may set

A′ → A + ∇ψ, φ′ → φ− ∂ψ

∂t
. (5.28)

We can calibrate the potentials to satisfy the Lorentz gauge condition,

∇ · A + εµ
∂φ

∂t
= 0, (5.29)

hence the term in bracket in Eq. (5.27) is zero. With this gauge, Eqs. (5.26) and (5.27) become
inhomogeneous wave equations:

∇2φ− εµ∂
2φ

∂t2
= −ρ

ε
, (5.30)

∇2A− εµ∂
2A

∂t2
= −µj . (5.31)

The particular form of the Lorentz gauge (Eq. (5.29)) is the Coulomb gauge condition,

∇ · A = ∇φ = 0. (5.32)

The solutions of Eqs. (5.30) and (5.31) may be written as integrals over the sources:

φ(r , t) =
1

4πε0

ˆ
[ρ] d3r ′

|r − r ′|
, (5.33)

A(r , t) =
µ0

4π

ˆ
[j ] d3r ′

|r − r ′|
. (5.34)

Equations (5.33) and (5.34) are the retarded potentials, since the quantity [Q] means that Q
is evaluated at the retarded time, [Q] ≡ Q(r ′, t − |r − r ′|/c), which refers to conditions at the
point r ′ that existed at a time earlier than t by the time |r − r ′|/c required for light to travel
between r and r ′, so that the potentials at point r can only be a�ected by conditions at point
r ′ at such a retarded time.

5.3 Plane Electromagnetic Waves

Maxwell equations in vacuum become (cf. Eqs. (5.10))

∇ · E = 0 ∇ · B = 0

∇× E = −∂B
∂t

∇× B = ε0µ0
∂E

∂t
. (5.35)

Solution of these equations proves the existence of traveling waves that carry energy. Taking
the curl of the third equation and combining it with the fourth and the �rst equation (using
the vector identity ∇× (∇× E ) = ∇ (∇ · E )−∇2E ), we obtain the wave equation for E :

∇× (∇× E ) = −ε0µ0
∂2E

∂t2
, that is ∇2E − ε0µ0

∂2E

∂t2
= 0. (5.36)

An identical equation holds for B, since Eq. (5.35) is invariant under E → B, B → −E .
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Let us now suppose the solution of the form

E = â1E0 ei(k·r−ωt), B = â2B0 ei(k·r−ωt), (5.37)

where â1 and â2 are unit vectors, E0 and B0 are complex constants, and k = kn and w are the
�wave vector� and angular frequency, respectively. Such solutions represent waves traveling in
the direction n. By superposing such waves propagating in all directions with all frequencies,
we construct the most general solution to the source-free Maxwell equations. Substitution into
vacuum Maxwell's equations (5.35) yields:

ik · â1E0 = 0 ik · â2B0 = 0

ik × â1E0 = iω â2B0 ik × â2B0 = −iω â1ε0µ0E0. (5.38)

From the top two equations we see that â1 and â2 are perpendicular to k . From the bottom
two equations we see that â1 and â2 are perpendicular to each other. The vectors â1, â2, and
k form a right-hand triad of perpendicular vectors, E0 and B0 are thus related by

E0 =
ω

k
B0, B0 =

ω

k
ε0µ0E0, so that E0 =

(ω
k

)2
ε0µ0E0 and ω2 =

k2

ε0µ0
. (5.39)

Taking k and ω positive, we have

ω =
k

√
ε0µ0

and E0 =
1

√
ε0µ0

B0. (5.40)

The waves propagate with a phase velocity vph = ω/k, and, as expected, in a vacuum with the
group velocity, vg = ∂ω/∂k, so that

vph =
1

√
ε0µ0

= c, vg =
1

√
ε0µ0

= c. (5.41)

We can now compute the energy �ux and energy density of the waves. Since E and B

both vary sinusoidally in time, the Poynting vector and the energy density actually �uctuate;
however, we take a time average, since this is in most cases what is measured. If A(t) and B(t)
are two complex quantities with the same sinusoidal time dependence

A(t) = A eiωt, B(t) = B eiωt, (5.42)

then the time average of the product of their real parts is

〈ReA(t) · ReB(t)〉 =
1

2
Re (AB∗) =

1

2
Re (A∗B) , (5.43)

where the asterisk denotes complex conjugation. The time-averaged Poynting vector satis�es
(cf. Eq. (5.19) with E0 = cB0)

〈S〉 =
1

T

ˆ T

0
S(t) dt =

1

2µ0
Re (E0B

∗
0) , so that 〈S〉 =

1

2

√
ε0
µ0
|E0|2 =

1

2µ0

|B0|2√
ε0µ0

. (5.44)

Similarly, the time-averaged energy density is (cf. Eq. (5.18))

〈U〉 =
1

4
Re
(
ε0E0E

∗
0 +

1

µ0
B0B

∗
0

)
, so that 〈U〉 =

ε0
2
|E0|2 =

1

2µ0
|B0|2 . (5.45)

Therefore, the velocity of energy �ow is also 〈S〉/〈U〉 = 1/
√
ε0µ0 = c.

This was vacuum solution. Similar results hold if we use a constant permitivity and perme-
ability. However, in practice these quantities depend on frequency, so a more careful approach
is required.
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5.4 The Radiation Spectrum

The radiation spectrum depends on temporal variations of electric �eld (we can ignore the
magnetic �eld, since it mimics the electric �eld). One cannot give a meaning to the spectrum
at a precisely instant time, knowing only the electric �eld at one point. Instead, one must take
into account the spectrum of many waves, or of the radiation at one point during a su�ciently
long time ∆t. However, having such a record of the radiation �eld in time ∆t, we still can only
de�ne the spectrum within a frequency resolution ∆ω, where

∆ω∆t > 1. (5.46)

This uncertainty relation is a property of any wave theory of light.
Let us assume, for simplicity, that the radiation is in the form of a �nite pulse (in practice,

we only require that E (t) vanishes su�ciently rapidly for t → ±∞). Let us treat only one of
the two independent components of the transverse electric �eld, say E(t) ≡ â · E (t). We may
thus express E(t) in terms of a Fourier integral (Fourier transform):

Ê(ω) =

ˆ ∞
−∞

E(t) e−iωt dt, E(t) =
1

2π

ˆ ∞
−∞

Ê(ω) eiωt dω. (5.47)

The function Ê(ω) is complex, however, E(t) is real, so we can write

Ê(−ω) =

ˆ ∞
−∞

E(t) eiωt dt = Ê∗(ω), (5.48)

(the asterisk denotes a complex conjugate function) so that the negative frequencies can be
eliminated.

Ê(ω) contains the whole information about the frequency behavior of E(t). To convert this
into frequency information about the energy, we express the work per unit time per unit area
in terms of the Poynting vector as a representative of directional energy �ux (energy or work
transfer per unit area A per unit time t):

dW
dt dA

=

√
ε0
µ0
E2(t), (5.49)

while the total energy (or work) per unit area within the pulse is

dW
dA

=

√
ε0
µ0

ˆ ∞
−∞

E2(t) dt. (5.50)

Equation (5.48) gives |Ê(ω)|2 = |Ê(−ω)|2 and from the Parseval's theorem
ˆ ∞
−∞
|x(t)|2 dt =

1

2π

ˆ ∞
−∞
|X(ω)|2 dω, (5.51)

(where X(ω) = Fω{x(t)} represents the continuous Fourier transform in normalized, unitary
form) follows

ˆ ∞
−∞

E2(t) dt =
1

2π

ˆ ∞
−∞
|Ê(ω)|2 dω =

1

π

ˆ ∞
0
|Ê(ω)|2 dω. (5.52)

Inserting Eq. (5.52) into Eq. (5.50) gives the energy per unit area per unit frequency,

dW
dA

=
1

π

√
ε0
µ0

ˆ ∞
0
|Ê(ω)|2 dω, so that

dW
dA dω

=
1

π

√
ε0
µ0
|Ê(ω)|2. (5.53)
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We note that this is the total energy per area per frequency range in the entire pulse; we
do not write �per unit time�, because to write both dt and dω would lead to violation of the
uncertainty relation between ω and t. However, if the pulse is repeated on an average time scale
T , then we may formally write

dW
dA dω dt

=
1

π

√
ε0
µ0

|Ê(ω)|2

T
. (5.54)

This formula can be used to de�ne the portion of spectrum of a length T of much longer signal.
If a very long signal has more or less the same properties over its entire length (time stationarity)
then the result will be independent of t for large T and we may write

dW
dA dω dt

=
1

π

√
ε0
µ0

lim
T→∞

1

T
|ÊT (ω)|2, (5.55)

where the subscript T on ÊT (ω) emphasizes the transform of a portion of the function E(t) of
length T . We can include in�nitely long waves (such as sine waves) using the formulas based
on �nite pulses.

The e�ciency of the concept of local spectrum depends on whether the changes of character
of E(t) occur on a time scale long enough that one can still de�ne time interval T in which
a suitable frequency resolution ∆ω ∼ 1/T can be obtained. Otherwise one must consider the
spectrum of the entire pulse as the basic entity.

5.5 Polarization and Stokes Parameters

5.5.1 Monochromatic Waves

The monochromatic plane waves in Eq. (5.37) are linearly polarized; the electric vector oscillates
in the direction â1, which, together with k , de�nes the plane of polarization. By superposing two
such waves in perpendicular directions, we can construct the general state of polarization for a
given k and ω. We consider only the electric vector E ; the magnetic vector stays perpendicular
to it with the same magnitude as E . Let us examine the electric vector at an arbitrary point
(say, r = 0) and choose axes x and y with corresponding unit vectors x̂ and ŷ . The direction of
the wave is right-handed, along the axis z with corresponding unit vector ẑ . Then the electric
vector is the real part of

E = (x̂E1 + ŷE2) e−iωt = E 0 e−iωt. (5.56)

This generalization of Eq. (5.37) replaces â1E1 by the complex vector E 0. The complex ampli-
tudes E1 and E2 are

E1 = E1 eiφ1 , E2 = E2 eiφ2 . (5.57)

From the real part of E we �nd the physical components of the electric �eld along x̂ and ŷ ,

Ex = E1 cos (ωt− φ1) , Ey = E2 cos (ωt− φ2) . (5.58)

These equations describe the tip of the electric �eld vector in the x-y plane.
The �gure traced out is an ellipse, the general wave is said to be elliptically polarized. The

equations for a general ellipse with its principal axes x′ and y′, which are tilted at an angle ϕ
to the axes x and y, are

E′x = E0 cosβ cosωt, E′y = −E0 sinβ sinωt, (5.59)
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where −π/2 ≤ β ≤ π/2. The magnitudes of the principal axes are E0| cosβ| and E0| sinβ|,
since (E′x/E0 cosβ)2 + (E′y/E0 sinβ)2 = 1. The ellipse will be traced out in a clockwise sense for
0 < β < π/2 and counter-clockwise sense for −π/2 < β < 0, as viewed by an observer toward
whom the wave is propagating. This is called right- and left-handed elliptical polarization (or
negative and positive helicity), respectively.

There are two degenerate cases of elliptical polarization: When β = ±π/4 the ellipse be-
comes a circle, the wave is circularly polarized. When β = 0 or β = ±π/2, the ellipse becomes
a straight line, the wave is linearly polarized. In the latter case the wave is neither right-handed
nor left-handed.

Let us now connect the quantities in Eq. (5.58) and those de�ning the principal axes of the
ellipse. We transform E components in Eq. (5.59) to the x- and y-axes by rotating through the
angle χ. This yields

Ex = E0 (cosβ cosχ cosωt+ sinβ sinχ sinωt) , (5.60)

Ey = E0 (cosβ sinχ cosωt− sinβ cosχ sinωt) . (5.61)

This becomes identical with Eq. (5.58) if we take

E1 cosφ1 = E0 cosβ cosχ, E1 sinφ1 = E0 sinβ sinχ,

E2 cosφ2 = E0 cosβ sinχ, E2 sinφ2 = −E0 sinβ cosχ. (5.62)

Given E1, φ1, E2, φ2, these equations can be solved for E0, β, and χ by means of the Stokes

parameters for monochromatic waves:

I ≡ E2
1 + E2

2 = E2
0 ,

Q ≡ E2
1 − E2

2 = E2
0 cos 2β cos 2χ,

U ≡ 2E1E2 cos(φ1 − φ2) = E2
0 cos 2β sin 2χ,

V ≡ 2E1E2 sin(φ1 − φ2) = E2
0 sin 2β. (5.63)

From Eqs. (5.62) we have

E0 =
√
I, sin 2β =

V

I
, tan 2χ =

U

Q
. (5.64)

Since an elliptical polarization is determined by the three parameters E0, β, and χ, we relate

I2 = Q2 + U2 + V 2 (5.65)

for a monochromatic wave.
The meanings of the Stokes parameters are: I is the �ux or intensity, V is the circularity

parameter that measures the ratio of principal axes of the ellipse (the wave has right- or left-
handed polarization when V is positive or negative, V = 0 for linear polarization). There is only
one remaining independent parameter, Q or U , which measures the orientation of the ellipse
relative to the x-axis; in case of a circular polarization Q = U = 0.

5.5.2 Quasi-monochromatic Waves

The monochromatic waves are 100% polarized if the electric vector displays a simple, nonran-
dom directional behavior in time. However, in practice we never see a single monochromatic
component but rather a superposition of many components, each with its own polarization. An
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important case of interest occurs when the amplitudes and phases of the wave relatively slowly
vary in time, so that instead of Eq. (5.57) we have

E1(t) = E1(t) eiφ1(t), E2(t) = E2(t) eiφ2(t). (5.66)

We assume that over short times, of order 1/ω, the wave looks completely elliptically polarized
but over much longer times, ∆t� 1/ω, over which E1, E2, φ1, and φ2 change substantially, this
state of polarization can change completely. Such a wave is no longer monochromatic; by the
uncertainty relation its frequency range ∆ω can be estimated as ∆ω > 1/∆t so that ∆ω � ω.
The wave is called quasi-monochromatic; the frequency range ∆ω is called the bandwidth of the
wave, and the time ∆t is called the coherence time.

The quantitative characterization of quasi-monochromatic waves depends on a kind of mea-
surements that can be made. In principle, for strong waves the precise time variations of the
quantities E1, E2, φ1, and φ2 could be measured; this would be the most detailed characteriza-
tion possible. On the other hand, most measurements usually involve some apparatus in which
the characteristics of radiation are delayed. If we suppose that any time delays involved are
short compared to the coherence time of the wave, then we can show that the outcome of a
measurement with such a device depends on simple extensions of the Stokes parameters.

The most general linear transformation of �eld components due to measuring devices can
be written

E′1 = λ11E1 + λ12E2, E′2 = λ21E1 + λ22E2 (5.67)

where the complex constants λi,j characterize the measuring apparatus. We measure the average
sum of the squares of the 1′ and 2′ components of electric �eld, where 1′ is and 2′ are〈(

ReE′1 e
−iωt)2〉 = |λ11|2 〈E1E

∗
1〉+ λ11λ

∗
12 〈E1E

∗
2〉+ λ12λ

∗
11 〈E2E

∗
1〉+ |λ12|2 〈E2E

∗
2〉 , (5.68)〈(

ReE′2 e
−iωt)2〉 = |λ22|2 〈E2E

∗
2〉+ λ22λ

∗
21 〈E2E

∗
1〉+ λ21λ

∗
22 〈E1E

∗
2〉+ |λ21|2 〈E1E

∗
1〉 . (5.69)

We modi�ed Eq. (5.43) to average over the �fast� variations in the �eld described by the e−iωt

term. The brackets 〈 〉 on the right-hand side refer to only time averaging of the slowly varying
combinations of E1(t) and E2(t), where, for example,

〈E1E
∗
2〉 =

1

T

ˆ T

0
E1(t)E∗2(t) dt (5.70)

is the integral over the time interval of the measurement.
A set of four real quantities used to express 〈EiE∗j 〉 are the Stokes parameters for quasi-

monochromatic waves,

I ≡ 〈E1E
∗
1〉+ 〈E2E

∗
2〉 =

〈
E2

1 + E2
2

〉
, (5.71)

Q ≡ 〈E1E
∗
1〉 − 〈E2E

∗
2〉 =

〈
E2

1 − E2
2

〉
, (5.72)

U ≡ 〈E1E
∗
2〉+ 〈E2E

∗
1〉 = 〈2E1E2 cos(φ1 − φ2)〉 , (5.73)

V ≡ 1

i
(〈E1E

∗
2〉 − 〈E2E

∗
1〉) = 〈2E1E2 sin(φ1 − φ2)〉 , (5.74)

where we used Eq. (5.57). Equations (5.71) - (5.74) are the time-dependent generalizations
of Eqs. (5.63). The Stokes parameters most completely describe the radiation �eld, providing
that two waves with the same parameters cannot be distinguished by measurements that use
an apparatus of the above type.
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Equation (5.65) does not apply for arbitrary quasi-monochromatic waves. The Schwartz
inequality

〈E1E
∗
1〉 〈E2E

∗
2〉 ≥ 〈E1E

∗
2〉 〈E2E

∗
1〉 (5.75)

implies the equality sign in (5.75) only if E1(t)/E2(t) is a time-independent complex constant.
In this case the electric vector traces out an ellipse of �xed shape and �xed orientation and
only its overall size changes slowly with time. Such a wave is equivalent to a pure elliptically
polarized monochromatic wave because their Stokes parameters are the same. In other words,
Eqs. (5.71) and (5.75) give

I2 ≥ Q2 + U2 + V 2, (5.76)

where the equality holds for a completely elliptically polarized wave.
The other extreme is the completely unpolarized wave with unrelated phases between E1

and E2 and with no preferred orientation in the x-y plane, so that 〈E2
1 〉 = 〈E2

2 〉 and

Q = U = V = 0, or Q2 + U2 + V 2 = 0. (5.77)

An important property of the Stokes parameters is that they are additive for a superposition
of independent waves, that is, the waves with no permanent relations between phases of the
various waves, and which are randomly and uniformly distributed from 0 to 2π over the relevant
time scales. A superposition

E1 =
∑
k

E
(k)
1 , E2 =

∑
l

E
(l)
2 (5.78)

of di�erent waves, each having its own E(k)
1 and E(k)

1 , gives

〈EiE∗j 〉 =
∑
k

∑
l

〈E(k)
1 E

(l)∗
2 〉 =

∑
k

〈E(k)
1 E

(k)∗
2 〉, (5.79)

where, due to phase randomness, only terms with k = l survive the averaging, as indicated. It
follows that

I =
∑

I(k), Q =
∑

Q(k), U =
∑

U (k), V =
∑

V (k), (5.80)

proving the additivity.
By the superposition principle, an arbitrary set of Stokes parameters can be represented as

I
Q
U
V

 =


I −

√
Q2 + U2 + V 2

0
0
0

+


√
Q2 + U2 + V 2

Q
U
V

 , (5.81)

where the �rst term on the right-hand side represents a completely unpolarized wave of intensity
I−
√
Q2 + U2 + V 2 and the second term represents a completely (elliptically) polarized wave of

intensity
√
Q2 + U2 + V 2 (see Eq. (5.65)). The Stokes parameters for a quasi-monochromatic

wave can be decomposed into the previously given forms of the completely polarized plus the
unpolarized part. Such a wave is therefore said to be partially polarized. The degree of polar-
ization is de�ned as the ratio (percentage) of the intensity of the polarized part to the total
intensity,

Π =
Ipol
I

=

√
Q2 + U2 + V 2

I
. (5.82)
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A special case is partial linear polarization, V = 0, with the maximum and minimum values
of intensity

Imax =
1

2
Iunpol + Ipol, Imin =

1

2
Iunpol, (5.83)

where Iunpol = I −
√
Q2 + U2 and Ipol =

√
Q2 + U2. Equation (5.82) �nally gives

Π =
Imax − Imin

Imax + Imin
. (5.84)

This formula applies only if the polarization is of plane type, while in case of present circular
or elliptical polarization it underestimates its true degree.

5.5.3 Limits of Phenomenological Transfer Theory

The speci�c intensity and associated concept of rays was used as a fundamental variable. How-
ever, there are certain limitations imposed on transfer theory by the wave or quantum nature
of light. For example, we de�ned speci�c intensity by dE = Iν dA dt dΩ dν (Eq. (4.2)), where
dA, dΩ, dν, and dt were presumed to be in�nitesimal. However, dA and dΩ cannot be both
arbitrarily small because the uncertainty principle for photons constrains

dx dpx dy dpy = p2 dA dΩ ≥ h2, so that dA dΩ ≥ λ2. (5.85)

As soon as the linear size of dA is of order of the wavelength, the direction becomes uncertain
and the concept of rays breaks down. Another limitation results from the energy uncertainty
principle,

dE dt ≥ h2, so that dν dt ≥ 1. (5.86)

Equations (5.85) and (5.86) imply that when the wavelength of light is larger than atomic
dimensions (like in the optics), we cannot describe the interaction of light on the atomic scale
in terms of speci�c intensity. However, we may regard transfer theory as a valid macroscopic

theory, provided the absorption and emission properties are correctly calculated from quantum
electrodynamics.

A more precise, classical treatment of the validity of rays is known as the eikonal approxima-
tion. This approach treats a scalar �eld rather than the vector electromagnetic �elds. Rays are
curves whose tangents at each point lie along the direction of the wave propagation. The rays
are well de�ned only if their direction and amplitude is practically constant over a distance of a
wavelength λ. This limit is called the geometrical optics limit. Suppose the wave is represented
by a function

g(r , t) = a(r , t) eiψ(r ,t), (5.87)

where a(r , t) is the slowly varying amplitude and ψ(r , t) is the rapidly varying phase. The
behavior of a and ψ is constrained by the wave equation

∇2g(r , t)− 1

c2

∂2g

∂t2
= 0. (5.88)

Substituting Eq. (5.87) in (5.88) gives

∇2a− 1

c2

∂2a

∂t2
+ ia

(
∇2ψ − 1

c2

∂2ψ

∂t2

)
+ 2i

(
∇a ·∇ψ − 1

c2

∂a

∂t

∂ψ

∂t

)
−a (∇ψ)2 +

a

c2

(
∂ψ

∂t

)2

= 0. (5.89)
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The slow and fast variability of amplitude and phase, respectively, implies the constraints

1

a
|∇a| � |∇ψ| ,

∣∣∇2ψ
∣∣� |∇ψ|2 , 1

a

∣∣∇2a
∣∣� |∇ψ|2 ,

1

a

∣∣∣∣∂a∂t
∣∣∣∣� ∣∣∣∣∂ψ∂t

∣∣∣∣ , ∣∣∣∣∂2ψ

∂t2

∣∣∣∣� ∣∣∣∣∂ψ∂t
∣∣∣∣2 , (5.90)

that reduce Eq. (5.89) to the eikonal equation:

(∇ψ)2 − 1

c2

(
∂ψ

∂t

)2

= 0. (5.91)

If a in Eq. (5.87) is a constant, then the local wavevector k (normal to the surfaces of constant
phase ψ) and the local frequency ω are

k = ∇ψ, ω = −∂ψ
∂t
, (5.92)

and, substituting Eq. (5.92) into Eq. (5.91), we obtain Eq. (5.39) as the relationship between
wavenumber and frequency of a plane wave.



Chapter 6

Radiation from Moving Charges

6.1 Liénard-Wiechert Potentials

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): Consider a particle of charge q that
moves along a trajectory r = r0(t) whose velocity is u(t) = ṙ0(t). We express its charge and
current as

q =

ˆ
qδ(r − r0(t)) d3r , qu =

ˆ
quδ(r − r0(t)) d3r , (6.1)

where the charge and current densities are ρ = qδ(r−r0(t)) and j = quδ(r−r0(t)), respectively,
and where the general property of the Dirac δ-function is a localization of an integral given by´
f(x)δ(x− x0) dx = f(x0).
We evaluate the retarded potentials (5.33) and (5.34) via these charge and current densities.

Since the scalar potential is

φ(r , t) =
1

4πε0

ˆ
d3r ′
ˆ

dt′
ρ(r ′, t′)

|r − r ′|
δ

(
t′ − t+

|r − r ′|
c

)
, (6.2)

the substitution of the charge and current densities yields integrals over the single variable t′,

φ(r , t) =
q

4πε0

ˆ
R−1(t′) δ

[
t′ − t+

R(t′)

c

]
dt′, (6.3)

A(r , t) =
µ0q

4π

ˆ
u(t′)R−1(t′) δ

[
t′ − t+

R(t′)

c

]
dt′, (6.4)

where R(t′) = r − r0(t′) and R(t′) = |R(t′)|.
The argument of the δ-function vanishes for a value of t′ = tret given by

c (t− tret) = R(tret). (6.5)

We substitute a new variable t′′ = t′ − t+R(t′)/c whose di�erential

dt′′ =
[
1 +

1

c
Ṙ(t′)

]
dt′ =

[
1− 1

c
n(t′) · u(t′)

]
dt′, (6.6)

where the latter we obtain by di�erentiating the identity R2(t′) = R2(t′) to 2R(t′)Ṙ(t′) =
−2R(t′) · u(t′), where Ṙ(t′) = −u(t′) and the unit vector n = R/R. Equations (6.3) and (6.4)
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take the form

φ(r , t) =
q

4πε0

ˆ
R−1(t′)

[
1− 1

c
n(t′) · u(t′)

]−1

δ(t′′) dt′′, (6.7)

A(r , t) =
µ0q

4π

ˆ
u(t′)R−1(t′)

[
1− 1

c
n(t′) · u(t′)

]−1

δ(t′′) dt′′, (6.8)

Setting t′′ = 0 or equivalently t′ = tret yields

φ =
1

4πε0

[ q

κR

]
, A =

µ0

4π

[ qu
κR

]
, (6.9)

where we keep the bracket notation for retarded potentials and where

κ(tret) = 1− 1

c
n(tret) · u(tret). (6.10)

Equations (6.9) are the Liénard-Wiechert Potentials. They di�er from static electromagnetic
theory in the factor κ(tret) that becomes very important at velocities close to c, where it
concentrates the potentials into a narrow cone about the particle velocity (it is related to the
beaming e�ect - see Sect. 7.2.4).

The second di�erence is that the quantities are evaluated at the retarded time tret which
enables a particle to radiate. The potentials fall o� as ∝ 1/r so that the �elds would decrease
∝ 1/r2 if the di�erentiation of potentials acted solely on the ∝ 1/r factor. Retardation involves
an implicit dependence on position via the de�nition of retarded time, and di�erentiation with
respect to this dependence carries the 1/r behavior of the potentials into the �elds themselves.
This allows radiation energy to �ow to in�nite distances.

6.2 The Velocity and Radiation Fields

The di�erentiation of the potentials to obtain the �elds (using Eqs. (5.24) and (5.25)) is straight-
forward. We �rst determine the retarded position and time of the particle rret and tret when
particle's velocity u = ṙ0(tret) and acceleration u̇ = r̈0(tret). Using the notation

β =
u

c
, κ = 1− n · β, (6.11)

the �elds are

E (r , t) =
1

4πε0

{
q (n − β)

(
1− β2

)
κ3R2

+
1

c

qn

κ3R
×
[
(n − β)× β̇

]}
, (6.12)

B(r , t) =
1

c
n × E (r , t). (6.13)

The electric �eld in Eq. (6.12) is composed of two terms. The �rst is the velocity �eld that
falls o� as 1/r2 and is the generalization of the Coulomb law to moving particles, for u � c
this becomes precisely Coulomb law. In case of a constant velocity, only this term contributes
to the �elds. The electric �eld in this case always points along the line toward the current
position of the particle. This follows from the fact that the displacement to the �eld point
from the retarded point is nct̄, where t̄ = t − tret is the light travel time. In the same time
the particle undergoes a displacement βct̄. The displacement between the �eld point and the
particle position is (n − β)ct̄, which is the direction of the velocity �eld in Eq. (6.12).
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The second term, the acceleration �eld, falls o� as 1/R, is proportional to the particle's
acceleration and is perpendicular to n. This electric �eld, along with the corresponding magnetic
�eld, constitutes the radiation �eld,

E rad(r , t) =
1

4πε0

qn

κ3Rc
×
[
(n − β)× β̇

]
, (6.14)

Brad(r , t) =
1

c
n × E rad. (6.15)

E , B and n form a right-hand triad of mutually perpendicular vectors and |E rad| = |Brad|, this
is consistent with the radiation solution of the source-free Maxwell equations.

6.3 Radiation from Non-relativistic System of Particles

We could describe radiation processes involving particles moving relativistically. However, this
would be made easier after the section on special relativity. Therefore, we shall now focus to
nonrelativistic particles.

6.3.1 Larmor Formula

When |β| � 1, we can simplify Eqs. (6.14) and (6.15) to

E rad =
1

4πε0

qn

Rc2
× (n × u̇) , (6.16)

Brad =
1

c
n × E rad. (6.17)

The magnitudes of E rad and Brad are

|E rad| =
1

4πε0

qu̇

Rc2
sin Θ, |Brad| =

1

4π

√
µ0

ε0

qu̇

Rc2
sin Θ, (6.18)

where Θ is the angle between the Poynting vector (5.19) direction n and the particle's acceler-
ation u̇. The magnitude of the Poynting vector is

S =

√
ε0
µ0
E2
rad =

1

(4π)2ε0

q2u̇2

R2c3
sin2 Θ. (6.19)

We evaluate the energy dW emitted per unit time into solid angle dΩ about n can be
evaluated by multiplying the Poynting vector (J s−1 m−2) by the area dA = R2 dΩ,

dW
dt dΩ

=
1

(4π)2ε0

q2u̇2

c3
sin2 Θ. (6.20)

We obtain the total power emitted into all angles by integrating (6.20),

P =
dW
dt

=
1

(4π)2ε0

q2u̇2

c3

ˆ
Ω

sin2 Θ dΩ =
1

8πε0

q2u̇2

c3

ˆ 1

−1
(1− µ2) dµ =

1

6πε0

q2u̇2

c3
. (6.21)

This is the Larmor formula for emission from a single accelerated charge q.
There are two points to notice about Eqs. (6.20) and (6.21):

1. The characteristic dipole pattern ∝ sin2 Θ: no radiation is emitted along u̇, the maximum
is emitted perpendicular to u̇.

2. The instantaneous direction of E rad is determined by u̇ and n. If the particle accelerates
along a line, the radiation will be 100% linearly polarized in the plane of u̇ and n.
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6.3.2 The dipole approximation

In a system of N particles with positions r i, velocities ui, and charges qi, i = 1, 2, . . . , N , we
can �nd the radiation �eld at large distances by the vector sum of the E i, rad. However, the
radiation �eld refers to conditions at retarded times which di�er for each particle. We must also
keep track of the phase relations between the various pieces of the radiating system introduced
by retardation.

In some situations, however, we may ignore this di�culty. Let the typical size of the system
be L, and let the typical time scale for changes within the system be τ . If τ is much longer
than the time it takes light to travel a distance L, τ � L/c, then the di�erences in retarded
time across the source are negligible. We may also characterize τ as the time scale over which
signi�cant changes in the radiation �eld E rad occur, and this in turn determines the typical
characteristic frequency of the emitted radiation. Calling this frequency ν, we write

ν ≈ 1

τ
, so that

c

ν
� L or λ� L. (6.22)

The di�erences in retarded times can be ignored when the size of the system is small compared
to a wavelength.

We may also characterize τ as the time a particle takes to change its motion substantially. If
` < L is a characteristic scale of the particle's orbit and u its typical velocity, then τ ∼ `/u and
the condition τ � L/c implies u/c � `/L, which is equivalent to the nonrelativistic condition
u � c. We may therefore consistently use the nonrelativistic form of the radiation �elds for
these problems. This implies

E rad =
1

4πε0

∑
i

qi
c2

n × (n × u̇i)

Ri
. (6.23)

Let R0 be the distance from a system point to the �eld point and d =
∑

i qir i is the dipole

moment. Because for R0 →∞ are the di�erences in the actual Ri negligible,

E rad =
1

4πε0

n × (n × d̈)

c2R0
. (6.24)

The right-hand side of Eq. (6.24) must still be evaluated at tret, using any point within the
�eld, say, the point used to de�ne R0.

The generalization of Eqs. (6.20) and (6.21) become

dP
dΩ

=
1

(4π)2ε0

d̈
2

c3
sin2 Θ, P =

1

6πε0

d̈
2

c3
. (6.25)

This is the dipole approximation, where the instantaneous polarization of E lies in the plane of
d̈ and n.

Let us consider the spectrum of radiation in the dipole approximation. For simplicity we
assume that d always lies in a single direction. Equation (6.24) gives

E(t) =
1

4πε0

d̈(t)

c2R0
sin Θ, (6.26)

where E(t) and d(t) are the magnitudes of E (t) and d(t), respectively. The Fourier transform

d(t) =
1

2π

ˆ ∞
−∞

d̂(ω) eiωt dω, (6.27)
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implies

d̈(t) = − 1

2π

ˆ ∞
−∞

ω2d̂(ω) eiωt dω = −ω2d(t) (6.28)

and Eq. (6.26) gives

E(t) = − 1

4πε0

ω2

c2R0
d(t) sin Θ, so that Ê(ω) = − 1

4πε0

ω2

c2R0
d̂(ω) sin Θ. (6.29)

The energy per unit solid angle per frequency range and the total energy per frequency range,
using Eqs. (5.53), (6.28) and dA = R2

0 dΩ, is

dW
dω dΩ

=
1

16π3ε0

ω4

c3
|d̂(ω)|2 sin2 Θ,

dW
dω

=
1

6π2ε0

ω4

c3
|d̂(ω)|2. (6.30)

According to these formulas is the spectrum of the emitted radiation directly related to the
frequencies of oscillation of the dipole moment. However, this is not true for particles with
relativistic velocities.

6.3.3 The general multiple expansion

We now indicate the features of the general case. Since E and B are related well outside the
source, we may consider the vector potential A contains all the necessary information. A Fourier
analysis of the sources and �elds is

jω(r) =

ˆ
j(r , t) e−iωt dt, Aω(r) =

ˆ
A(r , t) e−iωt dt. (6.31)

Using Eq. (6.4) for the vector potential in the form

A(r , t) =
µ0

4π

ˆ
d3r ′
ˆ

dt′
j(r ′, t′)

|r − r ′|
δ

(
t′ − t+

|r − r ′|
c

)
, (6.32)

we take the Fourier transform of Eq. (6.32),

Aω(r) =
µ0

4π

ˆ
jω(r ′)

|r − r ′|
e−ik|r−r

′| d3r ′, (6.33)

where k|r − r ′| = (ω/c)|r − r ′| = ωt. Equation (6.33) relates single Fourier components of j and
A.

Suppose an origin of coordinates inside the source of size L. At �eld points such that r � L,
we approximate

|r − r ′| ≈ r − n · r ′, (6.34)

where n points toward the �eld point r and r = |r |. Substituting Eq. (6.34) in (6.33), we obtain

Aω(r) ≈ µ0

4π

eikr

r

ˆ
jω(r ′) eikn·r

′
d3r ′, (6.35)

The factor exp(ikr) outside the integral expresses the e�ect of retardation from the source as
a whole. The factor exp(ikn · r ′) inside the integral expresses the relative retardation of each
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element of the source. In our slow-motion approximation, kL� 1, we expand the exponential
in the integral (6.35),

Aω(r) ≈ µ0

4π

eikr

r

∞∑
n=0

1

n!

ˆ
jω(r ′)(ikn · r ′)n d3r ′. (6.36)

Equation (6.36) is an expansion in the small dimensionless parameter kL = 2πL/λ. The dipole
approximation results from taking just n = 0,

Aω(r)|dipole ≈
µ0

4π

eikr

r

ˆ
jω(r ′) d3r ′ (6.37)

and the quadrupole term is the term n = 1,

Aω(r)|quad ≈
µ0

4π

ikeikr

r

ˆ
jω(r ′)(n · r ′) d3r ′. (6.38)

Although the frequencies of the vector potential (and hence in the radiation) are identical
to those in the current density, these frequencies may di�er from the frequencies of particle
orbits. For example, if a particle orbits in a circle with angular frequency ω0, the function
jω(r) contains frequencies not only at ω0 but at all harmonics 2ω0, 3ω0 . . . . In the dipole
approximation contributes only ω0, in the quadrupole approximation only 2ω0, and so on.

6.4 Thomson Scattering

We apply the dipole formula to the process when a free charge radiates in response to an incident
electromagnetic wave. If the charge oscillates at v � c, we neglect magnetic forces, B = E/c.
The force due to a linearly polarized wave is

F ≡ mr̈ = qeE0 sinω0t, (6.39)

where q is the electric charge and e is the electric �eld direction. Equation (6.39) in terms of
the dipole moment, d = qr , describes an oscillating dipole,

d̈ =
q2E0

m
e sinω0t, so that d = −

(
q2E0

mω2
0

)
e sinω0t, (6.40)

with an amplitude d0 given by e times the bracket in Eq. (6.40).
Following Eqs. (6.25), the time-averaged power is

dP
dΩ

=
q4E2

0

32π2ε0m2c3
sin2 Θ, P =

q4E2
0

12πε0m2c3
, (6.41)

where the time average of sin2 ω0t gives a factor 1/2. The incident �ux 〈S〉 = 1
2

√
ε0/µ0E

2
0 (see

Eq. (5.44)). We de�ne the di�erential cross section dσ for scattering into dΩ,

dP
dΩ

= 〈S〉 dσ
dΩ

=
1

2

√
ε0
µ0

E2
0

dσ
dΩ

, (6.42)

implying (using Eq. (6.41))

dσ
dΩ

∣∣∣∣
polarized

=
q4

(4πε0)2m2c4
sin2 Θ = r2

0 sin2 Θ. (6.43)
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The quantity r0 gives a �size� of the point charge, assuming its rest energy m0c
2 is purely

electromagnetic. For an electron r0 ≡ re ≈ 2.82× 10−15 m is the classical electron radius. The
total cross section we obtain by integrating over solid angle, using µ ≡ cos Θ,

σ =

ˆ
Ω

dσ
dΩ

dΩ =
q4

8πε20m
2c4

ˆ 1

−1
(1− µ2) dµ =

q4

6πε20m
2c4

=
8π

3
r2
e . (6.44)

Electron or Thomson cross section σT ≈ 6.65× 10−29 m2.
The total as well as the di�erential cross sections are frequency independent, so that the

scattering is equally e�ective at all frequencies. However, this is valid only for su�ciently low
frequencies, at high frequencies, where hν ∼ mec

2 (X-rays with hν ≥ 0.511MeV), the quantum
mechanical e�ects must be involved (see Appendix 9). For intense radiation �elds the electron
also moves relativistically and the dipole approximation ceases to be valid.

The scattered radiation is linearly polarized in the plane of the incident polarization vector
e and the direction of scattering n. We get the di�erential cross section for scattering of unpo-
larized radiation by recognizing that an unpolarized beam can be regarded as the superposition
of two linearly polarized beams with perpendicular axes. We choose one such beam along e1,
which is in the plane of the incident and scattered directions, and the second along e2, per-
pendicular to this plane. We denote Θ the angle between e1 and n, while the angle between
e2 and n is π/2. We also classify the angle θ between the scattered wave and incident wave,
θ = π/2−Θ. The di�erential cross section for unpolarized radiation is then the average of the
cross sections for scattering of linearly polarized radiation through angles Θ and π/2,

dσ
dΩ

∣∣∣∣
unpol

=
1

2

[
dσ(Θ)

dΩ

∣∣∣∣
pol

+
dσ(π/2)

dΩ

∣∣∣∣
pol

]
=
r2

0

2

(
1 + sin2 Θ

)
=
r2

0

2

(
1 + cos2 θ

)
, (6.45)

which depends only on the angle between the incident and scattered directions.
There are several important features of electron scattering of unpolarized radiation:

� Forward-backward symmetry: The scattering cross section, Eq. (6.45), is symmetric under
the re�ection θ → −θ.

� Total cross section: The total scattering cross sections of unpolarized and polarized in-
cident radiation are identical, σunpol = σpol = (8π/3)r2

e . This is because the electron at
rest has no net direction intrinsically de�ned.

� Polarization of scattered radiation: The last two terms in Eq. (6.45) refer to intensities in
two perpendicular directions in the plane normal to n, since they arise from the two per-
pendicular components of the incident wave. Because the ratio of polarized intensities in
the plane and perpendicular to the plane of scattering is cos2 θ, the degree of polarization
of the scattered wave is (cf. Eq. (5.84))

Π =
1− cos2 θ

1 + cos2 θ
. (6.46)

Since Π ≥ 0, the electron scattering of a completely unpolarized incident wave produces a
scattered wave with some degree of polarization that depends on the viewing angle with
respect to the incident direction. Looking along the incident direction (θ = 0), we see
no net polarization, since, by symmetry, all directions in the plane are equivalent. If we
look perpendicularly to the incident wave (θ = π/2) we see 100% polarization, since the
electron's motion is con�ned to a plane normal to the incident direction.
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6.5 Lorentz-Abraham Force (Radiation Reaction Force)

is a force exerted on a particle by the radiation it produces. An accelerating charge emits
radiation (according to the Larmor formula), which carries momentum away from the charge.
Since momentum is conserved, the charge is pushed in the direction opposite the direction of
the emitted radiation.

Let T be the time interval over which the particle's kinetic energy is changed substantially
by the radiative emission. From the Larmor formula (6.21) with a = u̇,

T ∼ v2

Prad
∼ 6πε0mc

3

q2

(v
a

)2
, (6.47)

where m is the mass of the particle, and v its velocity. Let us estimate v/a ∼ tp as the typical
orbital time scale for the particle. The condition T/tp � 1 requires tp � τ , where (in case of
an electron) the time for radiation to cross the classical electron radius (Eq. (6.41)) is

τ =
1

6πε0

e2

mec3
∼ 10−23 s. (6.48)

If we are consider processes that occur on a time scale much longer than τ , we can treat radiation
reaction as a perturbation.

We derive the formula for the radiation reaction force from considerations of energy balance.
When the radiation reaction force is relatively small, we may de�ne the force as a term added to
the existing external force, such that the radiated energy must be compensated by the work done
against the radiation reaction force. Following again the Larmor formula (6.21) for electrons,
we set

−F rad · u =
1

6πε0

e2u̇2

c3
, (6.49)

However, Eq. (6.49) brings a contradiction; F rad cannot depend on u, because this would imply
a preferred frame relative to which u is measured. We satisfy this equation in an average sense,
by its integration (by parts) over a time interval (t2 − t1)� τ :

−
ˆ t2

t1

F rad · u dt =
1

6πε0

e2

c3

ˆ t2

t1

u̇ · u̇ dt =
1

6πε0

e2

c3

(
u̇ · u|t2t1 −

ˆ t2

t1

ü · u dt
)
. (6.50)

We may assume that the initial and �nal states are the same (within the long term average) or
that u̇ · u(t1) = u̇ · u(t2), the �rst term on the right-hand side of Eq. (6.50) vanishes, leaving

−
ˆ t2

t1

(
F rad −

1

6πε0

e2ü

c3

)
· u dt = 0, so that F rad =

1

6πε0

e2ü

c3
= meτ ü, (6.51)

where ü is the jerk (the derivative of acceleration, or the third derivative of displacement).
The radiation reaction force in Eq. (6.51) depends on the jerk, this increases the degree of the
particle's equation of motion and implies a nonphysical behavior if not used consistently.

The equation of motion for a particle with zero total force,

m (u̇ − τ ü) = F = 0 (6.52)

gives the trivial solution u = const., which is physically correct. However, there is also a
non-trivial solution

u = u0 et/τ , (6.53)

(�runaway� solution) which we must exclude, because u̇ · u(t1) 6= u̇ · u(t2) or, because of the
rapid velocity increase, it violates the restriction that the motion will not change on a time
scale short compared to τ (we say that such solutions are spurious).



Chapter 6. Radiation from Moving Charges 105

6.6 Radiation from Harmonically Bound Particles

6.6.1 Undriven Harmonically Bound Particles

A harmonically bound particle to a center of force (F = −kr = −mω2
0r) will oscillate sinu-

soidally with frequency ω0. Such a system, although rarely found in nature, gives the only
possible classical model of a spectral line. Many of the quantum results are consistent with
this model (�oscillator strengths�, �classical damping widths�). Since there is always a small
damping by the radiation reaction force, the oscillation is not purely harmonic. We assume
ω0τ � 1, so that the radiation reaction formula is valid. If the particle oscillates along the x
axis (cf. Eq. (6.51)),

ẍ+ ω2
0x− τ

...
x = 0, (6.54)

which is a third-order di�erential equation with constant coe�cients. Since the third derivative
term is small, we may approximate the motion as harmonic to �rst order,

x(t) ∝ cos(ω0t+ φ0), so that
...
x ∝ −ω2

0ẋ. (6.55)

This approximation preserves an important feature of damping: it is expressed as an odd
number of time derivatives and is therefore not time reversible. Equation (6.54) becomes

ẍ+ ω2
0 (τ ẋ+ x) = 0, so that α2 + ω2

0τα+ ω2
0 = 0, (6.56)

by assuming x(t) is of the form eαt. Expanding in powers of ω0τ , we obtain

α = −ω
2
0τ

2
± iω0 +O(ω3

0τ
2), (6.57)

where the discriminant of the solution of Eq. (6.56), ω2
0τ

2−4 ≈ −4. Taking the initial conditions
x(0) = x0, ẋ(0) ≈ 0, involving Eqs. (6.55), (6.57), and (6.48) gives

x(t) = x0e−Γt/2 cosω0t =
1

2
x0

(
e−Γt/2+iω0t + e−Γt/2−iω0t

)
, Γ = ω2

0τ =
1

6πε0

e2ω2
0

mec3
. (6.58)

The Fourier transform of x(t) is (cf. Eq. (5.47)),

x̂(ω) =

ˆ ∞
0

x(t) e−iωt dt =
x0

2

[
1

Γ/2 + i (ω − ω0)
+

1

Γ/2 + i (ω + ω0)

]
. (6.59)

This is large near ω = ±ω0. Since we interested only in positive frequencies, and only in regions
where values are large, we approximate

x̂(ω) ≈ x0

2

1

Γ/2 + i (ω − ω0)
, |x̂(ω)|2 =

(x0

2

)2 1

(Γ/2)2 + (ω − ω0)2 . (6.60)

The energy radiated per unit frequency is (cf. Eq. (6.30))

dW
dω

=
1

6π2ε0

e2ω4

c3
|x̂(ω)|2 =

ω4

24π2ε0c3

e2x2
0

(Γ/2)2 + (ω − ω0)2 . (6.61)

Equation (6.61) gives the frequency spectrum typical of a �decaying oscillator�, which has a
sharp maximum near ω = ω0, since Γ/ω0 � 1 (cf. Eq. (6.58), for example, for the blue edge of
the visible light, Γ/ω0 ≈ 10−9), where Γ is the full width at half maximum (FWHM).
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Using the de�nition of Γ and k = meω
2
0 = force constant of the spring, Eq. (6.61) is

dW
dω

=
1

6π2ε0

e2ω4

c3
|x̂(ω)|2 =

(
kx2

0

2

)
Γ/(2π)

(Γ/2)2 + (ω − ω0)2 . (6.62)

The �rst factor gives the initial potential energy of the particle (of the spring) while the second
factor gives the distribution of the radiated energy over frequency. The integral over ω is

W =

ˆ ∞
−∞

dW
dω

dω =

ˆ ∞
−∞

Γkx2
0/(4π)

(Γ/2)2 + (ω − ω0)2 dω =
kx2

0

2π
atan

[
2 (ω − ω0)

Γ

]∞
−∞

=
kx2

0

2
. (6.63)

The pro�le of the emitted spectrum,

Γ/(2π)

(Γ/2)2 + (ω − ω0)2 , (6.64)

is known as a Lorentz pro�le. The line width ∆ω = Γ is a universal constant for electron
oscillators. In terms of wavelength (cf. Eq. (6.58)) it is

∆λ =
c

ν2
∆ν =

2πc

ω2
∆ω = 2πcτ ≈ 1.2× 10−4 Å. (6.65)

6.6.2 Driven Harmonically Bound Particles

We now consider forced oscillations due to an incident radiation. We write (cf. Eq. (6.54))

meẍ+meω
2
0x−meτ

...
x = eE0 cosωt, (6.66)

where the right-hand side represents the force due to a sinusoidally varying �eld. Following
Eq. (6.56) and representing x by a complex variable, we have

ẍ+ ω2
0 (τ ẋ+ x) =

eE0

me
Re (eiωt), (6.67)

where we take the real part of x. The steady-state solution of Eq. (6.67) (cf. Eq. (6.57) and
Sect. 3.2.1 in Kurfürst (2017)) is

x = |x0| ei(ωt+δ), where x0 = −eE0

me

(
ω2 − ω2

0 − iω3
0τ
)−1

, δ = atan
(

ω3τ

ω2 − ω2
0

)
. (6.68)

There is a phase shift caused by the odd time derivative damping term. For ω > ω0 the
particle �leads� the driving force and for ω < ω0 it �lags behind�. Taking the real part of x we
have an oscillating dipole of charge e and amplitude |x0| with frequency ω. The time-averaged
total radiated power (cf. Eqs. (6.21), (6.41) and (6.68)) is

P =
1

12πε0

e2|x0|2ω4

c3
=

e4E2
0

12πε0m2
ec

3

ω4(
ω2 − ω2

0

)2
+ (ω3

0τ)2
. (6.69)

Dividing Eq. (6.69) by the time-average Poynting vector 〈S〉 = 1
2

√
ε0/µ0E

2
0 (see Eq. (5.44)),

we obtain the scattering cross section as a function of frequency,

σ(ω) = σT
ω4(

ω2 − ω2
0

)2
+ (ω3

0τ)2
, (6.70)

where σT is the Thomson cross section (6.44).
We identify from Eq. (6.70) three characteristic regimes for ω:
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� ω � ω0: In this case σ(ω) → σT , the value for free electrons, since at high incident
energies the binding becomes negligible.

� ω � ω0: This gives

σ(ω)→ σT

(
ω

ω0

)4

, (6.71)

which corresponds to the electron fully responding to the incident �eld with no inertial
e�ects, so that kx ≈ eE (since ω � ω0, the electric �eld appears nearly static and produces
a nearly static force). The dipole moment is directly proportional to the incident �eld,
the radiation is scattered as ω4, and the scattering is called Rayleigh scattering. It is
responsible for the blue color of the sky and the red color of the sun at sunset, because it
favors the scattering of higher frequency (bluer) light.

� ω ≈ ω0: Since ω2 − ω2
0 → 0, that is ω2 − ω2

0 = (ω − ω0)(ω + ω0) ≈ ω − ω0, so that

σ(ω) ≈ σT
4τ

(ω2
0τ)

(ω − ω0)2 +

(
ω2

0τ

2

)2 ≡
πσT
2τ

Γ/(2π)

(ω − ω0)2 + (Γ/2)2
, (6.72)

using Γ = ω2
0τ . With the de�nitions of σT and τ from (6.44) and (6.48), Eq. (6.72)

becomes

σ(ω) ≈ π

2ε0

e2

mec

Γ/(2π)

(ω − ω0)2 + (Γ/2)2
, (6.73)

Near the resonance, ω ≈ ω0, the shape of the scattering cross section is the same as
the emission from the free oscillator (cf. Eq. (6.64)). This can be explained, since the
free oscillations are excited by a pulse of radiation, E(t) ∝ δ(t). The spectrum of this
pulse is independent of ω (white spectrum), so that we may regard the free oscillations as
the scattering of a white spectrum, yielding emission proportional to the scattering cross
section.

We obtain an important result by integrating σ(ω) over ω (in SI units),

ˆ ∞
0

σ(ω) dω =
πe2

2ε0mec
, or

ˆ ∞
0

σ(ν) dν =
e2

4ε0mec
, (6.74)

while in cgs units Eq. (6.74) becomes

ˆ ∞
0

σ(ω) dω =
2π2e2

mec
, or

ˆ ∞
0

σ(ν) dν =
πe2

mec
. (6.75)

We have neglected a divergence, since the cross section actually approaches σT for large ω.
This may be justi�ed as follows: the radiation reaction formula is only valid for ωτ � 1,
so that we must cut o� the integral at ωmax such that ωmax � 1/τ . The contribution to
the integral from the Thomson limit is less than

ˆ ωmax

0
σT dω = σTωmax, (6.76)
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which is negligible comparing to the integral (6.74), since σTωmax � σT /τ ≡ e2/(ε0mec).
In the quantum theory one obtains similar formulas, which correspond to the above results,

ˆ ∞
0

σ(ν) dν =
e2

4ε0mec
fnn′

(
=
πe2

mec
fnn′ in cgs

)
, (6.77)

where fnn′ is called the oscillator strength or f -value for the transition between states n
and n′.



Chapter 7

Relativistic E�ects

7.1 Tensor analysis

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): For basics of tensor algebra and analysis,
including the terminology and explanation of quantities and operations introduce in this Section
- see Kurfürst (2017), Sect. 2.3 (in Czech). We now extend it including the consequences of
special relativity which is based on two fundamental postulates:

� The laws of nature are identical in every inertial frame of reference.

� The speed of light is c in all such frames.

Considering two inertial frames K and K′, with a relative (constant) velocity v along the
x axis, whose origins coincide at t = 0. We emit a pulse of light at the origin at t = 0; each
observer then detects a spherical wavefront centered on his own origin. This is a consequence
of the second postulate and is inconsistent with �classical� physics. This result implies the fact
that time and space are speci�c in each frame and not universal. The expanding �sphere of
light� is thus in each frame described as

c2t2 − x2 − y2 − z2 = 0, c2t′
2 − x′2 − y′2 − z′2 = 0, (7.1)

where, unlike the Newtonian physics, t′ 6= t (we note that another formalisms express Eqs. (7.1)
with opposite signs, yielding however the same physics). The relations between x, y, z, t and
x′, y′, z′, t′ are called the Lorentz transformation, which is represented (regarding a boost along
the x axis) by:

x′ = γ(x− vt), y′ = y, z′ = z, t′ = γ
(
t− v

c2
x
)

where γ =

(
1− v2

c2

)−1/2

, (7.2)

while the inverse transformation is:

x = γ(x′ + vt′), y = y′, z = z′, t = γ
(
t′ +

v

c2
x′
)
. (7.3)

Transformation relation in Eq. (7.2) can be written as the Lorentz matrix (where β ≡ v/c)

Λµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1

 . (7.4)
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Equation (7.2) can be thus written in the compact form

x′
µ

= Λµνx
ν . (7.5)

Lorentz transformation of a general second-rank tensor T is de�ned by

T ′
µν

= ΛµσΛντT
στ , (7.6)

which explicitly means T ′00 = Λ0
0Λ0

0 T
00 + Λ0

1Λ0
0 T

10 + Λ0
0Λ0

1 T
01 + Λ0

1Λ0
1 T

11, T ′01 =
Λ0

0Λ1
0 T

00 + Λ0
1Λ1

0 T
10 + Λ0

0Λ1
1 T

01 + Λ0
1Λ1

1 T
11, T ′02 = Λ0

0Λ2
2 T

02 + Λ0
1Λ2

2 T
12, etc.,

using all non-zero terms of Λµν . The resulting tensor T ′
µν , expressed in terms of Tµν , using all

non-zero terms of Λµν . The resulting tensor T ′µν , expressed in terms of Tµν , is

T ′
µν

= γ2


(
T 00 + β2T 11 − βT ij

) (
T 01 + β2T 10 − βT ii

) T 02−βT 12

γ
T 03−βT 13

γ(
T 10 + β2T 01 − βT ii

) (
T 11 + β2T 00 − βT ij

) T 12−βT 02

γ
T 13−βT 03

γ
T 20−βT 21

γ
T 21−βT 20

γ T 22/γ2 T 23/γ2

T 30−βT 31

γ
T 31−βT 30

γ T 32/γ2 T 33/γ2

 , (7.7)

where in this case T ii = T 00 + T 11 and T ij = T 01 + T 10.
We now de�ne the 4× 4 Minkowski metric

ηµν = ηµν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

 , (7.8)

which represents the space-time �length�

ds2 = ηµν dxµ dxν = ηµν dxµ dxν . (7.9)

We obtain the covariant components Tµν by lowering indexes as

Tµν = ηµσηντT
στ . (7.10)

(cf. Eqs. 2.59 - 2.61 in Kurfürst (2017)). Lorentz transformaton of the covariant components
now becomes

T ′µν = Λ̃ σ
µ Λ̃ τ

ν Tστ , (7.11)

where the coe�cients Λ̃ ν
µ = ηµτΛτ ση

σν . The explicit form of Λ̃ ν
µ is thus

Λ̃ ν
µ =


γ βγ 0 0
βγ γ 0 0
0 0 1 0
0 0 0 1

 . (7.12)

while the explicit form of T ′µν is

T ′µν = γ2


(
T00 + β2T11 + βTij

) (
T01 + β2T10 + βTii

) T02+βT12
γ

T03+βT13
γ(

T10 + β2T01 + βTii
) (

T11 + β2T00 + βTij
) T12+βT02

γ
T13+βT03

γ
T20+βT21

γ
T21+βT20

γ T22/γ
2 T23/γ

2

T30+βT31
γ

T31+βT30
γ T32/γ

2 T33/γ
2

 , (7.13)
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where in this case Tii = T00 + T11 and Tij = T01 + T10.
In a similar way we can also de�ne mixed components of a tensor T ,

Tµν = ηντT
µτ , Tµ

ν = ηµσT
σν . (7.14)

whose explicit forms, expressed in terms of contravariant tensors, are

Tµν =


T 00 −T 01 −T 02 −T 03

T 10 −T 11 −T 12 −T 13

T 20 −T 21 −T 22 −T 23

T 30 −T 31 −T 32 −T 33

 , Tµ
ν =


T 00 T 01 T 02 T 03

−T 10 −T 11 −T 12 −T 13

−T 20 −T 21 −T 22 −T 23

−T 30 −T 31 −T 32 −T 33

 . (7.15)

The mixed tensors are Lorentz-transformed:

T ′
µ
ν = ΛµσΛ̃ τ

ν T
σ
τ , T ′µ

ν
= Λ̃ σ

µ ΛντTσ
τ . (7.16)

The explicit forms in this case are

T ′
µ
ν = γ2


(
T 0

0 − β2T 1
1 + βT ij

) (
T 0

1 − β2T 1
0 + βT ii

) T 0
2−βT 1

2

γ
T 0

3−βT 1
3

γ(
T 1

0 − β2T 0
1 − βT ii

) (
T 1

1 − β2T 0
0 − βT ij

) T 1
2−βT 0

2

γ
T 1

3−βT 0
3

γ
T 2

0+βT 2
1

γ
T 2

1+βT 2
0

γ T 2
2/γ

2 T 2
3/γ

2

T 3
0+βT 3

1

γ
T 3

1+βT 3
0

γ T 3
2/γ

2 T 3
3/γ

2

 , (7.17)

where T ii = T 0
0 − T 1

1 and T ij = T 0
1 − T 1

0, and

T ′µ
ν

= γ2


(
T0

0 − β2T1
1 − βTij

) (
T0

1 − β2T1
0 − βTii

) T0
2+βT1

2

γ
T0

3+βT1
3

γ(
T1

0 − β2T0
1 + βTi

i
) (

T1
1 − β2T0

0 + βTi
j
) T1

2+βT0
2

γ
T1

3+βT0
3

γ
T2

0−βT21
γ

T2
1−βT20
γ T2

2/γ2 T2
3/γ2

T3
0−βT31
γ

T3
1−βT30
γ T3

2/γ2 T3
3/γ2

 , (7.18)

where Tii = T0
0 − T1

1 and Tij = T0
1 − T1

0.
Here are some other examples of Lorentz transformation of vector or tensor �elds:

� Transformation of two vectors (which form a tensor product),

A′
µ
B′

ν
= ΛµσΛντA

σBτ , (7.19)

which is another expression for (7.2).

� Transformation of the components of the second rank Minkowski metric tensor ηµν :

η′
αβ

= ΛαµΛβνη
µν , (7.20)

where η′αβ = ηαβ (thus ηαβ has the same components in all frames). The proof of this
identity is directly given by Eq. (7.20). Another proof follows from symmetricity of ηαβ

and from its decomposition into the sum of four tensor products ηαηβ where each of them
can be transformed according to Eq. (7.19) as η′αη′β = Λαβη

βΛβαη
α = ΛαβΛβαη

βηα.
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� We can construct also the second rank Kronecker-delta tensor δµν (represented by unit
matrix) following the identity

ΛσνΛ̃ µ
σ = δµν . (7.21)

The proof is obtained from the following identities: s2 = ηστx
σxτ = xσxσ = x′σx′σ (where

s2 is the Lorentz invariant �space-time� square of line length in the observer's frame of
reference, cf. Eq. (7.9), so that x′σx′σ = ΛσνΛ̃ µ

σ xνxµ = s2 ≡ xνxµδ
µ
ν . Multiplying

Eq. (7.5) by Λ̃ α
µ and using Eq. (7.21) thus yields the inverse transformation of Eq. (7.5):

xα = Λ̃ α
µ x
′µ. (7.22)

Higher-rank tensors can be de�ned in a similar way. The Lorentz transformation involves a
factor Λ for each contravariant index and a factor Λ̃ for each covariant index.

All tensor operations follow the basic principles described in Sect. 2.3 of the lecture notes
Kurfürst (2017). We introduce here only the speci�c rules that are connected with covariant
transformations:

� Raising and Lowering Indexes. We use Minkowski metric in special relativity to change
contravariant indexes into covariant ones, and vice versa. The proof of this is given by
the mutually commuting pair of transformation equations:

ηµνΛµσ = Λ̃ τ
ν ητσ, ηµνΛ̃ σ

µ = Λντη
τσ. (7.23)

The lowering operator ηµν thus changes the Lorentz transformation coe�cients Λ to Λ̃
while the latter changes a contravariant index into a covariant one.

� Contraction of Tensor. The scalar product of two vectors AµBµ can be regarded as the
contraction of the second-rank tensor AµBν . Let Tµνσ being a third-order tensor, then
Tµνν is a vector. If FµνGστ is the fourth-rank tensor, we can form the invariant FµνGµν .
We prove this property of contraction for the above example of a third-order tensor Tµνν .
From the transformation law for Tµνσ we obtain

T ′
µν
ν = ΛµαΛνβΛ̃ τ

ν T
αβ

τ . (7.24)

But ΛνβΛ̃ τ
ν = δτ β (cf. Eq. (7.21)), so that

T ′
µν
ν = ΛµαT

αβ
β, (7.25)

which shows, according to one Λ operator needed, that Tµνν is indeed a vector. In a
similar manner we can make the general proof of this property.

� Gradients of Tensor. A covariant tensor �eld is de�ned as a tensor that is a function of
the space-time coordinates x0, x1, x2, x3. Then the gradient operation ∂/∂xµ acting on
such a �eld produces a tensor �eld of one higher rank with µ as a new covariant index.
A convenient notation for the gradient operation is a comma followed by the index µ.
Thus, for example, if λ is a scalar, then λ,µ ≡ ∂λ/∂xµ is a covariant vector. Similarly
Tµν,σ ≡ ∂Tµν/∂xσ is a third-rank tensor. We shall prove this rule for the special case of
the vector �eld Aµ. Di�erentiating the transformation

A′
µ

= ΛµσA
σ, (or reverselyAµ = Λ̃µσA

σ ′, ) (7.26)
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gives

∂A′µ

∂x′ν
= Λµσ

∂Aσ

∂x′ν
= Λµσ

∂xα

∂x′ν
∂Aσ

∂xα
= ΛµσΛ̃ α

ν

∂Aσ

∂xα
, (7.27)

where we have used Eq. (7.22) to evaluate ∂xα/∂x′ν . This is the transformation for a
second-rank tensor with contravariant index µ and covariant index ν. However, introduc-
ing here only the partial derivatives, we have assumed that the velocity components in Λ
are constant, which applies only in Cartesian coordinate systems. In general (e.g., spher-
ical) coordinate systems we need covariant derivatives ∇µ (whose complete formalism for
various either orthogonal or general non-orthogonal coordinate systems is introduced in
Sects. A.1.1, A.2.1, A.3.1, and A.7.1, in Kurfürst (2017).

We note that although the summation convention allows summation over any two indexes, in the
covariant formalism only a subscript-superscript pair forms a tensor. Thus we have to carefully
de�ne superscripts and subscripts usage, to satisfy this principle, for example ηµσησν = δµν
forms the Kronecker tensor, while ηµσησν = Tr (δµν) which is its four-space trace.

Let us de�ne some further rules: The divergence of a tensor is a gradient followed by a
contraction of the gradient index with one of the other contravariant indexes. For example,
∂Aµ/∂xµ ≡ Aµ,µ, while ∇µAµ ≡ Aµ;µ ≡ covariant divergence of the vector Aµ, and ∇νTµν ≡
Tµν ;ν ≡ covariant divergence of the tensor Tµν (noting the various types of notation).

A statement that two tensors of the same rank and type are equal is called tensor equation. If
a tensor equation holds in one Lorentz frame, then it holds in all Lorentz frames. This property
is called Lorentz covariance or simply covariance (this meaning of the word �covariance� has
nothing to do with covariant components of tensors).

7.2 Basic Relativistic Transformations

Since space and time are Lorentz-transformed simultaneously and mutually, the basic charac-
teristic is now called an event, speci�ed by a location in space and by the time it happened.
We now describe some consequences of Lorentz transformations (whose elementary principles
we have already introduced in Sect. 7.1).

7.2.1 Dilation of Time

Suppose a clock device is at rest at the origin of the frame K′ and measures an interval of time
T ′ = t′2 − t′1. What is the time interval in K? Note that in K′, the spatial part of an event is:
x′ = y′ = z′ = 0. We obtain

T = t2 − t1 = γ(t′2 − t′1) = γT ′, (7.28)

where the factor γ = (1 − v2/c2)−1/2, so that the moving clock appears to have slowed down.
The e�ect is quite symmetrical between the two frames: observer in K′ measures clocks in K also
have slowed down. This apparent contradiction is a result of measuring a time interval between
two events separated in space: K measures t1 as a clock passes x1, and t2 as it passes x2; then
he subtracts t2 − t1, assuming that the clocks at x1 and x2 are synchronized. Observations of
K′ prove that the two clocks in K are not synchronized at all.
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7.2.2 Contraction of Length

A rigid rod of length L′ = x′2 − x′1 is at rest in the frame K′. Its length measured in K is
L = x2− x1, where x2 and x1 are the positions of the ends of the rod at the same time t in the
frame K. We have the result

L′ = x′2 − x′1 = γ(x2 − x1) = γL, L = L′/γ. (7.29)

The rod in K appears shorter by a factor γ−1 = (1 − v2/c2)1/2. The e�ect is again quite
symmetric between the two observers. If the rod were at rest in K, then K′ would measure its
length contracted. How it is possible? The point is that the measurements did not happen at
the same time by both observers. Since the Lorentz transformation of time depends on position
and vice versa, simultaneity of events is not Lorentz invariant.

In both the time-dilation and length-contraction e�ects plays a crucial role the synchro-
nization of clocks and the principle of simultaneity. Many of the apparent curiosities of special
relativity are simply a result of the relativity of simultaneity between two events separated in
space.

7.2.3 Proper Time

Although intervals of space and time di�er in various frames of reference, there are some quan-
tities that are identical in all Lorentz frames. An important Lorentz invariant quantity is called
the proper time dτ de�ned as

c2 dτ2 = c2 dt2 − dx2 − dy2 − dz2. (7.30)

It is easily shown from Eqs. (7.2) that dτ = dτ ′, and it gives the time intervals between events
that occur at the same spatial location ( dx = dy = dz = 0), as measured by an observer in
his own time.

If we relate our measurements to another reference frame with relative velocity v, then we
have

dτ = γ−1 dt, (7.31)

where Eq. (7.31) is the time dilation formula (7.28) in which dτ is measured by the observer
�in motion�.

7.2.4 Transformation of Velocities

How is related a velocity u ′ of a point in frame K′ to a velocity u of the same point in frame
K? From the di�erential form of Lorentz transformations (7.2)

dx = γ( dx′ + v dt′), dy = dy′, dz = dz′, dt = γ
(
dt′ +

v

c2
dx′
)
, (7.32)

we obtain the relations

ux ≡
dx
dt

=
γ( dx′ + v dt′)

γ
(
dt′ +

v

c2
dx′
) =

u′x + v

1 +
v

c2
u′x
, uy =

u′y

γ
(

1 +
v

c2
u′x

) , uz =
u′z

γ
(

1 +
v

c2
u′x

) . (7.33)
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The generalization of these equations to an arbitrary velocity v , not necessarily parallel to the
x axis, can be expressed in terms of the components of u perpendicular to and parallel to v:

u|| =
u′|| + v

1 +
v

c2
u′||

, u⊥ =
u′⊥

γ
(

1 +
v

c2
u′||

) . (7.34)

Direction of velocities in K′ and K are then related by aberration formula:

tg θ =
u⊥
u||

=
u′⊥

γ
(
u′|| + v

) =
u′ sin θ′

γ (u′ cos θ′ + v)
, (7.35)

where u′ = |u ′|, while the azimuthal angle φ remains unchanged. Identifying u′ = u = c, then
cos θ = u||/c, sin θ = u⊥/c, and the aberration formula becomes the aberration of light,

tg θ =
sin θ′

γ (cos θ′ + β)
, cos θ =

cos θ′ + β

1 + β cos θ′
, sin θ =

sin θ′

γ (1 + β cos θ′)
. (7.36)

In case θ′ = π/2, that is, a photon is emitted perpendicularly to v in K′, we have

tg θ =
c

γv
, sin θ =

1

γ
, and for γ � 1→ θ ∼ 1

γ
. (7.37)

If photons are emitted in K′ isotropically, then for half of them θ′ < π/2 and for the second half
θ′ > π/2. Equation (7.37) thus shows that in K are the photons concentrated in the forward
direction, with half of them lying within a cone of half-angle 1/γ, while a minority will be
emitted having θ � 1/γ. This is called the beaming e�ect.

7.2.5 Doppler E�ect

Any periodic phenomenon in the �moving� frame K′ will appear to have a longer period by
a factor γ when measured by observers in K. If, on the other hand, we measure the arrival
times of periodic phenomena that propagate with the velocity of light, then there will be an
additional e�ect on the observed period due to the delay times for light propagation. The joint
e�ect is called the Doppler e�ect.

In the rest frame K of the observer, the moving source emits one period of radiation as
it moves from point 1 to point 2 with velocity v (Fig. 7.1). If the angular frequency of the
radiation in the rest frame K′ of the source is ω′, then the time taken to move from point 1 to
point 2 in K is given by (time-dilation e�ect):

∆t = γ∆t′ =
2πγ

ω′
. (7.38)

We note l = v∆t and d = v∆t cos θ in Fig. 7.1. The di�erence in arrival times ∆tA of the
radiation emitted at 1 and at 2 is equal to

∆tA = ∆t− d

c
= ∆t

(
1− v

c
cos θ

)
(7.39)

and the observed angular frequency ω will be

ω =
2π

∆tA
=

ω′

γ
(

1− v

c
cos θ

) = ω′γ
(

1 +
v

c
cos θ′

)
, ω′ = ωγ

(
1− v

c
cos θ

)
. (7.40)
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l = v dt

d
=

v dt
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sθ

θ

v

Figure 7.1: Illustration of the relativistic Doppler e�ect and aberration.

which is the relativistic Doppler formula. The classical Doppler e�ect requires to take into
account not only the relative velocity between source and observer but also their velocities
relative to the medium carrying the waves (say, air in case of sound waves). The relativistic
formula does not refer to any medium for the propagation of light, it involves only the relative
velocity of source and observer.

7.3 Four-Vectors

A four-vectors are transformed in the same manner as coordinates of events (7.2). Most physical
quantities can be related to four-vectors or to their generalizations - the tensors. We should point
out that the invariance of (xµ)2, is a general property of four-vectors. However, in Minkowski
space, it is possible for the �square� of a four-vector to be positive, zero, or negative; these
possibilities are called, respectively, a space-like, null (or light-like), or time-like four-vector.

Let us introduce some physically important four-vectors other than the general type xµ. The
di�erence between two in�nitesimally neighboring events, dxµ, is also a four-vector. Dividing
now dxµ by the element of proper time dτ de�nes the four-velocity (where i = 1, 2, 3),

Uµ =
dxµ

dτ
=

(
c dt/dτ
dxi/dτ

)
= γu

(
c
ui

)
= γu

(
c
u

)
, (7.41)

where γu = (1 − u2/c2)−1/2, and u is the magnitude of the ordinary (or �three-velocity�),
u = dx/dt. The transformation of Uµ under the boost along the x-axis is

U ′
0

= γ
(
U0 − βU1

)
, U ′

1
= γ

(
−βU0 + U1

)
, U ′

2
= U2, U ′

3
= U3. (7.42)

With the above de�nitions we have

γu′c = γγu
(
c− βu1

)
, γu′u

′1 = γγu
(
−βc+ u1

)
, γu′u

′2 = γuu
2, γu′u

′3 = γuu
3, (7.43)

where the �rst two of them we can rewrite as

γu′ = γγu

(
1− v

c2
u1
)
, γu′u

′1 = γγu
(
u1 − v

)
. (7.44)
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Since u1 = u cos θ, we obtain the transformation for speed in terms of the factors γ:

γu′ = γγu

(
1− vu

c2
cos θ

)
. (7.45)

Dividing the second Eq. (7.44) by the �rst Eq. (7.44), we obtain the already derived formula
(7.33):

u′
1

=
u1 − v

1− vu1

c2

. (7.46)

The square of Uµ is clearly Lorentz invariant,

UµUµ = (γuc)
2 − (γuu)2 = c2. (7.47)

The four-velocity takes an especially simple form in the rest frame (where the ordinary
velocity u vanishes). We have

U ′
µ

= c (1, 0, 0, 0)T , (7.48)

where only the time component is nonzero. This property makes four-velocity a useful tool in
picking out the time component of an arbitrary vector (since U ′µA

′µ = UµA
µ is an invariant) as

measured by an observer with four-velocity Uµ:

A′
0

=
1

c
U ′µA

′µ =
1

c
UµA

µ, (7.49)

where UµAµ can be evaluated in any convenient frame, not necessarily in the rest frame. Two
examples of this formula can be checked immediately: First, setting Aµ = Uµ, we obtain the
trivial result U ′0 = c. Setting Aµ = xµ, we �nd

x′
0

=
1

c
xµ

dxµ

dτ
=

1

2c

d
dτ

(xµx
µ) =

1

2c

d
dτ

(
c2τ2

)
= cτ, (7.50)

which is obviously correct, since the proper time is physically equal to the time of a clock in
the rest frame.

In a quite similar manner we can construct the four-acceleration (do not confuse its notation
Aµ with notation of an arbitrary four-vector)

Aµ =
dUµ

dτ
=

d2xµ

dτ2
= γ2

u

 γ2
u

u · a
c

a + γ2
u

u · a
c2

u

 , (7.51)

which is de�ned as the rate of change of four-velocity with respect to the particle's proper
time along its worldline, where a = du/dt is the three-acceleration and u is the three-velocity.
The four-acceleration geometrically represents a curvature vector of a worldline. Therefore, the
magnitude of the four-acceleration (which is a Lorentz scalar) is equal to the proper acceleration
that a moving particle �feels� when moving along a worldline. A worldline having constant four-
acceleration is aMinkowski-circle, i.e., hyperbola. The scalar product of a particle's four-velocity
and its four-acceleration is always zero,

uµaµ = 0. (7.52)
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Another four-vector, the �wavenumber vector� k : A planar electromagnetic wave has space
and time dependence proportional to exp(ik · x − iωt). The phase of this wave must be an
invariant to all observers, since the vanishing of the electric and magnetic �elds in one frame
implies their vanishing in all frames (a charged particle moving on an unaccelerated straight-line
trajectory in one frame must have such a trajectory in all frames, by the relativity principle).
Notice that we may write

k · x − ωt = −kµxµ, where kµ =

(
ω/c
k

)
. (7.53)

The product kµxµ is an invariant and since xµ is an arbitrary four-vector, then kµ must be a
four-vector also. Therefore, we can write the transformation for kµ,

k′
0

= γ
(
k0 − βk1

)
, k′

1
= γ

(
−βk0 + k1

)
, k′

2
= k2, k′

3
= k3. (7.54)

Since |k | = ω/c for electromagnetic waves, we have k1 = (ω/c) cos θ, and the zeroth component
k′0 of the transformation reduces to the Doppler formula

ω′ = ωγ
(

1− v

c
cos θ

)
. (7.55)

Another way that leads to (7.55) is to use (7.49) with Aµ = kµ, which is obviously a null vector,
since Eq. (5.39) gives

kµk
µ =

ω2

c2
− |k |2 = 0. (7.56)

The construction of four-vectors is by no means an automatic procedure; in two cases (xµ

and kµ) we have simply used a known three-vector for the spatial part and added an appropriate
time component. In one case (Uµ) we multiplied the speed of light and a three-velocity by a
factor γu to make the four-vector. In some cases (electric and magnetic �elds) there is no

four-vector that corresponds to a given three-vector. However, the best way to systematic
construction of four-vectors is using the means of tensor analysis, introduced in Sect. 7.1.

7.4 Transformation of Electromagnetic Fields

It is empirically con�rmed that Maxwell equations are Lorentz invariant in form; then the speed
of light c and the elementary charge e are the Lorentz invariants (Lorentz scalars). Since the
four-volume element dx0 dx1 dx2 dx3 is Lorentz invariant and setting ρ the charge density, we
have de = dρ dx1 dx2 dx3, thus ρ must transform as the zeroth component of a four-vector.

We write the equation of charge conservation (5.13) using the notation introduced,

jµ,µ = 0, where jµ =

(
ρc
j ,

)
(7.57)

obtaining the four-vector of current density or simply the four-current. Following Eqs. (5.30)
and (5.31), we de�ne another four-vector, the four-potential

Aµ =

(
φ/c
A

)
, A′

µ
= ΛµνA

ν , Aµ = Λ̃µνA
′ν , (7.58)

thus we can rewrite the Lorentz gauge condition (5.29) as a covariant scalar product

Aα,α = 0 (7.59)
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and Eqs. (5.30) and (5.31) as tensor equations

Aα,β
,β = µjα. (7.60)

Using the four-potential, we can construct the covariant tensor of electromagnetic �eld that
combines the electric and magnetic �eld as a whole (see Kurfürst (2017), Sect. 2.3):

Fµν =
∂Aν
∂xµ

− ∂Aµ
∂xν

= Aν
,µ −Aµ ,ν =


0 Ex/c Ey/c Ez/c

−Ex/c 0 −Bz By
−Ey/c Bz 0 −Bx
−Ez/c −By Bx 0

 , (7.61)

while the contravariant tensor Fµν takes the form

Fµν =
∂Aν

∂xµ
− ∂Aµ

∂xν
= Aν ,µ −Aµ,ν =


0 −Ex/c −Ey/c −Ez/c

Ex/c 0 −Bz By
Ey/c Bz 0 −Bx
Ez/c −By Bx 0

 . (7.62)

Using Eqs. (7.61) and (7.62) we can construct Maxwell's equations in tensor form: The two
Maxwell equations containing sources (for ∇ · E and ∇× B) are

Fµν ,ν = −µ0 j
µ, (7.63)

while the other two Maxwell's equations (for ∇ · B and ∇× E ) we �nd as

Fµν
,σ + Fνσ

,µ + Fσµ
,ν = 0. (7.64)

Since Fµν is a second-rank tensor, its components are transformed in the usual way, that is,

F ′
µν

= ΛµαΛνβF
αβ, F ′µν = Λ̃ α

µ Λ̃ β
ν Fαβ (7.65)

Following Eq. (7.65) we obtain the transformation law for the �elds E and B. For a boost with
velocity v , these equations can be written in the form:

E ′|| = E || B ′|| = B || (7.66)

E ′⊥ = γ (E⊥ + v × B) B ′⊥ = γ
(
B⊥ −

v

c2
× E

)
. (7.67)

Let us apply Eqs. (7.66) to express the case of a constant velocity v ≡ vx ≡ v parallel with x
axis. Then we have

E′x = Ex, E′y = γ (Ey − vBz) , E′z = γ (Ez + vBy) , (7.68)

B′x = Bx, B′y = γ
(
By +

v

c2
Ez

)
, B′z = γ

(
Bz −

v

c2
Ey

)
, (7.69)

while the inverse transformations of the perpendicular components are

Ey = γ
(
E′y + vB′z

)
, Ez = γ

(
E′z − vB′y

)
, (7.70)

By = γ
(
B′y −

v

c2
E′z

)
, Bz = γ

(
B′z +

v

c2
E′y

)
. (7.71)

One consequence of these equations is that a pure electric or pure magnetic �eld is not Lorentz
invariant. If the �eld is purely electric (B = 0) in one frame, in another frame it will be, in
general, a mixed electric and magnetic �eld.
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Any scalar formed from Fµν represents a function of E and B which is a Lorentz invariant.
One such scalar is just the dot product of F with itself,

FµνF
µν = 2

(
B2 − E 2

c2

)
= F ′µνF

′µν = 2

(
B ′

2 − E ′
2

c2

)
. (7.72)

Another Lorentz scalar is the determinant of F :

detF =

(
E · B
c

)2

(7.73)

Thus E ·B = E ′ ·B ′ is also an invariant. We can prove that the determinant of any second-rank
tensor is a Lorentz scalar, since

detA′
µν

= det
(

ΛµαΛνβA
αβ
)

= (det Λ)2 detAαβ = detAαβ. (7.74)

7.5 Electromagnetic Field of a Uniformly Moving Charge

Let us apply Eqs. (7.66) to �nd the �elds of a charge q moving with constant velocity v along
the x axis. In the rest frame of the charged particle (v ′ = 0) the �elds are

E′x =
1

4πε0

qx′

r′3
B′x = 0 (7.75)

E′y =
1

4πε0

qy′

r′3
B′y = 0 (7.76)

E′z =
1

4πε0

qz′

r′3
B′z = 0 (7.77)

where r′3 = (x′2 + y′2 + z′2)3/2. We can Lorentz transform (Eqs. (7.2) and (7.58)) the primed
coordinates to give

Ex =
1

4πε0

qγ(x− vt)
r3

Bx = 0 (7.78)

Ey =
1

4πε0

qγy

r3
By = − 1

4πε0

qβγz

r3
(7.79)

Ez =
1

4πε0

qγz

r3
Bz =

1

4πε0

qβγy

r3
(7.80)

where r3 =
[
γ2(x− vt)2 + y2 + z2

]3/2.
An important case is that of a highly relativistic charge, γ � 1. For simplicity, we choose

the �eld point at a distance b from the origin along the y axis, so that its coordinates are (0, b, 0)
while the coordinates of a particle are (vt, 0, 0). Then we have

Ex =
−qγvt

4πε0 (γ2v2t2 + b2)3/2
Bx = 0 (7.81)

Ey =
qγb

4πε0 (γ2v2t2 + b2)3/2
By = 0 (7.82)

Ez = 0 Bz =
qβγb

4πε0 (γ2v2t2 + b2)3/2
≡ βEy (7.83)
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For large γ we have β ≈ 1 and Ey ≈ Bz. The �elds are mostly transverse, since max (Ex) =
q/(6
√

3πε0 b
2) ≈ 10−2q/(πε0 b

2) while max (Ey) ≈ max (Bz) = qγ/(4πε0 b
2) ≈ 25γ max (Ex).

Therefore, the �eld of a highly relativistic charge appears to be a pulse of radiation traveling in
the same direction as the charge (Eq. (5.19)) and is con�ned to the transverse plane roughly to
a time interval ∆t ∼ b/(γv). This connection between the �elds of a highly relativistic charge
and an associated radiation �eld is an important one and is used in the method of virtual quanta
(will be discussed in Appendix 8).

We can now Fourier transform this pulse of virtual radiation (cf. Sect. 5.4). We �nd

Ê(ω) =

ˆ ∞
−∞

E(t) e−iωt dt =
qγb

4πε0

ˆ ∞
−∞

e−iωt dt

(γ2v2t2 + b2)3/2
, (7.84)

which we integrate using the solution
ˆ ∞
−∞

e−iαx dx
(1 + x2)3/2

= 2αK1(α), where K1(α) =
iπ
2

J1(iα) + J−1(iα)

2 sinπ
(7.85)

is the modi�ed Bessel function of order one that must be solved as limit. The functions in
Eq. (7.85)

J1(iα) =
∞∑
k=0

(−1)k

k!(k + 1)!

(
iα
2

)2k+1

and J−1(iα) =
∞∑
k=0

(−1)k

k!(k − 1)!

(
iα
2

)2k−1

(7.86)

are the Bessel functions of the �rst kind of order one (see corresponding examples in Sect. B.2.4
in Kurfürst (2017)).

Solving Eq. (5.4) we obtain

Ê(ω) =
q

2πε0bv

ωb

γv
K1

(
ωb

γv

)
, (7.87)

thus the spectrum is (cf. Eq. (5.53))

dW
dA dω

=
c

4π2
|Ê(ω)|2 =

q2c

16π4ε20b
2v2

(
ωb

γv

)2

K2
1

(
ωb

γv

)
. (7.88)

The spectrum starts to cut o� for ω > γv/b, which we could have predicted on the basis of the
uncertainty principle, since the pulse is con�ned roughly to a time interval of order b/γv. In fact,
the complete behavior of Ê(ω) can be estimated to within a factor ∼ 2 just by analysis of the
picture of E(t): E(t) has a maximum qγ/b2 for a time interval ∼ b/γv. Thus we approximate

Êmax(ω) ∼ Emax(t)∆t ∼
(qγ
b2

)( b

γv

)
, ∆ω ∼ 1

∆t
∼ γv

b
. (7.89)

We have thus found the spectrum per unit area at a distance b from the line of the charge's
motion. To �nd the total energy per unit frequency range, we must integrate this over dA =
2πb db:

dW
dω

= 2π

ˆ bmax

bmin

dW
dA dω

b db. (7.90)

The lower limit has been chosen not as zero but as some minimum distance bmin, such that the
approximation of the �eld by means of classical electrodynamics and a point charge is valid.
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Two possible choices are: either bmin = radius of ion, if �eld is that of an ion, or bmin ∼ ~/(mc) =
Compton wavelength of particle. The integral is now

dW
dω

=
q2c

8π3ε20v
2

ˆ ∞
x

yK2
1 (y) dy, where y ≡ ωb

γv
, x ≡ ωbmin

γv
. (7.91)

This integral can be solved again via the Bessel functions:

dW
dω

=
q2c

8π3ε20v
2

[
xK0(x)K1(x)− x2

2

(
K2

1 (x)−K2
0 (x)

)]
. (7.92)

Two limiting forms occur: ω is small, ω � γv/bmin and ω is large, ω � γv/bmin, which give the
two forms, respectively:

dW
dω

=
q2c

8π3ε20v
2

ln

(
0.68γv

ωbmin

)
,

dW
dω

=
q2c

16π2ε20v
2

exp

(
−2ωbmin

γv

)
. (7.93)

These forms can be derived approximately by direct integration of xK2
1 (x), using the asymptotic

results K1(x) ∼ 1/x, x� 1, and K1(x) ∼ (π/2x)1/2 e−x, x� 1.

7.6 Relativistic Dynamics and Four-Force

For a particle of constant invariant rest mass is the four-momentum of a particle Pµ de�ned by

Pµ = m0U
µ (7.94)

In the nonrelativistic limit are the spatial components of the four-momentum just the compo-
nents of the ordinary three-momentum, m0v . For the relativistic expression of all the compo-
nents we consider the expansion of the time component P 0c (using Eq. (7.41)) for v � c:

P 0c = m0cU
0 = γm0c

2 ≈ m0c
2 +

1

2
m0v

2 + . . . . (7.95)

The second term in the latter expression in (7.95) is the classical nonrelativistic expression for
the kinetic energy of the particle while the �rst term m0c

2 that is independent of u is the rest
energy of the particle. Therefore, we interpret E = P 0c as the total energy of the particle. If
the spatial part of the relativistic momentum is p = γm0v then

Pµ =

(
E/c
p

)
. (7.96)

Involving Eq. (7.41) and the Minkowski metric tensor Eq. (7.8), we thus obtain

(Pµ)2 = PµPµ = m2
0c

2 =
E2

c2
− |p|2, so that E2 = |p|2c2 +m2

0c
4. (7.97)

The four-momentum of massless photons cannot be de�ned by Eq. (7.95). We can however
de�ne Eq. (7.96), where we use the quantum relations

E = ~ω and p = ~k . (7.98)

From Eq. (7.53) we then have

Pµ = ~kµ =

(
~ω/c
~k

)
. (7.99)
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The photon four-momentum is a null (light-like) four-vector, PµPµ = 0, since E = |p|c = |~k |c.
Having de�ned the four-acceleration aµ in Eq. (7.51), we introduce the four-force Fµ as a

relativistic form of second Newton's law:

Fµ ≡ m0a
µ =

dPµ

dτ
. (7.100)

Substituting Eq. (7.100) into Eq. (7.51), we have

Fµ = γ2
um0

 γ2
u

u · a
c

a + γ2
u

u · a
c2

u

 , (7.101)

Equation (7.101) can be also expressed in terms of ordinary three-force f = dp/dt as

Fµ = γu

(
u · f /c
f

)
, (7.102)

where the scalar product

u · f = d/dt
(
γum0c

2
)

= γ3
um0 u · a = dE/dt. (7.103)

We evaluate in electrodynamics Fµ, having known the electromagnetic Lorentz three-force,
f LF = q (E + u × B), in such a way that the Lorentz four-force involves the electromagnetic
�eld embodied in the tensor Fµν and the particle three-velocity embodied in the four-velocity
Uµ and should also be a four-vector proportional to the (scalar) charge q of the body. The
simplest way is

Fµ = qFµνUν , so that aµ =
q

m0
FµνUν . (7.104)

We check Eq. (7.104) by substituting Eqs. (7.41), (7.62), and (7.103). Since F 00 ≡ 0 and
noting that, due to the formalism of raising and lowering indexes, the spatial part of Uµ =
− (the spatial part of)Uµ, we have:

a0 =
q

m0

(
F 01U1 + F 02U2 + F 03U3

)
=
γu qu · E
m0c

=
γu u · f
m0c

=
γ4
u u · a
c

, (7.105)

which con�rms the solution for the time componenta in Eqs. (7.51) and (7.102). In a similar
way we check also the spatial part,

a1 =
q

m0

(
F 10U0 + F 12U2 + F 13U3

)
=
γu q

m0
(E + u × B)x = γu

f LFx
m0

, (7.106)

while the solution of a2 and a3 is obviously corresponding, con�rming thus the spatial part of
Eqs. (7.51) and (7.102).

In accordance with Eq. (7.52) is the four-force, regardless of its origin, always orthogonal
to the four-velocity:

FµUµ ≡ m0A
µUµ = 0. (7.107)

where Eq. (7.107) implies that every four-force is velocity dependent, which might be negligible
in the nonrelativistic limit. For example, for the Lorentz four-force we �nd

FµLFUµ = qFµνUµUν = γ2
u u · f − γ2

u u · f = 0, (7.108)



Chapter 7. Relativistic E�ects 124

which is however obvious from Eq. (7.108) remembering that Fµν (Eq. (7.62)) is antisymmetric
and the four-tensor

UµUν = γ2
u

(
c2 −cu

−cu |u|2
)

(7.109)

is symmetric.

7.7 Radiation from relativistically moving charges

7.7.1 Total emission

Let us consider an instantaneous rest frame K′, where a charged particle has zero velocity in
a certain, in�nitesimally small time interval dt′ (which is just the proper time of the particle),
so we can calculate the emitted radiation using the dipole (Larmor) formula. Suppose a total
amount of energy dW ′ is emitted within the time interval dt′. Since the emission is isotropic,
the three-momentum of this radiation in this frame is zero, dp′ = 0.

The energy in a frame K moving with relative velocity −v with respect to the particle is
therefore dW = γ dW ′, while the time interval dt = γ dt′. We can evaluate the total power P
and P ′ emitted in frames K and K′, respectively, as

P =
dW
dt

, P ′ =
dW ′

dt′
=

dW
dt

, so that P = P ′. (7.110)

Thus the total emitted power is a Lorentz invariant for any isotropic (or at least for front-back
symmetrical) emission in its instantaneous rest frame. We use this fact to express the power in
covariant form. From the Larmor formula (6.21), we have

P ′ =
1

6πε0

q2

c3
|a′|2, (7.111)

however, since U ′µ = (c,0) in particle's rest frame and since A′µU ′µ = 0, we have

A′
0

= 0, thus |a′|2 = A′
µ
A′µ, so that P ′ = P =

1

6πε0

q2

c3
A′
µ
A′µ. (7.112)

The emitted power in any frame is thus the square of Aµ in that frame.
We now express the radiation power P in terms of the three-acceleration a rather than

in terms of the four-acceleration Aµ. If K′ is an instantaneous rest frame of a particle, then
u′|| = u′⊥ = 0 and u|| ≡ v, u⊥ = 0, so that γu = γ. From A′µ = Λ̃ ν

µ Aν , with use of Eq. (7.51),
we have

a′|| = βγa0 + γa|| = −βγ5 va||

c
+ γ3a|| + γ5 v

2a||

c2
= γ3a||, (7.113)

a′⊥ = γ2a⊥

(
1 + γ2u

2
⊥
c2

)
= γ2a⊥, (7.114)

We now write Eq. (7.112),

P =
1

6πε0

q2

c3

(
a′

2
|| + a′

2
⊥

)
=

1

6πε0

q2

c3
γ4
(
a2
⊥ + γ2a2

||

)
. (7.115)
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7.7.2 Angular Distribution of Radiative Power

Let us now consider an amount of energy dW ′ is emitted in K′ into the solid angle dΩ′ =
sin θ′ dθ′ dφ′ about the direction at angle θ′ to the (say) x′ axis. We denote

µ = cos θ, µ′ = cos θ′ so that dΩ = dµ dφ, dΩ′ = dµ′ dφ′. (7.116)

Since energy and momentum are components of a four-momentum Pµ (Eqs. (7.96) and (7.99)),
transformation of the radiation energy, according to P ′ = W ′/c and P ′x = P ′ cos θ′ ≡ P ′µ′, is

dP 0 = γ dP ′0 + βγ dP ′1 so that dW = γ
(
dW ′ + v dP ′x

)
= γ

(
1 + βµ′

)
dW ′. (7.117)

Di�erentiating Eq. (7.36), and, since dφ = dφ′, Eq. (7.116) yields

dµ
dµ′

=
d
dµ′

(
µ′ + β

1 + βµ′

)
=

1

γ2 (1 + βµ′)2 , and so dΩ =
dΩ′

γ2 (1 + βµ′)2 (7.118)

and Eq. (7.117) gives

dW
dΩ

= γ3
(
1 + βµ′

)3 dW ′
dΩ′

. (7.119)

The power P ′ emitted in the rest frame is simply given by dW ′/ dt′. However, in frame K
there are two possible choices We further outline two time intervals to divide dW in K:

� dt = γ dt′ de�nes the time interval Pe during which the emission occurs in K.

� dtA = γ(1 − βµ) dt′ de�nes the time interval Pr of reception of a radiative power by a
stationary observer in K (see Eqs. (7.39) and (7.40)).

we thus obtain the two di�erent results:

dPe
dΩ

=
dW
dΩ dt

= γ2
(
1 + βµ′

)3 dP ′
dΩ′

=
1

γ4 (1− βµ)3

dP ′

dΩ′
, (7.120)

dPr
dΩ

=
dW

dΩ dtA
= γ4

(
1 + βµ′

)4 dP ′
dΩ′

=
1

γ4 (1− βµ)4

dP ′

dΩ′
, (7.121)

where we converted µ to µ′ and vice versa using Eq. (7.36).
Which of these two equations should we use? Since Pr is the power actually measured by

an observer, it would seem to be the natural one. Also in favor of Pr is that Eq. (7.121) has the
expected symmetry property of yielding the inverse transformation by interchanging primed
and unprimed variables, along with a change of sign of β. For these reasons we hereafter in this
section deal with Pr, calling it shortly P .

In practice, the distinction between emitted and received power is often not important, since
Pe and Pr are equal in an average sense for stationary distributions of particles. We will discuss
this further in the context of synchrotron emission (still in progress).

Let us now return to Eq. (7.121). If the radiation is isotropic in the particle's frame (or
nearly isotropic), then the angular distribution in the observer's frame will be more or less
peaked in the forward direction for relativistic velocities (β → 1). Regarding small θ angle and
β ∼ 1, we may expand

µ ≈ 1− θ2

2
, β =

√
1− 1

γ2
≈ 1− 1

2γ2
, thus

1

γ4 (1− βµ)4 ≈
(

2γ

1 + γ2θ2

)4

. (7.122)
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The latter factor is sharply peaked near θ ' 0 with an angular scale of order 1/γ.
We apply the previous considerations to an emitting particle. In the instantaneous rest

frame of the particle the angular distribution is given by (cf. Eq. (6.20))

dP ′

dΩ′
=

1

(4π)2ε0

q2a′2

c3
sin2 Θ′, (7.123)

where Θ′ is the angle between the acceleration and the direction of emission. Spitting a′ =
a′|| + a′⊥ and using Eqs. (7.113), (7.114), and (7.121), we obtain

dP
dΩ

=
q2

(4π)2ε0c3

(
γ2a2
|| + a2

⊥

)
(1− βµ)4 sin2 Θ′, (7.124)

To use this formula we relate Θ′ to the angles in the frame K. This is di�cult in general case,
so we work out the angular distribution of the received power for special cases:

� Acceleration is parallel to velocity: In this case Θ′ = θ′ and according to Eq. (7.36),

sin2 Θ′ =
sin2 θ

γ2 (1− βµ)2 . (7.125)

Substituting Eq. (7.125) into Eq. (7.124) with a⊥ = 0, we obtain

dP||
dΩ

=
q2

(4π)2ε0c3
a2
||

sin2 θ

(1− βµ)6 . (7.126)

� Acceleration is perpendicular to velocity: Choosing a′ such that the angle φ = 0
(see Eq. (7.116)) gives cos Θ′ = sin θ′ cosφ′, so that

sin2 Θ′ = 1− sin2 θ cos2 φ

γ2 (1− βµ)2 (7.127)

and substituting Eq. (7.127) into Eq. (7.124) with a|| = 0, we obtain

dP⊥
dΩ

=
q2a2
⊥

(4π)2ε0c3

1

(1− βµ)4

[
1− sin2 θ cos2 φ

γ2 (1− βµ)2

]
. (7.128)

� Extreme Relativistic Limit: When γ � 1, the quantity (1− βµ) in the denominators
becomes small and the radiation becomes strongly peaked in the forward direction. Using
the same arguments as in Eq. (7.122), we obtain

1− βµ ≈ 1 + γ2θ2

2γ2
, (7.129)

which gives radiation power for the parallel acceleration,

dP||
dΩ

=
4q2

π2ε0c3
γ10a2

||
γ2θ2

(1 + γ2θ2)6 . (7.130)

while for the perpendicular acceleration,

dP⊥
dΩ

=
q2

π2ε0c3
γ8a2
⊥

1− 2γ2θ2 cos 2φ+ γ4θ4

(1 + γ2θ2)6 . (7.131)

Since both the expressions in Eqs. (7.130) and (7.131) are angle dependent merely through
the combination γθ, the peaking is for angles θ ∼ 1/γ.
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7.8 Relativistic Invariants and Speci�c Intensity

Consider a group of particles that occupy a spatial volume element d3x ′ = dx′ dy′ dz′ and a
momentum volume element d3p′ = dP ′x dP

′
y dP

′
z in a frame K′ comoving with the particles, but

no spread in energy, dW ′ = dP ′0 = 0, because the contribution to the energy from the space
momentum in the rest frame is quadratic and thus vanishes to the �rst order. The group occupies
a phase space element dV′ = d3p′ d3x ′. For any observer in any frame K not comoving with
the particles they occupy the same amount of phase space in his frame dV′ = dV = d3p d3x , a
phase space element is Lorentz invariant.

We prove it in the following way: Let the observer moves along the x axis with velocity
parameter β with respect to K′. Consider the spatial volume element d3x in K, occupied by
the particles. Perpendicular distances are una�ected, dy = dy′ and dz = dz′, but there is a
length contraction in the x direction (cf. Eq. (7.29)). This yields

d3x = γ−1 d3x ′. (7.132)

The momentum volume element measured in K is d3p. The momentum transforms as a four-
vector (Eq. (7.26)), dPx = βγ dP ′x + γ dP ′0, dPy dPz = dP ′y dP

′
z, but since the particles have the

same energy in K as in K′, dPx = γ dP ′x, we obtain

d3p = γ d3p′ (7.133)

and, combining Eqs. (7.132) and (7.133),

dV = dV′, so that dV = Lorentz invariant. (7.134)

Equation (7.134) was derived for particles of �nite mass, where K′ is a rest frame, however,
since there occurs no reference to particle mass, it is applicable also to the limiting case of
photons. From Eq. (7.134), it follows the phase space density

f =
dN
dV

= Lorentz invariant, (7.135)

because the number of particles dN within the phase volume element is a countable quantity
and therefore itself invariant.

We relate the phase space density of photons to the speci�c intensity Iν by evaluating the
energy density uν(Ω) per unit solid angle per frequency range (Eqs. (4.9) and (4.10)), using f :
dEν(Ω) = hν dN dΩ = uν dΩ dν, so that hνf dV dΩ = uν dΩ dν d3x , and, since Unu(Ω) = Iν/c,
p = hν/c, this yields

Iν
ν3

=
h4

c2
f = Lorentz invariant. (7.136)

Because the source function occurs in RTE as Iν − Sν , it must have the same transformation
properties as Iν ,

Sν
ν3

= Lorentz invariant. (7.137)

To �nd the transformation of absorption coe�cient αν we assume material in K streaming
with velocity v between two planes parallel to the x-axis, while K′ is the rest frame of the
material. The optical depth τ along the ray must be an invariant, since e−τ gives the fraction



Chapter 7. Relativistic E�ects 128

of photons �owing through the material, which involves direct counting. Denoting l, l′ the
distance of the two planes and θ, θ′ the deviation angle of the ray from x-axis,

τ =
lαν
sin θ

=
l

ν sin θ
ναν = Lorentz invariant. (7.138)

since ν sin θ is proportional to the y component of the photon four-momentum ky. But ky = k′y
and l = l′, being perpendicular to the motion. Therefore

ναν = Lorentz invariant. (7.139)

The transformation of the emission coe�cient jν = ανSν from Eqs. (7.137) and (7.139) is

jν
ν2

= Lorentz invariant, (7.140)

where the derivation of Eq. (7.140) can be based also on Eq. (7.120). The emission coe�cient
can be written as

jν = n
dPe
dΩ dν

, (7.141)

where n is the density of emitters (particles/m3). Since Eq. (7.40) gives dν = dν ′γ(1 + βµ′),
and also n = γn′ by Lorentz contraction along the motion,

jν = γ2(1 + βµ′)2n′
dP ′

dΩ′ dν ′
=
( ν
ν ′

)2
j′ν , (7.142)

It is often convenient to determine the quantities αν , jν , Sν , in the rest frame of the material.
By the above results we can then �nd them in any frame. Because the transformation of ν
involves the direction θ of the ray, these quantities will not, in general, be isotropic, even if they
are isotropic in the rest frame. The observed nonisotropy of the cosmic microwave background
can be used to �nd the velocity of the earth through the background.



Chapter 8

Free-Free Transitions (Bremsstrahlung)

(Rybicki & Lightman 1979; Mihalas &Mihalas 1984): We call free-free emission or bremsstrahlung
the radiation produced by a charge acceleration in the Coulomb �eld. A classical treatment is
justi�ed in some regimes, therefore, we �rst give a classical treatment and in Sect. 8.4 we add
the quantum corrections (Gaunt factors).

The bremsstrahlung due to the collision of identical particles (electron-electron, proton-
proton) is zero in the dipole approximation, because the dipole moment

∑
i eir i is simply

proportional to the (symmetric) center of mass
∑

imir i = 0. In electron-ion bremsstrahlung
the electrons are the primary radiators, since the relative accelerations are inversely proportional
to the masses, while the charges are roughly equal. Since the ions are comparatively massive,
we may treat the electron as moving in a �xed Coulomb �eld of the ion.

8.1 Emission from a Single Electron

Let us assume that the electron moves rapidly enough so that the deviation of its path from
a straight line is negligible. This is the small-angle scattering regime. This approximation is
not necessary, however, it is highly instructive because it simpli�es the analysis and leads to
equations of the correct form. Consider an electron of charge −e moving past an ion of charge
Ze with impact parameter b (see Fig. 5.1). The dipole moment is d = −eR and its second
derivative is d̈ = −ev̇ , where v is the velocity of the electron. The Fourier transform of this
equation (cf. Eq. (6.28)) is

−ω2d̂(ω) = −e
ˆ ∞
−∞

v̇ e−iωt dt. (8.1)

We derive expressions for d̂(ω) in the asymptotic limits of large and small frequencies. The
electron is in close interaction with the ion over a collision time interval, which is of order

τ =
b

v
. (8.2)

For ωτ � 1 the exponential in the integral oscillates rapidly, and the integral is small. For
ωτ � 1 the exponential is essentially unity, so we may write

d̂(ω) =

{ e

ω2
∆v , ωτ � 1,

0, ωτ � 1,
(8.3)

129
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where ∆v is the change of velocity during the collision. Using Eqs. (6.30) and (8.3) gives

dW
dω

=


1

6π2ε0

e2

c3
|∆v |2 , ωτ � 1,

0, ωτ � 1.

(8.4)

Let us now estimate ∆v. Since the path is almost linear, the change in velocity is predomi-
nantly normal to the path and we integrate the normal component of acceleration,

∆v =
1

4πε0

Ze2

me

ˆ ∞
−∞

b dt
(b2 + v2t2)3/2

=
1

2πε0

Ze2

mebv
. (8.5)

For small angle scatterings, the emission from a single collision (Eq. (8.4)) is

dW (b)

dω
=


1

24π4ε30

Z2e6

m2
ec

3b2v2
, b� v

ω
,

0, b� v

ω
.

(8.6)

We determine the total spectrum for a medium with ion density nion, electron density ne
and for a �xed electron speed v. Note that the �ux of electrons (electrons per unit area per unit
time) incident on one ion is nev. The element of area is 2πb db about a single ion. The total
emission per unit time per unit volume per unit frequency range is then dW/(dω dV dt), which
we explicitly express as (dW dV )/[dω (dV )2 dt], where dV/(dV )2 we expand as (v dt dS) (nenion)
where the �rst bracket is dV of incident electron while the second bracket we may regard as
(nenion dme dmion)/(dme dmion) = ρ2/(ρ dV )2. We write

dW
dω dV dt

= nenion2πv

ˆ ∞
bmin

dW (b)

dω
b db, (8.7)

where bmin is some minimum value of impact parameter whose choice we discuss below.
It would seem that the asymptotic limits in Eq. (8.4) are insu�cient to evaluate the integral

in Eq. (8.7), which requires values of dW (b)/dω for a full range of impact parameters. However,
a very good approximation can be achieved using only its low frequency asymptotic limit. We
substitute the case b� v/ω from Eq. (8.6) into Eq. (8.7). This gives

dW
dω dV dt

=
1

12π3ε30

e6

m2
ec

3v
nenionZ

2

ˆ bmax

bmin

db
b

=
1

12π3ε30

e6

m2
ec

3v
nenionZ

2 ln

(
bmax

bmin

)
, (8.8)

where bmax is some value of b beyond which the contribution of b � v/ω limit to the integral
becomes negligible. The (uncertain) value of bmax is of order v/ω. Since bmax is in the logarithm,
its precise value is of low importance, we take bmax ≡ v/ω and make a small error. The use of
the asymptotic forms (8.6) is justi�ed, because equal intervals in the logarithm of b contribute
equally to the emission, and over most of these intervals the emission is determined by its low
frequency asymptotic limit.

We can estimate bmin in two ways. First we regard the value at which the straight-line
approximation ceases to be valid. Since this occurs when ∆v ∼ v, we take from Eq. (8.5)
b
(1)
min = Ze2/(4πε0mev

2), where the half-factor comes due to integration from 0 to −∞. A
second way to �nd bmin is quantum in nature and is based on treating the collision process
in terms of classical orbits. From the uncertainty principle ∆x∆p ≤ ~; taking ∆x ∼ b and
∆p ∼ mev we have b(2)

min = h/(mev).
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When b(1)
min � b

(2)
min, a classical approach is valid and we use bmin = b

(1)
min. This occurs when

1
2mv

2 � Z2Ry, where Ry = me4/(2~2) is the Rydberg energy for the hydrogen atom. When

b
(1)
min � b

(2)
min, or, equivalently,

1
2mv

2
e � Z2Ry, the uncertainty principle plays an important role,

and the classical calculation cannot strictly be used. Nonetheless, results of the correct order
of magnitude are obtained by simply setting bmin = b

(2)
min.

For any regime, we may state the exact results in terms of a Gaunt factor g� (v, ω), using
which Eq. (8.8) is

dW
dω dV dt

=
1

12
√

3π2ε30

e6

m2
ec

3v
nenionZ

2g� (v, ω). (8.9)

Comparison of Eqs. (8.8) and (8.9) gives

g� (v, ω) =

√
3

π
ln

(
bmax

bmin

)
. (8.10)

The Gaunt factor is a function of the electron energy and of the frequency of the emission.
Extensive tables and graphs of it exist in the literature.

8.2 Thermal Free-Free Emission:

We apply these formulas to thermal bremsstrahlung by averaging the above single-speed expres-
sions over a thermal distribution of speeds. A particle has a Maxwellian speed range 〈v, v+dv〉
as dP ∝ v2 exp[−mv2/(2kT )] dv. Now we integrate Eq. (8.8) over this probability function,
setting 0 ≤ v <∞. At frequency ν, the incident velocity must be at least hν ≤ 1

2mev
2, because

otherwise a photon of energy hν could not be created. This lower limit cuto� over electron
velocities is called a photon discreteness e�ect. From the integral

dW (T, ω)

dω dV dt
=

ˆ ∞
vmin

dW (v, ω)

dω dV dt
v2 e−

mev2

2kT dv

´∞
0 v2 e−

mev2

2kT dv
, (8.11)

where vmin = (2hν/me)
1/2 and dω = 2π dν, by substituting Eq. (8.9) we obtain

dW (T, ν)

dν dV dt
=

1

6
√

3πε30

e6

m2
ec

3
nenionZ

2

ˆ ∞
vmin

g� (v, ν) v e−
mev2

2kT dv

´∞
0 v2 e−

mev2

2kT dv
. (8.12)

Integration of the denominator gives
√
π/2 (kT/me)

3/2, we integrate the numerator by sub-
stituting mev

2/(2kT ) = x, from mev
2
min/(2kT ) to ∞, giving ḡ� (T, ν) kTme

exp(−hν/kT ). The
integral (8.12) becomes

dW (T, ν)

dν dV dt
=

e6

6πε30c
3me

(
2

3πkme

)1/2

T−1/2 nenionZ
2 e−

hν
kT ḡ� (T, ν). (8.13)

Evaluation of Eq. (8.13) in SI units (radiation energy density [J s−1 m−3 Hz−1]) gives

ε�ν ≈ 6.78× 10−51 T−1/2 nenionZ
2 e−

hν
kT ḡ� (T, ν), (8.14)
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where ḡ� (T, ν) is a velocity averagedGaunt factor. In cgs units the numerical factor in Eq. (8.14)
is ∼ 6.83× 10−38, noting that the value of elementary charge e ≈ 4.803× 10−10 statC, ε0 ≡ 1,
and Eq. (8.14) must be multiplied by (4π)3.

The values of ḡ� for hν/(kT )� 1 are not important, since the spectrum here cuts o�. ḡ� is
of order unity for hν/(kT ) ∼ 1 and ranges within 1 - 5 for 10−4 < hν/(kT ) < 1. Good order of
magnitude estimates are made by setting ḡ� to unity. The spectrum of bremsstrahlung is rather
��at� in a log-log plot up to its cuto� at about hν ∼ kT (this is however true only for optically
thin sources, we have not yet considered absorption of photons by free electrons). To obtain
the formulas for non-thermal bremsstrahlung, we need to know the distribution of velocities,
the emission formula from a single-speed electron must be averaged over that distribution, and
one also must have the appropriate Gaunt factors.

We give formulas for the total power per unit volume emitted by thermal bremsstrahlung,
that we obtain by integrating Eq. (8.13) over frequency:

dW (T )

dV dt
=

e6

6πε30hc
3me

(
2k

3πme

)1/2

T 1/2 nenionZ
2 ḡB (T ), (8.15)

or, evaluated in SI (radiation power density [J s−1 m−3]),

ε� ≈ 1.42× 10−40 T 1/2 nenionZ
2 ḡB (T ). (8.16)

The frequency (and velocity) averaged Gaunt factor ḡB (T ) is in the range 1.1 - 1.5, setting the
value 1.2 will give a 20% accuracy.

8.3 Thermal Free-Free Absorption:

It is possible to relate the (thermal) absorption of radiation to the bremsstrahlung emission
process. In that case we have the Kirchho�'s law,

j�ν = α�νBν(T ), (8.17)

where Bν(T ) is the Planck function, α�ν is the free-free absorption coe�cient, and j�ν is related
to the emission formula (8.13) by

dW
dν dV dt

= 4πj�ν . (8.18)

Using the Planck function Bν(T ) = 2hν3c−2
[
exp

(
hν
kT

)
− 1
]−1

, Eqs. (8.17) and (8.18) give

α�ν =
e6

48π2ε30hmec

(
2

3πkme

)1/2

T−1/2 nenionZ
2 ν−3

(
1− e−

hν
kT

)
ḡ� (T, ν). (8.19)

Evaluating Eq. (8.19) in SI units, α�ν (m−1) is:

α�ν ≈ 3.69× 10−2 T−1/2 nenionZ
2 ν−3

(
1− e−

hν
kT

)
ḡ� (T, ν). (8.20)

For hν � kT the exponential is negligible and α�ν ∼ ν−3. In the Rayleigh-Jeans regime,
hν � kT , Eq. (8.19) becomes

α�ν =
e6

48π2ε30kmec

(
2

3πkme

)1/2

T−3/2 nenionZ
2 ν−2 ḡ� (T, ν), (8.21)
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or, with numerically evaluated constant factor,

α�ν ≈ 1.77× 10−12 T−3/2 nenionZ
2 ν−2 ḡ� (T, ν). (8.22)

We �nd the Rosseland mean α�R of the free-free absorption by

1

α�R
=

ˆ ∞
0

(α�ν + σ�ν )−1∂Bν(T )

∂T
dν

ˆ ∞
0

∂Bν(T )

∂T
dν

, (8.23)

where σ�ν is the scattering coe�cient. We �nd the temperature derivative of the Planck function,

∂Bν(T )

∂T
=

2h2ν4

c2kT 2

(
e
hν
kT − 1

)−2

e
hν
kT , (8.24)

integration over ν gives the denominator equal to 8π4k4T 3/(15c2h3). Neglecting σ�ν and using
Eq. (8.19), the integral (8.23) is

1

α�R
=

15ε30c

h2e6

(
6me

π

)3/2 (kT )7/2

nenionZ2

ˆ ∞
0

ḡ−1
�

x7 ex dx

(ex − 1)2 (1− e−x)
. (8.25)

The integral in Eq. (8.25) is 8
3(945 ζ(7) + π6) ḡ−1

R ≈ 5104.74 ḡ−1
R , ζ is Riemann zeta function,

and ḡR is a (order of unity) weighted frequency average of ḡ�. We evaluate Eq. (8.25) in SI
units,

α�R ≈ 2.07× 10−35 T−7/2 nenionZ
2 ḡR, (8.26)

while in cgs units the numerical factor in Eq. (8.26) is ∼ 2.07× 10−25, noting that the value of
elementary charge e ≈ 4.803 × 10−10 statC, ε0 ≡ 1, and Eq. (8.25) must be divided by (4π)3

(RL introduce the numerical factor ∼ 1.7 × 10−25 in Eq. (8.26), they likely take into account
also the scattering coe�cient and numerical adjustment of Gaunt factor).

8.4 Relativistic Bremsstrahlung

We now treat relativistic particles by the method of virtual quanta, a full understanding would
require quantum electrodynamics. Consider the collision between an electron and a heavy ion
of charge Ze. Normally, the ions move slowly in comparison to the electrons (in the rest frame
of the medium as a whole), but it is possible to view the process in a frame of reference in
which the electron is initially at rest. In that case the ion moves rapidly toward the electron
along the x axis with velocity v while the electron is initially at rest on the y axis, in a distance
b from the origin. We recall from Sect. 7.5 that the electrostatic �eld of the ion is transformed
into an essentially transverse pulse with |E | ∼ |B|, which the electron �sees� as a pulse of
electromagnetic radiation. This radiation then Compton scatters o� the electron to produce
emitted radiation. Transforming back to the rest frame of the ion (lab frame), we obtain the
bremsstrahlung emission of the electron. The relativistic bremsstrahlung can be regarded as
the Compton scattering of the virtual quanta of the ion's electrostatic �eld as �seen� in the
electron's frame.
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In the (primed) electron rest frame, setting v = c in the ultrarelativistic limit, the spectrum
of the virtual quanta pulse (cf. Eq. (7.88)) is

dW ′

dA′ dω′
=

(Ze)2

16π4ε20b
′2c

(
ω′b′

γc

)2

K2
1

(
ω′b′

γc

)
. (8.27)

In the primed frame the virtual quanta are scattered by the electron according to the Thomson
cross section for ~ω′ ≤ mec

2, and according to the Klein-Nishina cross section for ~ω′ > mec
2

(see Chapter 9). In the low-frequency limit, where we may regard dω′ as the single Thomson
cross section σT , the scattered radiation is

dW ′

dω′
= σT

dW ′

dA′ dω′
. (8.28)

Since energy and frequency are Lorentz transformed identically, the energy per frequency emit-
ted in the lab frame is dW/dω = dW ′/dω′. To write dW/dω as a function of b and ω, rather than
b′ and ω′, we note that transverse lengths are unchanged, b = b′, and that ω = γω′(1+β cos θ′),
(cf. Eq. (7.40)), where θ′ is the scattering angle in the electron rest frame. Because such scatter-
ing is forward-backward symmetric, we have the averaged relation ω = γω′. Thus the emission
in the lab frame is

dW
dω

=
Z2e6

96π5ε40b
2m2

ec
5

(
ωb

γ2c

)2

K2
1

(
ωb

γ2c

)
. (8.29)

Equation (8.29) is the energy per unit frequency emitted by the collision of an ion and a
relativistic electron at impact parameter b. For a plasma with electron and ion densities ne and
nion, respectively, we repeat the arguments leading to Eq. (8.7), where v is replaced by c and
where bmin ∼ h/(mec) according to the uncertainty principle. The integral in Eqs. (8.7) and
(8.29) is identical to that in Eq. (7.91), except for an additional factor γ in the argument. Thus
we have the low-frequency limit, hω < γmec

2,

dW
dω dV dt

∼ Z2e6nenion
48π4ε40m

2
ec

4
ln

(
0.68γ2v

ωbmin

)
. (8.30)

At higher frequencies Klein-Nishina corrections must be used.
For a thermal distribution of electrons, a useful approximate expression for the frequency

integrated power (J s−1 m−3) in SI units is (see Novikov and Thorne 1973, cf. Eq. (8.15))

dW
dV dt

= 1.4× 10−40T 1/2Z2nenionḡB
(
1 + 4.4× 10−10T

)
. (8.31)

The second term in brackets is a relativistic correction to Eq. (8.16).
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Compton scattering

9.1 The Kompaneets Equation

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We make a short excursion to Thomson
and Compton scattering basics to explain following principles. Thomson scattering, or the
scattering of a photon by an electron at rest, strictly only applies at low photon energy, i.e.,
when hν � mec

2. If the photon energy is comparable to or greater than the electron energy,
non-classical e�ects must be taken into account, and the process is called Compton scattering.
A further interesting situation develops when the electron is moving - in this case energy can
be transferred to the photon, and the process is called inverse Compton scattering. This last
process is an important mechanism in high energy astrophysics.

In Thomson scattering, we have (in cgs)

dσT
dΩ

=

(
e2

mec2

)2 (1 + cos2 χ
)

2
, (9.1)

where e now denotes the electron charge, Ω is solid angle and χ is an angle of scattering. In
Thomson scattering the incident photon and scattered photon have the same wavelength or
energy, so this scattering is also called coherent or elastic. If we now move to photons of energy
hν ∼= mec

2, the scattering is modi�ed by the appearence of quantum e�ects, through a change
in the kinematics of the collision, and an alteration of the cross-section.

To do the kinematics of the collision correctly at high photon energy, momentum and energy
must be conserved. Let the incident photon have energy hνi and momentum hνi/c, the scattered
photon have energy hνf and momentum hνf/c, and the electron (initially at rest with rest energy
mec

2) acquires energy E =
√
γ2m2

ev
2
ec

2 +m2
ec

4 (where γ is the Lorentz factor) and momentum
pe = γmev e. The photon scattering angle is again χ. From equality of energy and momenta
components before and after scattering we obtain

λf − λi =
h

mec
(1− cosχ) , (9.2)

where λf and λi are the wavelength of scattered and incident photon, respectively, and the
Compton wavelength λC ≡ h/(mec) ≈ 0.02426Å. The energy of a scattered photon (expressed
using frequency ν instead of wavelength λ) is

hνf =
hνi

1 + hνi
mec2

(1− cosχ)
, (9.3)

135
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The compton wavelength can be regarded as a wavelength change ∆λ in the incident photon.
Note that for λ � λC the change is negligible and we get back to the Thomson scattering. In
full treatment of the problem yields the Klein-Nishina formula for the scattering cross-section:

dσ
dΩ

=
1

2
r2
e

(
νf
νi

)2(νf
νi

+
νi
νf
− sin2 χ

)
, (9.4)

where re = e2/(mec
2) = α~/(mec) ≈ 2.81794 × 10−13 cm (α ≈ 1/137 is the �ne structure

constant) is the classical electron radius. Note that in case νf ' νi (for hν � mec
2, see

Eq. (9.3)), Eq. (9.4) approaches the Thomson regime:

dσ
dΩ

=
3

16π
σT
(
1 + cos2 χ

)
, (9.5)

where the Thomson cross-section σT = (8π/3) r2
e ≈ 6.652× 10−25 cm2.

Integration over solid angle gives total cross-section (where x = hνi/(mec
2)),

σ = 2π

ˆ π

0

dσ
dΩ

sin θ dθ

=
3

4
σT

{
1 + x

x3

[
2x (1 + x)

1 + 2x
− ln (1 + 2x)

]
+

1

2x
ln (1 + 2x)− 1 + 3x

(1 + 2x)2

}
. (9.6)

Equation (9.6) can be expanded in the limits x→ 0 and x→∞ to yield the following formulae
for the total cross-section

σ ' σT
(

1− 2x+
26x2

5
+ . . .

)
for x� 1, (9.7)

σ ' 3

8
σT

1

x

(
ln 2x+

1

2
+ . . .

)
for x� 1 (9.8)

for the non-relativistic and ultra-relativistic cases, respectively. The main e�ect is thus to
reduce the cross-section at high photon energies, i.e., the scattering of the photons becomes less
e�cient.

An important case arises when the electrons are no longer considered to be at rest. In
inverse scattering, energy is transferred from the electrons to the photons, i.e., it is the opposite
of Compton scattering, in which the photons transfer energy to the electrons. Inverse Compton
scattering can produce substantial �uxes of photons in the optical to X-ray region. Fig. 7.1
describes the frequency relation between that received by observer (in a rest frame K) and in
a frame K′ emitted radiation, taking travel time into account. In a rest frame K of observer,
emitting source moves from 1 to 2 with velocity v. Photons emitted in interval dt′ in K′ are
separated in K by (time-dilation)

dt = γ dt′. (9.9)

By that time, a source has moved in K to distance l = v dt, and d = v dt cos θ towards observer.
Di�erence in arrival times for radiation emitted at 1 and 2 as seen by observer then is

∆t = t2 − t1 = dt+ l2 − l1 = dt− d

c
= dt− v dt cos θ

c
= γ (1− β cos θ) dt′, (9.10)

where l1, l2 are distances between the points 1, 2 and observer, and β is v/c. From the de�nition
of frequencies ν = 1/∆t and ν ′ = 1/dt′ we obtain

ν =
ν ′

γ (1− β cos θ)
= Dν ′ (9.11)
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with D = Doppler factor. Note that the Doppler factor depends on angle between observer and
direction of source motion and it can be very large, e.g., for large speeds v → c and for head-on
motion (θ = 0)

D =
1

γ (1− β)
=

1 + β

γ (1− β2)
' 2γ. (9.12)

We can use Eq. (9.11) also for photon energies hν ′ and hν in K′ and K. We denote ε′i = hν ′i
and ε′f = hν ′f the energies of incident and scattered photon in emitted radiation frame K′, and
εi = hνi and εf = hνf the energies of incident and scattered photon in observers rest frame
K. We also have to note that Eq. (9.2) may be now split into the two frames as (while in the
observer's frame K this will be analogous)

ε′f =
ε′i

1 +
ε′
i

mec2
(1− cosχ′)

, (9.13)

where the angle cosχ′, regarding the radiation rest frame K′, i.e., the frame in which the
scatterin electron is at rest (or analogously cosχ), is de�ned as cosχ′ = n ′i · n ′f , which in
spherical coordinates (where n = sin θ cosφ, sin θ sinφ, cos θ) gives

cosχ′ = cos θ′i cos θ′f + sin θ′i sin θ′f cos
(
φ′f − φ′i

)
. (9.14)

For further solution we need to employ the aberration formula (see Sect. 7.2.4) that results
in the following relations:

εi =
ε′i

γ (1− β cos θi)
⇔ ε′i = εiγ (1− β cos θi) , (9.15)

εf =
ε′f

γ (1− β cos θf)
= ε′fγ

(
1 + β cos θ′f

)
. (9.16)

In Thomson regime where ε′i � mec
2, ε′i ≈ ε′f, employing Eqs. (9.15) and (9.16) gives

εf = εi γ
2 (1− β cos θi)

(
1 + β cos θ′f

)
= εi

1− β cos θi
1− β cos θf

. (9.17)

For head-on scattering with maximum energy gain (where θi = π and θf = 0, scattered photons
thus turn around) and for large speeds v → c we obtain

εf,max = εi
1 + β

1− β
= εi γ

2(1 + β)2 ' 4γ2εi. (9.18)

This analysis shows that the mean frequency of the photons after the collision may increase
up to a factor γ2, so that high frequency radio photons in collisions with relativistic electrons
for which γ is of order 103 to 104 can be boosted in the UV and X-ray regions. There is however
a practical limit to the amount of boosting possible beyond the Thomson limit (Klein-Nishina
limit where ε′i � mec

2 thus εi � mec
2/γ), which can be seen from the conservation of energy

εf,max . γmec
2 + εi, (9.19)

scattered photon energies (in the lab frame) are thus limited to γmec
2,

It is convenient to de�ne the scattering cross-section as the equivalent area of the in-
cident wavefront that delivers the same power as that re-radiated by the particle: that is,
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σ = total re-radiated power/〈u〉, where 〈u〉 is the time-averaged radiative �ux of incident pho-
tons. The power emitted in a single scattering in case of an isotropic distribution of photons in
Thomson regime in an electron rest frame K′ is given as

dE′

dt′
= σT 〈u′〉 = σT cU

′
rad = σT c

ˆ
n′ph(ε′i) ε

′
f(ε
′
i,Ω
′) dε′i dΩ′, (9.20)

where U ′rad is the radiative energy density and n′ph(ε′i) dε
′
i is number density of incident pho-

tons with energy in the interval 〈ε′i, ε′i + dε′i〉, and Ω′ is the solid angle. The emitted power
dE′/dt′ = dE/dt, the phase space volume d3x ′d3p ′ = d3x d3p, are the Lorentz invariants be-
tween inertial frames. The number of particles within phase volume element, dN is countable
(conserved) quantity, thus dN ′ = dN and for the same reason also the phase space distribution
f ′(x ′,p ′) = dN ′/(d3x ′ d3p ′) = f(x ,p) = dN/(d3x d3p) is also the Lorentz invariant between
inertial frames.

We are now interested in the rate of arrival of photons at the origin of the frame K′
from the direction θ. Let us consider two photons which arrive there at times t′1 and t′2
(see Fig. 7.1). The coordinates of these events in K are [x1, 0, 0, t1] = [γvt′1, 0, 0, γt

′
1] and

[x2, 0, 0, t2] = [γvt′2, 0, 0, γt
′
2], respectively. This calculation makes the important point that the

photons in the beam are propagated along parallel but separate trajectories in K as illustrated
by Fig. 7.1. From the geometry of the �gure, it is apparent that the time di�erence when the
photons arrive at a plane perpendicular to their direction of propagation in K (to the steeply
dropping line at the lower left end of the image) is

∆t = t2 +
x2 − x1

c
cos θ − t1 =

(
t′2 − t′1

)
γ (1 + β cos θ) , (9.21)

that is, the time interval between the arrival of photons from the direction θ is shorter by a factor
γ [1 + (v/c) cos θ] in K′ than it is in K. Thus, the rate of arrival of photons, and correspondingly
their number density, is greater by this factor γ [1 + β cos θ] in K′ as compared with K′. This
is exactly the same factor by which the energy of the photon has increased in Eq. (9.20). On
re�ection, we should not be surprised by this result because these are two di�erent aspects of
the same relativistic transformation between the frames K and K′, in one case the frequency
interval and, in the other, the time interval.

Thus, as observed in K′, the energy density of the beam is therefore

U ′rad = [γ (1 + β cos θ)]2 Urad, (9.22)

Now, this energy density is associated with the photons incident at angle θ in the frame K and
it consequently arrives within solid angle 2π sin θ dθ in K. We assume that the radiation �eld in
K is isotropic and therefore we can now work out the total energy density seen by the electron
in K′ by integrating over solid angle (steradian) in K, that is,

U ′rad = Urad

ˆ π

0
γ2 (1 + β cos θ)2 1

2
sin θ dθ = γ2

(
1 +

β2

3

)
Urad, (9.23)

Therefore, substituting directly into Eq. (9.20), we �nd the average energy 〈Eγ〉 gained by the
photon �eld due to the scattering of the low energy photons as dE/dt = σT c (U ′rad − Urad).
We have therefore to subtract the energy of these photons to �nd the total energy gain to the
photon �eld in S. The rate at which energy is removed from the low energy photon �eld is
σT cUrad and therefore, subtracting, we �nd an emitted power for a single scattering

dE
dt

= σT c

[
γ2

(
1 +

β2

3

)
− 1

]
Urad =

4

3
σT c β

2γ2Urad. (9.24)
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We can now calculate the total Compton power per unit volume, for a medium of relativistic
electrons. Let Ne(γ) dγ be the number of electrons per unit volume with γ in the interval
〈γ, γ + dγ〉. Then total Compton power is given as(

dE
dt

)
tot

=

ˆ
dE
dt
Ne(γ) dγ. (9.25)

The total Compton power can be thus calculated, provided the distribution of the electrons is
known (see RL).

However, we can now calculate the average power of the photon �eld gained from the elec-
trons as follows. For thermal distribution of non-relativistic electrons, 〈β2〉 = 3kT/(mec

2), γ '
1, Eq. (9.24) becomes (

dE
dt

)
tot

=

(
4kT

mec2

)
σT cNeUrad, (9.26)

where Ne is total number of electrons. Hence, if 4kTe > 〈Eγ〉, the net energy is from electrons
to photons (inverse Compton scattering) and gas heats up, while if 4kTe < 〈Eγ〉 the net en-
ergy transfer is from photons to electrons and gas cools down. In other words, we may say
that in a typical collision between an electron and a photon, the electron energy changes by[
4kTe/(mec

2)
]
〈Eγ〉.

Compton y-parameter gives the condition for a signi�cant change of energy of photon due
to repeated scattering, that is,

y ≡ (〈∆(hν)〉 of a photon per scattering)× (mean # of scatterings). (9.27)

When electrons and photons co-exist in a region of size l, the repeated scattering of photons
by the electrons will distort the original spectrum of the photons (i.e., Comptonization). The
mean free path of the photon due to Thomson scattering is λγ = (neσT )−1. If the size of the
region l is such that l/λγ � 1, then the photon will undergo several collisions in this region.
On the other hand, if l/λγ � 1, then we may expect only few collisions. Therefore let us de�ne
optical depth as τe ≡ l/λγ = neσT l, so that τe � 1 implies strong scattering. If τe � 1, then the
photon undergoes Nsc(� 1) collisions in traveling a distance l. From standard random-walk
arguments, we have Nsc = τ2

e . On the other hand, if τe ≤ 1, then Nsc ' τe. Therefore an
estimate for the number of scattering is Nsc ' max(τe, τ

2
e ). The average fractional change in

the photon energy per collision (see Eq. (9.26)) is given by the term 4kT/(mec
2). Hence the

condition for a signi�cant change of energy is

y ' Nsc

(
4kT

mec2

)
=

(
4kT

mec2

)
max

(
τe, τ

2
e

)
. (9.28)

The photon must thus undergo ∼ mec
2/(4kT ) collisions to signi�cantly increase its energy.

Note that the Compton y-parameter is generally given by Kompaneets equation of the
spectrum for Comptonization, whose detailed derivation we do not introduce here since it is
di�cult and is obtained by solving the non-relativistic di�usion equation for the motion of
photons through phase-space (Kompaneets, 1957). Kompaneets equation is the specialized
form of a Fokker-Planck equation with its general form

∂n(ν, t)

∂t
= neσT

h

mec

1

ν2

∂

∂ν

[
ν4

(
kT

h

∂n(ν, t)

∂ν
+ n(ν, t) + n2(ν, t)

)]
, (9.29)
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where n(ν, t) is the time-dependent photon distribution function (photon number density. Equa-
tion (9.29) is usually written in the form

∂n

∂y
=

1

x2

∂

∂x

[
x4

(
∂n

∂x
+ n+ n2

)]
(9.30)

where we substitute dy = [kT/(mec)]neσT dt and x = hν/(kT ).
Within the thermal Comptonization in far downstream (Katz et al. 2010; Nakar & Sari

2010) which relate Nsc = d2/λ2 = ct/λ to thermalization length LT and βd in case of thermally
determined distribution of free electrons, yielding Nsc = LT /(βdλ) = LTndσT /βd) the relevant
Compton y-parameter in our case is

y =
4kT

mec2
LTnd σT β

−1
d = 49

4kT

mec2
(LTnu σT βs)β

−2
s

∼ 4× 10−4 kT

eV
(LTnu σT βs) β

−2
s , (9.31)

hence it has 4 times higher value than the Kompaneets y-parameter. It is much larger than
unity for LTnu σT βs � 2.5×103 (kT/eV)−1 β2

s . Photon e�ective generation rate Qγ,e� includes,
therefore, all photons produced down to an energy that allows them to be upscattered to kTd.
For bremsstrahlung emission, which we assume to be the main source of photons, the number
of photons generated diverges logarithmically at low energy, so that Qγ,e� may be signi�cantly
larger than the bremsstrahlung generation rate of photons at kTd. In order for the photon
energy to signi�cantly increase by scattering, it must be scattered ∼ mec

2/(4kT ) times before
getting re-absorbed.

We need also the standard equation for the mean number of photons N̄ per unit volume
(given by statistical physics basics, where n(ν, t) has the form n(ν) = [ex − 1]−1 with x =
hν/(kT ) in case of the equilibrium Planck distribution)

N̄ =
8π

c3

ˆ ∞
0

n(ν, t) ν2 dν. (9.32)

Let us now assume that n(ν, 0) corresponds to a bremsstrahlung spectrum and that the electron
temperature is constant in time. If we neglect the variation with photon energy of the Gaunt
factor, this means that we can write n(ν, 0) = n0, where

9.2 Cuto� in the Bremsstrahlung Spectrum

In order to study the up-scattering of the low-energy bremsstrahlung photons, we assume here
that the cuto� in the bremsstrahlung spectrum due to self-absorption occurs at frequency νmin

such that hνmin � kTe which implies n(ν, t) � 1 (from Eq. (9.32), since C {exp[hν/(kT )] −
1}−1 ≈ kT/(hν). However, when n(ν, t)� 1, the Kompaneets equation (9.29) can be approxi-
mated by the equation

∂n(ν, t)

∂t
= neσT

h

mec

1

ν2

∂

∂ν

[
ν4n2(ν, t)

]
. (9.33)

We consider the situation (see Sunyaev & Zeldovich 1970 for this paragraph) when a slow
change of temperature occurs due to a �ow of heat. The kinetic equation for photons with
mec

2 � kTe including the variation of electron temperature has the form (cf. also Eq. (9.29))

∂n(x, t)

∂x
=

a

x2

∂

∂x

[
x4

(
∂n

∂x
+ n+ n2

)]
+
K e−x

x3
[1− n(ex − 1)]− x ∂n

∂x

∂ lnTe
∂t

, (9.34)
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where x = hν/kTe. The �rst term describes the change of frequency due to Compton scattering
for which a = σ0cnekTe/(mec

2) (Kompaneets 1956; Weymann 1965) and the second term -
bremsstrahlung together with the corresponding reverse and induced processes where

K =
8π

3

e6h2g(x)n2
e

me(6πmekTe)1/2(kTe)3
≈ 1.25× 10−12 g(x)

n2
e

T 3.5
e

(9.35)

and g(x) is the Gaunt factor. Finally the third term is connected with the fact that the
temperature Te enters into a determination of the variable x. In fact, if no processes occur
among the quanta, than ∂n(ν, t)/∂t|ν ≡ 0 and for n(x) we have

∂n

∂t

∣∣∣∣
x

=
∂n

∂t

∣∣∣∣
ν

+
∂n

∂x

∂x

∂t

∣∣∣∣
ν

=
∂n

∂t

∣∣∣∣
phys

− ∂n

∂x

x

T

dT
dt
, (9.36)

where ∂n/∂t|phys corresponds to �rst two terms in Eq. (9.34). The general properties of
Eq. (9.34) are obvious: the �rst term vanishes not only for Planck distribution n(x) = (ex−1)−1,
but also for a Bose-Einstein equilibrium distribution n(x) = (ex+µ − 1)−1 with a given num-
ber of quanta. The reason is that the Compton e�ect does not change the number of quanta,
although it redistributes the quanta in frequency. The second term vanishes only in true equi-
librium n = (ex− 1)−1. The third term describes the perturbing in�uence of the energy supply
in the case when this energy is given primarily to the electrons.

Compton scattering will thus tend to depress a bremsstrahlung spectrum when the frequency
is near to the self-absorption cuto� (following Chapline & Stevens 1973, who express the time
t in units of neσT c, cf. Eq. (9.34)). If we assume that the rate of change of the bremsstrahlung
spectrum due to Compton scattering is greater than the rate of change due to bremsstrahlung
emission, then for large t (but not so large that the photons are absorbed) the distribution
function will approach a distribution nc(ν) (where the subscript c is abbreviated from �cuto��)
such that

h

mec2

1

ν2

∂

∂ν

[
ν4n2

c(ν)
]

= −S(ν), (9.37)

where S(ν) = [(hc)3/(8π)] [32πme/(3kTe)]
1/2 (e2/h)ne ḡ� exp[−hν/(kT )]/(hν)3 is the contri-

bution of bremsstrahlung emission to ∂n/∂t (which comes from Fokker-Planck solution of
bremsstrahlung emission equation (8.13), for the explanation see Chapline & Stevens 1973).
Comparing the term S(ν) with the terms x and K from Eq. (9.34), we have neσT c S(ν) =
K e−x/x3 [where σT = (8π/3) e4/(m2

ec
4) in cgs]. Solving equation (9.37) for nc(ν) gives

nc(ν) =
e

hν2

(
m3

ec
10

6π kTe

)1/4
(
ne

ˆ ∞
hν/kTe

ḡ�
e−u

u
du

)1/2

, (9.38)

where the solution of the integral approximately is a function−ḡ� Ei(−hν/kTe) = −ḡ� [ln(hν/kTe)+
γ−hν/kTe+hν/4kTe+ . . .] where γ is the Euler-Mascheroni constant. The range of frequencies
for which the photon distribution function has the form given in equation (9.38) is determined
by those values of hν for which the rate of change of the bremsstrahlung spectrum due to
Compton scattering exceeds the rate of change of the spectrum due to bremsstrahlung emission
and absorption. The lower limit of this range, hνmin, can be found by equating nc(ν) and the
Planck function:

nc(νmin) =

(
e
hνmin

kTe − 1

)−1

≈ kTe
hνmin

(9.39)
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for small hν/(kTe). The factor in brackets in equation (9.38) is approximately equal to ne ḡ� ln [kTe/(hν)]
for small hν/(kTe). If we assume that the logarithm in this factor is of order unity, then we
obtain

hνmin ≈ eh
(
m3

ec
10

6π

)1/4

(kTe)
−5/4 (ne ḡ�)1/2 . (9.40)



Chapter 10

Radiative Transitions

10.1 Semi-Classical Theory

(Rybicki & Lightman 1979; Mihalas & Mihalas 1984): We investigate the transitions between
atomic states. There are two major objectives: the selection rules for radiative transitions and
the strengths of the radiation. The �rst of these is in some sense a special case of the second,
but we shall regard it separately.

We use the so-called semi-classical theory, in which the atom is treated quantum mechani-
cally, but the radiation is treated classically. It is known that this approach correctly predicts
the induced radiation processes described by Einstein B coe�cients, but that it fails to predict
the spontaneous process, described by the Einstein A coe�cient. However, this is not a great
di�culty, because the Einstein coe�cients are related, and any one of them can be used to
derive the other two. The physical argument used to justify the semi-classical approach is the
following: in the classical limit of radiation is the number of photons per photon state large.
Thus the induced processes, which are proportional to the number of photons, dominate the
spontaneous processes, which are independent of the number of photons. Because of the lin-
earity of the induced processes in the number of photons, these processes may be extrapolated
to small photon numbers, that is, to the quantum regime. The spontaneous rate can then be
quanti�ed by the Einstein relations.

10.1.1 The Electromagnetic Hamiltonian

The relativistic kinetic energy for an uncharged particle of rest mass m0 is T = E −E0, where
E = mc2 is the total particle's energy and E0 = m0c

2 is its rest energy. Following Eqs. (7.95) -
(7.97), T = m0c

2(γ − 1), and we may naïvely regard this as the kinetic part of the relativistic
Lagrangian L. However, it is not, because its velocity derivative does not give relativistic
momentum p = γm0v .

The correct Lagrangian we obtain by integrating the relativistic momentum equation

p =
∂L

∂v
, so that L =

ˆ
γ(v)m0v dv − V = −m0c

2γ−1 − V, (10.1)

where V is the potential energy and where the arbitrary constant of integration becomes the
(calibrated) part of V .

For a particle of charge q with a rest mass m0 in an electromagnetic �eld represented by
the potentials φ and A, the relativistic Lagrangian is given by

L = −m0c
2γ−1 + qv · A− qφ, (10.2)

143
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so that the particle's momentum

M =
∂L

∂v
= p + qA. (10.3)

To verify Eq. (10.2), we use the vector identity

v × (∇× A) + A× (∇× v) = ∇(v · A)− (v ·∇)A− (A ·∇)v (10.4)

(cf. Sect. 2.3 in (Kurfürst 2017)), noting that v does not depend on r so the last terms on both
sides of Eq. (10.4) drop. The explicit Euler-Lagrange equation ∂L/∂q = d

dt(∂L/∂q̇) becomes

∂L

∂r
= q∇(v · A)− q∇φ = qv × (∇× A) + q(v ·∇)A− q∇φ,

d
dt

(
∂L

∂v

)
=

d
dt

(p + qA) =
dp
dt

+ q

[
∂A

∂t
+ (v ·∇)A

]
, (10.5)

yielding the Lorentz force (Eq. (5.1))

dp
dt

= q

[
−∇φ− ∂A

∂t
+ v × (∇× A)

]
= q (E + v ×B) . (10.6)

The relativistic Hamiltonian for a particle in an external electromagnetic �eld is

H = M · v − L = p · v +m0c
2γ−1 + qφ =

[
(M − qA)2c2 +m2

0c
4
]1/2

+ qφ, (10.7)

where we used Eq. (10.3). Expanding Eq. (10.7) in the nonrelativistic limit, H = p2/(2m0)+V
and ignoring the (constant) rest mass, we obtain

H =
(M − qA)2

2m0
+ qφ =

M2

2m0
− q

m0
M · A +

q2A2

2m0
+ qφ. (10.8)

Using the Coulomb gauge (Eq. (5.32)) we have A = const. and the operatorsM and A commute,

−i~∇Aψ = −i~A∇ψ, so that M · A = A ·M . (10.9)

Regarding the particle is an electron, q ≡ e, m0 ≡ me, we may estimate the ratio of the two
terms in Eq. (10.8) that contain A:

η =
eMA/me

e2A2/2me
=

2M

eA
=

ev/c2

2πε0α2a0A
, (10.10)

where α ≡ e2/(4πε0~c) ≈ 1/137 is the �ne-structure constant and a0 ≡ 4πε0~2/(mee
2) ≈

5.291× 10−11 m is the Bohr radius.
The ratio v/c ∼ α for electrons in atom, which we estimate from Bohr model of H-atom,

where we compare mev
2/a0 = e2/(4πε0a

2
0). Another ratio A/E ∼ λ/c, where E is the electric

�eld and λ is the wavelength, we approximate by comparing the relations ∇×A and B = E/c.
We rewrite Eq. (10.10) as

η2 ∼ ~ω
2π2ε0αa2

0λE
2
. (10.11)

Since from Bohr model of H-atom, comparingmev
2/2 = E ∼ 2πn~c/λ, it follows that λ ∼ a0/α,

while the average energy density (5.45) implies the number of photons nph ∼ ε0E2/~ω, we have

η2 ∼ (npha
3
0)−1 � 1 (10.12)
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as the condition that the linear term in A in Eq. (10.8) dominates the quadratic one. In other
words, the number of photons inside the atom at one time is small. In fact, the term quadratic
in A contributes to two-photon processes, which we ignore here under the assumption that the
number of photons is su�ciently small. Note that the photon density at which this assumption
fails is nph ∼ 1031 m−3, whereas at the sun's surface we have only nph ∼ 1018 m−3. Ordinarily,
the neglect of the A2 term is justi�ed. We now want to apply this to an atomic system of
electrons. To do this we regard the sum of terms of the sort (−e/mec)M · A as a perturbation
to the atomic Hamiltonian, and we use time-dependent perturbation theory to calculate the
transition probabilities between the atomic states (we continue to work in the Coulomb gauge
∇ · A = ∇φ = 0).

10.1.2 The Transition Probability

We split the Hamiltonian (Eq. (10.8)) into a stationary and a time-dependent piece:

H = H0 +HI , (10.13)

where H0 is the time-independent atomic Hamiltonian and HI is the perturbation due to the
external electromagnetic �eld. The atomic eigenvalues Ek and eigenfunctions φk of H0 are
given by

H0φk = Ekφk (10.14)

and the zeroth-order time dependent wave functions are φk exp(−iEkt/~). Resuming the time-
dependent Schrödinger equation i~ ∂ψ/∂t = Hψ, we may expand the actual wave function
as

ψ(t) =
∑
k

ak(t)φk e−
i

~Ekt. (10.15)

The Schrödinger equation implies the probability per unit time Pfi for a transition from state
i to state f is given by

Pfi =
4π2

~2T
|HI

fi(ωfi)|2, (10.16)

where

HI
fi(ω) =

ˆ T

0
HI
fi(t
′) e−iωt

′
dt′, HI

fi(t) =

ˆ
φ∗fH

Iφi d3x, and ~ωfi = Ef − Ei. (10.17)

10.2 Line Broadening

Since atomic levels are not in�nitely sharp, nor are the lines. We introduced in Sect. 4.5 the
line pro�le function φ(ν) to account for the nonzero width of the line. Many physical e�ects
determine the line shape, we describe only a few here (see, e.g., Mihalas 1978).

10.2.1 Doppler Broadening

The simplest mechanism for line broadening is the Doppler e�ect. An atom is in thermal
motion, so that the frequency of emission or absorption in its own frame corresponds to a
di�erent frequency for an observer. Each atom has its own Doppler shift, so that the net
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e�ect is to spread the line out, but not to change its total strength. The change in frequency
associated with an atom with velocity component vz, along the line of sight (say, z-axis) is, to
lowest order in v/c, given by Eq. (7.40),

ν − ν0

ν0
=
vz
c
, so that vz =

c(ν − ν0)

ν0
and dvz =

c

ν0
dν. (10.18)

where ν0 is the frequency in the rest frame of an atom. The number of atoms having velocities
in the range ν, to ν + dν, is proportional to the Maxwellian distribution exponential (see the
principles in Kurfürst 2017, Sect. 12.2),

e−
mav2z
2kT dvz ∼ e

−mac2(ν−ν0)2

2ν20kT dν, so that 1 = C

ˆ ∞
−∞

e
−mac2(ν−ν0)2

2ν20kT dν, (10.19)

where C is a constant which is normalized by the condition
´
φ(ν) dν = 1, and where we

integrate over the whole bracket in the exponential. The pro�le function is

φ(ν) =
c

ν0

√
ma

2πkT
e
−mac2(ν−ν0)2

2ν20kT =
1

∆νD
√
π
e−(ν−ν0)2/(∆νD)2 , (10.20)

where we de�ne the (temperature dependent) Doppler width ∆νD by

∆νD =
ν0

c

√
2kT

ma
, ∆νD � ν0. (10.21)

The center-of-line cross section for each atom, neglecting stimulated emission, is

σν0 = B12
hν0

4π
φ(ν0) =

1

∆νD
√
π

hν0

4π
B12 =

1

∆νD
√
π

e2

4ε0mec
f12 (10.22)

in SI units, while in cgs units it is

σν0 =
1

∆νD
√
π

πe2

mec
f12 (10.23)

for the case of Doppler broadening (cf. Eqs. (6.74) and (6.77)). Numerically this is

σν0 ≈ 1.16× 10−18λ0

√
A/T f12 m2, (10.24)

where λ0 is in Å, T in K, and A is the atomic weight for the atom.
In addition to thermal motions, we include also macroscopic turbulent velocities. When the

turbulent scale is small in comparison with a photon's mean free path (microturbulence) these
motions are often accounted for by an e�ective Doppler width

∆νD =
ν0

c

(
2kT

ma
+ vmic

)1/2

, (10.25)

where vmic is a root mean-square measure of the turbulent velocities. This assumes that the
turbulent velocities also have a Gaussian distribution.
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10.2.2 Natural Broadening

A certain width of the atomic level is implied by the uncertainty principle, ∆E∆t ≥ ~. A rate
of the spontaneous decay of an atomic state n is

γ =
∑
n′

Ann′ , (10.26)

where we sum over all states n′ of lower energy. If radiation is present, we should add the induced
rates. The coe�cient of the wave function of state n, therefore, is of the form e−γt/2 and leads
to a decay of the electric �eld by the same factor (the energy then decays proportional to e−γt).
Therefore, we have an emitted spectrum determined by the damped sinusoid (oscillator) type
of electric �eld, as given in Sect. 3.2.1 in Kurfürst (2017). The pro�le is (cf. Eq. (6.64))

φ(ν) =
γ/(4π2)

(ν − ν0)2 + [γ/(4π)]2
. (10.27)

This is called a Lorentz (or natural) pro�le. Actually, the above result applies to cases in which
only the upper state is broadened (e.g., transitions to the ground state). If both the upper and
lower state are broadened, then the appropriate de�nition for γ is

γ = γup + γlow, (10.28)

where γup and γlow are the widths of the upper and lower states involved in the transition. We
can have, for example, a weak but broad line if the lower state is broadened substantially.

10.2.3 Collisional Broadening

The Lorentz pro�le applies more generally to certain types of collisional broadening mechanisms.
For example, if the atom collides with other particles during its emission, the phase of the
emitted radiation can be suddenly altered. If the phase changes completely randomly at the
collision times, then information about the emitting frequencies is lost. If the collisions occur
with frequency νcol, that is, each atom experiences νcol collisions per unit time on the average,
then the pro�le is

φ(ν) =
Γ/(4π2)

(ν − ν0)2 + [Γ/(4π)]2
, (10.29)

where

Γ = γ + 2νcol. (10.30)

10.2.4 Combined Doppler and Lorentz Broadening

An atom very often shows both a Lorentz pro�le plus the Doppler e�ect. In these case the
pro�le is as an average of the Lorentz pro�le over the various velocity states of the atom:

φ(ν) =
Γ

4π2

√
ma

2πkT

ˆ ∞
−∞

e−
mav2z
2kT(

ν − ν0 −
ν0vz
c

)2
+

(
Γ

4π

)2 dvz, (10.31)
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Substituting

a =
Γ

4π∆νD
, u =

ν − ν0

∆νD
and y =

√
ma

2kT
vz, (10.32)

we can write Eq. (10.31) more compactly using the Voigt function H(a, u),

φ(ν) =
1

∆νD
√
π
H(a, u), where H(a, u) =

a

π

ˆ ∞
−∞

e−y
2
dy

a2 + (u− y)2
. (10.33)

For small values of a, the center of the line is dominated by the Doppler pro�le, whereas the
�wings� are dominated by the Lorentz pro�le.
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