SNe: physical properties and progenitor types Petr Kurfürst ÚTFA MU Brno

Astronomical transients Selected chapters from astrophysics, fall semester, 2022

Thermonuclear SNe: electron degeneracy

- # of quantum states of an electron in a volume V, between momenta p, p + dp (degeneracy g = 2): $2\frac{4\pi p^2 dp V}{h^3} \equiv \frac{V p^2 dp}{\pi^2 \hbar^3}$
- Pauli exclusion principle: electrons occupy all quantum states within the Fermi sphere radius $p = p_F$ (in momentum space), with energy $\epsilon = \epsilon_F$
- # of electrons in these states (with $\epsilon_F = \sqrt{p_F^2 c^2 + m_0^2 c^4}$):

$$N = rac{V}{\pi^2 \hbar^3} \int_0^{
ho_F} p^2 \,\mathrm{d}p \quad \Rightarrow \quad p_F = (3\pi^2)^{1/3} (N/V)^{1/3} \hbar^2$$

• Nonrelativistic (NR) electron degeneracy, $p_F \ll m_0 c$, $\epsilon_F = p_F^2/2m_e$:

• Energy in the whole Fermi volume (from the 1st Eq.):

$$E(NR) = \frac{V}{2m_e\pi^2\hbar^3} \int_0^{p_F} p^4 \, \mathrm{d}p = \frac{V \, p_F^5}{10m_e\pi^2\hbar^3}$$

- Pressure (P: E = 3/2PV statistical physics! & from the 2nd Eq): $P(NR) = (3\pi^2)^{2/3} \frac{\hbar^2}{5m_e} n_e^{5/3} \quad (T \text{ independent!})$
- *M R* relation (using a polytropic solution):

$$M({
m NR \ case})={
m const.} imes R^{-3}pprox 1.7 imes 10^{60}\ R^{-3}\ ({
m cgs})$$

Thermonuclear SNe: electron degeneracy

- Following the *M R* relation → with an *M* increasing, the room for free electrons shrinks (due to the *Heisenberg's uncertainty principle*) → their momenta increase, approaching v_e → c:
- Ultrarelativistic (UR) electron degeneracy, $p_F \gg m_0 c$, $\epsilon_F = c p_F$:
 - Energy in the whole Fermi volume (from the 1st Eq.):

$$E(\text{UR}) = \frac{3}{4} (3\pi^2)^{1/3} \hbar c \, N \left(\frac{N}{V}\right)^{1/3}$$

• **Pressure** (P: E = 3PV statistical physics! & from the 2nd Eq):

$$P(\text{UR}) = \frac{\hbar c}{8\pi} \left(\frac{3}{8\pi}\right)^{1/3} n_e^{4/3} \quad (T \text{ independent!})$$

• *M* - *R* relation (using a polytropic solution):

$$M({ t UR case})\equiv M_{{ t Ch}}={ t const.}pprox 1.44~M_{\odot}$$

Thermonuclear SNe: electron degeneracy

- Following the *M R* relation → with an *M* increasing, the room for free electrons shrinks (due to the *Heisenberg's uncertainty principle*) → their momenta increase, approaching v_e → c:
- Ultrarelativistic (UR) electron degeneracy, $p_F \gg m_0 c$, $\epsilon_F = c p_F$:

- Consequence of degeneracy of WD matter:
 - WDs: degenerate matter $\rightarrow P \neq P(T) \rightarrow$ no expansion
 - no self-regulation of stellar nuclear reactor: no cooling by expansion → strong increase in reaction rate → further increase in T
 - thermonuclear runaway (TNR): self-accelerating cycle → unlimited growth of reaction rate → until fuel exhausted or degeneracy lifted
- Basic SN Ia characteristics:
 - rise time \sim 19 days; max L: $L_{\rm bol,max} \approx 10^{43} \, {\rm erg \, s^{-1}} = 10^{9.4} L_{\odot}$
 - total $E_{\rm rad} \approx 10^{49} \, {\rm erg}$, total $E_{\rm kin} \approx 10^{51} \, {\rm erg} \Rightarrow E_{\rm kin} \approx 10^2 E_{\rm rad}$
 - maximum emission in V and B bands, fade away \rightarrow d, w, or months
 - no H, He lines in spectra, strong features of intermediate elements (S, Si) and iron group (Ni, Co, Fe)
 - **no direct observations** of progenitor systems, progenitors' nature elusive
 - spectral lines shift \rightarrow high velocities $\approx 10^4 \, {\rm km \, s^{-1}}$

- Properties of type Ia SNe: (cf. also the F. Röpke's lecture on SF 2017
- Contribution to Galaxy chemical evolution (Arnett 1982, Röpke+ 2013):
 - **TN** explosion reactions: $2^{12}C + 2^{12}O \rightarrow {}^{56}Ni$, quickly transformed to expansion E_{kin} , followed by ${}^{56}Ni \rightarrow {}^{56}Co$ ($\epsilon_{Ni}^{0} = 4.78 \times 10^{10} \text{ erg g}^{-1} \text{ s}^{-1}$) and ${}^{56}Co \rightarrow {}^{56}Fe$ ($\epsilon_{Co}^{\gamma,0}/\epsilon_{Co}^{+,0} = 6.444/1.512 \times 10^{9} \text{ erg g}^{-1} \text{ s}^{-1}$) decays
 - SNe Ia produce $pprox 0.5 M_{\odot}$ of Fe per 1 event
 - CC SNe produce $\approx 0.1 \ensuremath{M_{\odot}}$ of Fe per 1 event
 - ~2/3 of Fe in the local! universe made by SNe Ia
- **SN la cosmology** tests "world model": "revolution" by HZT, SCP projects -Riess 1998, Perlmutter 1999
 - SNe distances incosistent with any universe dominated by gravity
 - $\bullet\,$ can only be fitted by model involving $\Lambda\,$
 - expansion accelerates
- $\bullet\,$ precise SN Ia distance measurements $\rightarrow\,$ major task
- $\bullet~{\rm dark}~{\rm energy} \to {\rm major}~{\rm challenge}$ to theory

- Energy release of SNe Ia:
- Nuclear energy of material:
 - initial TNR ejecta dense and opaque to radiation
 - takes \sim days before all *E* produced in interior by ⁵⁶Ni decay reaches the surface \rightarrow it shapes light curve and peak of *L*
 - simplifying assumption: mass of produced ${}^{56}Ni \approx 0.6 M_{\odot} \Rightarrow LC$ picture around peak of *L* powered by ${}^{56}Ni$ decay beyond doubt
 - evolution of Ni/Co/Fe ratio ← most frequent decay chains:

$$\begin{array}{c} {}^{56}\text{Ni} \xrightarrow[]{\tau_{1/2} = 8.8 \, \text{d}} & {}^{56}\text{Co} \xrightarrow[]{\tau_{1/2} = 78.8 \, \text{d}} & {}^{56}\text{Fe}; \\ {}^{57}\text{Ni} \xrightarrow[]{\tau_{1/2} = 35.6 \, \text{d}} & {}^{57}\text{Co} \xrightarrow[]{\tau_{1/2} = 271.8 \, \text{d}} & {}^{57}\text{Fe}; \\ {}^{55}\text{Co} \xrightarrow[]{\tau_{1/2} = 17.5 \, \text{h}} & {}^{55}\text{Fe} \xrightarrow[]{\tau_{1/2} = 1000 \, \text{d}} & {}^{55}\text{Mn} \end{array}$$

• Simplified BB early phase luminosity (Arnett's law, $R_{\star} = 1$): $L(1, t) = \sum_{\chi} \epsilon_{\chi}^{0} M_{\chi}^{0} e^{-t^{2}/\tau_{m}^{2}} \int_{0}^{t} e^{t'^{2}/\tau_{m}^{2}} \frac{2t'}{\tau_{m}^{2}} e^{-t'/\tau_{\chi}} dt',$

where X = radionuclide, τ_m = effective diffusion timescale

- Energy release of SNe Ia:
- Nuclear energy of material:

- Are SNe Ia "standard candles"?:
 - no, even if most observed SNe Ia are "regular"
 - significant variations among "regular" SNe Ia \rightarrow peak brightness \sim order of magnitude \rightarrow large errors, if uncorrected: stretch parameter $s=(\Delta m_{15}+0.6)/1.7$, used for time-rescaling $t'=(t-t_{B_{max}})/[s(1+z)]$ (Nobili+ 2003)
 - empirical "Phillips relation" between $M_{B,\max}$ and LC shape (see the 1st lecture): $M_{B,\max} = -21.726 + 2.698 \Delta m_{15}$, no theoretical background!
- Major tasks:
 - precise theoretical understanding of WLR
 - dependence on environment, metallicity?
 - different progenitor/explosion mechanisms?
- intrinsically multi-D processes ⇒ multi-D models → explosion mechanisms, connection to progenitor structure and evolution, nuclear processes, etc.

- Progenitors of TN SNe: what WDs make type Ia SNe?
 - WDs of different $ChC \rightarrow$ depending on stellar mass: He, CO, ONe
- Favored progenitor scenario: CO WD
 - most abundant + TN burning leads most likely to SN Ia-like event
- He WDs?
 - would show He in spectra?
 - produce IGE but lack of IME in spectra (Woosley+ 1986)
- ONe WDs?
 - "traditional picture": core collapse induced by electron captures onto $^{20}\rm Ne$ and $^{24}\rm Mg$ before explosive burning ignites (Gutierrez+ 1996) + TN explosion unlike SN Ia (Marquardt+ 2015)
 - **but:** very high central densities needed to initiate gravitational collapse (Jones+ 2016b)
 - anyway: ONe WDs less abundant than CO: small fraction (if working)
 - alternative: CONe hybrid WDs (Denissenkov+ 2015): from off-center C ignition in core of AGBs (strongly depends on parameterization of mixing processes)

• Ignition of TN SNe:

• primary ignition by ${}^{12}C + {}^{12}C$ reaction

- reaction rate depends on thermal energy of ions → Coulomb barier penetration → nuclei fusion
- lower *T*, higher *ρ*: strongly coupled Coulomb system → liquid or a solid
- high T, low ρ : ions \rightarrow Boltzmann gas

(uncertainties...)

 $T_{\rm F} = T$ of electron degeneracy $T_{\rm I} = T$ of ion liquid appearance $T_{\rm m} =$ melting T of ion crystal $T_{\rm p} = T$ of ion plasma

• Ignition of TN SNe:

- $\rho_{central}$ grows \rightarrow energetic evolution of WD core is driven by compressional heating and neutrino cooling (Woosley & Weaver 1986)
- $@\rho_{central} \sim 2 \times 10^9 \, g \, cm^{-3}$ nuclear energy production wins over ν -cooling \rightarrow C-burning starts
- $\bullet\,$ after C ignition $\to\,$ energy outward transportation from the core driven by convective motions
- after ~century of convective C-burning → hotspot(s) form in turbulent environment → TNR deflagration ignites (likely off-center at radius ~ 50 km), nonlinear instabilities amplify effects! (Röpke+ 2007)

• ignition of detonation:

- direct (pre-existence of a shock wave)
- spontaneous (pre-shock-free) \rightarrow Zel'dovich gradient mechanism = shallow T gradient with subsequent self-ignition, etc. (Zel'dovich 1970)
- \Rightarrow strong shock wave propagates through the star compressing the fuel

- deflagration simulation
 @ 0.6, 0.9, 1.2, and 1.5 s after ignition
- delayed detonation 3D sim
 0.72 (t-l), 0.80 (t-r), and
 0.90 s (b) after deflagration ignition (blue); detonation front (white) and density (yellow/orange) of the exploding WD

Credit: Röpke 2017

- Scenarios for Ch/sub-Ch/super-Ch TN SNe:
- Single degenerate channel:

- WD accretes from MS or RG
- accretion rates have to be tuned to allow to accrete to *M*_{Ch}:
 - low rates → nova eruptions
 → WD loses more matter than accreted (?)
 - too high rates \rightarrow formation of extended He-rich envelope
 - moderate accretion rates → degenerate He-shell → detonation → secondary CO core (Nomoto 1982) before *M*_{Ch} reached → sub-Chandrasekhar explosion (Woosley & Weaver 1994)

- Scenarios for Ch/sub-Ch/super-Ch TN SNe:
- Single degenerate channel:

- WD accretes from MS or RG
- accretion rates have to be tuned to allow to accrete to *M*_{Ch}:
 - somewhat higher rates → lead to stable hydrostatic burning → accreted material: CO
 - WD may reach the $M_{\rm Ch} \rightarrow$ Chandrasekhar mass model (Hoyle & Fowler 1960; Arnett 1969, Hansen & Wheeler 1969)
 - stable mass transfer to form *M*_{Ch} WD highly nontrivial (e.g., Nomoto & Iben 1985)
 - spin up/spin down \rightarrow nonnegligible effects

- Scenarios for Ch/sub-Ch/super-Ch TN SNe:
- Single degenerate channel:
- ignition in sub-M_{Ch} WDs less natural than in M_{Ch} WDs → detonation ignition not spontaneous
- other process is necessary, some possibilities:
 - double detonation scenario → accretion of He-rich layer on top of CO WD → detonation in massive enough He-layer drives a shock wave into the CO core → triggers a secondary detonation in the core
 - violent WD inspiral/mergers \rightarrow violent tidal interaction, unstable mass transfer \rightarrow detonation **before** the actual merger (Guillochon+ 2010; Pakmor+ 2010, 2013) in one of the (still intact) WDs
 - the previous may also potentially trigger the double detonation scenario

- Scenarios for Ch/sub-Ch/super-Ch TN SNe:
- Double degenerate channel:
- 2 CO WDs merge \rightarrow advantage: system naturally contains almost no H, He
- merger process possibilities:
 - less massive companion tidally disrupted \rightarrow forms accretion disk around primary \rightarrow high accretion rate onto primary CO WD \rightarrow gravitational collapse (e.g., Saio & Nomoto 1985, 1998) or Ch/sub-Ch TN explosion (Jones+ 2016a)
 - strong mass transfer in inspiral and tidal interaction phase before the secondary is completely disrupted onto the yet sub-Ch primary \rightarrow detonation \rightarrow violent merger scenario (Pakmor+ 2010)
 - merger in the final stage of CE phase from post-AGB core and WD companion (Kashi & Soker 2011)
 - example of super- M_{Ch} WDs \rightarrow WD mergers (model of $0.9M_{\odot} + 1.1M_{\odot}$ \rightarrow good candidate for SN Ia \rightarrow produce $0.62M_{\odot}$ of ⁵⁶Ni)

• Scenarios for Ch/sub-Ch/super-Ch TN SNe:

Credit: Postnov & Yungelson 2014

CLOSE BINARIES

- Major computational caveats for TN SNe:
 - nuclear reactions not in TE as in stellar evolution ⇒ fluid dynamical effects propagate in time as a combustion front
 - nuclear reactions occur in rapidly expanding material → EOS extremely complex (involved as a table)
 - metallicity of ZAMS progenitor of WD has significant impact on Y_e in nuclear statistical equilibrium \rightarrow metallicity reduces the brightness of thermonuclear supernovae
 - numerical simulations required to solve full system in 3D extremely computationally costly
 - scaling problems \rightarrow thickness of a combustion wave (waves?) \rightarrow involving relevant (or even fundamental) nonlinearities RT, KH instabilities, turbulence, etc.

CC SNe: Stellar evolutionary tracks

Evolution of $1 - 2 M_{\odot}$ starsEvolution of $2 - 8 M_{\odot}$ stars $Z = Z_{\odot}$ (cf. the lectures of S. Phinney on 35HUJI & Ch. Fryer on SF, 2017)

https://rainman.astro.illinois.edu/ddr Based on Hurley 2000 SSE code

CC SNe: Stellar evolutionary tracks

```
Evolution of 8 - 11 M_{\odot} stars Z = Z_{\odot}
```

Evolution of $15 \& 25 M_{\odot}$ stars

https://rainman.astro.illinois.edu/ddr Based on Hurley 2000 SSE code

CC SNe: Stellar structure and evolution

CC SNe: Nuclear burning stages

 $20 \ M_{\odot}$ star

Fuel	Main Product	Secondary Product	T (10 ⁹ K)	Time (yr)	Main Reaction
н	He	¹⁴ N	0.02	10 ⁷	$4 \text{ H} \xrightarrow{\text{CNO}} {}^{4}\text{He}$
He	0, C	¹⁸ O, ²² Ne s-process	0.2	10 ⁶	3 He ⁴ → ¹² C ¹² C(α,γ) ¹⁶ O
C	Ne, Mg	Na	0.8	10 ³	¹² C + ¹² C
Ne	O, Mg	AI, P	1.5	3	²⁰ Ne(γ,α) ¹⁶ O ²⁰ Ne(α,γ) ²⁴ Mg
O	, Si, S	CI, Ar, K, Ca	2.0	0.8	¹⁶ O + ¹⁶ O
Si	Fe	Ti, V, Cr, Mn, Co, Ni	3.5	0.02	²⁸ Si(γ,α)

CC SNe: Stellar evolution (Kippenhahn diagram for a 22 M_{\odot} star)

CC SNe: Stellar evolution

- We roughly distinguish four cases of M_{init} (Meynet & Maeder 2017):
- (1) The mass range of stars between 9 and 20 $M_{\odot} \rightarrow$ end their life as RSGs at Z $_{\odot}$ (see previous slide)
 - will produce in general type IIP SNe (see Filippenko 1997)
- (2) The mass range of stars between ~20 and 25 M_☉ → cross the HR gap, being for a while a RSG, then evolve back to the blue, ending their life as YSGs, BSGs or even WR stars
 - expected to produce type IIL, type IIb SNe in general and sometimes even type Ib (see the 25 M_☉):

CC SNe: Stellar evolution

- We roughly distinguish four cases of M_{init} (Meynet & Maeder 2017):
- (3) The mass range of stars between 25 and \sim 140-150 $M_{\odot} \rightarrow$ end their life as WR stars (see previous slide)
 - may produce BH with no SN event (all the matter swallowed) or Ibc SNe (see the tracks from 32 M_☉ to 120 M_☉):
- (4) The mass range of stars with $M_{\text{init}} > 150 M_{\odot} \rightarrow \text{may}$ encounter the pair instability strip during the advanced stages of their evolution
 - produce PPISN or PISN ← pulsations → in some circumstances the complete destruction of the star → Pair Creation SN; PCSN (Heger & Woosley 2002):

CC SNe: generation of Z_{\odot} nonrotating massive stars

Limiting masses for the various SN types; the initial mass-remnant mass relation for 1 foe explosions

CC SNe: generation of Z_{\odot} rotating massive stars

Limiting masses for the various SN types; the initial mass-remnant mass relation for 1 foe explosions

CC SNe progenitors by initial mass vs. metallicity

Predicted SN progenitors for nonrotating models at various Z

CC SNe progenitors by initial mass vs. metallicity

Credit: Limongi 2017

Predicted SN progenitors for rotating models at various Z

CC SNe types by initial mass vs. metallicity

Credit: Heger+ 2003

CC SNe types by initial mass vs. metallicity

• collapsar types

Credit: Heger+ 2003

CC SNe types by initial mass vs. metallicity

• jet-driven types of SNe

Credit: Heger+ 2003

- 'Canonical' anatomy of a Fe core collapse: (to the current knowledge) (e.g., Couch 2017; Pejcha 2020, etc.)
- stars more massive than about 8-10 M_{\odot} go through multiple epochs of core and shell burning of ever heavier elements ultimately culminating in Si 'burning' to form cores of Fe
- The complex, quasi-equilibrium Si shell burning continues to grow Fe cores up to the effective M_{Ch}
- The collapse of the **critical-mass Fe core** rapidly accelerates, driven principally by photodissociation of Fe-peak nuclei and by electron captures:

$$p + e^- \rightarrow n + \nu_e$$

- Both processes drive core ρ and T higher and higher → the inner core (~0.4-0.6 M_☉) collapses homologously, while the outer core collapses supersonically
- The rapid infall proceeds until the central ρ exceeds that of nuclear matter, $\rho_{\rm nuc}\sim 2\times 10^{14}\,{\rm g\,cm^{-3}}$

- 'Canonical' anatomy of a Fe core collapse: (to the current knowledge) (e.g., Couch 2017; Pejcha 2020, etc.)
- stars more massive than about 8-10 M_{\odot} go through multiple epochs of core and shell burning of ever heavier elements ultimately culminating in Si 'burning' to form cores of Fe
- The complex, quasi-equilibrium Si shell burning continues to grow Fe cores up to the effective M_{Ch}
- The collapse of the **critical-mass Fe core** rapidly accelerates, driven principally by photodissociation of Fe-peak nuclei and by electron captures:

$$p + e^- \rightarrow n + \nu_e$$

- Both processes drive core ρ and T higher and higher → the inner core (~0.4-0.6 M_☉) collapses homologously, while the outer core collapses supersonically
- The rapid infall proceeds until the central ρ exceeds that of nuclear matter, $\rho_{\rm nuc}\sim 2\times 10^{14}\,{\rm g\,cm^{-3}}$

- 'Canonical' anatomy of a Fe core collapse: (to the current knowledge) (e.g., Couch 2017; Pejcha 2020, etc.)
- The nature of instabilities in a region semi-transparent to neutrinos
 → great challenge to theory
- The evolution of the stalled shock now bifurcates into two possible channels: the central object **collapses** into a black hole (failed SN?) **or** the combined action of neutrinos and instabilities **overturns** the accretion into explosion
- The shock propagating through the star heats up the stellar interior above $\sim 5\times 10^9\,\rm K$ stimulating a nuclear burning to iron-group elements
- After the shock breakout, we observe the hot and expanding ejecta as a CC SN, part of the light comes from the radioactive decay of the newly synthesized elements, especially ⁵⁶Ni
- The asymptotic SN energy $\sim 10^{51}$ ergs, is $\sim 1\%$ of the NS binding energy (\rightarrow neutrinos) while the radiated energy is $\sim 0.1\%$ of this

• Other channels:

- EC SN of the "transitional range" progenitor (\sim 8 to 10 M_{\odot}) between TN SN and Fe CC SN, with a degenerate O+Ne+Mg core
- EC SNe undergo only the first phase of the CC SNe \rightarrow driven by the electron capture reactions in a degenerate O+Ne+Mg core
- $\bullet\,$ EC SNe form NS, however, the process is less energetic $\to\,$ fainter than the ''regular" CC SNe
- A pair-instability supernova (PISN) → driven by the production of free electrons and positrons in the collision between atomic nuclei and energetic gamma rays
- $\bullet\,$ PISN can only happen in stars with a mass range from around 130 to 250 M_{\odot} and low to moderate Z
- stars of ~100 to 130 M_{\odot} PPISN undergo a series of pulses until they shed sufficient mass to drop below 100 $M_{\odot} \rightarrow \text{low } T$ to support pair-creation \rightarrow likely followed by a "normal" CC SN

• neutrinos:

- neutrino physics importance \rightarrow (Burrows 1998, Fryer 2009)
- EOS plays an important role in number of aspects of SN explosion:
 - bounce
 - convection in core
 - neutrino emission and opacities
- \bullet rotating stars produce a disk around PNS \rightarrow how does this affect a neutrino transport?
- \bullet collective neutrino oscillations \rightarrow
- alternate engines \rightarrow exist, but most invoking magnetic fields, magnetars, collapsars or similar mechanisms \rightarrow
- \bullet these do not explain normal SNe \rightarrow likely \rightarrow exotic SNe or GRBs

• GWs:

- as massive objects move around, the changes in space-time propagate as GWs ⇒ produced in system with rapidly moving quadrupole moment
- advanced LIGO: measurements up to 200 215 Mpc
- most sources seen to 100 kpc
- source simplifications:
 - mild (normal) rotation and no rotation: rotating quadrupole
 - $\bullet~$ higher rotation $\rightarrow~$ bar modes
 - highest rotation \rightarrow fragmentation \Rightarrow (better understand the convective GW signal)
- we can (even with advanced LIGO) probe the convective signal only for Galactic SNe

- A lot of future work:
- progenitors
- EOS and neutrino physics
- transports and turbulence
- magnetic fields
- advancing neutrino and GW signals
- $\bullet~\text{LCs} \rightarrow \text{understand}$ uncertainties + more accurate models
- $\bullet\,$ nucleosynthesis $\rightarrow\,$ beat down uncertainties

Various rate of SN events within various galaxies ?

- MW \rightarrow last SN: 1604 (1680?), M31 \rightarrow last SN: 1885A
- NGC 6946 (fireworks galaxy, D = (6.9 ± 3.4) Mpc) SNe: 1917A, 1939C, 1948B, 1968D, 1969P, etc.