Interacting supernovae

Petr Kurfürst ÚTFA MU Brno

with Ondřej Pejcha (Praha) and Jiří Krtička (Brno)

Seminar of the Astronomical Institute of Charles University, Praha, October 07, 2020

Talk outline

What are supernovae and why are they important?

- Supernovae that interact with pre-existing circumstellar material
- Hydrodynamics of interactions
- Implications for observations
 - Light curves and spectral line profiles
 - Polarization signatures
- Comparison with observed supernovae
- Conclusions

What are supernovae and why are they important?

Basic classification

- Supernovae of type II Gravitationally collapsing very massive stars, mostly red supergiants (also yellow, blue, and LBVs)
- Supernovae of type Ia Thermonuclear explosion of C-O white dwarf in a binary system
- Supernovae (SNe) chemically enrich their host galaxies and drive future generations of star formation
- The shock produced by a supernova probes the mass loss history of the progenitor system back to ages of ~ 10 000 years before the explosion

SNe interacting with circumstellar material

- The chief reason that they are extremely interesting is because they their progenitor may be wildly unstable long before explosion
- This has not been included in standard stellar evolution models
- Another reason they are interesting is because CSM interaction is a very efficient engine for making extremely bright super-luminous transients
- The CSM interaction may also be highly non-spherical, perhaps linked to binarity o the progenitor system

Plot of mass-loss rate as a function of wind velocity, comparing values for interacting SNe to those of known types of stars (Smith 2014)

SNe interacting with circumstellar material - basic physical picture

When a SN explodes inside a dense CSM, four zones are delineated in the simplest picture (Smith+ 2008):

- The unshocked CSM outside the forward shock (FS) (photoionized)
- The swept-up CSM between FS and "cold dense shell" (CDS)
- The decelerated SN ejecta encountering the reverse shock (RS)
- The freely expanding SN ejecta inside RS

Basic physical picture

Sketch of the asymmetric SN-CSM interaction (Smith+ 2015)

- After a few days, the SN photosphere envelopes the SN-disk interaction
- At late times, the SN-disk interaction may be exposed again (higher V_{SN})

Type IIn supernovae

Comparison of light curves of five prominent long-lasting type II SNe (Aretxaga+ 1999, Stritzinger+ 2012, Smith+ 2009, Nyholm+ 2017, Guillochon+ 2017)

- Most of the SNe (except iPTF14hls) are of type IIn, they showed a steep initial decline followed by a long slower decline
- Undulations and bumps in SN IIn light curves are rare but have been observed in a few cases (Nyholm+ 2017)
- Interaction of SN ejecta with clumpy CSM (cf. Calderón+ 2016, 2020) is also expected to produce bumps in the light curves

We performed high-resolution hydrodynamic simulations of a SN interacting with six types of aspherical CSM geometries (Kurfürst, Pejcha, & Krtička, accepted, in press; cf. also Kurfürst & Krtička 2019)

Numerical setup:

- ▶ We use the own Eulerian hydrodynami code with radial grid composed of 60 zones for $0.2 \leq r/R_{\star} \leq 1$ and 6000 zones between $1 \leq r/R_{\star} \leq 450$ (outer boundary) (Kurfürst+ 2014, 2018, Kurfürst & Krtička 2017, 2019)
- ► The uniform polar grid with 480 grid cells covers $0 \le \theta \le \pi/2$ and 640 cells for $0 \le \theta \le 2\pi/3$

Numerical setup - initial state of simulations

We calculate shock propagation through a realistic progenitor (nonrotating RSG of $15 M_{\odot}$) using 1D RHD code SNEC (Morozova+ 2015)

Three CSM components: spherically symmetric SN ejecta, spherically symmetric stellar wind, and aspherical CSM

• Density profile of $\rho_{\rm disk}$ of equatorial disk is set to

 $ho_{
m disk} \propto r^{-2} {
m exp}\left[-rac{z^2}{2H^2}
ight],$ where H is the disk scaleheight

• Density profiles of other types of aspherical CSM are set numerically

(Kurfürst, Pejcha, & Krtička, in press)

Stages in the evolution of the density ρ and shock heating rate \dot{q} within SN ejecta interacting with circumstellar disk (model A).

Stages in the evolution of ρ and \dot{q} within SN ejecta interacting with a planar shell located closer to the progenitor (model B2b)

Animations of various models of SN interactions with asphercal CSM (the previous quantities with r and θ velocity components):

- SN circumstellar disk: model_A.mp4
- SN colliding wind shell oriented to SN: model_B1.mp4
- SN distant planar colliding wind shell: model_B2a.mp4
- SN closer planar colliding wind shell: model_B2b.mp4
- SN colliding wind shell oriented away from SN: model_B3.mp4
- SN interacting with bipolar lobes: model_C.mp4

Shock power as an internal power source

Estimates of shock heating rates and light curves from our simulations:

 $\begin{array}{l} Comparison \mbox{ with observed LCs (Bilinski+ 2020, Smith+ 2015, Nyholm+ 2017, Arcavi+ 2017) } \end{array}$

Models:

A - SN-disk

B1 - SN-colliding wind shell oriented to SN

B2a - SN-distant planar colliding wind shell

B2b - SN-closer planar colliding wind shell

B3 - SN-colliding wind shell oriented away from SN

C - SN-bipolar lobes

Spectral line profiles

- Spectral line profiles can provide more insight into the ejecta geometry than the integrated light curves
- How can the observed spectral line profiles relate to different CSM geometries?
- Estimates of line profiles at late times, when the SN ejecta should be nearly transparent for radiation

Schema of the calculation of the line-of-sight velocity distributions

- Volume-weighted histograms of LOS velocities for θ = 0, π/4, and π/2 (cf. Jerkstrand 2017)
- We excise dense inner parts of the SN envelope, which correspond to the helium core

Spectral line profiles

- Linearly scaled normalized distributions on the vertical axes
- Each column represents different viewing polar angle θ

Polarization signatures

The polarization degree is given by (Brown & McLean 1977, 1978)

$$P_R \simeq ar{ au}(1-3\gamma)\sin^2 heta$$

where $\bar{\tau}$ is the averaged Thomson scattering optical depth of the envelope and the shape factor γ is

$$\gamma = rac{1}{<
ho>} \int_{R_{
m He}}^\infty \int_{\mu=-1}^1 n\mu^2 \, {
m d} r \, {
m d} \mu$$

Evolution of relative polarization degree for our models. Values at selected times are given in Table 1 (in the following slide).

Comparison with observed supernovae

SN impostor UGC2773-OT

- Left panel: Observed Hα profile at day 22 and a line profile from a "toy model" for this emission (compare to our model A)
- Flat-topped profile with a possibility of double-peaked horns was argued to arise from bipolar lobes similar to what is seen in η Car \rightarrow attributed to disk- or torus-like geometry (Jerkstrand+ 2017)

Comparison with observed supernovae

Initially a blueshifted peak of Hα emission, after ~ 500 days a redshifted peak appeared and eventually dominated the emission

PTF11iqb

(Smith+ 2015)

 Interaction with a colliding wind shell could consistently explain PTF11iqb (compare our models B2b and B3)

Conclusions

- In particular, we studied for the first time shock interaction with a colliding wind shell within a binary systems, we also compared the results to SN interactions with circumstellar disk and bipolar lobes
- ▶ Although the pre-explosion stellar \dot{M} are typical for red supergiants $(\sim 10^{-6} M_{\odot} \text{ yr}^{-1})$ and parameters of colliding wind shells are consistent (cf. Wilkin+ 1996), the resulting $L_{\text{bol}} \sim 10^{42} 10^{43} \text{ erg s}^{-1}$ \rightarrow this corresponds to what is observed in Type IIn SNe
- \blacktriangleright The time dependence of shock power shows short-term fluctuations or peaks with amplitudes $\lesssim 10\%$
- Colliding wind shells are positioned only on one side of the SN and could naturally explain the blue-red asymmetry of late-time line profiles (cf. Smith+ 2015)

Conclusions

- The distribution of line-of-sight velocities has the greatest discriminating power between different CSM geometries studied here
- Our models show the expected double-peaked profile for circumstellar disk and symmetric multipeaked flat-top profile for bipolar lobes
- ▶ Our estimates of relative polarization give values similar to what is observed (e.g., Dessart & Hillier 2011; Gal-Yam 2019), CSM in the form of disk and bipolar lobes leads to prolate shape of the ejecta and maximum P_R of 1–2%. Interaction with colliding wind shells leads to smaller P_R of $\leq 0.5\%$ and usually oblate shapes.