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Talk outline

» What are supernovae and why are they important?

» Supernovae that interact with pre-existing circumstellar
material

» Hydrodynamics of interactions
» Implications for observations

» Light curves and spectral line profiles

» Polarization signatures

» Comparison with observed supernovae

» Conclusions



What are supernovae and why are they important?

» Basic classification

e Supernovae of type Il
Gravitationally collapsing very massive stars, mostly
red supergiants (also yellow, blue, and LBVs)

e Supernovae of type la
Thermonuclear explosion of C-O white dwarf in a
binary system

log(L/L o)

» Supernovae (SNe) chemically enrich their host
galaxies and drive future generations of star
formation

4
log(Teg: [K])
» The shock produced by a supernova probes the Meynet+ 2015
mass loss history of the progenitor system back to
ages of ~ 10 000 years before the explosion



SNe interacting with circumstellar material

» The chief reason that they are
extremely interesting is because they
their progenitor may be wildly
unstable long before explosion

» This has not been included in
standard stellar evolution models

» Another reason they are interesting is
because CSM interaction is a very
efficient engine for making extremely
bright super-luminous transients

» The CSM interaction may also be
highly non-spherical, perhaps linked
to binarity o the progenitor system
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Plot of mass-loss rate as a function

wind velocity, comparing values for
interacting SNe to those of known
types of stars (Smith 2014)



SNe interacting with circumstellar material -

» When a SN explodes inside a dense CSM, four zones are delineated

in the simplest picture (Smith+ 2008):

basic physical picture
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Basic physical picture
Sketch of the asymmetric SN-CSM interaction (Smith+ 2015)
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Type lIn supernovae

Comparison of light curves of five prominent long-lasting type Il SNe
(Aretxaga+ 1999, Stritzinger+ 2012, Smith+ 2009, Nyholm+ 2017, Guillochon+ 2017)
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e Most of the SNe (except iPTF14hls) are of type lIn, they showed a
steep initial decline followed by a long slower decline

e Undulations and bumps in SN IIn light curves are rare but have

been observed in a few cases (Nyholm+ 2017)

e Interaction of SN ejecta with clumpy CSM (cf. Calderén+ 2016, 2020)
is also expected to produce bumps in the light curves



Hydrodynamics of interaction

» We performed high-resolution hydrodynamic simulations of a SN
interacting with six types of aspherical CSM geometries (Kurfiirst,
Pejcha, & Krtitka, accepted, in press; cf. also Kurfiirst & Krti¢ka 2019)
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» Numerical setup:

» We use the own Eulerian hydrodynami code with radial grid
composed of 60 zones for 0.2 < r/R, < 1 and 6000 zones between

~

1 < r/Ry. < 450 (outer boundary) (Kurfiirst+ 2014, 2018, Kurfiirst &

~

Krtitka 2017, 2019)

» The uniform polar grid with 480 grid cells covers 0 < 6 < 7/2 and
640 cells for 0 <0 < 27/3



Hydrodynamics of interaction
Numerical setup - initial state of simulations
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e Density pwing of stellar wind is set to symmetric stellar wind,
Y and aspherical CSM
Pwind X F P

e Density profile of pgisk of equatorial disk is set to

Pdisk X r=2exp [—22—:,2] , where H is the disk scaleheight

e Density profiles of other types of aspherical CSM are set
numerically



Hydrodynamics of interaction
(Kurfiirst, Pejcha, & Krti¢ka, in press)

Stages in the evolution of the density p and shock heating rate g
within SN ejecta interacting with circumstellar disk (model A).
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Hydrodynamics of interaction

Stages in the evolution of p and g within SN ejecta interacting with
a planar shell located closer to the progenitor (model B2b)
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Hydrodynamics of interaction

Animations of various models of SN interactions with asphercal CSM

(the previous quantities with r and 6 velocity components):

» SN - circumstellar disk: model _A.mp4

» SN - colliding wind shell oriented to SN: model_B1.mp4

» SN - distant planar colliding wind shell: model_B2a.mp4

» SN - closer planar colliding wind shell: model_B2b.mp4

» SN - colliding wind shell oriented away from SN: model_B3.mp4

» SN interacting with bipolar lobes: model_C.mp4


figures/movie_A.mp4
figures/movie_B1.mp4
figures/movie_B2a.mp4
figures/movie_B2b.mp4
figures/movie_B3.mp4
figures/movie_C.mp4

Shock power as an internal power source

Estimates of shock heating rates and light
curves from our simulations:
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Comparison with observed LCs (Bilinski+ 2020,
Smith+ 2015, Nyholm+ 2017, Arcavi+ 2017)

Models:
A - SN-disk

B1 - SN-colliding
wind shell oriented
to SN

B2a - SN-distant
planar colliding
wind shell

B2b - SN-closer
planar colliding
wind shell

B3 - SN-colliding
wind shell oriented
away from SN

C - SN-bipolar
lobes



Spectral line profiles

» Spectral line profiles can provide more insight into the ejecta
geometry than the integrated light curves

» How can the observed spectral line profiles relate to different CSM
geometries?

» Estimates of line profiles at late times, when the SN ejecta should
be nearly transparent for radiation

Schema of the calculation of the line-of-sight  » Volume-weighted

velocity distributions histograms of LOS
velocities for
lar LOS (6 = 0) tz inte diate LOS (6 = n/4) —
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(cf. Jerkstrand 2017)
axisymmetric ring

dV =2rr?sinfdrde equatorial LOS (6 = x/2)

— uios ~ cosd » We excise dense inner
parts of the SN
envelope, which
correspond to the
helium core



Spectral line profiles

» Line-of-sight velocity distributions for our models:

A

B2b

RCELL

- == low
|/ resolution

CEF7I " T 1ood
—200d
\ 300d

[w 400d
|

N

-8 -6 -4-20 2 4 6 8
Ujos (103 kms™1)

86 -4-20 2 4 6 8

Te=mA

BCELD

" T 1ood
—200d
——300d

400d

Ujos (10°kms™1)

N N S N e e R

SN - disk

SN - colliding
winds planar
shell

» Linearly scaled normalized distributions on the vertical axes

» Each column represents different viewing polar angle 6



Polarization signatures

» The polarization degree is given by (Brown & McLean 1977, 1978)
Pr ~ 7(1 — 37)sin*0

where T is the averaged Thomson scattering optical depth of the
envelope and the shape factor 7 is
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Comparison with observed supernovae
SN impostor UGC2773-OT

(Gerardy+ 2000) (Smith+ 2016, fragment of figure)
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» [eft panel: Observed Ha profile at day 22 and a line profile from a
“toy model” for this emission (compare to our model A)

» Flat-topped profile with a possibility of double-peaked horns was
argued to arise from bipolar lobes similar to what is seen in n Car —
attributed to disk- or torus-like geometry (Jerkstrand+ 2017)



Comparison with observed supernovae
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» Initially a blueshifted peak of Ha emission, after ~ 500 days a
redshifted peak appeared and eventually dominated the emission

» Interaction with a colliding wind shell could consistently explain
PTF1ligb (compare our models B2b and B3)



Conclusions

» In particular, we studied for the first time shock interaction with a
colliding wind shell within a binary systems, we also compared the
results to SN interactions with circumstellar disk and bipolar lobes

» Although the pre-explosion stellar M are typical for red supergiants
(~ 107% M yr~1) and parameters of colliding wind shells are
consistent (cf. Wilkin+ 1996), the resulting Lpo ~ 10%? - 108 ergs?!
— this corresponds to what is observed in Type lIn SNe

» The time dependence of shock power shows short-term fluctuations
or peaks with amplitudes < 10%

» Colliding wind shells are positioned only on one side of the SN and
could naturally explain the blue-red asymmetry of late-time line
profiles (cf. Smith+ 2015)



Conclusions

» The distribution of line-of-sight velocities has the greatest
discriminating power between different CSM geometries studied
here

» Our models show the expected double-peaked profile for
circumstellar disk and symmetric multipeaked flat-top profile for
bipolar lobes

» Our estimates of relative polarization give values similar to what is
observed (e.g., Dessart & Hillier 2011; Gal-Yam 2019), CSM in the form of
disk and bipolar lobes leads to prolate shape of the ejecta and
maximum Pg of 1-2%. Interaction with colliding wind shells leads
to smaller Pg of < 0.5% and usually oblate shapes.



