Research of hot stars at Masaryk university

Petr Kurfürst, Jiří Krtička, Milan Prvák, Miloslav Zejda

Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic

45 YEARS OF HVAR OBSERVATORY AND 20 YEARS OF ACT: THE ROLE OF 1-M CLASS TELESCOPES NOW AND IN THE FUTURE

XV Hvar Astrophysical Colloquium

Hvar, Croatia, 17 - 20 October, 2017

Contents

- · Hot stars with winds or outflowing disks
- Basic features of our 1D models
- 2D self-consistent modeling of the disk density and temperature structure
- 2D self-consistent modeling of the disk with aligned NS companion
- Examples of CP stars
- Exploding SN envelopes
- Summary

 $O\mbox{-type stars}$ - extremely luminous objects with strong clumped isotropic winds (Krtička+ 2000 - 2017)

Be phenomenon - "a non-sg B-type star with Balmer spectral lines in emission" (cf. Krtička+ 2011, Kurfürst+ 2014)

B[e] phenomenon:

- B-type stars with forbidden optical emission lines (Conti 1976)
- Different populations with different mechanisms responsible for feeding CE with gas (Lamers+ 1998, Miroshnichenko 2007)
 - we investigate: sgB[e] B supergiants with relative luminosity $log(L_{\star}/L_{\odot}) \gtrsim 4.0$ (cf. Kurfürst+ 2017)
 - Disk formation mechanisms still under debate viscous disk \times outlowing disk-forming wind? (Kraus+ 2007, 2010)

PopIII stars - first stars in universe (Marigo+ 2001)

LBV stars - aspherically expanding nebulae that can be bipolar, elliptical or irregular (e.g., η Car - Smith & Townsend 2007)

Be phenomenon

• Be star is "a non-sg B-type star with Balmer spectral lines in emission"

- Fastest rotators among all (nondegenerate) types of stars on average \rightarrow dense equatorial (near) Keplerian outflowing disks (e.g., Rivinius+ 2013a)
- Viscosity plays a key role in the outward transport of mass and angular momentum (Lee+ 1991, Okazaki 2001)
- Exact mechanism of disk creation still uncertain (probably non-radial pulsations)
- We calculate self-consistent time-dependent models of disk density-temperature structure using own 2D codes (Kurfürst & Krtička accepted, Kurfürst+ submitted)

- Time-dependent 1-D hydrodynamic calculations using own MHD code (Kurfürst, Feldmeier & Krtička 2014)
- In the models we recognize the wave that converges the initial state to the final stationary state

Left panel: disk of classical Be (B0-type) star (Harmanec 1988), $M=14.5 M_{\odot}, R=5.8 R_{\odot}, T_{eff} = 30 \text{ kK}$

To open the video - click on the following link:

Be_evolution.mp4

Right panel: disk of popIII star (Marigo+ 2001), M=50 M_{\odot} , R=30 R_{\odot} , $T_{\rm eff}$ = 30 kK

To open the video - click on the following link:

B[e]_evolution.mp4

- In supersonic region a shock wave with propagation speed $D = a \sqrt{\Sigma_1 / \Sigma_0}$
- The shock propagation time $t_{dyn} \approx R/D = 0.3R/a$ the disk evolution time
- Corresponding disk viscous time $t_{\rm visc} = \int_{R_{\rm eq}}^{R} V_{\phi} \, {\rm d}R/(\alpha a^2)$

- Models with very low constant initial density
- B-type star, $T_{
 m eff}=25\,000$ K, $V_{
 m eq}pprox 300\,
 m km~s^{-1}$
- Σ_{ini} is of a very low constant value throughout the entire isothermal disk with constant viscosity $\alpha = 0.025$
- Snapshots of evolved radial profiles of the disk Σ and V_R in two different times

- Rarefaction wave propagates radially with time (cf. Kurfürst+ 2014)
- The gas is moved to the edge of the unperturbed ISM
- Density bumps at the edge of ISM bow shocks ?

• B[e] CE - disks or rings? (courtesy from G. Maravelias)

- Models with subcritically rotating star
- The model with sgB[e] star parameters: $V_{\phi}(R_{\star}) = 90\%$ of $V_{\rm crit}, \, \alpha \geq 0.5$
- To open the video click on the following link:

subcritical.mp4

- The material may fall inwards and increase the angular momentum of the inner disk
- May these waves explain the rings?
- Black line denotes the density in case of V_{crit}

2-D hydrodynamic modeling of circumstellar viscous disks - assumptions and tools

• Left panel: Rotationally oblate star (Roche model) - von Zeipel theorem:

$$ec{F}_{\star}(\Omega,artheta) = -rac{L_{\star}}{4\pi {\it GM}_{\star}\left(1-rac{\Omega^2}{2\pi {\it G}\langle
ho
angle}
ight)}ec{
m g}_{
m eff}(\Omega,artheta),$$

- Right panel: Scheme of the geometry of the disk irradiation by a central star
- Radiative flux from one half of the stellar surface:

$$F_{\star}(\Omega,\vartheta) = \int_{0}^{2\pi} \mathrm{d}\varphi \int_{0}^{1} I(\mu) \, \mu \, \mathrm{d}\mu = \pi \, I(1) \left(1 - \frac{u}{3}\right), \quad \text{where} \quad \mu = \cos \alpha$$

• Irradiative flux that impinges each point B in the disk (cf. Smak 1989):

$$\mathcal{F}_{\rm irr} = \frac{1}{\pi} \iint_{\vartheta,\varphi} \mathcal{F}_{\star}(\Omega,\vartheta) \, \mathrm{d}S_{\star} \frac{\left[1-u(1-\mu)\right] \, \mu \sin\beta}{\left(1-u/3\right) \, d^2},$$

2-D hydrodynamic modeling of circumstellar viscous disks - assumptions and tools - grid in non-orthogonal "flaring" coordinates

(Kurfürst & Krtička accepted, Kurfürst+ submitted)

We use two types of own HD codes:

- operator-split (ZEUS-like) finite volume for 2D smooth hydrodynamic calculations
- unsplit (ATHENA-like) finite volume algorithm based on the Roe's method

Transformation equations from the flaring into Cartesian coordinates:

$$x = R \cos \phi, \ y = R \sin \phi, \ z = R \tan \theta.$$

Optical depth we calculate using short characteristics method:

- Self-consistent time-dependent 2-D calculations
- 2-D calculation of disk density structure up to 100 stellar radii
- conical computational grid (*R z* plane)
- vertical hydrostatic equilibrium
- propagation of the disk density transforming wave (Kurfürst+ 2014)

To open the video - click on the following link:

disk2Ddensity.mp4

- Self-consistent time-dependent 2-D calculations of inner dense disk structure (Kurfürst & Krtička accepted, Kurfürst+ submitted)
- Inner disk density: $\dot{M} = 10^{-6} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 0.1$, $R_{\rm s}$ (sonic point radius) $\approx 2 \times 10^4 R_{\rm eq}$:

• The profile of the optical depth in the same disk (up to 20 R_{eq}):

• Self-consistent time-dependent 2-D calculations of inner dense disk structure

 Left panel: Temperature distribution in the dense inner disk, M = 10⁻⁶ M_☉ yr⁻¹, α = α₀ = 0.1. The region of increased temperature near disk midplane is generated by viscosity.

- Right panel: The same, up to 20 stellar equatorial radii.
- The maximum temperature in the disk core, $T_{\rm max} \approx 80\,000$ K.

- Self-consistent time-dependent 2-D calculations of inner dense disk structure
- Inner disk density: $\dot{M} = 10^{-8} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 0.1$, $R_s \approx 2.5 \times 10^4 R_{eq}$:

• Inner disk density: $\dot{M} = 10^{-8} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 1.0$, periodic density waves (viscous instability) if $\alpha_0 \gtrsim 0.5$:

- Self-consistent time-dependent 2-D calculations of inner dense disk structure
- T profile in the dense inner disk, $\dot{M} = 10^{-8} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 0.1$:

• T profile in the dense inner disk, $\dot{M} = 10^{-9} M_{\odot} \, {\rm yr}^{-1}$, $\alpha = \alpha_0 = 0.1$:

Disks of Be/X-ray binaries

(Krtička+ 2015)

- X-ray emission in the Be/X-ray binaries comes from accretion onto NS (Reig 2011)
- Binary separation D constraint on the outer disk radius
- Bondi-Hoyle-Littleton (BHL) approximation NS accretes from radius

$$r_{\rm acc} = rac{2GM_X}{V_{
m rel}^2}, \quad {
m if} \ r_{
m acc} > H \quad
ightarrow \quad L_X = rac{GM_X\dot{M}}{R_X}.$$

where M_X is the mass of NS, H is vertical disk scale-height \dot{M} is the accretion rate and R_X is the NS radius.

• In systems with low eccentricity we expect the disk truncation at 3 : 1 resonance radius (Okazaki & Negueruela 2001) $\rightarrow R_1/R_3 \approx 0.48$

Binary	Sp. Type	$T_{\rm eff}$ [kK]	R [R _☉]	D [R _☉]	L_X [erg s ⁻¹]
V831 Cas	B1V	24	4.5	480	$2 imes 10^{35}$
IGR J16393-4643	BV	24	4.5	18.8	$4 imes 10^{35}$
V615 Cas	B0Ve	26	4.9	43	$5 imes 10^{35}$
HD 259440	B0Vpe	30	5.8	510	$1.2 imes10^{33}$
HD 215770	O9.7IIIe	28	12.8	260	$6.5 imes10^{36}$
CPD-632495	B2Ve	34	7.0	177	$3.5 imes10^{34}$
GRO J1008-57	B0eV	30	5.8	390	$3 imes 10^{37}$

Parameters of selected Be/X-ray binaries:

2D time-dependent models of Be/X-ray binaries' disks

- We include NS gravity (generating tidal effects) and X-ray heating of the ambient disk gas (the same in following models)
- GRO J1008-57 type, B0eV, $T_0 \approx 32\,000$ K, $L_X \approx 3 \cdot 10^{37} \,\mathrm{erg}\,\mathrm{s}^{-1}$, $\dot{M} = 2.85 \cdot 10^{-9} \,M_{\odot}/\mathrm{yr}$, $D \approx 390 \,R_{\odot} \approx 45 \,R_{\mathrm{eq}}$, $r_{\mathrm{acc}}/H \propto 10^4$, complete time of displayed simulation: 0.72 yr

To open the video - click on the following link:

higher_density.mp4

• Density profile in radial - vertical plane in the direction of NS

2D time-dependent models of Be/X-ray binaries' disks

- We include NS gravity and X-ray heating of the ambient disk gas (the same in following models), T_X is the maximum disk gas temperature in proximity of NS
- Left panel: hypothetical corotating BeXRB, $T_0 \approx 15\,000$ K, $L_X \approx 5 \cdot 10^{35} \text{ erg s}^{-1}$, $T_X \ge 26\,000$ K, $\dot{M} = 10^{-10} M_{\odot}/\text{yr}$, $D \approx 390 R_{\odot} \approx 45 R_{\text{eq}}$, $r_{\text{acc}}/H \propto 10^4$
- *Right panel*: GRO J1008-57 type, B0eV, $T_0 \approx 32\,000$ K, $L_X \approx 3 \cdot 10^{37} \text{ erg s}^{-1}$, $T_X \geq 51\,000$ K, $\dot{M} = 2.85 \cdot 10^{-9} M_{\odot}/\text{yr}$, $D \approx 390 R_{\odot} \approx 45 R_{\text{eq}}$, $r_{\text{acc}}/H \propto 10^4$

Temperature profile in radial - vertical plane in the direction of NS

2D time-dependent models of Be/X-ray binaries' disks

- Left panel: V615Cas type, B0Ve, $T_0 \approx 16200 \text{ K}$, $L_X \approx 5 \cdot 10^{35} \text{ erg s}^{-1}$, $T_X \geq 40000 \text{ K}$, $\dot{M} = 5 \cdot 10^{-11} M_{\odot}/\text{yr}$, $D \approx 43 R_{\odot} \approx 6.6 R_{\text{eq}}$, $r_{\text{acc}}/H \propto 10^5$
- Right panel: HD215770 type, O9.7IIIe, $T_0 \approx 22500 \text{ K}$, $L_X \approx 6.5 \cdot 10^{36} \text{ erg s}^{-1}$, $T_X \ge 60000 \text{ K}$, $\dot{M} = 6 \cdot 10^{-10} M_{\odot}/\text{yr}$, $D \approx 260 R_{\odot} \approx 13.5 R_{\text{eq}}$, $r_{\text{acc}}/H \propto 10^4$

• Temperature profile in radial - vertical plane in the direction of NS

Chemically peculiar (CP) stars

Main characteristics of CP stars:

- early-type stars with unusual features in their spectra caused by abnormal abundance of heavier elements in their surface layers
- radiative diffusion, magnetic field, slow rotation
- · inhomogeneous horizontal distribution of chemical elements
- line blanketing, backwarming, spectral energy redistribution (Molnar 1973)
- rotation of the star observed variability
- line profile variations

Example star - φ Dra: (Prvák+ 2015)

Basic parameters of the star φ Dra:

spectral type	A0
type of peculiarity	$lpha^2$ CVn
effective temperature T_{eff}	12 500 K
surface gravity log g	4.0
inclination <i>i</i>	60°
rotational velocity projection v _{rot} sin i	95 km s $^{-1}$

φ Dra: SED

Upper plot: Emergent flux from a reference model atmosphere (code TLUSTY) with roughly solar composition.

Lower plot: Emergent flux from the model atmospheres with increased abundance of silicon and iron, respectively, minus the flux from the reference model (Prvák+ 2015)

φ Dra: emergent intensity from the surface of φ Dra (Prvák+ 2015)

- 1400 Å, 2500 Å, U-band of the ten-colour system at various rotational phases.
- intensities: $-2.5 \log(I/I_0)$, where $\langle \log I_0 \rangle = 0$.
- Si and Fe abundant regions appear as dark spots
- abundance maps adopted from Kuschnig (1998a)

2-D hydrodynamic modeling

- Time-dependent 2-D calculation of adiabatic interaction between SN ejecta and circumstellar disk, $\dot{M}_{\rm disk} = 10^{-5} M_{\odot} \, {\rm yr}^{-1}$ (Kraus+ 2007)
- SN progenitor: sgB[e] star, M=40 M_{\odot} , R=75 R_{\odot} , time of simulation: 50 hrs

Video otevřete kliknutím na následující odkaz:

 $SN_CSM_interaction_density.mp4$

Video otevřete kliknutím na následující odkaz:

$SN_CSM_interaction_velocity.mp4$

Video otevřete kliknutím na následující odkaz:

$SN_CSM_interaction_temperature.mp4$

Future work

- All the models contribute to better understandig of evolution of hot stars connected with their mass loss rate
- 2-D MHD modeling of disk and stellar magnetic fields, using own 2D MHD code
- To finish, precise and test the full LTE radiative code (currently in progress)
- LTE and NLTE modeling of stellar and disk thermal and density structure, using the currently developed Monte Carlo radiative code (Fišák+ 2015)
- Modeling of disk and stellar spectra, comparison with observations
- ... 3D modeling