Modeling of hydrodynamic behavior of Be and Be/X-ray binaries' disks

Petr Kurfürst and Jiří Krtička

Department of Theoretical Physics and Astrophysics, Masaryk University, Brno, Czech Republic

BeXRB 2017

Heraklion, Greece, 11 - 13 September

Contents

- Be stars
- · Basic physics involved in our 2D models
- 2D self-consistent modeling of the disk density and temperature structure
- 2D s-c modeling of the disk with aligned NS companion
- Summary

Be phenomenon

• Be star is "a non-sg B-type star with Balmer spectral lines in emission"

• Fastest rotators among all (nondegenerate) types of stars on average \rightarrow dense equatorial (near) Keplerian outflowing disks (e.g., Rivinius+ 2013a)

Be phenomenon

• Be star is "a non-sg B-type star with Balmer spectral lines in emission"

- Fastest rotators among all (nondegenerate) types of stars on average \rightarrow dense equatorial (near) Keplerian outflowing disks (e.g., Rivinius+ 2013a)
- Viscosity plays a key role in the outward transport of mass and angular momentum (Lee+ 1991, Okazaki 2001)
- Exact mechanism of disk creation still uncertain (probably non-radial pulsations cf. talk of D. Baade)
- We calculate self-consistent time-dependent models of disk density-temperature structure using own 2D codes (Kurfürst & Krtička accepted, Kurfürst+ submitted)
- We investigate the influence of a compact (NS) companion within the models

Basic hydrodynamics

Basic hydrodynamics in axisymmetric ($\partial/\partial \phi = 0$) case:

• Continuity equation (mass conservation law)

$$\frac{\partial \rho}{\partial t} + \frac{1}{R} \frac{\partial}{\partial R} \left(R \rho V_R \right) = 0$$

• The corresponding radial momentum conservation equation is

$$\frac{\partial V_R}{\partial t} + V_R \frac{\partial V_R}{\partial R} = \frac{V_{\phi}^2}{R} - \frac{1}{\rho} \frac{\partial \left(a^2 \rho\right)}{\partial R} - \frac{GM_{\star}R}{\left(R^2 + z^2\right)^{3/2}}$$

• The explicit 2D form of the conservation equation of the angular momentum

$$\frac{\partial}{\partial t} \left(R \rho V_{\phi} \right) + \frac{1}{R} \frac{\partial}{\partial R} \left(R^2 \rho V_R V_{\phi} \right) = R \sigma_{R\phi},$$

where $\sigma_{R\phi}$ is the viscous torque (including second-order shear viscosity)

• Equation of state (disk temperature primarily maintained by external source of energy - central star)

$$p = \rho a^2$$

Determining equations of viscous disk structure

- Integrated disk column (surface) density $\Sigma = \int\limits_{-\infty}^{\infty} \rho \, \mathrm{d}z$
- Shear viscous stress

$$\sigma_{R\phi} \approx \eta \frac{dV_{\phi}}{dR} \approx \nu \Sigma \frac{dV_{\phi}}{dR} \approx \alpha a \lambda \Sigma \frac{dV_{\phi}}{dR}, \qquad \eta = f \rho \lambda V_{\text{turb}}$$

• Kinematic viscosity ν , viscosity parameter α (Shakura & Sunyaev 1972)

$$\nu = \eta / \rho \sim \lambda V_{\rm turb} \approx \alpha \mathbf{a} \lambda, \qquad \alpha = V_{\rm turb} / \mathbf{a}$$

Determining equations of viscous disk structure

- Integrated disk column (surface) density $\Sigma = \int_{-\infty}^{\infty} \rho \, dz$
- Shear viscous stress

$$\sigma_{R\phi} pprox \eta rac{dV_{\phi}}{dR} pprox
u \Sigma rac{dV_{\phi}}{dR} pprox lpha a \lambda \Sigma rac{dV_{\phi}}{dR}, \qquad \eta = f
ho \lambda V_{
m turb}$$

• Kinematic viscosity ν , viscosity parameter α (Shakura & Sunyaev 1972)

$$\nu = \eta / \rho \sim \lambda V_{\rm turb} \approx \alpha {\it a} \lambda, \qquad \alpha = V_{\rm turb} / {\it a}$$

• Parameterization of viscosity (parameterization of temperature only in ICs):

$$\alpha = \alpha_0 \left(\frac{R_{\rm eq}}{R}\right)^n, \alpha_0 \text{ is disk base viscosity } \rightarrow$$

we calculate also models with decreasing (non-constant) α (Kurfürst+ 2014)

• The full second order ϕ component of viscosity $(\partial/\partial \phi = 0, \partial/\partial z = 0)$:

$$\sigma_{R\phi} = -\frac{1}{R^2} \frac{\partial}{\partial R} \left(\alpha a^2 R^3 \rho \, \frac{\partial \ln V_{\phi}}{\partial R} - \alpha a^2 R^2 \rho \right)$$

2-D hydrodynamic modeling

Time-dependent 2-D calculations

- Calculation of vertical hydrodynamic and thermal structure of the disk
- Vertical hydrostatic equilibrium in the thin disk $(z \ll R)$:

 $\rho\approx\rho_{\rm eq}\exp\left(-\frac{z^2}{2H^2}\right), \ {\rm where} \ \rho_{\rm eq} \ {\rm is \ the \ disk \ midplane \ density}$

- Vertical scale height: $H = aR/V_{\phi}$, $\Sigma \approx \sqrt{2\pi}\rho_{eq}H$.
- Vertical *thermal* and *radiative* equilibrium in regions with $\tau > 0.75$:

$$\frac{dT}{dz} = \nabla \frac{T}{p} \frac{dp}{dz}, \quad \nabla = d \ln T / d \ln p, \quad \nabla_{\rm rad} = \frac{3\kappa p}{16\sigma T^4} \frac{F_z}{g_z}$$

Satisfying the condition F_z = 0 at z = 0, we obtain the vertical temperature distribution in the optically thick regions (Lee+ 1991)

2-D hydrodynamic modeling

Time-dependent 2-D calculations

- Calculation of vertical hydrodynamic and thermal structure of the disk
- Vertical hydrostatic equilibrium in the thin disk $(z \ll R)$:

 $\rho\approx\rho_{\rm eq}\exp\left(-\frac{z^2}{2H^2}\right), \ {\rm where} \ \rho_{\rm eq} \ {\rm is \ the \ disk \ midplane \ density}$

- Vertical scale height: $H = aR/V_{\phi}$, $\Sigma \approx \sqrt{2\pi}\rho_{eq}H$.
- Vertical thermal and radiative equilibrium in regions with $\tau > 0.75$:

$$\frac{dT}{dz} = \nabla \frac{T}{p} \frac{dp}{dz}, \quad \nabla = d \ln T / d \ln p, \quad \nabla_{\rm rad} = \frac{3\kappa p}{16\sigma T^4} \frac{F_z}{g_z}$$

- Satisfying the condition F_z = 0 at z = 0, we obtain the vertical temperature distribution in the optically thick regions (Lee+ 1991)
- In optically thin domain with $\tau < 0.75$ we employ LTE and radiative (gray) equilibrium of the gas with the impinging external stellar irradiative flux
- Included radiative cooling in domains with $T \ge 15\,000\,{\rm K}$ (Rosner+ 1978, Carlsson & Leenaarts 2012)

$$Q_T = -rac{\mathrm{d}F_{\mathrm{cool}}}{\mathrm{d}z} = -n_\mathrm{e}n_\mathrm{H}P(T), \quad P(T) ext{ is tabulated (radiative losses)}.$$

2-D hydrodynamic modeling of circumstellar viscous disks - assumptions and tools

• Left panel: Rotationally oblate star (Roche model) - von Zeipel theorem:

$$ec{F}_{\star}(\Omega,artheta) = -rac{L_{\star}}{4\pi {\it GM}_{\star}\left(1-rac{\Omega^2}{2\pi {\it G}\langle
ho
angle}
ight)}ec{
m g}_{
m eff}(\Omega,artheta),$$

- Right panel: Scheme of the geometry of the disk irradiation by a central star
- Radiative flux from one half of the stellar surface:

$$F_{\star}(\Omega,\vartheta) = \int_{0}^{2\pi} \mathrm{d}\varphi \int_{0}^{1} I(\mu) \, \mu \, \mathrm{d}\mu = \pi \, I(1) \left(1 - \frac{u}{3}\right), \quad \text{where} \quad \mu = \cos \alpha$$

• Irradiative flux that impinges each point B in the disk (cf. Smak 1989):

$$\mathcal{F}_{\rm irr} = \frac{1}{\pi} \iint_{\vartheta,\varphi} \mathcal{F}_{\star}(\Omega,\vartheta) \, \mathrm{d}S_{\star} \frac{\left[1-u(1-\mu)\right] \, \mu \sin\beta}{\left(1-u/3\right) \, d^2},$$

2-D hydrodynamic modeling of circumstellar viscous disks - assumptions and tools - grid in non-orthogonal "flaring" coordinates

(Kurfürst & Krtička accepted, Kurfürst+ submitted)

We use two types of own HD codes:

- operator-split (ZEUS-like) finite volume for 2D smooth hydrodynamic calculations
- unsplit (ATHENA-like) finite volume algorithm based on the Roe's method

Transformation equations from the flaring into Cartesian coordinates:

$$x = R \cos \phi, \ y = R \sin \phi, \ z = R \tan \theta.$$

Optical depth we calculate using short characteristics method:

- Self-consistent time-dependent 2-D calculations
- 2-D calculation of disk density structure up to 100 stellar radii
- conical computational grid (*R z* plane)
- vertical hydrostatic equilibrium
- propagation of the disk density transforming wave (Kurfürst+ 2014)

To open the video - click on the following link:

disk2Ddensity.mp4

- Self-consistent time-dependent 2-D calculations of inner dense disk structure (Kurfürst & Krtička accepted, Kurfürst+ submitted)
- Inner disk density: $\dot{M} = 10^{-6} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 0.1$, $R_{\rm s}$ (sonic point radius) $\approx 2 \times 10^4 R_{\rm eq}$:

• The profile of the optical depth in the same disk (up to 20 R_{eq}):

• Self-consistent time-dependent 2-D calculations of inner dense disk structure

 Left panel: Temperature distribution in the dense inner disk, M = 10⁻⁶ M_☉ yr⁻¹, α = α₀ = 0.1. The region of increased temperature near disk midplane is generated by viscosity.

- Right panel: The same, up to 20 stellar equatorial radii.
- The maximum temperature in the disk core, $T_{max} \approx 80\,000\,$ K.

- Self-consistent time-dependent 2-D calculations of inner dense disk structure
- Inner disk density: $\dot{M} = 10^{-8} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 0.1$, $R_s \approx 2.5 \times 10^4 R_{eq}$:

• Inner disk density: $\dot{M} = 10^{-8} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 1.0$, periodic density waves if $\alpha_0 \gtrsim 0.5$:

- Self-consistent time-dependent 2-D calculations of inner dense disk structure
- T profile in the dense inner disk, $\dot{M} = 10^{-8} M_{\odot} \text{ yr}^{-1}$, $\alpha = \alpha_0 = 0.1$:

• T profile in the dense inner disk, $\dot{M} = 10^{-9} M_{\odot} \, {\rm yr}^{-1}$, $\alpha = \alpha_0 = 0.1$:

Disks of Be/X-ray binaries

(Krtička+ 2015)

- X-ray emission in the Be/X-ray binaries comes from accretion onto NS (Reig 2011)
- Binary separation D constraint on the outer disk radius
- Bondi-Hoyle-Littleton (BHL) approximation NS accretes from radius

$$r_{
m acc} = rac{2GM_X}{V_{
m rel}^2},$$

where M_X is the mass of NS.

 BHL approximation may be however an excessive simplification, e.g., in case of very small disk scale-height H (Okazaki & Negueruela 2001)

Disks of Be/X-ray binaries

(Krtička+ 2015)

- X-ray emission in the Be/X-ray binaries comes from accretion onto NS (Reig 2011)
- Binary separation D constraint on the outer disk radius
- Bondi-Hoyle-Littleton (BHL) approximation NS accretes from radius

$$r_{
m acc} = rac{2GM_X}{V_{
m rel}^2},$$

where M_X is the mass of NS.

- BHL approximation may be however an excessive simplification, e.g., in case of very small disk scale-height H (Okazaki & Negueruela 2001)
- Two extreme cases for aligned disk-NS systems:
 - Corotating NS: $V_{\rm rel} = V_R$
 - Disk truncated far from NS: $V_{\rm rel} = V_R^2 + V_\phi^2$
- In systems with low eccentricity we expect the disk truncation at 3 : 1 resonance radius (Okazaki & Negueruela 2001) $\rightarrow R_1/R_3 \approx 0.48$
- If $r_{acc} > H$, NS accretes all the disk material \rightarrow X-ray luminosity:

$$L_X = \frac{GM_X\dot{M}}{R_X},$$

where \dot{M} is the accretion rate and R_X is the NS radius.

Disks of Be/X-ray binaries

(Krtička+ 2015)

• Comparison of racc and disk scale-height H:

• Sample of Be/X-ray binaries ($r_{\rm acc} > H$, $\dot{M} \sim 10^{-13} - 10^{-9} M_{\odot} \, {\rm yr}^{-1}$) :

Binary	Sp. Type	$T_{\rm eff}$ [kK]	R [R _☉]	D [R _☉]	L_X [erg s ⁻¹]
V831 Cas	B1V	24	4.5	480	$2 imes 10^{35}$
IGR J16393-4643	BV	24	4.5	18.8	$4 imes 10^{35}$
V615 Cas	B0Ve	26	4.9	43	$5 imes 10^{35}$
HD 259440	B0Vpe	30	5.8	510	$1.2 imes10^{33}$
HD 215770	O9.7IIIe	28	12.8	260	$6.5 imes10^{36}$
CPD-632495	B2Ve	34	7.0	177	$3.5 imes10^{34}$
GRO J1008-57	B0eV	30	5.8	390	$3 imes10^{37}$

Parameters of selected Be/X-ray binaries:

- We include NS gravity and X-ray heating of the ambient disk gas (the same in following models)
- Hypothetical corotating BeXRB, $T_0 \approx 32\,000$ K, $L_X \approx 5 \cdot 10^{35} \,\mathrm{erg\,s^{-1}}$, $\dot{M} = 10^{-10} \,M_\odot/\mathrm{yr}$, $D \approx 390 \,R_\odot \approx 45 \,R_{\mathrm{eq}}$, $r_{\mathrm{acc}}/H \propto 10^4$, complete time of displayed simulation: 1.17 yr

To open the video - click on the following link:

lower_density.mp4

• Density profile in radial - vertical plane in the direction of NS

- We include NS gravity and X-ray heating of the ambient disk gas (the same in following models), T_X is the maximum disk gas temperature in proximity of NS
- Hypothetical corotating BeXRB, $T_0 \approx 15\,000$ K, $L_X \approx 5 \cdot 10^{35} \text{ erg s}^{-1}$, $T_X \geq 26\,000$ K, $\dot{M} = 10^{-10} M_{\odot}/\text{yr}$, $D \approx 390 R_{\odot} \approx 45 R_{\text{eq}}$, $r_{\text{acc}}/H \propto 10^4$

Temperature profile in radial - vertical plane in the direction of NS

• GRO J1008-57 - type, B0eV, $T_0 \approx 32\,000$ K, $L_X \approx 3 \cdot 10^{37} \,\mathrm{erg}\,\mathrm{s}^{-1}$, $\dot{M} = 2.85 \cdot 10^{-9} \,M_{\odot}/\mathrm{yr}$, $D \approx 390 \,R_{\odot} \approx 45 \,R_{\mathrm{eq}}$, $r_{\mathrm{acc}}/H \propto 10^4$, complete time of displayed simulation: 0.72 yr

To open the video - click on the following link:

higher_density.mp4

Density profile in radial - vertical plane in the direction of NS

• GRO J1008-57 - type, B0eV, $T_0 \approx 32\,000$ K, $L_X \approx 3 \cdot 10^{37} \,\mathrm{erg}\,\mathrm{s}^{-1}$, $T_X \geq 51\,000$ K, $\dot{M} = 2.85 \cdot 10^{-9} \,M_{\odot}/\mathrm{yr}$, $D \approx 390 \,R_{\odot} \approx 45 \,R_{\mathrm{eq}}$, $r_{\mathrm{acc}}/H \propto 10^4$

• Temperature profile in radial - vertical plane in the direction of NS

• V615Cas - type, B0Ve, $T_0 \approx 16\,200$ K, $L_X \approx 5 \cdot 10^{35} \,\mathrm{erg}\,\mathrm{s}^{-1}$, $T_X \ge 40\,000$ K, $\dot{M} = 5 \cdot 10^{-11} \,M_{\odot}/\mathrm{yr}$, $D \approx 43 \,R_{\odot} \approx 6.6 \,R_{\mathrm{eq}}$, $r_{\mathrm{acc}}/H \propto 10^5$

Temperature profile in radial - vertical plane in the direction of NS

• HD215770 - type, O9.7IIIe, $T_0 \approx 22500$ K, $L_X \approx 6.5 \cdot 10^{36} \text{ erg s}^{-1}$, $T_X \ge 60000$ K, $\dot{M} = 6 \cdot 10^{-10} M_{\odot}/\text{yr}$, $D \approx 260 R_{\odot} \approx 13.5 R_{\text{eq}}$, $r_{\text{acc}}/H \propto 10^4$

Temperature profile in radial - vertical plane in the direction of NS

Conclusions

- The higher values of the α viscosity parameter and/or high mass loss rates lead to unstable disk behavior, producing waves or bumps in the inner disk region
- The viscous-heated disk midplane strips disappear for $\dot{M} < 10^{-10} M_{\odot} \text{ yr}^{-1}$.
- The inner disk structure is not affected by presence of NS binary
- The disk density truncation in the NS direction begins approximately at 3 : 1 resonance radius (cf. Okazaki & Negueruela 2001)
- The disk is truncated relatively near the central star (inside sonic point radius), in case of a critically rotating star \dot{M} should increase.
- Future calculations → models with eccentric and inclined (non-aligned) orbits of NS, models where r_{acc} < H.