Comparison of two variants of integration of the problem from the example 1.115 from the webpage
https://is.muni.cz/do/rect/el/estud/prif/js17/pocetni_praktikuml/web/ch01_s04.html
(explanatory physical description - see Example 1.114) :

A charge element of the one-dimensional bar can be written as
dQ = 7dz, (1)

where 7 is the homogeneous one-dimensional (longitudinal) charge density and dz is the longitudinal
length-element of the bar, oriented along the x axis. The electrostatic potential at the point P at a
perpendicular distance D from the end of the bar, generated by this charge element, can be written as
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the overall potential at this point will be
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By the simple substitution z = yD, dx = dy D, we get
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and by the subsequent substitution y = tan z, dy = dz/ cos? z, we get
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For the following procedure, we can select one of the following two options:

1. by extending the fraction in the integrand by the expression cos z, we get
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using substitution sin z = t, cos z dz = dt, we obtain
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where, using a simple geometric consideration, we can rewrite the upper integration limit as
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By setting the limits expressed in this way, we get
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where we get the third expression by extending the fraction in the logarithm argument in the second
expression by its numerator.

. By the so-called universal substitution tan (z/2) = ¢, from which, using simple geometric consider-
ations with trigonometric expressions for double arguments, we derive

2 1—¢2 2dt

Sinzzm, Coszzm, dzzm (10)
After substituting, Equation (5) becomes
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where, however, the half-argument of the tangent in the upper limit represents a greater complication
than the sine of a similar argument in the previous solution. We solve this by rewriting the tangent in
the upper limit as sine/cosine, extending the cosine of the given expression and using trigonometric
relations for the double argument of sine and the square of cosine,
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Substituting into Equation (11), we get the expression
"W 1 + cos [atan (L/D)] + sin [atan (L/D)]
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whose argument we extend using 1 — cos [atan (L/D)] + sin [atan (L/D)]. Using simple rearrange-
ments, we then get
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Using Equation (8) and the analogous relation
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we can rewrite Equation (14) as (we need not use the absolute value anymore, since the following
argument of logarithm is always positive)
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we thus get the (expected) identical solution to Equation (9). However, the solution with use of the
universal substitution is in this case obviously more laborious and time-consuming.
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