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a b s t r a c t

We describe several extensions to TIM, a raytracing program for ray-optics research. These include rel-
ativistic raytracing; simulation of the external appearance of Eaton lenses, Luneburg lenses and gener-
alised focusing gradient-index lens (GGRIN) lenses, which are types of perfect imaging devices; raytracing
through interfaces between spaces with different optical metrics; and refraction with generalised confo-
cal lenslet arrays, which are particularly versatile METATOYs.
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lenses, includingMaxwell fisheye, Eaton and Luneburg lenses; calculation of refraction at the interface be-
tween spaces with different optical metrics; and handling of generalised confocal lenslet arrays (gCLAs),
a new type of METATOY.
Unusual features:
Specifically designed to visualise wave-optically forbidden light-ray fields; can visualise ray trajectories
and geometric optic transformations; can simulate photos taken with different types of camera moving
at relativistic speeds, interfaces between spaces with different optical metrics, the view through META-
TOYs and generalised focusing gradient-index lenses; can create anaglyphs (for viewing with coloured
‘‘3D glasses’’), HDMI-1.4a standard 3D images, and random-dot autostereograms of the scene; integrable
into web pages.
Running time:
Problem-dependent; typically seconds for a simple scene.
References:
[1] JAMA: A Java Matrix Package, http://math.nist.gov/javanumerics/jama/

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

TIM [1] is a ray tracer we developed as a tool for ray-optics
research, specifically ourwork on ‘‘metamaterials for rays’’ (META-
TOYs), which are surfaces covered with miniaturised optical com-
ponents/instruments such that the surface appears to change the
direction of transmitted light rays according to very unusual gen-
eralised laws of refraction [2].

The images TIM creates try to be somewhat photo-realistic, but
perfect photo-realism is less important to us than simplicity. Ad-
ditionally, there is often no obvious unique way in which light
behaves at many of TIM’s optical elements. For example, most of
TIM’s generalised laws of refraction cannot be performed for at
least some incident light-ray fields without compromising the in-
tegrity of the phase fronts in some way [3], usually by introduc-
ing arrays of optical vortices into the field [4]. The optical vortices
could, in principle, be added at different positions in the field, and
this lack of a unique realisation of these generalised laws of refrac-
tion means that there is no obvious way to derive the equivalent
of Fresnel coefficients for these laws of refraction. In the interest
of simplicity, we have chosen not to model Fresnel reflections at
any surfaces, including those where the Fresnel coefficients could
be calculated uniquely.

In addition to being a research tool, TIM is also an outreach tool:
TIM can be compiled into an interactive Java applet (which can
be embedded into web pages1) or Java application (which, after
downloading, can be run on almost any computer system). Much
of TIM’s functionality, including all the extensions described here,
can be accessed interactively. We have tried to design TIM such
that it is fun to use and invites playful exploration.

We keep adding capabilities to TIM as demanded by our current
research interests (which include the identification of generalised
confocal lenslet arrays (gCLAs) [5] as approximations to perfectly
imaging homogeneous sheets [6] and their application to realis-
ing transformation-optics devices [7]), or occasionally just because
we think that a feature would increase TIM’s appeal as an outreach
tool. Here we describe a few of the extensions that we added since
we first wrote about TIM [1].Working in a University, it is only nat-
ural to us to recognise TIM’s new specialist scientific capabilities by
giving the new version the full title ‘‘Dr TIM’’. The remainder of this
paper is about this new version of TIM.

This paper is structured as follows. In Section 2 we describe
TIM’s capabilities to model the effect of the scene moving relative

1 See, for example, http://tinyurl.com/timray.

to the camerawith relativistic speed. Section 3describes TIM’s sim-
plified raytracing through Maxwell-fisheye, Eaton, Luneburg and
generalised focusing gradient-index lens (GGRIN) lenses. Section 4
outlines TIM’s raytracing through the interfaces between spaces
with different optical metrics. In Section 5 we explain TIM’s ray-
tracing through generalised confocal lenslet arrays (gCLAs), a type
of METATOY that is becoming increasingly important in our re-
search. Finally, in Section 6, we discuss a number of minor exten-
sions to TIM before we conclude (Section 7). In a number of places
throughout the paper we outline details, aimed at readers with
some familiarity of the Java programming language, of the way in
which particular tasks have been implemented in the Java code.

2. Relativistic ray tracing

There are a number of computer programs that visualise the ef-
fect of moving at relativistic speed (see, for example, Refs. [8–10]).
One of these, Real Time Relativity [9], stands out as it allows the
user to move, with relativistic speeds and interactively (in a game-
like environment), through complex scenes, and as it can be freely
downloaded and run on the most common computer systems.

We have added to TIM the capability to simulate a snapshot
takenwith a camera that ismoving,with relativistic speed, through
a scene of stationary objects. The moment in simulated time when
the snapshot is taken can be varied. This new capability can be
combined with several of TIM’s other capabilities, such as simu-
lating a camera with a finite-size aperture and creating anaglyphs
for viewing with red–blue 3D goggles.

We simulate a camera moving, with constant velocity v,
through a scene of stationary objects. We only consider the change
in the position in which objects are seen, an effect known as
relativistic aberration; we neglect all other effects, specifically
the Doppler effect (which alters colour non-isotropically) and the
headlight effect (which alters the brightness non-isotropically) [9].

2.1. Calculation of relativistic aberration

Wecalculate the relativistic aberration by broadly following the
approach taken in Ref. [8].

When a camera takes a photo, it briefly opens its shutter, al-
lowing light rays from the scene to enter the camera body and to
hit the detector. Raytracing traces these rays backwards, starting
from the camera and into the scene. If the cameramoves relative to
the scene, then each backwards-traced light ray needs to be trans-
formed correspondingly after it leaves the camera and enters the
scene. Therefore there are two relevant frames of reference: the
camera frame, in which the camera is at rest, and the scene frame
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in which everything else is at rest. In the scene frame, the cam-
era frame is moving with velocity v. We denote space–time coor-
dinates in the camera frame as unprimed and those in the scene
frame as primed. At time t = 0, the origins of both frames coincide.
The simplest way to understand the transformation of light rays
between the frames is to consider, for each light ray, two events
consisting of the light ray passing through two positions on its tra-
jectory and to transform these between the different frames. As
both frames are inertial, light rays travel in straight lines through
those positions in both frames.

Because we are tracing rays backwards, from the camera into
the scene, we start in the camera frame. We do not actually explic-
itly transform two events in the ray’s life. Instead, we transform
one event, andwe transform the direction of the backwards-traced
ray (which points in the opposite direction of the physical light-ray
direction).

In the camera frame, the event happens at position x and at time
t . If the camera ismovingwith velocity v in the scene frame,we can
calculate the event’s space–time coordinates in the scene frame by
applying the Lorentz transformation [8]

x′
= x + (γ − 1)

(β · x)β
β2

+ γβct, ct ′ = γ ct + γ (β · x), (1)

where β = v/c and γ = 1/

1 − β2 is the Lorentz factor. Note

that we do not need to calculate the time of the event in the scene
frame, as we assume that the scene is not changing. We can trans-
form the direction d of the backwards-traced ray by considering
two events, namely the positions x1 and x2 = x1 − d on its trajec-
tory and the times t1 and t2 = t1 + ∥d∥/c the ray passes through
these (note the different signs in the expressions for x2 and t2).
Lorentz transforming the positions of these events (according to
Eq. (1)) gives

x′

1 = x1 + (γ − 1)
(β · x1)β
β2

+ γβct1, (2)

x′

2 = x2 + (γ − 1)
(β · x2)β
β2

+ γβct2 = x′

1 − d ′, (3)

where

d ′
= d + (γ − 1)

(β · d)β
β2

− γβ∥d∥ (4)

is the direction of the backwards-traced ray in the scene frame.
We choose as the event the light ray leaving the last object it

encounters that is stationary in the camera frame. We call the col-
lection of such objects the camera-frame scene2. Allowing some ob-
jects to be stationary in the camera frame allows us to simulate, for
example, the view through windows mounted to the front of the
moving camera. TIM’s backwards raytracing proceeds by each ray
leaving the entrance-pupil disk and interacting with any objects in
the camera-frame scene, before being transformed into the scene
frame and interacting with any objects in the scene. The underly-
ing assumption is that the objects in the camera frame are closer
to the camera than any objects in the scene frame, and so the ren-
dering onlyworks correctly if the camera-frame scene is populated
accordingly and the shutter timing is selected appropriately (as the
shutter time determines the position of the shutter surface at the
time the shutter opens).

It is clear fromEq. (1) that the time of the ray leaving the camera
frame has an effect on the position of the same event in the scene

2 Note that the camera-frame scene is completely separate from the main,
‘‘scene-frame’’, scene and is also edited separately in TIM’s interactive version. The
camera-frame scene can be edited by selecting either the ‘‘Eye view’’ or ‘‘Anaglyph
3D’’ tab, clicking the ‘‘Edit view’’ button, selecting the ‘‘Relativistic effects’’ tab, and
clicking the ‘‘Edit camera-frame scene’’ button.

Fig. 1. Camera and shutter model in the camera frame. For each detector pixel,
the camera traces one or more rays from different points on the disk of the en-
trance pupil to the image of that detector pixel, I . If the light ray passes through the
entrance-pupil disk at the point E , then the direction of the backwards-traced ray is
d ∝ I−E . The camera’s entrance-pupil disk is defined by its centre point C , the view
direction v, which is perpendicular to the disk, and the disk radius (not shown).

frame, and this time is determined by the shutter model used.
Each camera has a shutter somewhere within its body, in modern
SLRs usually immediately in front of the film plane (‘‘focal-plane
shutter’’). TIM’s shutter model allows a choice of three shutter
surfaces in which the shutter can be placed (Fig. 1):

1. the detector plane, which is perpendicular to the view direction
v and positioned a distance i behind the entrance pupil;

2. the entrance-pupil disk, positioned immediately in front of the
lens (or generalised focusing element; note that TIM can focus
on non-planar surfaces [1]);

3. the focus surface, the surface on which the images (formed by
the focusing element) of the detector pixels are located.

The shutter model assumes that the shutter opens for an instant,
at time ts, simultaneously (in the camera frame) across the entire
shutter surface.

Irrespective ofwhich shuttermodel is selected, eachbackwards-
traced ray that contributes towards a particular detector pixel orig-
inates from a point E on the entrance-pupil disk in the direction of
the position I of the image of the detector pixel (see Fig. 1). In the
entrance-pupil shutter model, the ray originates from E at time ts.
In the focus-surface shutter model, the ray originates from E at a
time ts −∥I −E∥/c so that it passes through the position I –which
lies on the focus surface – at time ts.

The detector-plane shuttermodel ismost complicated. Itmakes
the following assumptions about the imaging element.

1. Any light ray through the centre of the entrance pupil, C , is
undeviated.

2. The optical path length from the position of a pixel, P , to the
position of its image, I , is the same irrespective of the point on
the entrance pupil the light ray passes through.

3. The optical path length from P to I equals ∥I − P∥.

The first two assumptions are generalisations of the properties of
an idealised lens; the third assumption is that the lens’s central
thickness is zero, which is unrealistic, but amongst the available
arbitrary choices for the lens’s central thickness arguably the sim-
plest. The ray originates from E at such a time that it reaches I at
the same time as the (undeviated) ray that leaves the pixel posi-
tion P at time ts and that reaches I via the aperture centre C , which
reaches I at ts+∥I−P∥/c. As the ray from E takes a time ∥I−E∥/c
to travel to I , it has to leave E at time ts + (∥I − P∥ − ∥I − E∥)/c .
In line with most other implementations of relativistic ray tracing,
TIM uses a value for the speed of light of c = 1.

2.2. Examples and discussion

Fig. 2 shows simulated photos taken with a rapidly moving
pinhole camera, createdwith TIM. A number of well-known effects
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Fig. 2. Raytracing simulation of a photo of a cylinder lattice taken with a pinhole
camera moving with velocity v relative to the scene. (a) v = (0, 0, 0); (b) v =

(0, 0, 0.99c); (c) v = (0.2c, 0, 0.97c). The camera is pointing in the z direction.

of relativistic aberration are visible, such as Penrose’s result that
straight lines in one frame are seen as straight lines or circular arcs
in the other [11].

The calculation of relativistic aberration applies not only to pin-
hole cameras, but also to other cameras implemented in TIM, and
we have extended TIM accordingly. The resulting combination of
capabilities is, to the best of our knowledge, new. First, TIM can
simulate a camera with a finite-size circular aperture. TIM’s simu-
lated camera can focus on a transverse plane in front of the camera,
like a standard camera, but it can also focus on almost arbitrary sur-
faces [1]. In the new, relativistic, TIM, this surface is interpreted to
be in the camera frame, which is a natural generalisation of the fact

Fig. 3. Raytracing simulation of a photo of a cylinder lattice, taken with a camera
moving with velocity v = (0, 0, 0.99c) relative to the scene and with a finite-size
aperture. The camera is focused, in the camera frame, on a plane a distance 15 floor-
tile lengths in front of the camera. The entrance-pupil shutter opened at time t = 0.

Fig. 4. Relativistic analyph. The image shows a raytracing simulation of a photo of
a cylinder lattice taken with two cameras moving with velocity v = (0, 0, 0.99c)
relative to the scene. The image recorded by one camera is shown in red, that
recorded by the other camera is shown in blue, which makes the image suitable for
viewingwith red–blue analyph glasses. The image is simulated for an eye separation
is 0.4 floor-tile lengths in the x direction (in the camera frame). (For interpretation
of the references to colour in this figure legend, the reader is referred to the web
version of this article.)

that the focusing distance of a standard camera would also refer to
the focusing distance in the camera frame. Fig. 3 shows an exam-
ple of a simulated photo takenwith such a camera. Second, TIM can
now create analyphs of the scene as seen by a binocular observer
moving with a relativistic speed. An example is shown in Fig. 4.

2.3. Implementation details

The Java classes describing the cameras outlined above are
RelativisticAnyFocusSurfaceCamera, which is a subclass
of AnyFocusSurfaceCamera, and RelativisticAnaglyph-
Camera, which is a modification of the (no longer existing) class
AnaglyphCamera. All are part of the package optics.raytra-
ce.cameras. For using in TIM’s interactive version, there are also
editable versions of these cameras, called EditableRelativis-
ticAnyFocusSurfaceCamera and EditableRelativist-
icAnaglyphCamera, which are part of the optics.raytrace.
GUI.cameras package.

Lorentz transforms are performed by the new class Lorentz-
Transform, which is part of the math package.
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Fig. 5. Ray trajectories through a Luneburg lens (a), Eaton lens (b), and Maxwell-
fisheye lens (c). The surface of each lens is shown as a circle. (After Ref. [12]).

In order to allow backwards raytracing through a camera-frame
scene before Lorentz-transforming, it was necessary to keep track
of time when tracing light rays. This required extensive changes
throughout the code. Occasionally, when therewas no unique (and
easy to implement) way to calculate the time taken to traverse
a specific optical component, TIM simply uses the time taken to
traverse the equivalent length of vacuum.

3. Maxwell fisheye, Eaton, Luneburg, and generalised focusing
gradient-index (GGRIN) lenses

Recent work on perfect imaging has revived interest in
refractive-index distributions with ray-optically perfect imaging
properties. The Luneburg lens [13] is a sphere whose inside has
a spherically symmetric refractive-index distribution which im-
ages any parallel ray bundle incident on the sphere onto a point
on the opposite side (Fig. 5(a)). A slightly different, but still spher-
ically symmetric, refractive-index distribution results in the Eaton
lens [14], which is a perfect retro-reflector (Fig. 5(b)). A Maxwell
fisheye [15] is, in principle, a spherically symmetric refractive-
index distribution of infinite radius. It is famous not only for be-
ing the first of these lenses, but also for perfectly imaging not just
ray-optically, but also wave-optically [16]. Following Ref. [12], we
consider here only a spherical central part of the Maxwell fisheye
with its radius chosen such that any point on the outside of the
sphere is imaged to the opposite side of the sphere (Fig. 5(c)). We
refer to such a device as a Maxwell-fisheye lens. All of these, and
other, ‘‘lenses’’, were recently combined into a more general class
by Šarbort and Tyc [12]. We call those general lenses generalised
focusing gradient-index (GGRIN) lenses.

We have extended TIM to be able to simulate the appearance
of such lenses (Fig. 6). TIM does not perform detailed raytracing
through the lenses. Instead, TIM uses equations for the position P ′

on the sphere (of radius R and centred at position C ) and direction
d ′ after transmission through the lens of a light ray incident at
position P with direction d.

For the Luneburg lens, P ′ and d ′ can be calculated as follows.
From Fig. 7(a) it can be seen that the outgoing ray leaves the lens
from a position

P ′
= C + Rd̂ (5)

in the (unnormalised) direction

d ′
= R = C − P . (6)

For the calculation of the parameters of the ray leaving the
Eaton lens, refer to Fig. 7(b).We first calculate the vectorR = C−P
again, and its component perpendicular to d, R − R · d̂, where

Fig. 6. Simulated view of a Luneburg lens (bottom left), Eaton lens (top), and
Maxwell-fisheye lens (bottom right) in front of TIM’s standard cylinder lattice. The
lattice cannot be seen through the Eaton lens, as it is a retro-reflector.

Fig. 7. Redirection of a light ray by a Luneburg lens (a), an Eaton lens (b), and a
Maxwell-fisheye lens (c). A light ray hits the lens at P with direction d, and leaves
it from position P ′ with direction d ′ .

d̂ = d/∥d∥ is the normalised incident light-ray direction. Then
the position P ′ where the outgoing ray leaves the lens is simply

P ′
= P + 2


R − R · d̂


, (7)

and the direction of the outgoing ray is

d ′
= −d. (8)

For the Maxwell-fisheye lens (see Fig. 7(c)), we calculate the
position from which the ray leaves the lens as

P ′
= C + R, (9)

where R = C − P as before, and its direction as the incident light-
ray direction, butwith the component perpendicular toR reversed:

d ′
= d · R̂ −


d − d · R̂


= 2d · R̂ − d. (10)

3.1. GGRIN lens

All the lenses discussed above, andmore, can be viewed as spe-
cial cases of a more general GGRIN lens [12]. The GGRIN lens is
spherically symmetric, and so any ray incident on the lens traverses
it along a trajectory that lies on the ray’s plane of incidence. Fig. 8
shows a schematic diagram of an arbitrary ray in its plane of inci-
dence. If the lens is centred at C , and the ray hits the lens at position
P with direction d, the plane of incidence includes the positions C
andP and the direction vectord. The lens can then be characterised
by two distances, r and r ′, and an angle,ϕ, as follows. Before hitting
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Fig. 8. Geometry of the effect of the GGRIN lens [12]. The entire ray trajectory lies
within the ray’s plane of incidence.

Table 1
Parameter combinations for which a GGRIN lens is equivalent to other well-known
lenses. R is the radius of the lens.

Lens r r ′ ϕ

Luneburg ∞ R 180°
Eaton ∞ ∞ 0°
Maxwell fisheye R R 180°

the lens, the (straight-line) ray trajectory passes through a position
A a distance r from the lens centre, C . After transmission through
the lens, the ray will pass through a position A′ a distance r ′ from C
such that the distance between the ray’s straight-line continuation
and the lens centre, C , remains unchanged (angular-momentum
conservation). A′ is positioned such that the straight lines AC and
CA′ intersect at an angle ϕ. Table 1 lists the values of the parame-
ters r , r ′ and ϕ for which the GGRIN lens is equivalent to the lenses
discussed above. (Note that the lens with r = r ′

= ∞ and values
of ϕ other than 0 and 180° has an effect similar to that of an axi-
con [17], which can be used to turn plane waves into Bessel-like
light beams [18]. Unlike axicons, the GGRIN lens should work for
plane waves incident from any direction.)

We calculate the position P ′ where the transmitted ray leaves
the lens and its direction d ′ as follows. First, we define orthogonal
unit vectors that span the ray’s plane of incidence. We take the
normalised incident light-ray direction, d̂ = d/∥d∥, as the first
unit vector. Then the component of the vector p = P − C in the
direction of d̂, i.e. the d component of p, is pd = d̂ ·p. We define the
second unit vector, ê, such that the e component of p is positive and
d̂ · ê = 0. The part of p in the e direction is p− d̂pd, and sowe define

ê =
p − d̂pd
|p − d̂pd|

. (11)

The e component of p is then simply pe = ê · p.
We can now calculate the d and e components of the vector

a = A − C . As A lies on the trajectory of the incident ray, ae = pe.
The d component can be calculated from the distance requirement,
i.e. a2d +a2e = r2, which gives ad = −


r2 − a2e (the negative sign is

chosen so that A actually lies on the incident light-ray trajectory).
We now consider a hypothetical ray that passes through the

lens undeviated. We define Q to be the position on the surface of
the lens where this ray would re-emerge, and we define I to be the
position where the ray’s distance from C is r ′. The ray has most of
the properties of the refracted ray: the ray passes through a posi-
tion, I , a distance r ′ from C , and its impact parameter (the distance
between its straight-line continuation and C ) is the same as that of
the incident ray (because they share the same straight-line contin-
uation and therefore impact parameter); all that is wrong is that, in

Fig. 9. Simulated view of TIM’s standard cylinder lattice seen through an example
of a GGRIN lens. The lens parameters are r = r ′

= 100,000 (≈∞), ϕ = 170°.

general, the straight lines AC and CI do not intersect at the desired
angleϕ.We define q = Q−C and i = I−C , whose components are

qe = ie = pe, qd = −pd, id =


r ′2 − i2e . (12)

The point I has all the properties of the point A′, apart from its
direction with respect to C . To construct A′, we need to rotate I in
the plane around C by an angle
β = arctan(ad, ae)− arctan(id, ie)+ ϕ (13)
(where we have used the 2-argument arctan function, sometimes
called atan2, that avoids quadrant ambiguity).

Similarly rotating Q gives the point P ′ where the transmitted
ray leaves the lens, and rotating d̂ results in the transmitted ray’s
direction, d̂ ′. We do this by calculating the rotated basis vectors

d̂ ′
= d̂ cosβ + ê sinβ, ê′

= −d̂ sinβ + ê cosβ, (14)
and calculating the transmitted ray’s start point according to

P ′
= C + qdd̂ ′

+ qeê′
; (15)

the transmitted ray’s direction is simply d̂ ′. Fig. 9 shows an exam-
ple of the view through a GGRIN lens.

3.2. Combinations of Eaton and Luneburg lenses with an invisible
sphere

In a further generalisation [19], Šarbort and Tyc consideredmul-
tifocal versions of these lenses, formed by replacing the central
part with another refractive-index distribution. We have also im-
plemented here the ability to render the view through multifocal
lenses formed by combining any of the lenses discussed abovewith
an invisible sphere [20].

Fig. 10 shows a few ray trajectories through two of these mul-
tifocal lenses. What they have in common is that rays whose
straight-line continuation gets closer to the lens centre than Rt
emerge from the other side of the lens as if they have passed
straight through. When seen from any direction, the lens appears
to have an empty central tunnel of radius Rt in the current view
direction. Fig. 11 shows an example.

3.3. Refractive-index ratio at the edge

All the above lenses can be designed such that the refractive in-
dex on the surface of the lens is the same as that of the surrounding
medium. We have also added to TIM the possibility of simulating
the view when this is not the case.

All this requires is a refraction step, from the surrounding
medium into a material with the refractive index of the lens at the
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Fig. 10. Ray trajectories through combinations of a Luneburg lens with an invisible
sphere (a) and an Eaton lens with an invisible sphere (b). The outer circle is the
surface of each lens. The inner circle shows the boundary between the Luneburg
or Eaton part of the lens (outside) and the invisible-sphere part (inside). (After
Ref. [19]).

Fig. 11. View of a multifocal lens in front of TIM’s standard cylinder lattice, seen
from two view positions. The multifocal lens is a combination of a GGRIN lens
(parameters r = r ′

= 100,000 (≈∞), ϕ = 90°) and an invisible sphere. The
appearance is that of a central empty tunnel in the view direction, irrespective of
view direction. (a) Standard camera position, (0, 0, 0), and view direction, (0, 0, 1);
(b) view position (2, 0, 0), view direction (−0.2, 0, 1).

surface, before the calculations outlined above and afterwards an-
other refraction step, this time from a material with the lens’s
surface refractive index into the surrounding medium. As a re-
spectable ray tracer, TIM is already equipped with refraction func-
tionality, and so this is simply a matter of invoking the relevant
method. Note that the actual values of the refractive indices at the
surface andof the surroundingmediumdonotmatter; all thatmat-
ters is the value of their ratio, and so this is the parameter that can
be set for any of the above lenses.

Fig. 12 shows an example of the view through a lens in which
the surface refractive index does notmatch that of the surrounding
medium.

Fig. 12. View through the lens shown in Fig. 11(b), but with the ratio between
the refractive indices at the lens’s surface and of the surrounding medium being
nsurface/nsurrounding = 1.5 (instead of 1). Note that the central part of the lens no
longer looks like an empty tunnel.

3.4. Implementation details

The lenses described above are implemented as classes that
extend the Sphere class of scene objects, specifically the classes
EatonLens,LuneburgLens,MaxwellFisheyeLens, andGGR-
INLens.3 The EatonLens, LuneburgLens, and MaxwellFish-
eyeLens classes calculate the direction of the refracted light ray
and the position where it leaves the lens directly from Eqs. (5) to
(10); they are not subclasses of the GGRINLens class. All these
classes are a part of the package optics.raytrace.scene-
Objects.

For use in TIM’s interactive version, the above classes have been
extended to be editable. The editable versions of the above classes
are called EditableEatonLens, EditableLuneburgLens,
EditableMaxwellFisheyeLens, and EditableGGRINLens,
and all are part of the package optics.raytrace.GUI.scene-
Objects.

The calculation of the refraction actually happens in classes
that describe surface properties, specifically extensions of the class
SurfacePropertyPrimitive. The surface-property classes
that describe the above lenses are called EatonLensSurface,
LuneburgLensSurface,MaxwellFisheyeLensSurface, and
GGRINLensSurface. All are part of the optics.raytrace.
surfaces package.

4. Refraction at metric interfaces

4.1. Metrics, Fermat’s principle, and refraction at metric interfaces

In transformation optics [21,22], the (optical) metric of a
material measures the optical path length ds corresponding to an
infinitesimal geometrical path of length dx, dy and dz in the x, y and
z direction. Fermat’s principle demands that the optical path length
along light-ray trajectories is stationary and so creating a spatially-
varying metric changes light-ray paths. This idea has been used to
design invisibility cloaks [21,22].

In vacuum, the square of the optical path length is given by the
Euclidean distance

ds2 = dx2 + dy2 + dz2. (16)

3 Other gradient-index spherical objects for which the relationship between
incident and refracted light rays is known can easily be implemented similarly.
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Fig. 13. Geometry of refraction at ametric-tensor interface. The coordinate system
is chosen such that the interface is in the z = 0 plane and the incident light ray
intersects the interface at the origin. The diagram is drawn for positive refraction.

In transformation-optics materials, the formula for the square of
the optical path length takes the more general form

ds2 = g11dx2 + g22dy2 + g33dz2

+ 2g12dxdy + 2g13dxdz + 2g23dydz

= drT · g · dr, (17)

where dr = (dx, dy, dz)T and g is the (symmetric) metric tensor

g =

g11 g12 g13
g12 g22 g23
g13 g23 g33


. (18)

We stress that Eq. (17) specifies the square of the optical path
length. To specify the optical path length itself therefore addition-
ally requires knowledge of the sign of the optical path length; in a
material with a negative refractive index, for example, it is nega-
tive [23].

We have added to TIM the ability to calculate the direction of
a light ray after transmission through the interface between ma-
terials with different metrics. There are well-established methods
to calculate this light-ray direction change [24]. TIM calculates the
refracted light-ray direction directly from Fermat’s principle. The
coordinate system is placed such that the interface lies in the z = 0
plane and the incident light ray intersects the interface at the ori-
gin (Fig. 13). The half-space with z < 0 is described by the metric
tensor g (with elements gij), the metric tensor for z > 0 is h (ele-
ments hij), and the incident light-ray direction is d = (dx, dy, dz)T .
The aim is to calculate the outgoing light-ray direction, which we
write in the form e = (ex, ey, ez)T .

We pick the two points A = −d and B = e, which lie on ei-
ther side of the interface. The optical path length from A to B via
a point P = (x, y, 0)T on the interface is then s = s1 + s2, where
s1 = ±


(AP)T · g · AP (where AP = P − A) is the optical path

length from A to P , s2 = ±

(PB)T · h · PB (where PB = B − P) is

the optical path length from P to B. The signs of s1 and s2 indicate
whether or not these optical path lengths are positive or negative,
of course. Fermat’s principle states that, at (x, y) = (0, 0) (i.e. at
the origin, where the actual light ray intersects the interface),

∂

(AP)T · g · AP

∂x
±
∂

(PB)T · h · PB

∂x
= 0, (19)

∂

(AP)T · g · AP

∂y
±
∂

(PB)T · h · PB

∂y
= 0, (20)

where the ‘+’ signsmust be chosen if s1 and s2 have the same signs
(positive refraction), and the ‘−’ signs must be chosen if s1 and
s2 have the opposite sign (negative refraction). Allowing negative
refraction enables raytracing through many interesting interfaces,
for example those representing interfaces betweenmediawith dif-
ferent signs of the refractive index such as a Veselago lens [25,23].

To characterise ametric interface fully, we therefore state themet-
ric tensors on both sides and whether the refraction is positive or
negative. Evaluating the first term of Eq. (19) gives

∂

(AP)T · g · AP

∂x
=

dxg11 + dyg12 + dzg13
dT · g · d

. (21)

We define the number

cx = ±
dxg11 + dyg12 + dzg13

|dT · g · d|
, (22)

with the ‘+’ sign in the case of positive refraction and the ‘−’ sign
for negative refraction. Assuming, for the moment, that the term
under the square root on the right-hand side of Eq. (21) is positive,
cx represents the first term of Eq. (19). Note that cx depends only
on the direction of the incident light ray and the material in which
it travels. In terms of cx, Eq. (19) becomes

cx =
∂

(PB)T · h · PB

∂x
=

exh11 + eyh12 + ezh13
√
eT · h · e

. (23)

Next, we normalise the vector e with respect to the metric h such
that

eT · h · e = 1, (24)

so that, on the right-hand side of Eq. (23), the denominator be-
comes one (thereby also ensuring that the expression under the
square root is positive). Eq. (23) then simplifies to

cx = exh11 + eyh12 + ezh13. (25)

Similarly we get from Eq. (20)

cy = exh12 + eyh22 + ezh23. (26)

Together, Eqs. (24)–(26) determine the direction e of the refracted
light ray.

We solve these equations as follows. First we solve Eqs. (25) and
(26) for ex and ey to find

ex =
cxh22 − cyh12 − ezh13h22 + ezh12h23

h11h22 − h2
12

, (27)

ey =
cyh11 − cxh12 − ezh23h11 + ezh12h13

h11h22 − h2
12

. (28)

Substitution into Eq. (24) gives, after some manipulation (which
assumes that h2

12 − h11h22 ≠ 0),

ae2z + c = 0 (29)

where

a = h2
13h22 − 2h12h13h23 + h2

12h33 + h11h2
23 − h11h22h33, (30)

c = −c2yh11 + 2cxcyh12 − h2
12 − c2x h22 + h11h22. (31)

The real solutions, which exist provided that −c/a ≥ 0, are

ez = ±


−

c
a
. (32)

The correct solution is that which has the same sign as dz , such that
the incident ray hits one side of the interface and the refracted ray
leaves from the other side.

If −c/a < 0, no real solution exists. This is a generalisation
of the situation when total internal reflection (TIR) occurs at
refractive-index interfaces, and so in this case TIM assumes that
TIR occurs.

4.2. Imaginary optical path lengths

If the expression under the square root in Eq. (22), dT
· g · d,

is negative (which corresponds to the metric tensor not being
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positive-definite, like the Lorentzian metric), it is sometimes still
possible to find values for ex, ey and ez which are all real-valued
and which solve Eq. (19). However, this solution corresponds to
imaginary optical path lengths. It is not clear, what (if anything) it
represents. We have chosen to program this solution into TIM, but
give the user the choice whether or not to allow it. If the user does
not allow it, and dT

· g · d < 0, TIM again assumes that TIR occurs.
After evaluating the derivatives (as above), Eq. (19) becomes

±
dxg11 + dyg12 + dzg13

dT · g · d
=

exh11 + eyh12 + ezh13
√
eT · h · e

. (33)

The expression under the square root on the left-hand side is neg-
ative, but if the expression under the square root on the right-hand
side, eT · h · e, is also negative, a common factor i can be cancelled
and Eq. (23) becomes

±
dxg11 + dyg12 + dzg13

−(dT · g · d)
=

exh11 + eyh12 + ezh13
−(eT · h · e)

. (34)

Thanks to the absolute value under the square root in the denom-
inator we introduced in the definition of cx, Eq. (22), the left-hand
side of Eq. (34), which depends only on the incident ray, equals cx
again. We again normalise e such that the term in the square root
of the denominator on the side that depends only on the outgoing
ray direction becomes one, which now requires

eT · h · e = −1. (35)
Eqs. (25) and (26) then still hold, and so ex and ey can still be cal-

culated fromEqs. (27) and (28), and the normalisation equation can
again bewritten in the form of Eq. (32), but with a slightly different
coefficient c in which two terms have changed sign (compared to
Eq. (31)):

c = −c2yh11 + 2cxcyh12 + h2
12 − c2x h22 − h11h22. (36)

4.3. General coordinates

So far in this section we have assumed that the interface is in
the z = 0 plane. This assumption greatly simplifies the calcula-
tion of the light-ray direction behind a metric interface. We now
generalise these results to an arbitrary interface. We achieve this
by defining a local surface coordinate system in which the tangent
plane to the surface at the incident ray’s intersection point is the
equivalent of the z = 0 plane; calculating the incident light-ray
direction and the metric tensors on both sides of the interface in
this surface coordinate system; calculating the refracted light-ray
direction in the surface coordinate system (according to the calcu-
lation outlined in Sections 4.1 and 4.2); and finally transforming
the refracted light-ray direction into the global (x, y, z) coordinate
system.

We call the unit base vectors of the local coordinate system û,
v̂ and ŵ, and choose ŵ to be perpendicular to the surface at the
intersection point. The local tangent plane is therefore the w = 0
plane, which from now on takes over the role played by the z = 0
plane in Sections 4.1 and 4.2. In TIM, such a coordinate system can
easily be calculated for each point on a surface (see Fig. 7 in Ref. [1]).

The calculation of light-ray-direction vectors between the bases
is standard vector maths. In terms of the metric tensor g in the
(x, y, z) basis, the metric tensor in the (u, v, w) basis, g ′, is

g ′
= ΛTgΛ, (37)

where

Λ =

û v̂ ŵ


=


∂x/∂u ∂x/∂v ∂x/∂w
∂y/∂u ∂y/∂v ∂y/∂w
∂z/∂u ∂z/∂v ∂z/∂w


(38)

is the Jacobian matrix.

Fig. 14. Simulated view through different metric interfaces. (a) Metric interface
equivalent to refractive index n = 10 in front of the interface and n = 1 behind
it. Total internal reflection (TIR) is clearly visible outside the central disc. (b) Metric
interface representing a Veselago lens [25], a refractive-index interface between
n = −1 in front and n = +1. (c) Interface between a space sheared by 45° in the
(x, z) projection in front and a Euclidean space behind.

4.4. Implementation in TIM

In TIM, metric-tensor interfaces are represented by an object
of class MetricTensorInterface. The calculation of the re-
fracted light-ray direction e happens in the getRefractedRay-
Directionmethod. Note that the user can choosewhether or not
the metric tensors on both sides of the interface are given in the
global coordinate system or in the surface coordinate system. The
latter is useful for defining homogeneous, but non-planar, surfaces.

Fig. 14 shows a few examples of the simulated view through
various metric-tensor interfaces. The procedure to create these
(and similar) views is as follows. Start up TIM and click on the ‘‘Edit
scene’’ button. In the ‘‘Initialise scene to...’’ drop-down menu se-
lect ‘‘METATOY science (lattice behind METATOY window)’’. The
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Fig. 15. View of TIM’s standard cylinder lattice through ‘‘bubbles’’ of space with a
non-Euclidean metric. (Top) The elements of the metric tensor inside the sphere,
expressed in the global coordinate basis, are g11 = 1, g12 = g21 = 0.2, g13 =

g31 = 0, g22 = 1.2, g23 = g32 = −0.5, g33 = 0.5. TIR is visible near the edge of
the sphere. (Bottom) The inside of the sphere is described by the Minkowski-like
metric diag(−1, 1, 1).

list of scene objects now contains an object called ‘‘METATOY win-
dow’’; double-click on this object to edit its parameters. The win-
dow is placed such that it fills a good portion of the default camera.
By default, the window’s surface type is ‘‘Rotating’’ (which simu-
lates light-ray rotation around the window normal [26]); click on
the surface-type drop-downmenu and select ‘‘Metric-tensor inter-
face’’. The elements of the metric tensor ‘‘inside’’ and ‘‘outside’’ the
window4 can then be inspected and edited in the tabbed pane.

Fig. 15 shows examples of scenes that involve non-planar
metric interfaces.

5. Refraction with generalised confocal lenslet arrays

Another extension we recently added to TIM is the capability
to simulate the transmission of light rays through generalised con-
focal lenslet arrays (gCLAs) [5]. This extension is discussed else-
where [27], and so, after a brief summary of gCLAs and their effect
on light rays, we concentrate on details not already discussed.

4 In TIM, every surface has an inside and an outside, defined by the surface
normal which, by definition, points outwards. From the default camera position,
the default window is seen from the inside. The direction of the surface normal can
be visualised by right-clicking on a surface in the rendered image and selecting,
in the pop-up menu that appears, ‘‘Add surface-coordinate axes’’. Rendering the
scene again now also shows three arrows pointing along the three coordinate axes
defining the surface coordinate system; the outwards surface normal is the blue
arrow.

Fig. 16. Ray propagation through one of the telescopelets in generalised confocal
lenslet arrays (gCLAs). The diagram is an orthographic projection into the plane
spanned by the vectors â and û, a unit vector in the u direction, one of the two
directions perpendicular to â (the other being the v direction). The telescopelet is
formed by two lenses, L1 and L2 , whose optical axes (dash-dotted horizontal lines)
are parallel (the unit vector â points in the direction of the optical axes), but offset
relative to each other, by a distance ou in the u direction and a distance ov in the v
direction. In general, the lenses have different focal lengths in the u and v directions,
but the focal lengths of the two lenses in the u direction add up to the separation
between the lenses, as do the focal lengths in the v direction. Fu is the common focal
plane in the (u, a) projection. The solid red lines show two light-ray trajectories,
both incident with direction d and leaving with direction d ′ .

5.1. Generalised confocal lenslet arrays (gCLAs)

Telescopes have the property that light rays that are parallel
when incident are parallel again when leaving. In other words, the
direction change does not depend on the precise point where a ray
hits the telescope. There is a ray offset, but it is small when the
telescopes themselves are small, and so the effect on light rays of
a planar array of small telescopes (‘‘telescopelets’’) with their op-
tical axes perpendicular to the plane is essentially generalised re-
fraction, and so such components are examples of METATOYs [2].
Perhaps the easiestway to build such arrays of telescopelets is from
two arrays of lenslets that share a common focal plane, or confocal
lenslet arrays (CLAs) [28]. CLAs have interesting imaging proper-
ties [28,29], and theyhave beendemonstrated experimentally [30].

The telescopelets in CLAs can be generalised in a number of
ways while retaining their basic METATOY character (of introduc-
ing a light-ray-direction change that is independent of the precise
position where a light ray enters the METATOY while introducing
a small offset) [5]. The generalisations are as follows (see Fig. 16).
1. Each lens can be replaced by a combination of cylindrical lenses

with their cylinder axes in two transverse directions, u and v,
and so each lens has two focal lengths. The focal lengths in the
u direction of both lenslets have to add up to the separation
between the lenslets, and so do the focal lengths in the v
direction.

2. The lenses’ optical axes can be offset relative to each other.
3. The entire telescope can be rotated.

In Ref. [5], the telescopes were considered to be aligned initially
such that their optical axis points in the z direction, and so that the
cylinder axes are aligned in the x and y directions. The parameters
necessary to describe a general telescopelet aligned in this way are
ηx, the ratio of the focal lengths in the x direction of the second
and first lens, multiplied by (−1); ηy, the ratio of the focal lengths
in the y direction of the second and 1st lens, again multiplied by
(−1); δx, the x offset of the optical axis of the second lens relative
to that of the first, divided by the first lens’s focal length in the x
direction; and δy, the y offset of the optical axis of the second lens
relative to that of the first, divided by the first lens’s focal length in
the y direction. A general rotation, described by Euler angles φ, θ
and ψ , makes such a telescopelet completely general. The seven
parameters described above are, of course, the seven degrees of
freedom that make gCLAs such versatile components.
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In Ref. [27], gCLAs were described slightly differently, namely
by â, a unit vector in the direction of the optical axis after rotation;
û, a unit vector in the direction of the x direction after rotation;
ηu, the focal-length ratio in the u direction of the second and first
lenses, multiplied by (−1), and ηv , the equivalent ratio for the v
direction, which is perpendicular to both the a and u directions (a
unit vector in the v direction is defined as v̂ = â × û); and by δu,
the u offset of the second optical axis relative to the first, divided
by the focal length in the u direction of the first lens, and δv , the
equivalent ratio for the v direction. We use this latter description,
for which the law of refraction is [27]

d ′
=
(d · û)/(d · â)− δu

ηu
û +

(d · v̂)/(d · â)− δv

ηv
v̂ + â. (39)

5.2. Implementation details

In TIM, generalised confocal lenslet arrays are represented by
the class ConfocalLensletArrays, which is a non-abstract
implementation of the abstract SurfaceProperty class. The
code calculating the refraction is part of the getColour method,
which handles passage of an incident light ray through the surface.
The calculation of the direction of the refracted ray according to
Eq. (39) is mostly straightforward. The few subtleties are perhaps
worth mentioning.

First, TIM does not ask the user to enter the normalised, and
perpendicular, vectors â and û. Instead, TIM asks for vectors a and
u, which are related to â and û as follows. The unit vector â is
simply the vector a, normalised. In contrast, û is not generally a
normalised version of u: TIM calculates û by projecting u into a
plane perpendicular to â, and then normalising it.

Second, TIM gives the user the choice to define the vectors a and
u in different bases, namely either in terms of the ‘‘global’’ (x, y, z)
coordinate system or in terms of the ‘‘local’’ surface coordinates
(two directions tangential to the surface and a surface normal; see
Fig. 7 in Ref. [1]). The latter allows modelling of a non-planar, but
homogeneous, gCLA surface.

Finally, it is important in which order a ray encounters the two
lenslet arrays that make up the gCLAs. Unlike other surfaces, this
order is not decided bywhether or not the light ray reaches the sur-
faces from the inside or the outside, but instead by the sense of the
vector a, which TIM interprets as pointing from lenslet array 1 to
lenslet array 2 (see Fig. 16). TIM establishes whether or not a’s and
d’s components perpendicular to the surface have the same sign;
if they do, the ray first intersects lenslet array 1, otherwise lenslet
array 2. It can be shown that, in the latter case, the law of refraction
is still given by Eq. (39), but with â replaced by −â, ηu replaced by
1/ηu (and ηv by 1/ηv), δu replaced by δu/ηu (and δv by δv/ηv).

6. Other extensions

We have not discussed a number of other changes we made
to TIM since the publication of Ref. [1], including a number of ex-
tensions (such as the capability to model arrays of objects; phase-
conjugating surfaces; surfaces that change the direction of light
rays like a Lorentz transform; surfaces which, when spherical,
look from the outside like an Eaton lens or a Luneburg lens; im-
perfect teleporting surfaces; surfaces that refract like phase holo-
grams; new initialisation scenes, including one that simulates an
autostereogram resonator [31]; the capability to create 3D images
in various HDMI 1.4a standard frame-packing formats (i.e. a sin-
gle image file simply consisting of the left-eye and right-eye im-
ages placed next to each other or on top of each other) compatible
with 3D TVs; the capability to move the camera, and vary its field
of view, in the interactive version also; and to switch shadow

throwing on or off). Most of these changes are minor; others are
important, and we intend to describe them in detail elsewhere.

7. Conclusions

TIM is turning out to be a very useful tool for our research. For
example, we are currently using the new relativistic-ray-tracing
capabilities to investigate the effect of different shutter models
on image blur; using the new capability to simulate gCLA refrac-
tion, we have recently studied (near-)perfect imaging with planar
gCLAs [6]; and we are using the capabilities for simulating refrac-
tion at metric interfaces and through gCLAs to test ideas that allow
us to realise transformation-optics devices with gCLAs [7].

We are greatly enjoying extending TIM, and we are already
planning further extensions. For example, we are currently adding
functionality for visualising a few transformation-optics devices,
and we are planning to add more. TIM was conceived as a ray-
tracing program that allows us to simulate the view through
idealised, perfect, METATOYs, ultimately as a tool for finding ap-
plications for METATOYs, but now that we have found such ap-
plications, the time might have come to add to TIM the ability to
simulate some of the imperfections of specific METATOYs.

As before, we aim to encourage others to use and extend TIM.
We hope that TIM’s new capabilities will help us to achieve this
aim.
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