Electronic structure and spin transitions in cobalt oxides

Karel Knížek

Laboratoř oxidových materiálů, Fyzikální ústav AVČR, v.v.i., Cukrovarnická 10, 162 00 Praha 6

knizek@fzu.cz, lom.fzu.cz, www.fzu.cz/oddeleni/24

Electronic structure of cobalt oxides, in particular with Co ion in valence states 3+ or 4+, is strongly influenced by the subtle balance between crystal field energy (Δ_{CF}), on-site Coulomb repulsion (expressed by Hubbard parameter U) and the energy of charge transfer between Co and oxygen (Δ_{co-o}). Therefore Co³⁺ ion in oxides can exist in 3 spin states: low (LS, S=0, $t_{2g}^{6}e_{g}^{0}$), intermediate (IS, S=1, $t_{2g}^{5}e_{g}^{1}$) and high (HS, S=2, $t_{2g}^{4}e_{g}^{2}$). The materials, studied in our laboratory, can be divided into two groups. 1) Perovskites with mixed valency of cobalt 3+/4+, which undergoes spin transitions depending on temperature, external pressure or doping. Based on our calculations and experiments on La_{1*}Sr_xCoO₃ we have developed a two step LS-LS/HS-IS scenario consisting of a local excitation of HS in LS matrix, which is followed by reversal of the thermally populated HS/LS pairs into the IS states. A special case is a system derived from Pr_{0.5}Ca_{0.5}CoO₃, where the spin transition and simultaneous metal-insulator transition is conditioned by the charge transfer between Pr³⁺ and Co⁴⁺. 2) Layered cobaltates with a promising thermoelectric properties. Electronic structures of $Na_x CoO_2$ and CuCoO₂ and their implications for thermoelectric properties will be presented. The calculations were made with the WIEN2k program. This program is based on the density-functional theory (DFT) and uses the full-potential linearized augmented plane-wave (FP LAPW) method with the dual basis set - atomic-like function in the atom spheres and the plane wave in the interstitial region between spheres. For the exchange correlation potential, the GGA (Generalized Gradient Approximation) form was adopted.