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Using Lanczos exact diagonalization of �nite clusters we demonstrate that the spin-orbital d1 model for triply
degenerate t2g orbitals on a triangular lattice provides an example of a spin-orbital liquid ground state. We also
show that the spin-orbital liquid involves entangled valence bond states which violate the Goodenough�Kanamori
rules, and modify e�ective spin exchange constants.
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1. Introduction

A variety of very interesting and challenging problems
in condensed matter theory arises in systems of strongly
correlated electrons with degenerate orbitals [1]. When
the intraorbital Coulomb element U is much larger than
the e�ective electron hopping t, i.e., U ≫ t, the magnetic
properties follow from the spin-orbital superexchange [2].
Usually spin interactions are then determined by orbital
order and complementary types of spin and orbital order
coexist in agreement with the Goodenough�Kanamori
rules (GKR) [3]. However, large quantum �uctuations
that emerge from strongly frustrated orbital interactions
could instead stabilize disordered phases [4]. This ob-
servation triggered the search for an example of a spin-
-orbital liquid (SOL) ground state (GS), similar to a spin
liquid state in a one-dimensional Heisenberg antiferro-
magnet. In principle such a SOL state might be expected
for the spin-orbital d9 model on a triangular lattice in
LiNiO2, but Ising-like orbital interactions suppress it [5].
Exotic behavior of spin-orbital systems follows from

spin-orbital entanglement (SOE) [6]. To name a few phe-
nomena, it is responsible for the temperature dependence
of optical spectral weights in LaVO3 [7], plays a role
in the phase diagram of the RVO3 perovskites [8], and
restricts propagation of a hole in states with entangled
spin-orbital order [9]. Recently novel phases with SOE
were discovered in a bilayer spin-orbital d9 model [10],
but also here a SOL phase could not be established.

2. Model and calculation method

The orbital interactions for t2g orbitals, with T = 1/2
pseudospins that depend on the bond direction, are more
quantum than for eg ones and all three pseudospin com-
ponents contribute for each bond [1]. Here we employ
the Lanczos exact diagonalization to investigate a spin-
-orbital d1 model for triply degenerate t2g orbitals on a
triangular lattice as in NaTiO2 [11], with superexchange
(Hs), direct exchange (Hd) and mixed terms responsible
for enhanced quantum �uctuations (Hm),

H = J
[
(1− α)Hs +

√
(1− α)αHm + αHd

]
. (1)

The model depends on the parameter 0 ≤ α ≤ 1 and
on Hund's exchange η ≡ JH/U . Here J is the exchange
energy. In the direct exchange limit (α = 1) the model
Eq. (1) is exactly solvable and the GS was determined
by considering the valence bond (VB) dimer coverings of
the lattice with each dimer containing a spin singlet [12].
Below we show by analyzing the results of the Lanczos
diagonalization [13] that a SOL is realized in the opposite
superexchange limit (α = 0) of the model.

The essential feature of the model Eq. (1) is that
S = 1/2 quantum spins are coupled by an SU(2) sym-
metric (Si · Sj) interactions, while the orbital interac-
tions obey a much lower discrete symmetry between three
equivalent directions γ = a, b, c in the lattice, with two t2g
orbital �avors active in the superexchange via (T i ·T j)

(γ)

term for T = 1/2 pseudospin, and the third one con-
tributing to direct exchange; for more details see [11, 13].
The drastic di�erence in occupied orbital states realized
in both limits at η = 0 is illustrated for the case of a 9-site
cluster by insets in Fig. 1b � one �nds equal occupan-
cies of each orbital state at α = 0, while 756 degenerate
orbital dimer VB-like states are found at α = 1 [12, 13],
and the degeneracy scales with system size.

We characterize the GS by spin, orbital and spin-
-orbital (four-operator) bond correlations (d is the de-
generacy of the GS manifold {|n⟩}), given by

S ≡ 1

d

∑
n

⟨
n
∣∣Si · Sj

∣∣n⟩, (2)

T ≡ 1

d

∑
n

⟨
n
∣∣(T i · T j)

(γ)
∣∣n⟩, (3)

C ≡ 1

d

∑
n

⟨n|(Si · Sj − S)(T i · T j − T )(γ)|n⟩. (4)

Below we consider two clusters with periodic boundary
conditions (PBC): a hexagonal cluster of N = 7 sites
(N7) and a rhombic cluster of N = 9 sites (N9). Due
to PBC all sites and bonds are equivalent and the above
correlations do not depend on the bond ⟨ij⟩ and its di-
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Fig. 1. Bond correlations at η = 0: spin (S), orbital
(T ), and spin-orbital (C) for: (a) N7 cluster, and (b)
N9 cluster. The vertical lines indicate the exactly de-
termined range of possible values that follows from the
GS degeneracy. The insets in (b) indicate typical or-
bital patterns in the superexchange (α = 0) and direct
exchange (α = 1) limit for the rhombic N9 cluster.

rection γ. Each t2g orbital is occupied on average by 1/3
electron, but the states are manifestly di�erent in the
limits of α = 0 and α = 1, see the insets in Fig. 1b.

3. Results and discussion

In both N7 and N9 cluster spin S and orbital T cor-
relations are negative and the GKR stating that these
correlations should be complementary are violated, see
Fig. 1. Frustration in the triangular lattice is responsible
for a rather weak and independent of α antiferromagnetic
(AF) spin correlations in the N7 cluster, S ≈ −0.107, see
Fig. 1a. These correlations are weaker (S ≈ −0.090) at
α = 0 in the N9 cluster and become more pronounced
(S ≈ −0.144) when α ≈ 0.6 and joint spin-orbital �uc-
tuations weaken to C ≈ −0.050, see Fig. 1b. The or-
bital correlations weaken as well when α increases toward
α = 1, particularly in the N9 cluster. Joint spin-orbital
correlations are similar in both clusters (e.g. C ≈ −0.070
at α = 0) and |C| gradually decreases when spin and
orbital operators disentangle approaching α = 1.

An important question is whether spin order and ex-
citations could be described by an e�ective spin model
derived from Eq. (1). In order to illustrate consequences
of SOE in magnetic states we rewrite the d1 spin-orbital
model Eq. (1) in a general form [2] resembling a spin
Hamiltonian,

H =
∑

⟨ij⟩∥γ

{
Ĵ (γ)
ij (Si · Sj) + K̂(γ)

ij

}
, (5)

where the orbital operators Ĵ (γ)
ij and K̂(γ)

ij depend on the

parameters {α, η} for a bond ⟨ij⟩ along axis γ. Mean
�eld (MF) procedure used frequently reads [13],

HMF =
∑

⟨ij⟩∥γ

{⟨
Ĵ (γ)
ij

⟩
Si · Sj −

⟨
Ĵ (γ)
ij

⟩
⟨Si · Sj⟩

}
+

∑
⟨ij⟩∥γ

{
Ĵ (γ)
ij ⟨Si · Sj⟩+ K̂(γ)

ij

}
. (6)

It disentangles spin and orbital degrees of freedom and
is used to determine the MF spin constant for N7 and

N9 clusters by averaging the orbital operator Ĵ (γ)
ij (its

explicit form is given in [13]) over the MF GS |Φ0⟩,

JMF ≡ ⟨Φ0|Ĵ (γ)
ij |Φ0⟩. (7)

Let us note that the orbital �uctuations in the term
∝

√
α(1− α) in Eq. (1) contribute here as well as they

couple di�erent components of |Φ0⟩. In contrast, the ex-
act exchange constant, Jexact, is found when the exact
GS |Φ⟩ obtained after Lanczos diagonalization is used.

Fig. 2. Phase diagram in the (α, η) plane (heavy lines)
and exchange constants (contour plots) as obtained for
the N9 cluster with PBC: (a) within the MF calculation,
and (b) using exact Lanczos diagonalization. In the
MF case (a) the transition from low-spin (St = 1/2) to
high-spin (St = 9/2) phase occurs when JMF changes
sign. In the exact calculation one �nds in addition an
intermediate phase with St = 3/2, stable between the
heavy black lines in (b).
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In Fig. 2 we compare the phase diagrams obtained from
the above MF procedure and from exact diagonalization
for the N9 cluster. Consider �rst a quantum phase transi-
tion from the low-spin (St = 1/2) disordered phase to the
high-spin (St = 9/2) ferromagnetic (FM) phase which
occurs for su�ciently large η. When spin and orbital
operators are disentangled in Eq. (6), i.e., C ≡ 0 [6], it
coincides with the sign change of the MF exchange con-
stant JMF and no other phase (with 1/2 < St < 9/2) is
found, see Fig. 2a, as in a spin system.
Comparing the values of JMF and Jexact found from

the MF and from exact diagonalization of the N9 cluster
(Fig. 2), one �nds that Jexact ≥ JMF in a broad regime
of α except for α ≈ 1. Therefore, the MF approximation
turns out to be rather unrealistic and overestimates (un-
derestimates) the stability of states with FM (AF) spin
correlations. The value of JMF decreases with increas-
ing η, but positive values JMF > 0 are found at η = 0
only if 0.07 < α < 1. This demonstrates that FM states:
(i) are favored when joint spin-orbital �uctuations are
suppressed, and (ii) are stabilized by orbital �uctuations
close to α = 0 even in absence of Hund's exchange. The
transition from the low-spin (St = 1/2) to the high-spin
(St = 9/2) state occurs in presence of SOE at a much
higher value of η ≈ 0.14, with only weak dependence
on α, see Fig. 2b. In addition, one �nds a phase with an
intermediate spin value St = 3/2 for 0 < α < 0.21 and
0.44 < α < 0.88, and Jexact changes discontinuously at
the transition to the FM phase.
Altogether, the qualitative trends found for the N9

cluster are generic and agree with those observed for the
N7 cluster, see Fig. 15 in [13]. In both cases one �nds
that: (i) the FM phase is stable in the MF approxima-
tion close to α = 0 and becomes degenerate with the
low-spin phase at α = 1, (ii) the MF procedure is exact
in the regime of FM phase, and (iii) the transition to the
FM phase occurs gradually through intermediate values
of total spin St (except at α = 1). This suggests that
partially polarized FM phase should occur in the ther-
modynamic limit of the model Eq. (1) and arises due to
SOE which is gradually suppressed when η increases.
We argue that the present study and the results pre-

sented in [13] provide evidence in favor of a quantum
SOL phase in the present d1 spin-orbital model Eq. (1)
in a corner of its phase diagram � in the regime of small
values of both α and η parameter. In agreement with the
directional nature of orbital interactions, this SOL phase
is also characterized by rather strong VB dimer corre-
lations [14]. The consequences of SOE are more severe
in this phase and the transition to the FM phase occurs
typically at a much higher value of η than the one where
Jexact changes its sign. Therefore, we suggest that even
in case when magnetic exchange Jexact is accurately eval-
uated using the relevant orbital correlations, it loses its
predictive power and is inadequate to describe the mag-
netic ground state and excitations in a system dominated
by SOE, where the GKR are violated. Let us note that
the frustrated triangular lattice plays here an important
role and removes any kind of orbital order.

4. Summary and conclusions

Summarizing, we have demonstrated that the GKR are
violated in the regime of weak Hund's exchange and the
spin-orbital liquid phase is stabilized by spin-orbital en-
tanglement in the d1 spin-orbital model on the triangular
lattice. In this regime the MF decoupling procedure of
spin and orbital operators fails and the magnetic proper-
ties can be determined only by solving the full entangled
spin-orbital many-body problem.
Finally, we point out that spin-orbital entangled states

play a role in exotic ground states [10] as well as low en-
ergy excitations for realistic values of η ≈ 0.14. Their
consequences have already been established in the vana-
dium perovskites [7�9], and we expect that they could be
of even more importance in systems with geometrically
frustrated lattice such as the one considered here.
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