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We explore the phase diagram of spin-orbit Mott insulators on a honeycomb lattice, within the Kitaev-

Heisenberg model extended to its full parameter space. Zigzag-type magnetic order is found to occupy a

large part of the phase diagram of the model, and its physical origin is explained as due to interorbital

t2g � eg hopping. The magnetic susceptibility, spin wave spectra, and zigzag order parameter are

calculated and compared to the experimental data, obtaining thereby the spin coupling constants in

Na2IrO3 and Li2IrO3.
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In the quest for materials with novel electronic phases,
iridium oxide Na2IrO3 came into focus recently [1–7] due
to theoretical predictions [8,9] that this system may host
Kitaev model physics and the quantum spin Hall effect.

Na2IrO3 is an insulator with a sizable and temperature
independent optical gap ’ 0:35 eV [7], and shows
Curie-Weiss type susceptibility [1,6] with moments corre-
sponding to an effective spin one-half Ir4þ ion with a t52g
configuration [10]. These facts imply that Na2IrO3 is a
Mott insulator with well-localized Ir moments.

Collective behavior of local moments in Mott insulators
is governed by three distinct and often competing forces:
(i) orbital-lattice [Jahn-Teller (JT)] coupling, (ii) virtual
hopping of electrons across the Mott gap resulting in
exchange interactions, and (iii) relativistic spin-orbit
coupling (see Ref. [11] for extensive discussions). The
corresponding energy scales EJT, J, and � vary broadly
depending on the type of magnetic ions and chemical
bonding [12]. When � > ðEJT; JÞ, as often realized for
Co, Rh, and Ir ions in an octahedral environment, local
moments acquire a large orbital component which may
result in a strong departure from spin-only Heisenberg
models [8,11]. The direct observation of large spin-orbit
splitting 3�=2� 0:6–0:7 eV in insulating iridates Sr2IrO4

[13], Sr3Ir2O7 [14], and Na2IrO3 [15] made it certain that
� > ðEJT; JÞ. Thus, the low-energy physics of Na2IrO3 is
governed by interactions among the spin-orbit entangled
Kramers doublets of Ir ions.

It is also established now [3–5] that Ir moments in
Na2IrO3 undergo antiferromagnetic (AF) order at TN ’
15 K. The fact that TN is much smaller than the paramag-
netic Curie temperature (�125 K) [6] and spin-wave
energies [4] implies that the underlying interactions are
strongly frustrated. This is natural in the so-called Kitaev-
Heisenberg (KH) model [16] where long range order is
suppressed by the proximity to the Kitaev spin-liquid (SL)
state. However, the observed ‘‘zigzag’’ magnetic pattern
[ferromagnetic (FM) zigzag chains, AF coupled to each
other] came as a surprising challenge to this simple and

attractive model. To resolve the ‘‘zigzag puzzle’’, a number
of proposals, ranging from various modifications of the KH
model [4,6,17–19] to a complete denial [20] of a local
moment picture in Na2IrO3, have been put forward.
In this Letter, we show that the zigzag order is in fact a

natural ground state (GS) of the KH model, in a previously
overlooked parameter range. Next, we identify the ex-
change process that supports a zigzag-phase regime.
Further, we calculate spin-wave spectra, the ordered
moment, and magnetic susceptibility of the model in the
zigzag phase, and find a nice agreement with experiment.
This lends strong support to the KH model as a dominant
interaction in Na2IrO3 and related oxides.
The model.—Nearest-neighbor (NN) interaction

between isospin one-half Kramers doublets of Ir4þ ions,
coupled via 90�-exchange bonds, reads as follows (the
exchange processes are described later):

H ð�Þ
ij ¼ 2KS�i S

�
j þ JSi � Sj: (1)

Here, �ð¼ x; y; zÞ labels 3 distinct types of NN bonds of a
honeycomb lattice [16] of Ir ions in Na2IrO3, and spin axes
oriented along the Ir-O bonds of IrO6 octahedron. The
bond-dependent Ising coupling between the � components
of spins is nothing but the Kitaev model [21], and the
second term stands for the Heisenberg exchange.

Let us introduce the energy scale A ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
K2 þ J2

p
and the

angle ’ via K ¼ A sin’ and J ¼ A cos’; the model (1)
takes then the following form:

H ð�Þ
ij ¼ Að2 sin’S�i S�j þ cos’Si � SjÞ: (2)

We let the ‘‘phase’’ angle ’ vary from 0 to 2�, uncovering,
thereby, additional phases of the model that escaped atten-
tion previously [16], including its zigzag ordered state
which is of a particular interest here.
It is instructive to introduce, following Refs. [11,16], 4

sublattices with the fictitious spins ~S, which are obtained
from S by changing the sign of its two appropriate
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components depending on the sublattice index. This trans-

formation results in the ~S Hamiltonian of the same form as
(1), but with effective couplings ~K ¼ K þ J and ~J ¼ �J,
revealing a hidden SUð2Þ symmetry of the model at
K ¼ �J (where the Kitaev term ~K vanishes). For the
angles, the mapping reads as tan ~’ ¼ � tan’� 1.

Phase diagram.—In its full parameter space, the KH
model accommodates 6 different phases, best visualized
using the phase-angle ’ as in Fig. 1(a). In addition to the
previously discussed [16,22,23] Néel-AF, stripy-AF, and
SL states near ’ ¼ 0, � �

4 , and � �
2 , respectively, we

observe 3 more states. First one is ‘‘AF’’ (K > 0) Kitaev
spin-liquid near ’ ¼ �

2 . Second, the FM phase broadly

extending over the third quadrant of the ’ circle. The
FM and stripy-AF states are connected [see Fig. 1(a)] by
the 4-sublattice transformation, which implies their iden-
tical dynamics. Finally, near ’ ¼ 3

4�, the most wanted

phase, zigzag AF, appears occupying almost a quarter of
the phase space. Thanks to the above mapping, it is under-
stood that the zigzag and Néel states are isomorphic, too.

In particular, the ’ ¼ 3
4� zigzag state is identical to the

Heisenberg-AF state of the fictitious spins [24].
To obtain the phase boundaries, we have diagonalized

the model numerically, using a hexagonal 24-site cluster
with periodic boundary conditions. The cluster is compat-
ible with the above 4-sublattice transformation and ’ $ ~’
mapping. As seen in Fig. 1(b), the second derivative of the
GS energy EGS with respect to the ’well detects the phase
transitions. Three pairs of linked transition points are
found: ’ ð88�; 92�Þ and (� 76�, �108�) for the spin
liquid-order transitions around � �

2 , and (162�, �34�) or
the transitions between ordered phases.
The transitions from zigzag-AF to FM, and from stripy-

AF to Néel-AF are expected to be of first order by sym-
metry; the corresponding peaks in Fig. 1(b) are indeed very
sharp. The spin liquid-order transitions near ’ ¼ � �

2 lead

to wider and much less pronounced peaks, suggesting a
second- (or weakly first-) order transition [16]. On the
contrary, liquid-order transitions around ’ ¼ �

2 show up

as very narrow peaks; on the finite cluster studied, they
correspond to real level crossings. The nature of these
phase transitions remains to be clarified [25].
While at J ¼ 0 (i.e.,’ ¼ � �

2 ) the sign ofK is irrelevant

[21], the stability of the AF- and FM-type Kitaev spin
liquids against J perturbation is very different: the SL
phase near �

2 (� �
2 ) is less (more) robust. This phase

behavior is related to a different nature of the competing
ordered phases: for the �

2 SL, these are highly quantum

zigzag and Néel states, while the SL near � �
2 is sand-

wiched by more classical (FM and ‘‘fluctuation free’’ stripy
[16]) states which are energetically less favorable than the
quantum SL state.
Exchange interactions in Na2IrO3.—Having fixed the

parameter space (K > 0, J < 0) for the zigzag phase, we
turn now to the physical processes behind the model (1).
Exchange interactions in Mott insulators arise due to vir-
tual hoppings of electrons. This may happen in many
different ways, depending sensitively on chemical bond-
ing, intra-ionic electron structure, etc. The case of present
interest (i.e., strong spin-orbit coupling, t52g configuration,

and 90�-bonding geometry) has been addressed in several
papers [8,11,16,26]. There are the following four physical
processes that contribute to K and J couplings.
Process 1: Direct hopping t0 between NN t2g orbitals.

Since no oxygen orbital is involved, 90� bonding is irrele-
vant; the resulting Hamiltonian isH1 ¼ I1Si � Sj with I1 ’
ð23 t0Þ2=U [16]. Here, U is the Coulomb repulsion between

t2g electrons. Typically, one has t0=t < 1, when compared

to the indirect hopping t of t2g orbitals via oxygen ions.

Process 2: Interorbital NN t2g � eg hopping ~t. This is

the dominant pathway in 90� bonding geometry since
it involves strong tpd� overlap between oxygen-2p

and eg orbitals; typically, ~t=t� 2. The corresponding

Hamiltonian is [11]
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FIG. 1 (color online). (a) Phase diagram of the Kitaev-
Heisenberg model containing 2 spin-liquid and 4 spin-ordered
phases. The transition points (open dots on the ’ circle) are
obtained by an exact diagonalization. The gray lines inside the
circle connect the points related by the exact mapping (see text).
Open and solid circles in the insets indicate up and down spins.
The rectangular box in the zigzag pattern (top-left) shows the
magnetic unit cell. (b) Ground-state energy EGS and its second
derivative �d2EGS=d’

2 revealing the phase transitions.
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Hð�Þ
2 ¼ I2ð2S�i S�j � Si � SjÞ: (3)

This is nothing but the model (1) with K ¼ �J ¼ I2 > 0,
i.e., at its SUð2Þ symmetric point ’ ¼ 3

4� inside the zigzag

phase; see Fig. 2. For the Mott-insulating iridates (as
opposed to charge-transfer cobaltates [11]), we estimate
I2 ’ 4

9 ð~t= ~UÞ2 ~JH, where ~U is the (optically active) excita-

tion energy associated with t2g � eg hopping, and ~JH is

Hund’s interaction between the t2g and eg orbitals. The

physics behind this expression is clear: ð~t= ~UÞ2 measures
the amount of t2g spin which is transferred to the NN eg
orbital; once arrived, it encounters the ‘‘host’’ t2g spin and

has to obey the Hund’s rule.
For its remarkable properties, the Hamiltonian H2 (3)

deserves a few more words. On a triangular lattice, it shows
a nontrivial spin vortex ground state [11,27]; however, the
elementary excitations are simple SUð2Þ magnons of a
conventional Heisenberg-AF state. When regarded as the
‘‘J’’ part of a doped t� J model, it leads to an exotic
pairing [11,28].

Process 3: Indirect hopping t between NN t2g orbitals

via oxygen ions. This gives rise to the Kitaev modelHð�Þ
3 ¼

�I3S
�
i S

�
j , with I3 ’ 8

3 ðt2=UÞðJH=UÞ [8], where JH is

Hund’s coupling between t2g electrons. This process sup-

ports ’ ¼ � �
2 SL state; see Fig. 2.

Process 4: Mechanisms involving pd charge-transfer
excitations with energy �pd. Two holes may meet at an

oxygen and experience Coulomb Up and Hund’s JpH inter-

actions, or cycle around a Ir2O2 plaquette (Fig. 2). The
resulting Hamiltonian H4 has the form of H2 (3). The
coupling constant I4 ’ 8

9 t
2ð 2

2�pdþUp�JpH
� 1

�pd
Þ is negative

[29], supporting the stripy-AF state not observed in
Na2IrO3.
Putting things together, we observe that it is the inter-

orbital t2g � eg hopping H2 process that uniquely supports

zigzag order inNa2IrO3. This implies in general that multi-
orbital Hubbard-type models, when applied to iridates with
90�-bonding geometry, must include eg states as well, even

though the moments reside predominantly in the t2g shell.

Up to this point, we neglected trigonal field splitting �
of the t2g level due to the c axis compression present in

Na2IrO3. This approximation is valid as long as � is much
smaller than the spin-orbit coupling � ’ 0:4 eV [13,15,30]
and seems to be justified, since the recent ab initio calcu-
lations [20] suggest that � ’ 75 meV only [31].
We have also examined the longer-range couplings,

using the hopping matrix of Ref. [20], and found that the
second-NN interaction has the form of (3) (as previously
noticed Refs. [32,33]), while the third-NN coupling is of
the AF-Heisenberg type [the corresponding coupling con-
stants are 4

9 ðt22;3=UÞ]. The second (third)-NN interaction

would oppose (support) zigzag order; however, we believe
that these couplings are not significant in Na2IrO3 because
the hoppings t2 and t3 are small [34].
We do not attempt here to evaluate the parameters

involved in H1 �H4; ab-initio calculations as in
Ref. [35] might be more useful in this regard. Instead,
having obtained a zigzag order in our model (1) and
identified the physical process driving this order, we turn
now to the experimental data. The J and K values in
Na2IrO3 and Li2IrO3 will be extracted below from analysis
of the neutron scattering and magnetic susceptibility data.
Spin waves in the zigzag phase.—Consider a single

domain zigzag state, e.g., with FM chains running perpen-
dicular to z-type bonds. Following Ref. [4], we introduce a

rectangular a� bmagnetic unit cell [
ffiffiffi
3

p
a0 � 3a0 in terms

of hexagon-edge a0; see Fig. 1(a)], and define the ab-plane
wave vector q in units of (h, k) as q ¼ ð2�a h; 2�b kÞ. Standard
spin-wave theory gives four dispersive branches:

!2
1;2ðh; kÞ ¼ ½K2 þ ðK þ JÞ2�c2h � KJð1� shskÞ

� jðK þ JÞchj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð2K � JÞ2 � ð2Ksh � JskÞ2

q
;

(4)

and !3;4ðh; kÞ ¼ !1;2ð�h; kÞ, with ch ¼ cos�h, sh ¼
sin�h, and sk ¼ sin�k. If K ¼ �J, i.e., at the ’ ¼ 3

4�

point of hidden SUð2Þ symmetry, two branches are degen-
erate (!1 ¼ !2) and become true Goldstone modes. Away
from this special point, the small magnon gap is expected
to open by quantum effects not considered here. For q

with h ¼ k, the dispersions (4) simplify to !1ðh; hÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Kð2K þ JÞp jchj and !2ðh; hÞ ¼

ffiffiffi
2

p jJchj, revealing two
different energy scales in the magnon spectra set by K and
J couplings.
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FIG. 2 (color online). Schematics of four different exchange
processes (see text for details), arranged around the ’ phase
diagram of Fig. 1(a). Taken separately, the Hamiltonians H1, H2,
H3, andH4 would favor ‘‘pure’’ Néel-AF, zigzag-AF, Kitaev-SL,
and stripy-AF states, respectively, as indicated by arrows con-
necting Hi with the dots on the ’ circle. The circle is divided
into the phase sectors by gray lines; SL phases are shaded.
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While the bandwidth of the lowest dispersive mode (set
by J) is already known to be about 5–6 meV [4], we are not
aware of the high energy magnon data to estimate K in
Na2IrO3. We have therefore examined (see below) the
magnetic susceptibility data [1,6], and obtained ðJ; KÞ ’
ð�4:0; 10:5Þ meV that well fit the susceptibility as well as
the neutron scattering data [4]. With this, we predict the
magnon spectra for Na2IrO3 shown in Fig. 3. The lowest
dispersive (J) mode is as observed [4], indeed. However,
mapping out entire magnon spectra is highly desirable to
quantify the Kitaev term K directly.

Magnetic susceptibility.—We have calculated the uni-
form magnetic susceptibility �ðTÞ of the model (1) on
8- and 14-site clusters by exact diagonalization, and on
24-site cluster using the finite-temperature Lanczos
method [36,37]. The parameters are varied such that J ¼
A cos’ is consistent with the neutron data [4] while’ stays
within the zigzag sector of Fig. 1(a); this strongly narrows
the possible K window. For the data fits, we let the g factor
of the Ir4þ ion deviate from 2 (due to the covalency effects
[10]), and include the T-independent Van Vleck term �0.
The result for J ¼ �4:0 meV, K ¼ 10:5 meV, g ¼ 1:78,
�0 ¼ 0:16� 10�3 cm3=mol fits the Na2IrO3 data nicely
(Fig. 4); deviations occur at low temperatures only, when
correlation length exceeds the size of the cluster used. The
fit is quite robust: similar results can be found for small
only variations, locating Na2IrO3 near ’ ¼ 111� 2� of
the model phase diagram Fig. 1(a). The spin couplings
obtained are reasonable for the 90�-exchange bonds (as
expected [8,11], they are much smaller than in 180�-bond
perovskites [13,14]). The magnitude of the Van Vleck
term also agrees with our estimate �0 ’ 8

3��
2
BNA ’ 0:2�

10�3 cm3=mol for the Ir4þ ion, considering spin-orbit
coupling � ’ 0:4 eV [13,15,30].

Dominance of the Kitaev term (2K=J � 5 in Na2IrO3)
implies strong frustration hence enhanced quantum
fluctuations; this explains the reduced ordered moment

m ’ 0:22�B [5]. With the J, K, and g values above, we
calculated the leading order spin-wave correction to m and
obtained m ’ 0:33�B [38].
For the sake of curiosity, we have also fitted the �ðTÞ

data of Li2IrO3 [6], a sister compound of Na2IrO3.
Acceptable results have been found for the angle window
’ ¼ 124� 6�; a representative plot for J ¼ �5:3 meV,
K ¼ 7:9 meV, g ¼ 1:94, �0 ¼ 0:14� 10�3 cm3=mol is
shown in Fig. 4. It is worth noticing that the value of J,
which controls the bandwidth of the softest spin-wave
mode (see Fig. 3), appears to be similar in both com-
pounds. This may explain why they undergo magnetic
transition at similar TN ’ 15 K, despite very different
high temperature susceptibilities.
To conclude, we have clarified the origin of zigzag

magnetic order in Na2IrO3 in terms of nearest-neighbor
Kitaev-Heisenberg model for localized Ir moments. The
model well agrees with the low-energy magnon and
high temperature magnetic susceptibility data. A general
implication of this work is that the interactions considered
here should hold a key for understanding the magnetism
of a broad class of spin-orbit Mott insulators with
90�-exchange bonding geometry, including triangular,
honeycomb, and hyperkagome lattice iridates.
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