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We propose a minimal model describing magnetic behavior of Fe-based superconductors. The key

ingredient of the model is a dynamical mixing of quasidegenerate spin states of Fe2þ ion by intersite

electron hoppings, resulting in an effective local spin Seff . The moments Seff tend to form singlet pairs and

may condense into a spin nematic phase due to the emergent biquadratic exchange couplings. The long-

range ordered part m of Seff varies widely, 0 � m � Seff , but magnon spectra are universal and scale with

Seff , resolving the puzzle of large but fluctuating Fe moments. Unusual temperature dependences of a local

moment and spin susceptibility are also explained.
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Since the discovery of superconductivity (SC) in doped
LaFeAsO [1], a number of Fe-based SCs have been found
and studied [2]. Evidence is mounting that quantum mag-
netism is an essential part of the physics of Fe-based SCs.
However, the origin of magnetic moments and the mecha-
nisms that suppress their long-range order (LRO) in favor
of SC are still not well understood.

The magnetic behavior of Fe-based SCs is unusual. The
ordered moments range from 0:1–0:4�B, as in spin-density
wave (SDW) metals like Cr, to 1–2�B typical for Mott
insulators, causing debates whether the spin-Heisenberg
[3–8] or fermionic-SDW pictures [9–13] are more ade-
quate. At the same time, irrespective of the strength or
very presence of LRO, the Fe-ions possess the fluctuating
moments �1–2�B [14,15], even in apparently ‘‘nonmag-
netic’’ LiFeAs and FeSe. In fact, it was noticed early on
that the Fe-moments, ‘‘formed independently on fermiol-
ogy’’ [16] and ‘‘present all the time,’’ [3] are instrumental
to reproduce the measured bond lengths and phonon spec-
tra [3,16–18]. Recent experiments [19–21] observe intense
high-energy spin waves that are almost independent of
doping, further supporting a notion of local moments
induced by Hund’s coupling [22] and coexisting [23–25]
with metallic bands.

While the formation of the local moments in multiorbital
systems is natural, it is puzzling that these moments (resid-
ing on a simple square lattice) may remain quantum dis-
ordered in a broad phase space despite a sizable interlayer
coupling; moreover, the Fe-pnictides are semimetals with
strong tendency of the electron-hole pairs to form SDW
state, further supporting classical LRO of the underlying
moments. A fragile nature of the magnetic-LRO in Fe-
pnictides thus implies the presence of a strong quantum
disorder effects, not captured by ab initio calculations that
invariably lead to magnetic order over an entire phase
diagram. The ideas of domain wall motion [17] and local
spin fluctuations [22] were proposed as a source of spin
disorder, but no clear and tractable model of quantum

magnetism in Fe-based SCs has emerged to date. Here
we propose such a model.
Since Fe pnictides are distinct among the other (Mn, Co,

Ni) families, their unique physics should be rooted in
specific features of the Fe ion itself. In fact, Fe2þ is famous
for its spin crossover [26]; it may adopt either of S ¼ 0, 1,
2 states depending on orbital splitting, covalency, and
Hund’s coupling. As the ionic radius of Fe is sensitive to
its spin, Fe-X bond length (X is a ligand) is also crucial. In
oxides, S ¼ 2 is typical and S ¼ 0,1 occur at high pres-
sures only [27]. In compounds with more covalent Fe-X
bonds (X ¼ S, As, Se), S ¼ 0 is more common while
S ¼ 1, 2 levels are higher. The basic idea of this Letter is
that when the covalency and Hund’s coupling effects com-
pete, the many-body ground state (GS) is a coherent
superposition of different spin states intermixed by elec-
tron hoppings, resulting in an average effective spin Seff
whose length depends on pressure, etc. We explore this
dynamical spin-crossover idea, and find that (i) local
moment Seff may increase with temperature explaining
recent data [28], (ii) interactions between Seff contain large
biquadratic exchange, and resulting spin-nematic correla-
tions compete with magnetic LRO, (iii) the ordered
moment m varies widely, but magnon spectra are universal
and scale with Seff as observed [19,20,29], and (iv) singlet
correlations among Seff lead to the increase of the spin
susceptibility with temperature [30].
The Fe ions in pnictides have a formal valence state

Fe2þðd6Þ. Among its possible spin states [Fig. 1(a)], low-
spin ones are expected to be favored; otherwise, the
ordered moment would be too large and robust. The S ¼
0, 1 states, ‘‘zoomed-in’’ further in Fig. 1(b), are most
important since they can overlap in the many-body GS
by an exchange of just two electrons between ions;
see Fig. 1(c). The corresponding � process converts
FeðS ¼ 0Þ-FeðS ¼ 0Þ pair into FeðS ¼ 1Þ-FeðS ¼ 1Þ sin-
glet pair and vice versa; this requires the interorbital hop-
ping which is perfectly allowed for �109� Fe-As-Fe
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bonding. Basically, � is a part of usual exchange process
when local Hilbert space includes different spin states
S ¼ 0,1; hence, �� J. Coupling J between S ¼ 1 triplets
is contributed also by their indirect interaction via
the electron-hole Stoner continuum and, as expected, it

reduces with doping [31] as the electron-hole balance of
a parent semimetal becomes no longer perfect.
The Hamiltonian describing the above physics com-

prises the following three terms: on-site energy ET of
S ¼ 1 triplet T relative to S ¼ 0 singlet s, and the bond
interactions �, J,

H ¼ ET

X
i

nTi
þX

hiji
½��ijðDy

ijsisj þ H:c:Þ þ JijSi � Sj�:

(1)

The operator Dy
ij creates a singlet pair of spin-full T

particles on bond hiji. For a general spin S of T particles,
Dij ¼ P

Mð�1ÞMþSTi;þMTj;�M with M ¼ �S; . . . ; S

denoting the N ¼ 2Sþ 1 projections; physically, N ¼ 3.
The constraint nsi þ nTi ¼ 1 is implied [32,33].
The above model rests on three specific features of Fe

pnictides or chalcogenides: (i) spin-state flexibility of Fe2þ
that can be tuned by pressure increasing ET , (ii) edge-
sharing FeX4 tetrahedral structure allowing ‘‘spin-mixing’’
� term, and (iii) semimetallic nature which makes J values
to decrease upon doping [31].
Figures 1(d)–1(f) demonstrate the behavior of spin-1 T

particles (N ¼ 3) on a single bond. The GS wave function
jc GSi ¼ cos�jAi þ sin�jBi is a superposition of two sin-

glets A ¼ sy1 s
y
2 and B ¼ �ð1= ffiffiffi

3
p ÞPMð�1ÞMTy

1;MT
y
2;�M,

with the ‘‘spin-mixing’’ angle tan2� ¼ ffiffiffi
3

p
�=ðET � JÞ.

The GS energy EGS ¼ ðET � JÞ � ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiðET � JÞ2 þ 3�2
p

. At
� ¼ 0, there is a sudden jump [Fig. 1(e)] from S ¼ 0 state
to S ¼ 1 once the J-energy compensates the cost of having
two T particles. At finite �, the dynamical mixing of spin
states converts this transition into a spin-crossover, where
the effective spin-length Seff ¼ nT ¼ sin2� increases
gradually. Figure 1(f) shows that � term strongly stabilizes
the singlet pair of T particles; this leads (see later) to a large
biquadratic coupling ðS1 � S2Þ2 which is essential in Fe
pnictides [31,34,35].
We are ready to show the model in action, explaining

recent observation of an unusual increase of the local
moment upon warming [28]. This fact is at odds with
Heisenberg and SDW pictures but easy to understand
within the spin-crossover model. Indeed, the spin-length
Seff may vary as a function of ET which, in turn, is sensitive
to lattice expansion; in fact, Gretarsson et al. found that the
moment value follows c-axis thermal expansion � ¼ �c=c.
We add (magnetoelastic) coupling �A�nT in Eq. (1),
affecting ET value, and evaluate � and hnTi� self-
consistently. This is done by minimizing the elastic energy
ð1=2ÞK�2 � K�0T�þ ð1=4ÞQ�4 (�0 is the usual thermal
expansion coefficient), together with the GS energy EGS

given above. This results in a linear relation � ’ �0T þ
ðA=KÞhnTi� between the magnetic moment (¼ 2nT)
and lattice expansion. They both strongly increase with
temperature if lattice is ‘‘soft’’ enough (i.e., small K), as
demonstrated in Figs. 1(g) and 1(h) by employing
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FIG. 1. (a) Schematic view of low (S ¼ 0), intermediate
(S ¼ 1), and high (S ¼ 2) spin states of Fe2þð3d6Þ. (b) S ¼ 0
and S ¼ 1 states differ in two electrons (out of six) occupying
either the same or two different t2g orbitals. The S ¼ 1 state has

a larger ionic radius. (c) The � process generating a singlet pair
of S ¼ 1 triplets T of two Fe2þ ions, both originally in the S ¼ 0
state (denoted by s). (d) The GS wave function of a Fe2þ-Fe2þ
pair is a coherent superposition of two total-singlet states.
(e) Effective spin (average occupation of S ¼ 1 state) depending
on the ratio of the coupling J between S ¼ 1 states and their
energy ET . (f) Energy levels labeled by the total spin value of the
Fe2þ-Fe2þ pair. Only singlet pairs are affected by �. With
increasing �, the S ¼ 1 states are gradually mixed into the
GS. (g) Temperature dependence of the local magnetic moment
2nT , and (h) the c axis thermal expansion. Squares in (g,h)
represent experimental data on Ca0:78La0:22Fe2As2 [28].
Dashed line in (h) is a thermal expansion excluding magnetoe-
lastic term.
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the parameters ET � J ¼ 160 meV, � ¼ 60 meV,
A ¼ 1:5 eV, K ¼ 4:55 eV, Q ¼ 250 eV, and �0 ¼ 0:2�
10�4 K�1, providing a good fit to the experimental data
of Ref. [28].

Turning to collective behavior of the model, we notice
first that for N ! 1 and large �, the GS is dominated by
tightly bound singlet dimers derived from the single-bond
solution. The resonance of dimers on square-lattice pla-
quettes then supports a columnar state [36] breaking lattice
symmetry without magnetic LRO [33]. In the opposite
limit of N ¼ 1, the model shows a condensation of T
bosons. We found that the N ¼ 3 model relevant here is
also unstable towards a condensation of T particles with
S ¼ 1. This condensate hosts interesting properties not
present in a conventional Heisenberg model. We discuss
them based on the following wave function describing
Gutzwiller-projected condensate of spin-1 T bosons:

j�i ¼ Y
i

� ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� �

p
syi þ ffiffiffiffi

�
p X

�¼x;y;z

d��iT
y
�i

�
jvaci; (2)

where � 2 ½0; 1� is the condensate density to be under-
stood as the effective spin-length Seff . The complex unit
vectors di ¼ ui þ ivi (u2i þ v2

i ¼ 1) determine the spin
structure of the condensate in terms of the coherent states

of spin-1 [37,38] corresponding to Tx¼ðTþ1�T�1Þ=
ffiffiffi
2

p
i,

Ty ¼ ðTþ1 þ T�1Þ=
ffiffiffi
2

p
, Tz ¼ iT0. The GS phase diagram

obtained by minimizing h�jH j�i and cross-checked by
an exact diagonalization on a small cluster is presented in
Fig. 2. We have included nearest-neighbor (NN) and next-
NN interactions and fixed their ratio at J2=J1 ¼ �2=�1 ¼
0:7, reflecting large next-NN overlap via As ions. Like in
J1 � J2 model, this ratio decides between (�,�) and (�, 0)
order. Figures 2(a) and 2(b) contain, apart from a disor-
dered (uncondensed) phase (� ¼ 0) at small �, J, three
distinct phases depending on �=ET and J=ET values.
(i) Ferroquadrupolar (FQ) phase with ui ¼ u and vi ¼ 0.
This phase has zero magnetization and is characterized by
the quadrupolar order parameter hS�S� � ð1=3ÞS2���i ¼
�ðð1=3Þ��� � u�u�Þ with u playing the role of the direc-

tor [38]. This state, often referred to as ‘‘spin nematic,’’
appears in biquadratic exchange [37–40] and optical lattice
models [41–44]. (ii) Nonsaturated antiferromagnetic
(ns-AF) phase with stripy magnetic order, specified by
ui ¼ ð0; 0; uÞ and vi ¼ ð0; v; 0ÞeiQ�Ri with Q ¼ ð�; 0Þ.
The LRO moment hSi given by m ¼ 2�uv can take values
from 0 to Seff ¼ �. (iii) Saturated antiferromagnet

(AF) with the same Q vector, but now with u ¼ v ¼
1=

ffiffiffi
2

p
and m ¼ Seff ¼ 1.

The part of the phase diagram relevant to pnictides is
shown in Fig. 2(d). The decrease of J is associated with
doping that changes the nesting conditions [31], while
the increase of ET is related to external or chemical pres-
sure. Figures 2(e) and 2(f), shows that the LRO moment m
quickly vanishes as J (ET) values decrease (increase);
however, the spin-length Seff ¼ � remains almost constant

(�1=2), corresponding to a fluctuating magnetic
moment �1�B. This quantum state is driven by the �
process, which generates the spin-1 states in a form of
singlet pairs.
We consider now the excitation spectrum. It is conve-

nient to separate fast (density) and slow (spin) fluctuations.
We introduce pseudospin 	 ¼ 1=2 indicating the presence
of a T particle, and a vector field d defining the spin-1
operator as S ¼ �iðdy � dÞ. The resulting Hamiltonian,

H ¼ET

X
i

�
1

2
�	zi

�
�X

hiji
�ijð	þi 	þj di �djþH:c:Þ

�X
hiji

Jij

�
1

2
�	zi

��
1

2
�	zj

�
ðdyi �diÞ � ðdy

j �djÞ (3)

is decoupled on a mean-field level. The condensate spin
dynamics is then given by Oð3Þ-symmetric Hamiltonian
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FIG. 2 (color online). (a) Condensate density �ð	 SeffÞ ob-
tained from Eq. (2) as a function of angles #, ’ which parame-
trize the model (1) via ET ¼ cos#, �1 ¼ sin# cos’, and
J1 ¼ sin# sin’. We set �2=�1 ¼ J2=J1 ¼ 0:7. (b) The ordered
spin moment value m. (c) T occupation per site nT obtained by
an exact diagonalization of 12-site cluster, to be compared with
� of panel (a). (d) The ordered moment m as a function of ET

and relative J-strength for fixed �1 ¼ 100 meV, �2 ¼ 0:7�1,

Jð0Þ1 ¼ 140 meV, Jð0Þ2 ¼ 0:7Jð0Þ1 . (e,f) Effective spin length � ¼
Seff and ordered moment m at the (e) ET ¼ 100 meV and (f)
J=Jð0Þ ¼ 0:75 lines through the phase diagram in (d).
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H d¼�X
hiji

~�ijðdi �djþH:c:Þ�X
hiji

~Jijðdy
i �diÞ � ðdyj �djÞ

(4)

with the renormalized ~�ij ¼ �ijh	þi 	þj i 
 �ijð1� �Þ�
and ~Jij 
 Jij�

2. The excitations are found by introducing

a, b, c bosons according to d ¼ ðdx; dy; dzÞ ¼ ða; ub�
iveiQ�Rc;�iveiQ�Rbþ ucÞ and replacing the condensed
one as c, cy ! ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1� na � nb
p

. The resulting (a, b)
Hamiltonian is solved by the Bogoliubov transformation.
A similar approach is used for the 	 sector describing the
condensate density fluctuations �� ¼ �Seff .

Shown in Fig. 3 is the excitation spectra for several
points of the phase diagram. The spin-length fluctuations
�Seff are high in energy. Figure 3(b) focuses on the mag-
netic excitations. In the FQ phase, quadrupole and mag-
netic modes are degenerate and gapless at q ¼ 0. As the
AF phase is approached, the gap at Q decreases and closes
upon entering the magnetic phase. However, the higher
energy magnons (which scale with Seff) are not much
affected by transition, apart from getting (softer) harder
in a (dis)ordered phase; this explains the persistence of
well-defined high-energy magnons into nonmagnetic
phases [19,20].

The magnetic modes in Fig. 3(b) resemble excitations of
bilinear-biquadratic spin model [38]. In fact, the dispersion
in FQ phase can be exactly reproduced [45] from an
effective spin-1 model

P
hiji~JijSi � Sj � ~�ijðSi � SjÞ2, with

~J and ~� given above. A large biquadratic coupling was
indeed found to account for many observations in Fe
pnictides [8,31,34]. We note, however, that this model
possesses FQ and AF phases only and misses the ns-AF
phase, where the ordered moment is reduced already at the
classical level; also, it does not contain the key notion of
the original model, i.e., formation of the effective spin Seff
and its fluctuations.
Singlet correlations inherent to the model may also lead

to an increase of the paramagnetic susceptibility 
ðTÞ with
temperature [30]. Considering the nonmagnetic phase, we
find that for the field parallel to the director u, 
 is
temperature dependent, 
k ¼ 1

2T

R
d!N ð!Þsinh�2 !

2T ,

where N ð!Þ ¼ P
q�ð!�!qÞ is the density of states

(DOS) of magnetic excitations, while 
? is constant. The
average 
 ¼ ð
k þ 2
?Þ=3 (with additional factor of

4�2�2
BNA) gives the measured 
ðTÞ, assuming slow rota-

tions of the director. The DOS shown in Fig. 4(a) is con-
tributed mainly by the regions around (�, 0) and (0, �)
hosting AF correlations. The corresponding thermal exci-
tations lead to the increase of 
 [Fig. 4(b)].
To conclude, we proposed the model describing quan-

tum magnetism of Fe pnictides. Their universal magnetic
spectra, wide-range variations of the LRO moments, and
emergent biquadratic-spin couplings are explained. The
model stands also on its own: extending the Heisenberg
models to the case of ‘‘mixed-spin’’ ions, it represents a
novel many-body problem. Of particular interest is the
effect of band fermions, which should have a strong impact
on low-energy dynamics of the model, e.g., converting the
q ¼ 0 Goldstone modes into overdamped spin-nematic
fluctuations. Understanding the effects of coupling
between local moments and band fermions, including
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implications for SC, should be the next step towards a
complete theory of Fe pnictides.
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