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Lateral composition modulation in InAs/AlAs short-period superlattices was investigated by x-ray
grazing-incidence diffraction and coplanar x-ray diffraction at a “normal” wavelength and at an
anomalous wavelength, for which diffraction from the(200) planes does not exhibit a chemical
contrast. The experimental data were compared with theoretical simulations assuming that the
interfaces consist of a periodic sequence of monoatomic steps. The displacement field in the
superlattice was calculated by continuum elasticity and using a valence-force field method. From the
fit of the experimental data to the theory, the lengths of individual atomic terraces were
determined. ©2004 American Institute of Physics. [DOI: 10.1063/1.1781768]

I. INTRODUCTION

During growth of short-period superlattices(SPS), spon-
taneous lateral composition modulation(LCM) can occur
leading to a quasiperiodic modulation of the thicknesses of
individual layers; resulting one-dimensional nanostructures
(quantum wires) have potential applications in optoelectron-
ics. LCM was observed in several types of SPS’s based on
III-V systems, such as InAs/AlAs on InPs001d1 or InP/GaP
on GaAss001d.2 The origin of the composition modulation is
not fully understood yet; it is a subject of extensive theoret-
ical investigations; see Refs. 3 and 4, among others.

Lateral composition modulation in an AlAs/ InAs SPS
has been studied so far by transmission electron microscopy
(TEM),5 atomic force microscopy,6 photoluminescence7,8

and x-ray diffraction(XRD).9 In these works it was found
that the modulation can occur in various azimuthal
directions,5,6 depending on the mean composition of the
InAs/AlAs superlattice. In superlattices with thicker InAs
layers, a modulation towardsk100l is preferred, while, Al-
rich superlattices are modulated alongk310l.10

This paper represents a continuation of our investiga-
tions published previously,9,11 in which high-resolution x-ray
scattering experiments in laterally modulated InAs/AlAs
SPS’s were analyzed, assuming a sinuslike form of the inter-
faces. However, the actual form of the interfaces substan-
tially differs from this simplified shape, since the interface

consists of a sequence of discrete monolayer steps. In the
present paper, we improve the structure model of a modu-
lated SPS taking this discrete nature of the interfaces into
account. We use a discrete model of the interfaces for the
analysis of XRD data taken both in coplanar and grazing-
incidence geometry(GID).

A substantial step in the analysis of x-ray diffraction data
is a simulation of the elastic strain fields caused by the lattice
mismatch between the constituting layers, and affected by
the local interface profile. For this calculation, we use con-
tinuum elasticity (CE)11,12 and valence force field(VFF)
methods.13 The application of the VFF method for a system
with a free surface is complicated, since one has to take into
account free dangling bonds and a surface reconstruction.
Therefore, in order to simplify the calculations, we restrict
the application of VFF only to an infinite superlattice. On the
other hand, the CE approach is based on an analytic solution
of continuum elasticity equations and it can be used also in a
close vicinity of the surface. Showing that the results of both
methods coincide with a good precision far from the surface,
we confirm the general validity of the CE method, which was
eventually used for the simulation of scattering measure-
ments.

The paper is organized as follows. X-ray experiments are
described in the following section; Sec. III deals with the
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methods of strain calculation in modulated SPS’s; the com-
parison of the measured diffraction data with the theory is
presented in Sec. IV.

II. EXPERIMENTS

The sample named EA0532 was investigated already in
our previous works.9,11 The sample was grown by molecular
beam epitaxy at 545°C and using the deposition rate of
0.35 ML/sec,9 where ML stands for monolayer. The super-
lattice contains 100 InAs/AlAs periods; the nominal thick-
nesses of InAs and AlAs layers are 1.9 and 1.5 monolayers.
The superlattice stack is deposited on a 100 nm thick buffer
layer of InnAlmAs grown on InPs001d; the buffer layer has
the same chemical composition as the average composition
of the SPS. Thus, the SPS as a whole is lattice matched to the
buffer layer and no misfit dislocations in the SPS are present,
which was confirmed by TEM.1,14 An important parameter
determining the LCM type is the substrate miscut; in our
sample the miscut angle isb=1.8±0.2° and the azimuthal
direction of the miscut is inclined from[100] by about 10°.
The direction of the LCM exactly coincides with the miscut
direction. The period of the LCM was determined from TEM
to L=280±10 Å.

The x-ray experiments were performed at the ID10B
beamline at ESRF, Grenoble, using the wavelengthl
=1.54 Å and at the ID01 beamline at ESRF using the anoma-
lous wavelengthl=3.366 Å. At the latter wavelength, AlAs
and InAs have the same polarizabilities in diffraction from
(200) planes and therefore, the diffracted intensity depends
only on the elastic deformation field in the sample and not on
the chemical composition. The experiments were performed
GID and in a nearly coplanar XRD geometry, sketched sche-
matically in Fig. 1. In both cases, a linear position-sensitive
x-ray detector(PSD) was used.

The GID 200 diffraction at 3.366 Å was measured with
the PSD oriented perpendicular to the surface, so that one
PSD scan represents the dependence of the scattered inten-
sity on the exit anglea f. In this diffraction, the in-plane
component of the(200) diffraction vector was parallel to the
LCM direction. The reciprocal space map with the incidence
angleai =0.5°, and the penetration depth of 90 Å in the co-
ordinatesQxQz is plotted in Fig. 2(a), theQx axis is parallel
to the in-plane component of the diffraction vector(see Fig.
1—radial axis). Nearly periodic LCM gives rise to lateral
intensity satellites along the LCM direction. Due to local
differences in the LCM direction and an azimuthal diver-
gence of the primary beam, the lateral satellites are slightly

smeared alongQy and it was possible to detect the satellites
even for a LCM direction misoriented from[100]; up to the
±3rd-order satellites are visible. Very similar results were
obtained for the incidence angleai =0.7°, corresponding to
the penetration depth of about 500 Å. This demonstrates a
nearly full vertical homogeneity of the superlattice.

In the XRD experiments atl=3.366 Å, the PSD was
parallel to the sample surface(Fig. 1). This arrangement
made it possible to measure a two-dimensional intensity dis-
tribution in a reciprocal planeQz=const parallel to the
sample surface. The reciprocal-intensity map was recon-
structed from a series ofc-scans taken for various azimuthal
directions of the primary x-ray beam. Three maps at different
Qz’s were measured around the symmetrical 002 reciprocal
lattice point. In Fig. 2(b), only the map atQz=2.136 Å−1 is
plotted, the other maps measured atQz=2.12 Å−1 and
2.15 Å−1 are very similar; this confirms again the vertical
homogeneity of the sample. In these intensity maps, the lat-
eral satellites can be resolved up to the order of ±3.

Using l=1.54 Å and the GID geometry, we have mea-
sured a full three-dimensional intensity map around 400 re-
ciprocal lattice point with the penetration depth of about
210 Å, using a PSD perpendicular to the sample surface. The
measurement procedure is described in our previous work.11

In Fig. 2(d) is shown only an extracted line scan through the
lateral maxima. In the map, the satellites up to the order ±4
are visible. The measurement was performed only to find the
exact direction of the LCM modulation.

The XRD measurement at the same wavelengths1.54 Åd
was performed in the usual setting with the PSD detector
perpendicular to the sample surface. This arrangement made
it possible to measure the intensity distribution in a vertical
reciprocal plane around the asymmetric reciprocal lattice
point 404 [Fig. 2(c)]. In XRD geometries with both wave-
lengths, the penetration depth exceeded the total superlattice
thickness.

FIG. 1. Experimental setup of the GID(a) HAD (b) geometries. Thex and
y axes are parallel to[100] and[010], respectively. Thez axis is parallel to
the growth direction(close to[001]). The gray stripes denote the orientation
of quantum wires produced by LCM.

FIG. 2. Measured reciprocal-space intensity maps and extracted cuts
through the lateral maxima with fitted Lorentzian profiles(insets): (a) GID
200 atl=3.366 Å, (b) XRD 002 atQz=2.136 Å−1 using l=3.366 Å; Q1

and Q2 are parallel to[110] and [1–10], respectively,(c) XRD 404 at l
=1.54 Å, (d) line scan extracted from three-dimensional map XRD 400 at
l=1.54 Å. In the maps, the step of the intensity contours is 101/3.
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The scattered intensity was detected as a function of the
scattering vectorQ=K f −K i, whereK i,f are the wave vectors
of incident and scattered beams, respectively. In GID, chang-
ing the angle of incidenceai, we tune the penetration depth
of the incoming radiation, so that we can suppress the scat-
tering in the substrate.

From the intensity maps measured both in the GID and
XRD geometries, the mean period of the LCM was deter-
mined to L=s280±10dÅ, which agrees well with TEM
observations.14 From theQxQz intensity maps in Fig. 2 it is
obvious that the row of the lateral satellites isnot parallel to
the sample surface. The profiles of different interfaces in the
SPS are replicated; the replication direction is always per-
pendicular to the row of the satellites in theQxQz plane. In
our case, the replication direction is tilted byg=s4±1d° off
the growth direction; the azimuthal direction of this tilt is the
same as that of the LCM.

III. CALCULATION OF THE DISPLACEMENT FIELD

For the calculation of the elastic displacement field in a
SPS with a lateral modulation, we have used a model of
monoatomic stairs(Fig. 3). From the mean LCM periodL
and the miscut angleb=1.8±0.2° it follows that three mono-
atomic steps(and three atomically flat terraces) fit in one
LCM period; the widths of these terraces averaged over
many LCM periods are denotedL1,2,3. The obvious relation
L1+L2+L3=L holds.

We assume that all the interfaces in the SPS stack have
the same values ofL1,2,3. The positions of the steps at
equivalent interfaces are laterally shifted according to the
replication angleg determined from the experimental data.
The sequence of the terraces at adjacent InAs/AlAs and
AlAs/ InAs interfaces are shifted laterally byL /2; this shift
leads to a lateral modulation of the average chemical com-
position of the SPS. The structure model is schematically
sketched in Fig. 3, where all the model parameters, namely
L1,2,3,b ,g, are explained.

A. Continuum elasticity method

The method is based on the approach published previ-
ously in Refs. 11 and 12, based on the analytic solution of
the elastic equilibrium equations,

] s jk

] xk
+ f j = 0, j ,k = 1,2,3, s1d

wheres jk are the components of the stress tensor,

f j = − sC11 + 2C12d
] dsxd
] xj

s2d

is the j th component of the density of the volume force,
C11,C12 are elastic constants, anddsxd is the local lattice
mismatch with respect to the substratesInPd in the pointx
=sx1,x2,x3d. We assume a flat surface with the boundary
conditions

s jkusurfacenk = 0, s3d

wherenk is kth component of the surface normal. We have
also assumed that(i) the elastic constants do not depend on
the chemical composition,(ii ) the modulation is perfectly
periodic in the directionxi f100g, and(iii ) the sample struc-
ture is completely homogeneous alongyi s010d (i.e., along
the monoatomic steps). Then, due to the cubic symmetry of
the matrixCjk of the elastic constants, the displacement field
has only two nonzero componentsux,uz, depending only on
the coordinatesx;x1 (parallel to the surface and to the LCM
direction) andz;x3 (parallel to theoutwardsurface normal).

Assuming a perfect periodicity inx with the periodL, we
can express the displacement field as the Fourier series,

usx,zd = o
k

uFTsk,zdeikx, s4d

wherek is an integer multiple of 2p /L. Putting from Eq.(4)
into Eqs.(1) and (3), we obtain a system of ordinary differ-
ential equations,

Â
d2

dz2uFT + iB̂
d

dz
uFT − ĈuFT = P, s5d

where

Â = SC44 0

0 C11
D ,

B̂skd = S 0 ksC12 + C44d
ksC12 + C44d 0

D , s6d

Ĉskd = Sk2C11 0

0 k2C44
D ,

and

uFTsk,zd = Suxsk,zd
uzsk,zd

D ,

s7d

Psk,zd = sC11 + 2C12dS ikdFTsk,zd
d/dz dFTsk,zd

D .

The one-dimensional Fourier transform of the local mis-
matchdsx,zd with respect tox is denoted asdFTsk,zd. The
boundary conditions foruFT at the free surface and in the
substrate far below the superlattice are

FIG. 3. The structure model of interfaces in the superlattice.L is the LCM
period alongx axis, L1,L2,L3 are the terrace lengths,g is the replication
angle, andb is the miscut angle.
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Â
d

dz
uFT + iD̂uFTuz=0,z→−` = 0, s8d

where

D̂ = S 0 kC44

kC12 0
D . s9d

Equation(5) can be analytically solved finding the general
solution of the homogenous equation

Â
d2

dz2uFT + iB̂
d

dz
uFT − ĈuFT = 0 s10d

and one particular solution of the full equation. Details of the
procedure can be found elsewhere.12

B. Valence-force field method

The VFF method is based on the minimization of the
total energy of the crystal. This energy is expressed by means
of an interatomic potential depending on the mutual posi-
tions of pairs and triplets of neighboring atoms. Several em-
pirical or semiempirical interatomic potentials have been
used in the literature, we have chosen the potential obtained
by Keating,15 and extended by Martin13 for zinc-blende
structures,

V =
1

2o
i
F1

4o
j=1

4
ai j

aij
2 svi j

2 − 3aij
2d2

+
1

2 o
j=1,k. j

4
bi jk

aijaik
svi j ·vik + aijaikd2G , s11d

whereai j , bi jk are potential constants,vi j denotes the vector
connecting theith and thej th atoms, andaij is 1

4 of the lattice
parameter. The sum overi runs over all atoms in the system,
the sums overj andk comprise only four nearest neighbors
of the atomi. The first term in the expression expresses the
bond length change from the strain-free state, the second
describes the change in the bond angles.

Minimizing the total energy in Eq.(11), we obtain a
system of 3N cubic equations, whereN is the total number of
atoms in the system. Direct solution of the system is impos-
sible and we used a numerical approach described in Ref. 16;
the method consists in the following. In each computation
step, we minimize the energy, allowing one single atom to
deviate from its starting position, other atoms are held fixed.
One iteration step consists in a sequence ofN computation
steps, i.e., in a subsequent finding of the optimum positions
of all N atoms. The iteration steps are repeated until the
maximum change in the atomic positions between two last
iteration steps is smaller than a requested accuracy.

In order to simplify the model, in the application of VFF
we have restricted to aninfinite periodic multilayer and we
havenot included the surface. Therefore, the results of the
calculation do not consider both the surface relaxation and
the influence of the substrate, and they can be compared with
the results of the CE method(see above) only far below the
sample surface and far from the substrate interface.

C. Comparison of the CE and the VFF methods

The components of the strain tensor,

e j ,k =
1

2
S ] uj

] xk
+

] uk

] xj
D, xj ,k = x,z;uj ,k = ux,uz,

obtained by the CE method are plotted in Fig. 4. From the
figures it is obvious that the strain field in the SPS, averaged
vertically and laterally over the SPS and LCM periods, is
homogeneous except for<5 nm thin regions at the free sur-
face and at the substrate interface.

We compared the results of CE and VFF in the region of
the homogeneous deformation; Fig. 5 presents the displace-
ment componentsux,z in one bilayer calculated by both meth-
ods. The maximum difference inux and uz is about 0.14 Å
and 0.095 Å, respectively. The corresponding relative differ-
ence inux is about 6.5 %; sinceuz is rather small(below
<0.5 Å), this small difference inuz makes relatively about
26%.

The differences in the displacement components ob-
tained by CE and VFF methods are caused by different ap-
proximations used. The CE method approximates the actual
crystal lattice by a continuum. The error introduced by this
continuum approach is substantial, if the smallest size of the
structure details is comparable to the lattice parameter. This
is the case for the thicknesses of individual layers; the LCM
period, on the other hand, is much larger. Therefore, the con-
tinuum approximation affects the values ofuz rather thanux.
Other important approximation made in the CE method is the
independence of the elastic constants on the chemical com-
position. In addition, the CE method assumes a linear elas-
ticity, i.e., the elastic energy in the continuum approximation
is proportional to the square of the displacements, whereas

FIG. 4. exx andezz components of the strain tensor. Zero strain corresponds
to a nondeformed layer material. Contour step is 1%, almost all contours are
on the layer intrerfaces.

FIG. 5. Contours of theux (a) and uz (b) components of the displacement
field, defined with respect to the InP substrate lattice, computed by the CE
(solid lines) and by the VFF methods(dashed lines). Contour steps are
0.35 Å and 0.9 Å in panels(a) and(b), respectively. Thick lines denote the
interfaces between the InAs and AlAs layers.
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the interatomic potential in Eq.(11) contains the fourth pow-
ers of the displacements. For the actual mismatch values,
however, the nonlinearity plays a minor role. Moreover, the
VFF method considers the true point symmetryTd of the
zinc-blende unit cell, whereas the matrix of the elastic con-
stantsCjk exhibits a higherOh cubic symmetry. This differ-
ence, however, can be ruled out for the LCM orientation
[100].

We have studied the influence of these differences to the
simulated x-ray diffraction intensities(see Sec. IV). We cal-
culated the intensities of the lateral maxima according to Eq.
(12) from the displacement field obtained by the CE and the
VFF methods; in all geometries and wavelengths used in our
study, the relative difference in the satellite intensities ob-
tained by these methods do not exceed 10%; this difference
is smaller than the smallest difference achieved between the
measured and simulated diffraction data.

IV. SIMULATION OF X-RAY DIFFRACTION

The diffracted intensity was calculated by means of the
distorted-wave Born approximation.17,18 The scattering vec-
tor Q=K f −K i was corrected to refractionQT=k f −k i, where
k i,f are the refraction-corrected wave vectors of the primary
and scattered beams, respectively. The refraction correction
comprises also absorption, thus, thez components of these
vectors are complex. The scattered intensity is given by the
expression12

IsQd = constutitfu2UE xhsr de−ih·usr de−iq·rd3rU2

,

q = QT − h, s12d

where h is the reciprocal lattice vector(diffraction vector)
defined with respect to the lattice reciprocal to the mean
lattice of the SPS.ti, tf are the transmission coefficients of
the surface for the primary and the scattered wave, respec-
tively, andxhsr d is thehth Fourier coefficient of crystal po-
larizability. This coefficient depends on the coordinates
sx,zd, due to the local chemical composition in the sample.

Assuming a perfectly periodic structure alongx, the scat-
tered intensity consists of a periodic sequence ofd-like peaks
(intensity satellites) in the positionsqxp=ps2pd /L, wherep
is an integer. In an experimental reciprocal-space map, the
peaks are smeared, due to a limited experimental resolution
in reciprocal space and due to random deviations from the
periodicity of the LCM. If the deviations obey a short-range-
order model, in the first approximation, they do not change
the integrated intensities of the satellites. Therefore, we have
compared the integrated intensities of the measured lateral
satellites with the satellite intensities calculated assuming a
perfectly periodic LCM.

The vertical periodicity of the SPS gives rise to super-
lattice satellites along theQz axis. All our measurements
were performed around the zero-order superlattice satellite,
thus for Resqzd<0. Then the intensity of thej th lateral sat-
ellite is proportional to the square of thej th coefficient in the
Fourier series ofxsxdexpf−ih ·usxdg along x. Since the dif-
fraction vectorh in the GID arrangements is nearly parallel
to the sample surface, only theux component affects the

scattered intensity in this geometry. In contrast, the intensity
diffracted in a symmetric coplanar XRD arrangement de-
pends only onuz. Both components of the displacement field
influence the reciprocal-space map measured in an asymmet-
ric XRD setup.

From the two- and three-dimensional reciprocal-space
maps we have extracted linear scans crossing the lateral sat-
ellites. Then, we determined the integrated intensities of
these satellites by fitting to a periodic sequence of Lorentzian
profiles(Fig. 2). From the fit of these integrated intensities to
theoretical values calculated using the CE approach, we have
determined the widthsL1,2,3 of the terraces. Both the mea-
sured and the fitted integrated intensities of the lateral satel-
lites are plotted in Fig. 6. For the fit we have used the inte-
grated intensities of the satellites measured in GID and XRD
around 200 and 002 reciprocal lattice points, using the wave-
length 3.366 Å. The resulting terraces length areL1

=118±25 Å, L2=120±24 Å, andL3=42±30 Å. We have
achieved a fairly good correspondence of experimental and
calculated data.

Similar procedure was used for the evaluation of GID
and XRD measurements in diffractions 400 and 404, respec-
tively, using the wavelength of 1.54 Å, and we have obtained
L1=121±6 Å,L2=128±4 Å, andL3=31±7 Å. The obvious
discrepancy between the experimental and calculated inte-
grated intensities in the coplanar 404 diffraction can be as-
cribed to the fact that, in this case, the penetration depth of
the primary beam exceeds the total SPS thickness; most
likely, the intensities of the ±1st satellites are affected by the
diffuse scattering from defects in the buffer layer under the
SPS.

In spite of the anomalous nature of the scattering at
3.366 Å, the experiments at the “usual” wavelength ofl
=1.54 Å are much more sensitive to the terrace lengths. This
is due to the following reasons.

(i) The diffraction vectorh in diffraction 400 is 2 times
longer than in 200 and 002; in diffraction 404 even
2.8 times. Since, the displacement fieldusr d enters the
formula (12) in the scalar producth ·u, the sensitivity
of the scattering to the displacement increases with
increasinguhu.

FIG. 6. Comparison of measured(circles) and calculated integrated intensi-
ties(squares) of lateral maxima:(a) GID 200 atl=3.366 Å,(b) XRD 002 at
l=3.366 Å,(c) XRD 404 atl=1.54 Å, and(d) GID 400 atl=1.54 Å.
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(ii ) The polarizability at the wavelength 3.366 Å in dif-
fraction 002(or 200) does not depend on the chemical
composition and therefore the chemical contrast is
zero. The nonzero chemical contrast at 1.54 Å con-
tributes to the sensitivity of the scattering process to
the terrace lengths.

V. DISCUSSION

In Sec. III C we have compared the displacement fields
in a short-period laterally modulated superlattice calculated
by a CE and VFF methods. Since, in VFF, we have neglected
the influence of the free surface and the substrate-SPS inter-
face, this comparison can be performed only in a region far
away from these interfaces, where the components of the
strain tensor averaged over the superlattice period do not
depend on the vertical coordinatez. From this comparison it
follows that the CE approach is relevant for the simulation of
x-ray diffraction even if the individual layers in the SPS are
only few monolayers thick. In Fig. 4 the componentsexx and
ezz of the strain tensor are plotted; the strain components are
defined with respect to the nondeformed material of the par-
ticular layer. It is obvious that in the In-rich region(the right
half of the figure), the InAs layers are only slightly laterally
compressed(less than 1%), while the AlAs layers are in
strongly laterally stretched(about 6%) and vertically com-
pressed(about 7%). In the Al-rich regions(the left half of the
Fig. 4), the situation is opposite—the AlAs layers are only
slightly laterally stretched, while InAs layers are strongly
laterally compressed and vertically stretched.

X-ray diffraction intensities were simulated using the
CE-calculated displacement field, since the surface relax-
ation plays a substantial role, especially in GID, where the
penetration depth of the primary radiation is comparable to
the depth, where the surface relaxation takes place.

The structure model used for the evaluation of experi-
mental data neglects a vertical inhomogeneity of the SPS
structure, since we have assumed that all the structure param-
etersL1,2,3,b ,g are constant in the superlattice stack. Actu-
ally, at the beginning of the superlattice growth, the structure
gradually evolves until a stationary growth is reached; this
stationary growth mode is observed after the completion of
about 10–20 bilayers.1,10A possible dispersion of the terrace
lengthsL1,2,3 and local inhomogenities of the LCM period
broadens the widths of the lateral satellites, in the first ap-
proximation, however, the integrated intensities of the satel-
lites remain unchanged. From the widths of the satellites we
can estimate the dispersion of the terrace lengths to
s1000±500dÅ.

Our results were compared with results in our previous
work,11 where the LCM was modeled by acontinuouslateral
modulation of the mean chemical composition of the SPS. In
this paper we found the amplitude of the composition modu-
lation Dx=s16±0.02d%. This result is in a good agreement
with the previous work; from the obtained lengthsL1,2,3 the
valueDx=s16±0.02d% follows.

The consistency of our model is also supported by the

agreement of the values of the terrace lengthsL1,2,3 obtained
by means of various scattering geometries using a “normal”
and an anomalous wavelength.

VI. CONCLUSION

We have calculated the displacement field in the
InAs/AlAs short-period superlattice with laterally modulated
thicknesses of individual layers by means of continuum elas-
ticity and a valence-force field method; we have achieved a
good coincidence of the results of both methods. Small dif-
ferences(locally up to 10% in the values of the strain com-
ponents) were caused by the neglection of the discrete ato-
mistic nature of the superlattice and by the fact that the
continuum method neglects the differences in the elasticity
constants of constituting materials and nonlinearity effects.

On the basis of simulated elastic displacement field we
have calculated x-ray diffraction intensities and compared
with experiments performed in several geometries and two
different wavelengths. From this comparison we have deter-
mined the sizes of the monoatomic terraces constituting the
interfaces.
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