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Because the penetration depth of light in the band gap is of the order of one lattice constant of a photonic
crystal, structures such as circular photonic crystals �CPC� confine light. We show that an extension of the CPC
concept to holes in any high-index material yields confinement only in the case that the hole size is varied
jointly. Applying the Bloch-Floquet theorem in such a rotationally symmetric case leads to a decomposition of
the Green’s tensor. By using the photonic local density of states �LDOS� components in a CPC, the eigenfre-
quencies of localized cavity modes can be efficiently found.
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I. INTRODUCTION

Photonic band-gap materials are artificial structures with
spatial variation of permittivity. For quite a long term, peri-
odicity has been considered as an essential requirement for
the formation of a photonic band gap. Investigations on pho-
tonic quasicrystals,1 curvilinear photonic crystals,2 and circu-
lar photonic crystals3 �CPC� have changed this view. CPCs
proposed and investigated by Horiuchi et al.3 consist of alu-
mina rods of constant radii arranged in concentric circles.
The distance between rods on each concentric circle was
kept constant as well as the difference between radii of ad-
jacent circles. It was shown that such CPCs have isotropic
photonic gaps. However, the papers cited above find com-
plete band gaps in these two-dimensional structures only for
the case of dielectric rods in air and not for air holes in a
dielectric material. For airholes with constant size in a di-
electric material complete photonic band gaps do not form
because the necessary lattice distortion does not preserve the
gap. This can best be proved by using the reasoning of Ref.
2: In order to construct a circular photonic crystal, a lattice
distortion changing the local symmetry from hexagonal to
square, passing through a rhombic structure, is necessary. By
plotting the band-gap map for the transition towards a square
structure it is immediately seen that the width of the band
gap is strongly reduced and confinement vanishes. This is
mainly due to the properties of the square-lattice band gap of
a structure with holes in a high-index material. Therefore
within this article a further degree of freedom, the variation
of the structure—i.e., hole size— is introduced, which allows
us to keep huge band gaps.

In the presence of a photonic band gap �PBG� the modes
can be confined within a well-constructed microcavity2,4,5

promising various applications, such as microscopic lasers.6

Eigenmodes of photonic cavities and other defects were cal-
culated using a number of methods, e.g., plain-wave expan-
sion and the finite-difference time-domain method. Recent
works show that the local density of states �LDOS� is a suit-
able tool to investigate the confinement of modes in various
cavities.7 The LDOS is directly connected to the emission
rate of an embedded point source at a given position, for

example, an excited atom. For a cavity in an infinite struc-
ture, the LDOS vanishes within the band gap, and therefore
spontaneous emission is inhibited. When the transition fre-
quency approaches some eigenfrequency of the cavity, the
rate of spontaneous emission can be extremely increased.
The LDOS can be conveniently obtained from the electro-
magnetic Green’s tensor of the photonic crystal. In the case
of two-dimensional photonic crystals consisting of dielectric
cylinders, the exact theory of multipole expansions is well
suitable for calculation of the Green’s tensor.8

In this paper we introduce a class of PBG structures,
where we vary not only the periodicity but also the size of
dielectric holes/rods, in order to construct scattering arrange-
ments which confine the light for the case of airholes in
dielectrics, named variable-size CPC �VSCPC�. The forma-
tion of VSCPC is brought up by the question: Which pair
combinations of hole radii versus hole distances form a stop
band at a given frequency? Such an approach is meaningful,
provided that the penetration depth of light in the band gap is
less or of the order of one lattice constant of a photonic
crystal. Then changes in the subsequent layers yielding the
same band gap will give an additional freedom in construct-
ing VSCPC. This question on the combinations of hole radii
versus hole distances can best be answered by looking at
band-gap maps �stop-band frequencies vs period� as dis-
played in the inset of Fig. 1 for the case of the transverse-
electric �TE� polarization �Hz component�. Using the scaling
properties of the Maxwell equations and fixing the vacuum
wavelength �0 at 1.55 �m this band-gap map can be imme-
diately converted into the curve indicated by 0% gap rate in
the main plot of Fig. 1. In the same figure the contour plots
for 10% and 25% gap rate �width of stop band/midgap fre-
quency� are shown, together with the straight line indicating
the touching of the etched holes. This freedom in construc-
tion is justified by two facts: �i� the penetration depth of light
in the band gap is of the order of one lattice constant,2 and
�ii� the band-gap maps exhibit band gaps for different radius/
period ratios,9 so taking into account the previous argument,
radius and period must be varied jointly for building a band
gap at a given frequency. An example of a 16-fold VSCPC
can be seen in Fig. 5, where this additional freedom has been
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used and so a structure similar to a hexagonal one can be
kept.

II. THEORY

For the investigation of the VSCPC structures, in the fol-
lowing we provide an efficient method based on multipole
expansions taking advantage of symmetry in a VSCPC. Let
us consider a general case of a two-dimensional VSCPC pos-
sessing N -fold rotational symmetry around the z axis.

The electromagnetic wave can be decomposed into two
independent polarization states �determined by Ez, also
called TM, or Hz, also called TE�. We assume that the time
dependence is of the form e−i�t for all the fields. For the Hz
polarization, the eigenmodes obey the following equation:

ĤTEHz�r� =
�2

c2 Hz�r� , �1�

where ĤTE is the Hermitian operator

ĤTE = − �
1

��r�
� . �2�

For the case of the Ez polarization, we introduce the field
Qz�r�=���r��Ez�r��. Then, the eigenmode equation for Qz

contains a Hermitian operator of the form

ĤTM = −
1

���r�
�2 1

���r�
. �3�

Due to the N-fold rotational symmetry of the permittivity,
both these operators commute with the unitary operator

R̂2�/N of an elementary rotation through the angle 2� /N. A
pair of commuting operators, one Hermitian and the other
unitary, can be simultaneously diagonalized. Therefore, it is
possible to obtain the set of eigenfunctions satisfying

R̂2�/NQzn�r� = e−iKn�2�/N�Qzn�r� , �4�

where Qzn�r� denotes the nth eigenmode of ĤTM �and
equivalently for Hz�. Equation �4� represents a rotational

analogy of the well-known Bloch-Floquet theorem in the
theory of crystalline solids. Thus, we call K the rotational
Bloch number. Uniqueness of the field with respect to full
rotation through 2� requires K to be an integer. It is suffi-
cient to take the rotational Bloch number from the set
�0,1 ,2 ,… ,N−1�. The consequences of Eq. �4� may be dem-
onstrated using an analogy with the electronic bands of a
perfect crystal. Instead of a continuous quantum number
�e.g., Bloch vector k� as it shows up in the case of the infinite
translational periodicity, the modes are now classified using a
discrete quantity �rotational Bloch number�, which is a con-
sequence of the discrete rotational symmetry with finite N.
This leads to a finite number of eigenmodes confined within
the VSCPC structure compared to the continuum of elec-
tronic states in a perfect crystal.

The eigenmodes appear as resonances in the frequency
dependence of the power radiated by a virtual oscillating
dipole moment10 or as peaks in the frequency dependence of
the LDOS. Because of the direct connection between the
LDOS and the emission rate of a dipole source,11 both meth-
ods to find eigenfrequencies are equivalent. We will adopt
the latter one and use the electric Green’s tensor Ge to cal-
culate the corresponding LDOS � via12

��r;�� = −
2�

�c2 Im�Tr Ge�r,r;��� . �5�

The Green’s tensor can be split for the two polarizations,
and its calculation involves solution of three scalar
problems,8 namely finding Green’s functions of the Hermit-

ian operator Ĥ=�2+n2�r��2 /c2, which commutes with

R̂2�/N. In the case of the Ez polarization the twodimensional
Green’s function satisfies the equation

ĤG�r,rs� = ��r − rs� , �6�

representing Green’s problem with a monopole source,
whereas for the Hz polarization the righthand side contains
dipole source contributions −�y��r−rs� and �x��r−rs�,
respectively.8 In addition to Eq. �6�, boundary conditions for
the appropriate polarization have to be satisfied.

Equation �4� raises the question: How it is possible to
separate contributions of different K values in the optical
response of the VSCPC to be able to classify the eigenmodes
according to their rotational Bloch numbers? This can be
achieved by performing Fourier analysis with respect to the
angular coordinate. For this purpose we define the operator

F̂K =
1

N
�
j=0

N−1

eiK�2�j/N�R̂2�/N
j , �7�

which acting on an arbitrary function produces a function
satisfying Eq. �4�. Applying this operator, we can transform
Eq. �6� into set of N independent equations for the K com-
ponents of the Green’s function defined by GK�r ,rs�
= F̂KG�r ,rs�. This set reads

FIG. 1. Gap-rate equicontour plot showing the pair values of
hole radius versus distance for a hexagonal structure of air holes in
silicon �n=3.4�. Hz polarized light with �0=1.55 �m assumed. The
inset shows stop-band frequencies vs relative radius.
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ĤGK�r,rs� = F̂K���r − rs��, K = 0,1,…,N − 1. �8�

The LDOS components corresponding to different values of
K are then calculated by means of Eq. �5� with Tr Ge re-
placed by GK. In these components resonant peaks are ex-
pected at the eigenfrequencies of modes with matching rota-
tional Bloch number. The case of dipole sources for the Hz
polarization can be treated in a similar way.

Using the identity operator expressed in terms of F̂K for

all rotational Bloch numbers �K=0
N−1F̂K= Î, it is also possible to

obtain the complete Green’s function from the set of its K
components

G�r,rs� = �
K=0

N−1

GK�r,rs� . �9�

The same relation holds between the complete LDOS and its
K components.

So far, our considerations have required only N-fold rota-
tional symmetry of the system. Now we assume a more spe-
cial case of a VSCPC consisting of Nring rings of dielectric
rods positioned in the background medium with the refrac-
tive index n0. Each ring consists of N cylinders with the
same radii and refractive indices. An example of such a
structure is presented in Fig. 2.

The cylinders in the VSCPC are labeled by rl,j, where the
first index indicates the number of the ring and the second
one the number of the segment, ranging from j=0 to j=N
−1. The mutual relation between the positions of the cylin-

ders on the same ring is given by rl,j =R̂2�/N
j �rl,0�. Next, we

introduce the local polar coordinate system �rl,j ,�l,j� with
origin at rl,j.

Since the structure consists of cylinders, it is convenient
to use the multipole expansion method of Ref. 8 modified for
our case. We restrict ourselves to the Ez polarization and the
source positioned outside the cylinders. In other cases, simi-
lar modifications have to be performed. In order to guarantee

Eq. �4� and Eq. �8�, we write the K-component of the Green’s
function as the multiple multipole expansion

GK�r,rs� = F̂K	 1

4i
H0

�1��n0k
r − rs
�

+ �
l=1

Nring

�
p=−	

	

Bp
l Hp

�1��n0krl,0�eip�l,0� , �10�

where Hp
�1� are the outgoing Hankel functions and k=� /c.

The multipole coefficients Bp
l have to be chosen in such a

way that the boundary conditions are satisfied at the surface
of each cylinder. Following the procedure in Ref. 8, i.e.,
applying Graf’s addition theorem and comparing resulting
expansions, we obtain a linear system determining the mul-
tipole coefficients

Mp
l Bp

l + �
q=1

Nring

�
m=−	

	

Bm
q �

j=0,�q,j���l,0�

N−1

ei�K−p��2�j/N�


Hp−m
�1� �n0krl0,qj�ei�m−p��l0,qj

= −
1

4i
�
j=0

N−1

eiK�2�j/N�Hp
�1��n0krl0,sj�e−ip�l0,sj , �11�

where Mp
l has the same definition as in Ref. 13. We have also

introduced quantities rl0,qj and �l0,qj denoting the relative po-
sition rq,j −rl,0 expressed in polar coordinates. Finally, rl0,sj

and �l0,sj correspond to R̂2�/N
j �rs�−rl,0.

III. RESULTS AND DISCUSSION

As a first example we present a 12-fold VSCPC of silicon
rods ��=11.6� in air for the Ez polarization. In Fig. 3�a� the
complete LDOS as well as the its K=0 component is plotted
in reduced form �c2� /2�. The frequency dependence of the
complete LDOS, especially its huge reduction for a range of
frequencies by 2–5 orders of magnitude, clearly reflects the
presence of the band gap—approximately between �a /c
=1.3 and �a /c=2.3. Several peaks corresponding to local-
ized modes appear within the band gap. In this particular
case, the number of the confined modes is small due to the
small cavity radius compared to the wavelengths of the gap.
Fig. 3�a� is also a graphical representation of Eq. �9�. For
instance the peak in the complete LDOS at �a /c�1.9 is
mainly determined by the K=0 component. Figures
3�b�–3�e� show field distributions of localized modes with
K=0, 1, 2, and 3 related to the peaks labeled in Fig. 3�a�. The
field distributions were computed using the corresponding
component of the Green’s function, since the other compo-
nents are negligible for a resonant mode. Please note that for
the high-index rods as in this example a joint variation of
hole size and distance is not necessary in order to preserve
the band gap, nevertheless this structural freedom can be
used as shown in Fig. 3�b�–3�e�.

The field distributions can be roughly estimated when re-
garding the VSCPC as a circular resonant cavity surrounded
by an impenetrable wall. The eigenmodes in this case are
proportional to Jm�n0kr�eim�. The modes with m

FIG. 2. Two-dimensional circular photonic crystal with seven-
fold rotational symmetry consisting of three rings. Center positions
of two neighboring cylinders in the same ring are labeled by rl,j and
rl,j+1.
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=K±N ,K±2N ,… correspond to the rotational Bloch num-
ber K. The eigenfrequencies are determined by the boundary
condition at the inner surface of the cavity, i.e., Jm�n0kR�
=0, where R is the cavity radius. In our case the dielectric
holes form such an impenetrable wall for a range of frequen-
cies. The effective cavity radius corresponds approximately
to the radius of the first ring.

To discuss the symmetry of the modes, we use the group
theory. The symmetry group C12v of our system consists of
nine classes of conjugate elements

C12v = �E,2C12,2C6,2C4,2C3,2C12
5 ,C2,6�x,6�d� .

Together with the rotations, there are 12 mirror planes. Due
to this additional symmetry, the rotational Bloch numbers K
and 12−K are equivalent. The group C12v has four one-
dimensional irreducible representations A1 ,A2 ,B1 ,B2. The A
representations correspond to K=0, whereas the B represen-
tations correspond to K=6 �or, generally, to K=N /2 for any
even N�. The other rotational Bloch numbers are related to
the two-dimensional irreducible representations E1−E5. As a
consequence, the K=0 mode in Fig. 3�b� is nondegenerate
while the modes with K=1, 2, and 3 are doubly degenerate.

As a second example, we study a 16-fold VSCPC consist-
ing of ten rings of air holes in silicon, locally resembling a
triangular arrangement. The distance between cylinders and
their radii are chosen in such a way that the equivalent infi-

nite hexagonal structure inhibits a certain frequency range of
Hz polarized light. Figures 4 and 5 show the LDOS calcula-
tions for a randomly chosen point inside the cavity and field
distributions of localized modes within the cavity. In Fig.

FIG. 4. �Color� �a� Complete LDOS calculated from Ge and the
K=2 component of the LDOS corre- sponding to Gh. �b� Compari-
son of K=2 components related to Ge and Gh. The first one shows
a slowly oscillating background. The curves are calculated for the
point with coordinates x=0.70a and y=0.25a.

FIG. 5. �Color� Distribution of the magnetic fields: �a� Our
sample structure with K=0 mode; �b� K=1; �c� K=2; �d� K=3; �e�
K=4; �f� K=8 mode representing a well-localized whispering-
gallery mode. The field distribution of degenerated modes is af-
fected by the position of the source.

FIG. 3. �Color� �a� Complete LDOS and its K=0 component at
the point with coordinates x=1.0a and y=0.2a. Distribution of the
electric fields: �b� K=0 mode, �c� K=1, �d� K=2, �e� K=3.
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4�a� we plot the complete LDOS resulting from Ge and the
K=2 component of the LDOS corresponding to the magnetic
Green’s tensor Gh. The peaks are closely spaced in the com-
plete LDOS, and therefore it is hard to distinguish them. In
contrast to the complete LDOS, the K=2 component con-
tains only peaks for this rotational Bloch number K. The
reason why we intermix the electric and magnetic G follows.

For the Hz polarization numerical difficulties arise in de-
termining the eigenfrequencies of Ge. A possibility to detect
even small changes of the LDOS component in the vicinity
of sharp peaks is important to achieve computational effi-
ciency. Then, we can use sparser sampling of the frequencies
and avoid missing some of the peaks. The slowly oscillating
background of the LDOS component caused by dipole
source contributions in Eq. �8� presented in Fig. 4�b� disables
this detection. In order to find the resonant frequencies, we
have used the LDOS resulting from the magnetic Green’s
tensor Gh, instead of Ge. The corresponding LDOS for the
Hz polarization can be calculated from the solution of Eq.
�6�, where G satisfies the boundary conditions for Hz field.
Its K components do not contain any disturbing background
and for our purpose they are preferable to K components
related to Ge.

We have selected several peaks corresponding to localized
modes. These are labeled in Fig. 4�a� according to their ro-
tational Bloch number K. In Fig. 5, the mode profiles are
shown for the selected modes. All the modes are well-
localized inside the cavity. The strongest localization is
shown by the mode with rotational Bloch number K=8 rep-
resenting a whispering-gallery mode14 localized near the first
ring of holes. This behavior follows from the approximate
form of the solution JK�n0kr�eiK�. The radial part rises as rK

for small r, which makes a larger central hollow for larger K,
as can be observed in the sequence Figs. 5�d�–5�f�. The
eigenmodes are degenerate with the exception of the
whispering-gallery mode and the completely symmetric
mode with K=0. Note also, that the large permittivity of
silicon reduces the wavelength, so that the modes have more
radial nodes and their number increased in comparison with
the previous example.

IV. CONCLUSION

In conclusion, we have shown how to construct CPC and
VSCPC cavities, which can support well-localized modes
with high-quality factors. Eigenmode frequencies are ob-
tained as the positions of the peaks in the frequency-
dependent decomposed LDOS with highly efficient numeri-
cal technique taking advantage of the rotational symmetry to
reduce the number of multipole coefficients by a factor of N.
This considerably reduces the required CPU time and im-
proves accuracy of the solution. Although rotational symme-
try other than 2-, 3-, 4-, and 6-fold is prohibited for crystals,
our technique could be also applicable for quasicrystals,
where any order of rotational symmetry is possible. Possible
applications such as waveguiding with arbitrary-angle wave-
guide bends will be discussed in forthcoming papers.
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