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Recent studies exposed many remarkable properties of layered cobaltates NaxCoO2. Sur-
prisingly, many-body effects have been found to increase at sodium-rich compositions of
NaxCoO2 where one expects a simple, nearly free motion of the dilute S = 1/2 holes doped
into a band insulator NaCoO2. Here we discuss the origin of enigmatic correlations that turn
a doped NaCoO2 into a strongly correlated electronic system. A minimal model including
orbital degeneracy is proposed and its predictions are discussed. The model is based on a
key property of cobalt oxides — the spin-state quasidegeneracy of CoO6 octahedral complex
— which has been known, e.g., in the context of an unusual physics of LaCoO3 compound.
Another important ingredient of the model is the 90◦ Co-O-Co bonding in NaxCoO2 which
allows nearest-neighbor t2g-eg hopping. This hopping introduces a dynamical mixture of
electronic configurations t62g, S = 0 and t52ge1

g, S = 1 of neighboring cobalt ions. We show
that scattering of charge carriers on spin-state fluctuations suppresses their coherent motion
and leads to the spin-polaron physics at x ∼ 1. At larger doping when coherent fermionic
bands are formed, the model predicts singlet superconductivity of extended s-wave symme-
try. The presence of low-lying spin states of Co3+ is essential for the pairing mechanism.
Implications of the model for magnetic orderings are also discussed.

§1. Introduction

The physics of transition metal oxides offers a wealth of interesting phenomena
related to their strongly correlated nature. This is because the bandwidth is rela-
tively small compared to the intraionic Coulomb repulsion between the 3d electrons.
The understanding of many unique properties of oxides, such as high-Tc supercon-
ductivity and colossal magnetoresistivity is therefore based on the well-known Mott
physics.1)

Among the various families of transition metal oxides, attention has recently fo-
cused on layered cobaltates, in particular on the sodium cobaltate NaxCoO2. The in-
terest was initiated by the large thermoelectric power observed in this compound,2)–4)

i.e. the capability of an efficient conversion of heat energy to electricity. The research
on these systems was further boosted by the unexpected discovery of superconductiv-
ity (SC) in water-intercalated NaxCoO2.5) Soon after, many remarkable properties
were found6) such as spin-sensitive thermopower,3) unusual charge and spin order-
ings,7)–11) very narrow quasiparticle bands12)–16) and especially a very unusual phase
diagram.7) While the strongly correlated nature of NaxCoO2 is no longer at doubt,
the mechanisms by which the correlated electrons design such an exotic phase dia-
gram are not fully understood even on a qualitative level.

Layered cobaltates consist of CoO2 planes with a triangular lattice of Co ions
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Fig. 1. (a) Structure of a hexagonal CoO2 plane with 90◦ cobalt-oxygen bonds pointing along x,

y and z directions. The directions in the hexagonal lattice of cobalt ions are denoted by a, b

and c respectively. (b) Each cobalt ion is surrounded by six oxygen ions forming an octahedron,

in the real structure this is slightly distorted. (c) Each cobalt ion is a member of three CoO2

chains which determine planes perpendicular to the x, y and z axes respectively. In the figure,

chain of b direction determining a plane perpendicular to the y axis is shown.

(see Fig. 1), separated either by Na layers as in NaxCoO2
7) or by BiO-BaO lay-

ers of rock-salt structure in so-called “misfit” cobaltates [see 16), 17) and references
therein]. By suppressing electron motion along the c-axis these layers impose quasi-
two-dimensionality upon the CoO2 layers. In addition they provide the charge car-
riers to the CoO2 planes in doped compounds. Depending on the composition, the
valence state of Co ions may vary in a wide range from non-magnetic Co3+ t62g S = 0
state (as in NaCoO2) towards the magnetic Co4+ t52g S = 1/2 configuration (in
NaxCoO2 at small x).

The Co3+ systems where the cobalt ions have full t62g shell are naturally referred
to as band insulators,18),19) whereas in Co4+ S = 1/2 rich systems strongly correlated
Mott behavior is expected. Thus by reducing sodium content in NaxCoO2 one should
be able to observe an evolution from the weakly correlated band-insulator regime
to a doped Mott limit. However, the experiments show completely opposite trends.
The Co4+ rich compounds are just moderately correlated metals7),20) while Co3+

rich compositions show signatures of strong correlations such as magnetic order,7),9)

strong magnetic field effects,3) etc. Pronounced incoherent structures in the angular-
resolved photoemission (ARPES) spectra16),21) revealing the complex structure of
holes doped into NaCoO2 are also enhanced near the band-insulator limit.

Even more puzzling situation occurs with hydration of NaxCoO2. Depending on
the amount of water intercalating the structure, NaxCoO2 forms a monolayer hydrate
or (at a larger water content) a bilayer hydrate22),23) (see Fig. 2 for the details of the
structure). As a big surprise, superconductivity was discovered in the bilayer hydrate
of NaxCoO2 with x ≈ 0.35.5) The corresponding transition temperature is quite low
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Fig. 2. Layered structure of (a) anhydrate NaxCoO2 and water-intercalated (b) monolayer hydrate,

(c) bilayer hydrate. Water-intercalation leads to an expansion in the direction normal to CoO2

planes and in the case (c) brings a large screening of sodium potential.

— Tc � 5K in the optimal case. However, the identification of the pairing mechanism
is a problem of principal importance, because this may shed some light on the other
mysteries of NaxCoO2 as well. Soon after the discovery, comparisons with the cuprate
situation have been made.5),24) They emphasize the quasi-two-dimensional CoO2

layers of S = 1/2 background (Co4+ ions) doped by S = 0 (Co3+ ions) charge
carriers, thereby representing a t2g analog of CuO2 planes. The triangular lattice
of Co ions might be convenient for a realization of resonating-valence-bond (RVB)
state,25) which was originally proposed for a S = 1/2 Heisenberg antiferromagnet on
a triangular lattice.26) Despite this, it was quickly realized, that the phase diagram
of NaxCoO2

7) is radically different from that of cuprates. As already mentioned,
the enhanced strongly correlated nature is rather observed at high relative content
of nonmagnetic Co3+ ions. Also the location of the superconducting dome initially
expected at cobalt valency around 3.65 (as in Na0.35CoO2) was later found at actual
valency ∼ 3.4, closer to the Co3+ situation due to water-induced valency shift.27)–29)

Many-body effects observed near a band insulator regime of cobaltates are puz-
zling and indicate that electronic correlations originate from a specific mechanism
different from that of the cuprates. We have recently proposed a model30),31) for
strong correlations that operate over the entire phase diagram of NaxCoO2 includ-
ing a weakly doped band insulator limit. In this paper, we discuss this model and its
predictions in more detail, and further extend it to the case of multiorbital situation.

Considering the limit of diluted S = 1/2 Co4+ holes doped into non-magnetic
band insulators NaCoO2 and misfit cobaltates, the model predicts a polaronic behav-
ior of the holes characterized by strongly reduced quasiparticle peaks and dispersive
incoherent structures in their spectral functions. In the Fermi-liquid regime at large
concentration of the doped holes, a specific pairing mechanism driven by correlated
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Fig. 3. (a) 3d levels of cobalt ions split into t2g and eg levels in the octahedral field of oxygen ions.

Trigonal distortion leads to a further splitting among the t2g orbitals. The order of the resulting

a1g and e′g levels shown corresponds to that suggested by ARPES experiments in NaxCoO2. (b)

Low-spin, intermediate-spin, and high-spin states of Co3+ ions. The competition between the

t2g-eg crystal field splitting favoring t62g configuration and the Hund coupling favoring higher

spin values makes them quasidegenerate.

hopping of doped holes emerges in the model. The resulting SC is optimized near
the cobalt valency 3.4 in agreement with experimental observations. The model is
based on a unique aspect of Co3+ ions, i.e., their spin-state quasidegeneracy, and on
special lattice geometry of CoO2 layers realized in the layered cobaltates.

Let us first consider the 3d electrons of cobalt ions from a single electron point of
view as shown in Fig. 3(a). The individual cobalt ions are in octahedral crystal field
[Fig. 1(b)] which leads to the usual t2g-eg splitting 10Dq like in a perovskite structure.
Due to the layered structure of cobaltates, which imposes a quasi-two-dimensionality
of the electronic states, the symmetry of the originally three-fold degenerate t2g levels
is thus lowered and they split into so-called a1g and e′g states. Crystal field prefers
the t52g configuration on the Co4+ ions. The holes doped into NaCoO2 or misfits are
then expected to occupy the highest t2g level. Initially, theoretical considerations
have suggested that this level should be of e′g symmetry (see Ref. 32) for details).
However, experiments support an opposite scenario where the doped holes prefer
to occupy the a1g orbital states. Indeed, ARPES data shows a very simple Fermi
surface derived from a single band of a1g symmetry.16),21)

In the case of Co3+, the t62g S = 0 configuration would be selected by the
cubic crystal-field splitting 10Dq alone. However, many-body effects represented by
the Hund coupling favoring high-spin configurations compete with the crystal field
splitting, making the S = 0, S = 1 and S = 2 states of Co3+ quasidegenerate
[Fig. 3(b)]. Spin-state quasidegeneracy of cobalt ions is well known, LaCoO3 being
a textbook example.33) According to Ref. 34), magnetic states are in the range of
∼ 200 − 400 meV (S = 1) and � 50 meV (S = 2) above the t62g S = 0 ground
state (without lattice relaxations). This leads to a distinct property of Co3+ rich
oxides called “spin-state-transition” responsible for many anomalies such as spin-
state changes in LaCoO3,34),35) and a spin-blockade effect in HoBaCo2O5.5,36) to
mention a few manifestations of the Janus-like behavior of Co3+.
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In the groundstate the cobalt ions are supposed to be in S = 1/2 Co4+ or
S = 0 Co3+ states. Thanks to the spin-state quasidegeneracy, a new, third degree of
freedom — namely the low-lying S = 1 t52ge

1
g state of Co3+ — could be in principle

employed by intersite t2g-eg hopping which mixes the t62g and t52ge
1
g configurations

of neighboring ions.∗) Whether such a matrix element is finite or not depends on
lattice geometry. With the 180◦ Co-O-Co bond geometry of perovskite cobaltates,
the t2g and eg sectors are separated with respect to the nearest-neighbor hopping [see
Fig. 4(a) for an explanation], which is therefore incapable to produce the S = 1 Co3+

states. A new situation encountered in layered cobaltates is that CoO6 octahedra
are edge-shared. In this geometry, the hopping occurs along the 90◦ Co-O-Co bonds,
where the largest matrix element is that between the orbitals of t2g and eg symmetry
as shown in Fig. 4(b). Doped holes can now easily generate S = 1 t52ge

1
g states of

Co3+ which become strongly coupled to the groundstate by virtue of intersite t2g-eg

electron transfer. In other words, the magnetic configuration of Co3+ is activated
once the mobile Co4+ holes are added in NaxCoO2. A dynamical generation of t52ge

1
g

S = 1 states by a hole motion converts it into a many-body correlated object — the
spin-polaron. At larger density of Co4+ when spin-polarons overlap, the virtual S = 1
states act as mediators of an effective spin-sensitive interaction. We eliminate these

Fig. 4. (a) Hopping between d-orbitals of cobalt ions via oxygen ions in the case of 180◦ Co-O-Co

bonds. The geometry allows for the nearest-neighbor t2g-t2g and eg-eg hopping. The t2g and

eg sectors are independent. (b) The same for the 90◦ Co-O-Co bonds as in NaxCoO2. Nearest-

neighbor t2g-t2g and t2g-eg hopping is possible, the latter one being approximately two times

stronger. (c) a, b and c directions in the hexagonal lattice of cobalt ions and orbitals connected

by the t2g-eg hopping along the three directions.

∗) The S = 2 Co3+ configuration with two eg electrons is not accessible by the t2g-eg hopping.
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virtual states perturbatively, and find an effective model in a form of spin-selective
pair hopping of electrons. The correlated hopping energy is optimized when holes
are paired and condense into a SC state.

A résumé is that low-lying magnetic states of Co3+, accessible for electrons via
the intersite hopping, provide an extra dimension in physics of NaxCoO2. In §2,
we design a model incorporating this idea. Based on this model, we demonstrate
in §3 that holes doped into the band insulator NaCoO2 behave in fact as magnetic
polarons dressed by the spin-state fluctuations of Co3+ ions that are excited by the
hole motion. Section 4 derives the effective interaction between holes, mediated
by virtual spin-state excitations of Co3+ ions, in a Fermi-liquid regime at larger
hole densities. In §5, we discuss the relevance of these interactions to the spin
ordering, and, by exploring their effect on the spin susceptibility, we find signatures
of 2kF -instabilities. Finally, we focus in §§6 and 7 on the superconductivity within
our model. First, in §6 we discuss symmetry and doping dependencies of pairing
instabilities in the model based on the a1g band only. To address a possible role of
e′g pockets in the superconductivity, in §7 we extend the model by employing the full
orbital structure of the relevant states. Section 8 concludes the paper.

§2. Model Hamiltonian

The t2g orbitals in NaxCoO2 split into single a1g = (dxy + dyz + dzx)/
√

3 state
and two e′g states: e′g1 = (dyz − dzx)/

√
2 and e′g2 = (2dxy − dyz − dzx)/

√
6. The

photoemission experiments12)–14),16) show that a single band, derived mostly from
the a1g orbitals, is active near the Fermi level [see Ref. 37) for possible orbital-
selection mechanism]. Therefore, we consider first a model based on the a1g ≡ f
hole states (the version containing also e′g orbitals will be introduced in §7). Valence
fluctuations d6

jd
5
i → d5

jd
6
i (see the left part of Fig. 5) within the low-spin t2g manifold

are described by the tight-binding Hamiltonian

Ht = −t
∑
ijσ

f †
jσfiσ , (2.1)

where t = 2t0/3 and t0 = tπtπ/Δpd is the overlap between t2g orbitals38) (hereafter, a
hole representation is used). The fermionic operators f are subject to a conventional
Gutzwiller constraint (at most one hole at a given site). As a result the bandwidth
following from (2.1) is reduced by the Gutzwiller factor gt = 2nd/(1 + nd) (≈ nd at
the relevant dopings). Here nd is the relative fraction of Co3+ ions.

Our crucial observation following from Fig. 4(b) is that the t2g-eg hopping t̃ =
tσtπ/Δpd, which uses a stronger σ-bonding path with tσ/tπ ∼ 2, leads to more
effective valence fluctuations. These will constitute the second part, Ht̃, of our
model Hamiltonian: Ht−t̃ = Ht + Ht̃. The t̃ process (Fig. 5) generates S = 1 state
of Co3+ composed of a t2g hole and an eg electron. Low-spin S = 0 t52ge

1
g state is

much higher in energy and can be ignored (see §7 for details on the t52ge
1
g multiplet

structure of Co ions). We represent the resulting state by the operator T specified
by the spin projection of the S = 1 state and the eg orbital γ created by t̃ hopping,
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Fig. 5. Processes contained in the t-t̃ model. Usual t-hopping gives rise to the band structure.

t̃-hopping allows to employ the low-lying triplet state of Co3+. High-spin (S = 2) state is not

accessible by hopping.

i.e., T †
+1,γ = e†γ↑f

†
↑ , T

†
−1,γ = e†γ↓f

†
↓ and T †

0,γ = (e†γ↑f
†
↓ + e†γ↓f

†
↑)/

√
2. The eg orbital is

selected by the hopping geometry depicted in Fig. 4(b). The nearest-neighbor Co
ions and two O ions binding them determine a plane [see Fig. 1(c)] which is labeled
as a, b or c according to the Co-Co bond direction. With respect to this plane, the
t̃-hopping couples the in-plane t2g orbital to the out-of-plane eg orbital. This rule is
shown in Fig. 4(c). For the t̃ hopping along a, b, or c bond, γ = 3x2 − r2, 3y2 − r2 or
3z2 − r2 respectively. The Ht̃ part of our minimal model Hamiltonian for NaxCoO2

reads then as30)

Ht̃ = − t̃√
3

∑
ij

[
T †

+1,γ(i)f †
j↓fi↑ − T †

−1,γ(i)f †
j↑fi↓ − T †

0,γ(i) 1√
2

(
f †

j↑fi↑ − f †
j↓fi↓

)
+ h.c.

]
.

(2.2)
The factor of 1/

√
3 comes from the projection onto the a1g band within t2g sector.

Ht̃ moves an electron from Co3+
j to Co4+

i — producing a t2g hole on site j — and
replaces the t2g hole on site i by a complex excitation T . Making use of the t2g-eg

hopping (the largest one for 90◦ Co-O-Co bonds), an electron “picks-up” the spin
correlations present in virtual S = 1 states.

The index γ of the T excitation is determined by the orientation of the 〈ij〉 bond
according to the rules in Fig. 4(c). The overlap between eg orbitals specified by γ
and γ′ is 〈γ|γ′〉 = cos(φγ − φγ′). Consequently, the excitations Tγ inherit the same
overlap: 〈Tγ T †

γ′〉 ∝ 〈γ|γ′〉. This brings peculiar geometrical factors into the theory,
as will be observed in the following sections.

The T -excitation energy ET is determined by all the many-body interactions
within the CoO6 complex (Hund’s coupling, p − d covalency, crystal field, . . . ).34)

This is a free parameter of the model. Experimentally, S = 1 states of CoO6 complex
in perovskite compound LaCoO3 are found at energies ET ∼ 0.2 − 0.4 eV34) as
already mentioned in the Introduction. Based on this observation, we will use in
this paper the representative value ET � 0.2−0.3eV for layered cobaltates. In units
of the a1g hopping integral t � 0.1 eV (which follows from the band structure fit
t0 � 0.15 eV37)), this translates into ET /t = 2 − 3 adopted below in our numerical
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data. In principle, we expect some material dependence of ET as it is decided by the
balance of several competing interactions. It is therefore highly desirable to quantify
a multiplet structure of the CoO6-complex in NaxCoO2 as done in LaCoO3.34) For
the ratio of the hopping amplitudes t̃ and t0, we set t̃/t0 = 2 as tσ/tπ ∼ 2.

§3. Spin-state polaron behavior of quasiparticles

Based on the model introduced in the previous section, we develop now a theory
for the photoemission spectra in cobaltates at large sodium content. The concentra-
tion of the Co4+ holes doped into originally non-magnetic band insulator NaCoO2 is
small, so that we consider here the individual motion of the holes only. It is evident
from the Hamiltonian (2.2), that by creating and destroying T excitations as they
propagate, the holes are strongly renormalized and we deal with a spin-polaron prob-
lem. This resembles the problem of doped Mott insulators like cuprates, however,
the nature of spin excitations is different here because of the nonmagnetic ground
state. Instead of magnon-like propagating modes as in cuprates, fluctuations of the
very spin value of Co3+ ions are the cause of the spin-polaron physics in cobaltates.
In contrast to Refs. 39) and 40), where a static hole surrounded by S = 1 Co3+

ions was studied, in the present model the triplet S = 1 excitations are virtual and
generated dynamically by the very motion of the hole via the t̃ process. These two
pictures can merge if a hole is strongly trapped (e.g., by Na-potential41)).

For the calculation of the fermionic selfenergies, we employ the self-consistent
Born approximation, which has extensively been used in the context of spin-polarons
in cuprates.42) First, we focus on spin excitation spectrum. Since a direct eg-eg

hopping in case of 90◦-bonds is not allowed by symmetry, the bare T spin excitation
is a purely local mode, at the energy ET . The coupling to the holes in (2.2) shifts
and broadens this level. Accounting for this effect perturbatively [see Fig. 6(a)
for a diagrammatic representation], we obtain the T Green’s function D−1(iω) =
iω − ET − ΣT (iω) with

ΣT (iω) =
2 t̃ 2

3β

∑
kk′,iε

Γk G0 (k, iε)G0 (k′, iε + iω) . (3.1)

Here, G0 is the bare electron propagator G0(k, iε) = (iε− ξk)−1 with the a1g disper-
sion on a triangular lattice ξk = −2t(ca + cb + cc) + μ, where cγ = cos kγ and kγ are
the projections of k on the directions a, b, c. The underlying Eg symmetry of T op-
erators involved in t̃ hopping results in the factor Γk = c2

a+c2
b +c2

c −cacb−cbcc−ccca.
We neglected a weak momentum dependence of ΣT for the sake of simplicity. This
is justified as long as ΣT is small compared to the spin gap ET .

Further, we approximate Γk by its Brillouin-zone average 3/2, obtaining the
simple expressions for ΣT in terms of bare fermionic density of states N0(x) =∑

k δ(x − ξk):

ImΣT (E) = −πt̃ 2

∫ 0

−E
dxN0(x)N0(x + E) , (3.2)
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Fig. 6. (a) Selfenergy of the T excitation in the lowest order approximation. Solid lines represent

bare hole propagator. (b) Selfenergy of the holes in a self-consistent Born approximation. The

double straight line is the full hole propagator. The double wiggly line represents the propagator

of the T excitation renormalized by the selfenergy in (a). (After Ref. 31).)

ReΣT (E) = −t̃ 2

∫ 0

−∞
dx

∫ ∞

x2

dy2 N0 (x )N0 (x + y)
y2 − E2

. (3.3)

These equations determine the renormalized spectral function of the spin-triplet
excitation: ρT (E) = −π−1ImD(iω → E + iδ). Next, we use ρT (E) below for
calculation of the fermionic selfenergy.

Holes are renormalized by creating and destroying S = 1 Co3+ excitations while
moving in the predominantly Co3+ background. The selfenergy diagram in a self-
consistent Born approximation accounting for this effect [Fig. 6(b)] reads as:

Σk(iε) = −2 t̃ 2

β

∑
k′,iω

[Γk′D(−iω) + ΓkD(iω)]G(k′, iε + iω) , (3.4)

where G−1(k, iε) = iε − ξk − Σk(iε). We can decompose the k-dependence of the
selfenergy into two simple terms and write Σk(ω) = 2t̃ 2[Φ(ω) + ΓkΞ(ω)], where

Φ(ω) =
∫ ∞

0
dE ρT (E )

∫ ∞

0
dx

Ñ (x )
ω − E − x + iδ

, (3.5)

Ξ(ω) =
∫ ∞

0
dE ρT (E )

∫ 0

−∞
dx

N (x )
ω + E − x + iδ

. (3.6)

The full local density of states N(E) =
∑

k A(k, E) and its Eg symmetry part
Ñ(E) =

∑
k ΓkA(k, E) are functions of the selfenergy itself, via the spectral func-

tions A(k, E) = −π−1ImG(iε → E + iδ). The above equations are thus to be solved
self-consistently.

The reliability of the approximations made was tested by the comparison with an
exact diagonalization of Ht−t̃. Considering a single hole injected on a 7-site hexagonal
cluster, it was shown in Ref. 31), that the above equations give results consistent
with the exact diagonalization, even at rather small spin gap values ET ∼ t.

To illustrate the gross features of the hole renormalization, in Fig. 7 we show a
complete map of the spectral function along M -Γ -K path in the Brillouin zone and
spectral profiles at selected points. We have used a representative value ET = 2t
which is renormalized by holes to ẼT ≈ 1.4t. Renormalization of the holes leads to
spectral functions with a reduced quasiparticle (qp-) peak whose spectral weight is
transferred to a pronounced hump structure. [A peculiar momentum dependence of
the matrix elements Γk (note that Γk=0 = 0) reduces the effect at k = Γ point].
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Fig. 7. (a) Intensity map of the spectral function A(k, E) of the Co4+ holes along the M -Γ -K path

in the hexagonal Brillouin zone (inset) calculated at 30% doping and ET = 2t. Near the Fermi

level, the quasiparticle (qp-) peak is well developed. As the hole energy reaches the renormalized

T excitation energy ẼT , the quasiparticle peak broadens and its weight is transferred to a broad,

incoherent background. This results in a “peak-dip-hump” profile of the spectral function as

seen in the right panel. The top of the smoothed hump structure is indicated by triangles.

The dashed line shows the bare dispersion. (b) Spectral function profiles at the Γ , K and M

points and the total density of states N(E). The incoherent structure dominates N(E), a small

coherent part resembling the density of states of the bare band (with a reduced bandwidth)

is indicated by the gray area. Several maxima on the hump structure reflect the presence of

multiple T excitations as sketched in the cartoon figures. (After Ref. 31).)

Compared to the bare dispersion, the bandwidth of the renormalized holes is reduced
by a factor ∼ 2. The main observation here is that as the hole energy reaches ẼT ,
the dynamical generation of S = 1 excitations becomes very intense and a broad
incoherent response develops, leading to the pronounced “peak-dip-hump” structure
of A(k, E). Several maxima on the hump reflect the presence of multiple triplet
excitations created by the hole propagation. All these are the typical signatures
of polaron physics. Multiplet structure of the hump will in reality be smeared by
phonons which are naturally coupled to the t̃ transition involving also the orbital
sector. Although experiments43) indicate that electron-phonon coupling is moderate
in cobaltates, it may enhance the spin-polaron effects as in cuprates.44) Following
the maximum of the smoothed hump structure, we observe its strong dispersion
(stemming also from incoherent t̃ hopping).

Figure 7 suggests a possible determination of ẼT from the quasiparticle damping.
To address this problem, in Fig. 8 we show the energy width of the qp-peak following
its dispersion curve. The sharp onset of the damping at the binding energy ≈ −1.4t
is clearly related to the maximum of the spin-excitation spectral function ρT (E). In
addition, Fig. 8 shows the weight of the qp-peak which is k-dependent (mainly due
to the matrix element Γk).

Comparison of Figs. 7 and 8 with the data of Refs. 16) and 21) reveals a re-
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Fig. 8. Top panel: Full energy width at half maximum of the quasiparticle peak along the M -Γ

dispersion curve (see bottom-right panel) plotted as a function of the binding energy. The

part from kF to M is accessible by ARPES experiments. Strong quasiparticle damping below

∼ −1.4t is due to a scattering on S = 1 excitations. The spectral weight of the quasiparticle peak

obtained by a direct integration is indicated by squares. When damping is small, it coincides

with a conventional quasiparticle residue (1−∂Σ′/∂ω)−1. Lower panel: The T -exciton spectral

function (left), and renormalized hole dispersion (right). (After Ref. 31).)

markable correspondence between theory and experiment. In particular, both the
qp-peak and the hump dispersions (see Figs. 2 and 3 of Ref. 16)) are well reproduced
by theory, considering t ≈ 0.1 eV suggested by the band structure fit.37) The onset
energy ẼT ∼ 1.4t for the qp-damping (Fig. 8) is then ≈ 0.14 eV, in agreement with
experiment (see Fig. 2(c) of Ref. 16)).

Physically, at large x ∼ 1 limit, dilute polarons are readily trapped by a random
potential of Na-vacancies,41),45) thus qp-peaks should be suppressed at low hole
doping. When the binding is strong, physics is local and a polaron takes a form of
hexagon-shaped S = 1/2 object where a hole is oscillating to optimize both t and
t̃ channels.39) Our model provides a microscopic basis for spin-polarons introduced
on experimental grounds8),11) and discussed in detail in Refs. 39) and 40). When
the density of polarons is increased (as x decreases), they start to overlap forming
narrow bands. Eventually, the polaron picture breaks down and a correlated Fermi-
liquid emerges when x is further reduced. This is the subject of the following section,
where we develop a perturbative theory accounting for the interactions between the
holes.

§4. Effective interaction between t2g holes: single a1g band case

In the Fermi liquid regime, the Eliashberg-formalism, where the phonon shake-
up processes (triggered by T -exciton) can also be incorporated, would be the best
strategy. However, there are delicate constraints to handle: a lattice site cannot
be occupied by two holes or by a hole and T -excitation simultaneously. For the
sake of simplicity, we derive an effective fermionic interaction in a second order
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Fig. 9. (a) Virtual process leading to the HP Hamiltonian in Eq. (4.1). t2g electron of a Co3+
i

ion moves to eg level of the nearest-neighbor Co4+
j ion (process 1) and then to the t2g level of

the next Co4+
k neighbor (process 2). This is depicted in (b) as a motion of the hole-pair. The

intermediate state contains the low-lying S = 1 state of Co3+ ion. (After Ref. 30).)

perturbation theory in t̃ by considering the local virtual process depicted in Fig. 9.
This way, all the constraints in the intermediate states are treated explicitly. Such
a perturbative treatment is valid as long as a polaron binding energy Eb (an energy
gain due to the t̃ process) is small compared to a bare bandwidth W (� 9t in a
triangular lattice). From a self-consistent Born approximation discussed above, we
obtained single polaron binding energy Eb � 2.6t (2.9t) for ET set to the value 3t
(2t) used in this paper. Hence, Eb ∼ 0.3W and we can integrate out virtual spin
states perturbatively.

In the virtual process of Fig. 9 we consider an initial configuration with a pair of
Co4+ holes and a S = 0 Co3+ state at the neighboring site. First t̃-hopping (i.e. the
action of Ht̃) generates an excited S = 1 state surrounded by two Co4+ holes. The
energy of this virtual state with respect to the initial state equals ET . The virtual
state gets deexcited by second t̃-hopping leaving the system again with a pair of
holes and a neighboring Co3+ state. Since the pair now has a changed position, the
virtual process effectively corresponds to the motion of the hole pair. The kinetic
energy gain associated with this pair motion may lead to the pairing instability as
shown in §6. Summing up the contributions of all possible virtual states, we arrive
at the following effective Hamiltonian:

HP =
∑
〈ijk〉

[
PS

ijkŜ
†
ij Ŝkj + P T

ijkT̂
†
ijT̂ kj

]
. (4.1)

The Hamiltonian in Eq. (4.1) describes the motion of the spin-singlet Ŝij = (fi↑fj↓−
fi↓fj↑)/

√
2 and spin-triplet T̂ ij = {fi↑fj↑, (fi↑fj↓ + fi↓fj↑)/

√
2, fi↓fj↓} Co4+-Co4+

pairs in a background of S = 0 Co3+ ions. Sites i �= k are the nearest neighbors
of site j. No-double-occupancy constraint on f is implied when using this effective
Hamiltonian. The pair-hopping amplitudes read as

PS
ijk =

1
2
V cos(φij − φjk) , P T

ijk =
1
3
PS

ijk . (4.2)
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We introduced here a parameter V = t̃2/ET characterizing the interaction strength.
The angles φ ∈ (2π/3, 4π/3, 0) are selected by the orientation of the bonds 〈ij〉 and
〈jk〉 as already explained in §2.

Two important remarks should be made on the pair-hopping amplitudes Pijk.
First, they contain a geometrical factor cos(φij − φjk) which equals +1 for straight
pair hopping and −1/2 if the hopping process changes the direction of the pair. This
factor is explained in Fig. 10. It originates from the fact, that different eg orbitals
participate in the t̃-hopping process on bonds of different directions. Second, the
pair hopping amplitude of singlet pairs is three times as big as that of the triplet
pairs. This nontrivial result originates from a quantum interference between different
realizations of the virtual process as indicated in Fig. 11. The S = 1 intermediate
state is fully transparent for singlets which equally use all three Sz = ±1, 0 states.
However, these states contribute with different signs in case of triplets, resulting in
a “spin blockade” for their motion.

Finally, the processes contained in the reduced model Hamiltonian Ht−P =

Fig. 10. The origin of the geometrical factor cos(φij −φjk) in Eq. (4.1) due to the overlap of the eg

orbitals in the intermediate state. (a) Along the c-bond, the xy and 3z2−r2 orbitals are coupled

via t̃-hopping. If the virtual process of Fig. 9 proceeds along the c-bond exclusively, we get the

geometrical factor cos(0) = 1. (b) The bond-directions for the two t̃-hoppings differ. In the case

of a-bond, the yz and 3x2 − r2 orbitals are coupled via t̃-hopping. By taking the overlap of the

eg orbitals active on the two bonds, we get the geometrical factor cos(2π/3) = −1/2.

Fig. 11. (a) Singlet-pair motion via an intermediate state composed of S = 1 Co3+
j ion (T exciton)

and triplet state of the two holes at sites i and k. The process equally uses all three Sz = ±1, 0

states of Co3+. The relative amplitude resulting from spin algebra equals 3/2. (b) The same for

triplet-pair motion. Here the amplitude is distributed into two channels — with the two holes

in the intermediate state being in singlet (one Sz state of Co3+ employed) or triplet state (two

Sz states of Co3+ employed). Destructive interference of the two channels makes triplet-pair

hopping amplitude 3 times as small as that of the singlet-pair.
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Fig. 12. Cartoon representation of the processes contained in the t-P Hamiltonian (2.1)+(4.1): (a)

t-hopping of a1g holes, (b) pair-hopping of a singlet pair of holes, and (c) pair-hopping of a

triplet pair of holes.

Ht + HP , Eqs. (2.1) and (4.1), are summarized in a concise way in Fig. 12. In the
following sections we will use this model containing: 1. the usual t-hopping of holes
[Fig. 12(a)] and 2. pair-hopping of hole pairs [Figs. 12(b) and (c)] as the lowest-order
effect of t̃-hopping.

§5. Spin susceptibility

The pair-hopping interaction in Eq. (4.1) may be alternatively represented in
a form of density-density and spin-spin couplings, emphasizing its relevance also to
the charge and spin orderings:

HP = V
∑
〈ijk〉

cos(φij − φjk)
[
njnik − 1

3sjsik

]
. (5.1)

Here nj = 1
2

∑
σ f †

jσfjσ and sz
j = 1

2

∑
σ σf †

jσfjσ are the usual on-site charge and
spin-density operators, but nik and sik with i �= k are the charge and spin densities
residing on bonds, i.e., nik = 1

2

∑
σ f †

iσfkσ, sz
ik = 1

2

∑
σ σf †

iσfkσ. Thus, the interaction
acts between the local (on-site) and non-local (bond) operators which is a consequence
of its three-site nature.

In momentum space, Eq. (5.1) can be written as

HP = 2V
∑

q

[
n−qñq − 1

3s−qs̃q

]
, (5.2)

with the usual operators nq = 1
2

∑
k,σ f †

k+q,σfk,σ, sz
q = 1

2

∑
k,σ σf †

k+q,σfk,σ, and the

momentum counterparts of the non-local operators ñq = 1
2

∑
k,σ Fk+q,kf †

k+q,σfk,σ,

s̃z
q = 1

2

∑
k,σ σFk+q,kf †

k+q,σfk,σ. The formfactor Fk0,k = cos(ka +k′
a)+cos(kb +k′

b)+
cos(kc +k′

c)−cac
′
b−cbc

′
a−cbc

′
c−ccc

′
b−ccc

′
a−cac

′
c, where c′α = cos k′

α, originates from
a peculiar bond-dependence of interactions in Eq. (5.1). It manifests again that the
ñq and s̃q operators correspond to the particle-hole excitations that modulate the
charge and spin bonds, respectively.
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Fig. 13. Diagrammatic representation of RPA equations (5.4) for the spin susceptibilities involving

the interaction (5.2) between local (sq) and non-local (s̃q) spin densities that reside on sites

and bonds respectively. Bare and RPA enhanced susceptibilities are represented by empty and

shaded bubbles, respectively.

To illustrate this unusual, nonlocal nature of correlations we investigate the
effect of the interaction on the spin susceptibility within the RPA approximation.
The bare spin susceptibility χss is given by the formula

χ(0)
ss (q, ω) =

1
4

∑
k

tanh(ξk/2T ) − tanh(ξk+q/2T )
ω + ξk − ξk+q + iδ

. (5.3)

A diagrammatic representation of the RPA approximation in our case of local-
nonlocal spin interaction is shown in Fig. 13. RPA enhanced susceptibility follows
from the equations

χss = χ(0)
ss + Λχ(0)

ss χs̃s + Λχ
(0)
ss̃ χss ,

χs̃s = χ
(0)
s̃s + Λχ

(0)
s̃s χs̃s + Λχ

(0)
s̃s̃ χss , (5.4)

where we defined a coupling constant Λ = 2V/3 = 2t̃2/3ET . Because of the non-
local spin density involved in the interaction, the corresponding bare susceptibilities
χ

(0)
ss̃ = χ

(0)
s̃s and χ

(0)
s̃s̃ are also employed. They are obtained by multiplying the

summed terms in Eq. (5.3) by a factor of Fk+q,k (for χ
(0)
ss̃ ) or F 2

k+q,k (for χ
(0)
s̃s̃ ). The

resulting spin susceptibility reads

χss =
χ

(0)
ss

D
, D =

(
1 − Λχ

(0)
s̃s

)2
− Λ2χ(0)

ss χ
(0)
s̃s̃ . (5.5)

The no-double-occupancy constraint imposed on Ht-P handled on a Gutzwiller level
leads to a rescaling ξ̄ = gtξ and V̄ = gP V . Since the interaction term comes from
the hopping, the Gutzwiller factors are equal gt = gP ≈ nd and may be partially
canceled in terms such as Λχ(0) leaving us with an effectively rescaled ω and T .

In Fig. 14 we show a sample result at the relative fraction of Co3+ ions nd =
0.5. The bare spin susceptibility [Fig. 14(a)] is concentrated around the Γ point.
When the interaction is switched on [Fig. 14(b)], the 2kF ring in the susceptibility
is enhanced. This suggests the fermionic 2kF -instabilities in a Fermi-liquid phase,
consistent with a picture inferred from the experiment.46) Interestingly, the RPA-spin
susceptibility at nd = 0.5 is most enhanced near the M point, i.e. near the observed
magnetic Bragg peak position,10) rather than at K typical for the AF Heisenberg
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Fig. 14. (a) Map of bare χ′′
s /ω for nd = 0.5 (the average Co-valency 3.5) at T = 0.025t and ω → 0.

(b) Corresponding RPA-enhanced susceptibility calculated at t̃2/ET = 3t. The interaction

enhances the susceptibility at the 2kF ring which (at given density nd = 0.5) nearly matches

the Brillouin zone boundary. (After Ref. 30).)

spin system. In order to study the spin ordering at nd = 0.5 more quantitatively, one
should take into account also the Na ordering7) which breaks a hexagonal symmetry
of the underlying Fermi-surface.

The 2kF antiferromagnetic correlations within our model are manifested in the
temperature dependence of the nuclear spin relaxation rate T−1

1 ∼ (
∑

q Im χ/ω)ω→0.
According to the Korringa law, in the normal state 1/T1T should be temperature
independent. This is the type of behavior experimentally observed in monolayer
hydrate of NaxCoO2. However, in bilayer hydrates, which show a superconducting
transition at Tc, 1/T1T is enhanced at low temperatures.47),48) This enhancement is
stronger as Tc increases, eventually leading to a magnetic order.

We characterize the effect of the interaction (5.1) on 1/T1T by the enhancement
factor 〈F 2〉 (

1
T1T

)
RPA

= 〈F 2〉
(

1
T1T

)
bare

. (5.6)

Using RPA enhanced χss of Eq. (5.5) it can be approximately expressed as a double
Fermi-surface average

〈F 2〉 ≈
〈

1
D2

[
1 − ΛRe

(
χ

(0)
ss̃ − Fk,k′χ(0)

ss

)]2
〉

k,k′∈FS

, (5.7)

where D(q, ω), χ
(0)
ss̃ (q, ω) and χ

(0)
ss (q, ω) are evaluated at q = k′ − k, ω → 0.

The resulting enhancement factor at the relevant fraction of Co3+ nd ≈ 0.5
is presented in Fig. 15. To address the T < Tc regime, we have included the ap-
proximate BCS gap Δ = 1.76Tc tanh(1.76

√
Tc/T − 1) in our calculations. As the

interaction strength Λ approaches its critical value for a magnetic ordering, the
enhancement factor dramatically increases resembling the experimentally observed
critical behavior.
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Fig. 15. Enhancement factor 〈F 2〉 at nd = 0.5, t′/t = −0.2 as a function of temperature. With the

interaction switched off, 〈F 2〉 = 1. The interaction enhances 1/T1T near the superconducting

transition temperature as the coupling constant increases. The critical coupling constant for a

magnetic ordering in this case equals Λcrit ≈ 4t.

§6. Superconductivity due to the pair-hopping interaction

Now, we consider the HP Hamiltonian in the context of superconductivity. The
kinetic energy coming from the pair-hopping interaction in HP is optimized when
Co4+ holes move pairwise. Eventually, this leads to their condensation into SC
state. The difference from cuprates is that pairs are formed here not due to the
superexchange (in cobaltates, J is small49)) but because of the gain in the kinetic
energy associated with t̃ hoppings. It is evident from Eqs. (4.1) and (4.2) that spin-
singlet pairs gain much more kinetic energy than triplets. Alternatively, it can be
said that the S = 0 Co3+ states move more coherently when the S = 1/2 background
is in a singlet state. This result, explained in Fig. 11, is a consequence of quantum
interference among the rich variety of spin states involved during the virtual process
leading to Eq. (4.1).

A mean-field BCS analysis∗) of Eq. (4.1) shows that HP supports either extended
s-wave singlet SC with the gap function ∝ γ(k) =

√
2/3(ca + cb + cc), or doubly-

degenerate spin-triplet p-wave pairing with γx,y(k) = {(sa − sb), (2sc − sa − sb)/
√

3},
where sα = sin kα. The d-wave channel is repulsive, while the f -wave one is attractive
but too weak in the physically reasonable doping range. We estimated the Tc from

1 =
∑

|ξ̄k|≤ET

V̄α|γα(k)|2
2ξ̄k

tanh
ξ̄k

2Tc
, (6.1)

where V̄α is either V̄ or V̄ /3, and the corresponding formfactors are γ(k) or γx,y(k)
for the singlet s-wave and triplet p-wave pairing, respectively. To account for

∗) More details will be given in §7 in the context of the full orbital version of our model.
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Fig. 16. (a) Tc in the extended s-wave and p-wave channels. The complete profile of the dominant,

s-wave Tc curve is shown in the left inset together with γ2
k (in arbitrary units) on the Fermi

surface. The dashed (βVC = 1.5) and dotted (βVC = 3) Tc curves are calculated including

nearest-neighbor Coulomb repulsion which reduces the pairing interaction V at large nd. Shaded

regions indicate the observed competing orderings (including the spin-charge order at nd = 0.5).

(b) Probability ratio p(nd) (see the text for its definition) renormalizing the pairing interaction

at different values of nearest-neighbor Coulomb repulsion relative to the effective temperature

1/β ∝ bandwidth. The feature at nd = 1/3 for large VC manifests a honeycomb-lattice formation

where each Co3+ (◦) has the maximum possible number of neighboring Co4+-Co4+ pairs (•-•).
Above nd = 2/3, Co4+ holes can avoid each other completely if VC is sufficiently large. (After

Ref. 30).)

the no-double-occupancy constraint, the fermionic dispersion as well as the pair-
hopping amplitude are renormalized by the Gutzwiller factor37) gt = 2nd/(1+nd) as
(ξ̄, V̄ ) = (gtξ, gtV ), where nd is the relative fraction of Co3+ ions. In the momentum
summation, we have introduced a cutoff equal to the excitation energy ET .

We solved Eq. (6.1) at V = 3t (corresponding to t̃ = ET = 3t). In terms of the
BCS-coupling constant, this translates into λ = V̄ N̄ = V N ∼ 1/3 considering the
density of states N ∼ 1/W ∼ 1/9t. Therefore, the present formulation in terms of an
effective fermionic Hamiltonian (4.1) should give reasonable results. At larger values
of V , we encounter a strong coupling regime where one should use the original model
(2.2) instead and treat virtual spin states explicitly. This limit remains a challenging
problem for future study.

The resulting Tc values from Eq. (6.1) are presented in Fig. 16(a) as solid lines.
As expected, the highest Tc values are found in the singlet channel, increasing with
Co3+ density due to the formfactor effect, until SC disappears at nd = 1 limit. A
weak triplet pairing is present thanks to its formfactor matching well the Fermi sur-
face, but it is expected to be destroyed by (e.g. Na) disorder. (We should notice that
these trends are based on the present mean-field decoupling which ignores collective
spin fluctuations. One can speculate, for instance, that the triplet pairing may be
supported by ferromagnetic fluctuations within the CoO2 planes observed9) at large
nd limit).

As the SC pairing considered here is due to the pair-hopping, Coulomb repulsion
between the holes will oppose it. This is not a big trouble at high density of Co4+
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spins (as they cannot avoid themselves) but becomes a severe issue in a spin-diluted
regime at large nd, where Coulomb repulsion reduces the process described in Fig. 9
hence the amplitude V . Instead, the formation of spatially separated spin-polarons
(Fig. 7) is favored, and competing orderings take over, such as an in-plane ferromag-
netism induced by a residual interactions between spin-polarons.39),40) To include the
effects related to the Coulomb repulsion in the Gutzwiller fashion, we use an addi-
tional multiplicative factor reflecting the suppression of the probability pijk of having
the required Co3+

i -Co4+
j -Co4+

k configuration. We have determined this probability
using a classical Monte-Carlo simulation of hardcore particles with nearest-neighbor
Coulomb repulsion VC moving on a hexagonal lattice of 1024 sites. The simulations
were performed at different “effective temperatures” 1/β imitating the kinetic energy
(of the order of bandwidth) which competes with the Coulomb repulsion in the real
system. Plotted in Fig. 16(b) is the probability ratio p(nd) = pijk(VC)/pijk(VC = 0)
for several values of βVC . The corresponding Tc curves calculated with V̄ → p(nd)V̄
locate the SC-dome near the valence 3.4, in a remarkable correspondence with ex-
periment.27)–29) (The reported Co-valences ∼3.4,27) ∼3.3,28) ∼3.4629) optimal for SC
translate into nd = 0.6, 0.7, 0.54).

Finally, our t-t̃ model provides a clear hint on the role of water-intercalation
needed for SC in NaxCoO2. Without water, a random Na-potential induces some
amount of spin-polarons locally (the origin of “Curie-Weiss metal” behavior7)) which
suppress the pairing among the remaining fermions the usual way. Once this poten-
tial is screened-out by the water layers, an intrinsic ground state of CoO2 planes as
in Fig. 16 is revealed. (This interpretation of the water effect is consistent with the
absence of superconductivity in the monolayer hydrate of NaxCoO2, where the water
resides in the Na layers.) The remaining “enemy” of SC is the Coulomb repulsion
which prevents the pairing of dilute Co4+ fermions and supports the formation of
spin-polarons and magnetism instead.39) More pronounced polaron physics (because
of the presence of large S = 1 T -exciton and narrow bandwidth) explains why Tc in
cobaltates is low compared to cuprates. Another mechanism for the water effect is
provided by the band-structure calculations50) that indicate a substantial flattening
of the a1g band-top and a reduction of the band splitting when the water-layers are
present. To study the former effect, we have included negative t′ in our calculation.
Due to the combined effect of better formfactor utilization in the s-wave channel and
Fermi velocity reduction this enhances singlet pairing as demonstrated in Ref. 30).

§7. Full orbital structure of the interaction and the role of e0
g pockets

Local density approximation (LDA) bandstructure calculations on NaxCoO2 pre-
dict the existence of e′g parts of the Fermi surface.51),52) According to some theoretical
explanations of the pairing mechanism in NaxCoO2, these so-called e′g pockets may
even play a crucial role.53)–55) In the ARPES experiments, however, no e′g pockets
are observed in the Fermi surface, and the corresponding band of e′g symmetry is
well below the Fermi level in NaxCoO2 at the relevant dopings. The reasons for such
a discrepancy between LDA predictions and ARPES experiments became a highly
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Fig. 17. (a) Virtual process leading to the effective interaction between the holes. Occupied t2g

hole orbitals are labeled by α, β, and γ respectively. The t̃-active orbitals α and γ are selected

by the orientation of the 〈ij〉 and 〈jk〉 bonds. (b) Multiplet structure of a Co3+ ion in t52ge1
g

configuration. Two lower triplet states 3T1 and 3T2 differ in the occupied eg orbital being in-

plane or out-of-plane with respect to the orbital occupied by the t2g hole. B and C denote the

Racah parameters.56)

debated topic and are not yet fully understood.32) Nevertheless, the e′g band is re-
ported to be located close to the Fermi level in the water-intercalated superconduct-
ing NaxCoO2,13) which opens the question of its possible role in superconductivity.

The aim of this section is to investigate the implications of the proximity of
e′g states to the Fermi level within our model. To this end, we first derive a gen-
eralization of the effective interaction Hamiltonian (4.1) considering the full orbital
structure of the initial, intermediate, and final states. Using such a generalized inter-
action Hamiltonian, we can study the case of mixed a1g/e′g topmost band to assess
the effect of its e′g parts. As the model bandstructure, we use the one from Ref. 37),
where the multiorbital Gutzwiller approximation is applied to a tight-binding fit to
LDA bands. The main advantage of this approach in the context of our study is the
possibility to easily shift the position of e′g band with respect to the Fermi level by
tuning a single tight-binding parameter.

Instead of the projected a1g holes we work here with the holes in canonical t2g

orbitals dxy, dyz, and dzx. It is convenient to use the orbital angles introduced in
Fig. 4(c) to specify the orbitals, e.g., (φa)i annihilates a hole in dyz orbital at site i.
The a1g hole operator f used in the previous sections corresponds to the linear
combination fjσ = [(φa)jσ + (φb)jσ + (φc)jσ]/

√
3 in the new notation.

To derive an effective Hamiltonian of the form (4.1), we consider the virtual
process depicted in Fig. 17(a) which is an a1g-unprojected equivalent of the pro-
cess in Fig. 9. The initial state |i〉 of the two holes at sites k and j is either
singlet Skj(γβ) = (γk↑βj↓ − γk↓βj↑)/

√
2 or one of the triplet states T kj(γβ) =

{γk↑βj↑, (γk↑βj↓ + γk↓βj↑)/
√

2, γk↓βj↓}. The t2g orbitals γ and β of the two holes
are now explicitly indicated. The γ orbital is the t̃-active t2g orbital on 〈jk〉 bond.
The amplitude of the transition to the final state |f〉 [either Sij(αβ) or one of
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T ij(αβ)] contributing to the effective Hamiltonian HP is evaluated as 〈f |HP |i〉 =
−

∑
virt〈f |Ht̃|virt〉〈virt|Ht̃|i〉/Evirt, where the summation runs over all possible in-

termediate states. These consist of a hole pair (α hole at site i and γ hole at site
k) and the excited Co3+ ion at site j having the t52ge

1
g configuration. The excitation

energy depends on the spin and orbital combination of the t2g hole and eg electron
of the Co3+ according to the multiplet structure presented in Fig. 17(b). The t̃-
hopping Hamiltonian Ht̃ used here provides the hopping between t2g and eg levels
on nearest-neighbor Co ions as in Figs. 4(b) and (c). The resulting HP Hamiltonian
with full orbital structure can be written as

HP =
∑
〈ijk〉

∑
β

t̃ 2

[
cos(α − β) cos(γ − β)

(
3
2

1
E3T2

− 1
2

1
E1T2

)

+ sin(α − β) sin(γ − β)
(

3
2

1
E3T1

− 1
2

1
E1T1

)]
Ŝ†

ij(αβ)Ŝkj(γβ)

+t̃ 2

[
cos(α − β) cos(γ − β)

(
1
2

1
E3T2

+
1
2

1
E1T2

)

+ sin(α − β) sin(γ − β)
(

1
2

1
E3T1

+
1
2

1
E1T1

)]
T̂

†
ij(αβ)T̂ kj(γβ) ,

(7.1)

where α and γ are selected by the directions of the bonds 〈ij〉 and 〈jk〉 respectively.
The cosine and sine factors come from the overlap of the t̃-active eg orbitals at
the respective bonds and the eg orbitals participating in the virtual states. In the
following, we neglect the contribution of the high-energy S = 0 states of Co3+. The
simpler version of the Hamiltonian in Eq. (7.1) as given by Eq. (4.1) is obtained by
letting E3T1

= E3T2
= ET and projecting on the a1g states.

Next we study the pairing interaction contained in (7.1). In §6, it was shown,
that the singlet pairing channel leads to the SC dome similar to the experimentally
observed one. We therefore concentrate on the singlet-hopping term in (7.1) and
estimate Tc along the same lines as in §6. The corresponding singlet operators are
first projected onto the topmost band (the closest to μ) fkσ = uka(φa)kσ+ukb(φb)kσ+
ukc(φc)kσ as the relevant one for a Tc estimation. A BCS Hamiltonian

HBCS =
∑
kk′

Vkk′f †
k↑f

†
−k↓f−k′↓fk′↑ (7.2)

is then extracted from the result. The formfactor Vkk′ has a complicated form
containing the bandstructure coefficients ukα as well as the overlap factors in a
triple sum over orbital angles

Vkk′ = 6t̃2
∑
αβγ

(2 − δαγ)ukαukβuk′βuk′γ cos kα cos k′
γ

×
[

1
E3T1

sin(α − β) sin(γ − β) +
1

E3T2

cos(α − β) cos(γ − β)
]

. (7.3)
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Table I. Character table for the C6v group and a basis of its irreducible representations derived

from cos kα, sin kα. These functions are orthonormal on the BZ, i.e.,
P

k γi(k)γj(k) = δij .

representation E 2C6 2C3 C2 3σv 3σd function

A1 1 1 1 1 1 1 γs(k) =
q

2
3

(cos ka + cos kb + cos kc)

B1 1 −1 1 −1 1 −1 γf (k) =
q

2
3

(sin ka + sin kb + sin kc)

E1 2 1 −1 −2 0 0 γp1(k) = sin ka − sin kb

γp2(k) = 1√
3

(2 sin kc − sin ka − sin kb)

E2 2 −1 −1 2 0 0 γd1(k) = cos ka − cos kb

γd2(k) = 1√
3

(2 cos kc − cos ka − cos kb)

In principle, Eq. (7.3) in its present form can be used for the calculation of Tc,
but to get a general insight to the results, a symmetry analysis of this formfactor is
necessary. Guided by the group theory, we express Eq. (7.3) using symmetry-adapted
functions.

In Table I, we show the irreducible representations of the C6v group being the
symmetry group of the hexagonal lattice of Co ions. The factors cos kα and cos k′

γ

as well as the bandstructure coefficients u can be expressed in terms of functions
belonging to A1 and E2 representation of the C6v group (B1 and E1 is employed
in the case of triplet pairing). The functions γs, γd1, and γd2 allow us to directly
express cos kα and cos k′

γ , and the bandstructure coefficients u are converted to a
symmetry-adapted form via the relations a1g = (ua + ub + uc)/

√
3, e′g1 = (ua −

ub)/
√

2, e′g2 = (2uc − ua − ub)/
√

6 deduced from Table I. We then perform the
summations over α, β, and γ and regroup∗) the resulting terms to form products of
symmetric functions of k and k′ respectively. For example, for the A1 representation
(corresponding to the extended s-wave symmetry) there exist four such functions
Ψs1 = γsa1ga1g, Ψs2 = 1√

2

(
γd1a1ge

′
g1 + γd2a1ge

′
g2

)
, Ψs3 = 1√

2
γs

(
e′g1e

′
g1 + e′g2e

′
g2

)
,

Ψs4 = γd1, and e′g1e
′
g2

+ 1
2γd2(e′

2
g1 − e′2g2).

Disentangled interaction formfactor splits into the sum of s-wave, d1-wave and
d2-wave contributions; i.e., these channels are independent in our BCS Hamiltonian.
The formfactor of the s-wave channel reads as

V
(s-wave)

kk′ = λΨT (k)(M1 + rM2)Ψ(k′), (7.4)

where we have introduced the vector ΨT (k) = [Ψs1(k), Ψs2(k), Ψs3(k), Ψs4(k)], the
coupling constant λ = t̃2/E3T1

, the ratio of the triplet excitation energies r =

∗) This procedure is quite involved, since Eq. (7.3) at this stage contains a huge number of terms.
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Fig. 18. (a) Symmetry functions γs(k), γd1(k) and γd2(k) entering the singlet-channel BCS in-

teraction (7.5) resulting from (7.1) in the simple a1g case. (b) Symmetry adapted functions

entering the BCS interaction in the singlet, extended s-wave channel in the general case. The

bandstructure from Ref. 37) at nd = 0.5 was used here.

E3T1
/E3T2

and the matrices

M1 =
1
4

⎛
⎜⎜⎝

−2 −
√

2 +
√

2 −
√

2
−
√

2 −1 +1 −1
+
√

2 +1 −1 +1
−
√

2 −1 +1 −1

⎞
⎟⎟⎠ , M2 =

1
4

⎛
⎜⎜⎝

−2 −3
√

2 −
√

2 +
√

2
−3

√
2 +1 +7 −7

−
√

2 +7 +9 −9
+
√

2 −7 −9 +9

⎞
⎟⎟⎠ .

Each of the two d-wave channels could be represented in a similar way using 6 × 6
matrices and corresponding six symmetry adapted functions. It is instructive to
see, how a simple a1g expression emerges from the general result. In such case
a1g = 1 and e′g1 = e′g2 = 0 everywhere in the Brillouin zone implying Ψs1 = γs,
Ψs2 = Ψs3 = Ψs4 = 0 and a similar reduction in the d-wave part. The simplified
expression for the singlet-pairing formfactor could be written as

Vkk′ =
1 + r

2
λ

[
−γs(k)γs(k′) + 2γd1(k)γd1(k′) + 2γd2(k)γd2(k′)

]
(7.5)

which shows an attractive extended s-wave part and a repulsive d-wave part. The
symmetry functions γs, γd1, and γd2 are presented in Fig. 18 along with the functions
Ψs1, Ψs2, Ψs3, and Ψs4 for the bandstructure of Ref. 37).

Finally, we estimate Tc in the singlet, extended s-wave channel using the dis-
entangled formfactor (7.4). Plugging in our form of Vkk′ into the gap equation at
T = Tc, we find that the transition temperature Tc is determined by the condition
of the largest eigenvalue of the 4 × 4 matrix

−gtλ(M1 + rM2)
∑

k

Ψ(k)ΨT (k)
tanh(ξ̄k/2Tc)

2ξ̄k
, (7.6)
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Fig. 19. (a) Transition temperature Tc as a function of nd for the bandstructure of Ref. 37). The

a1g-e′g orbital splitting Δ was modified to shift the e′g bands closer to the Fermi level. E3T1 = t̃/2,

r = 1/3 was used in the calculation. The effect of the nearest-neighbor Coulomb repulsion is

not included. The inset shows the gap function in the Brillouin zone. (b) The effect of the

modified a1g-e′g orbital splitting on the bandstructure at nd = 0.55. Topmost band employed in

Tc calculation is drawn as a solid line. (c) Distance of the top of the e′g band to the Fermi level

as a function of nd.

being equal to 1. Here ξ̄k is the dispersion of the renormalized topmost band.
Shown in Fig. 19 is the doping-dependent transition temperature as found from

(7.6) employing the topmost band of the bandstructure of Ref. 37). To study the
effect of the proximity of e′g band to the Fermi level we have varied the a1g-e′g orbital
splitting determining the position of the e′g band. As observed in Fig. 19, Tc in
the relevant range increases as the e′g band approaches μ very closely, to around
10 − 30 meV.

Another effect of the e′g band is a strong anisotropy of the superconducting
gap. In the pure a1g case, the gap function as well as the nearest-neighbor tight-
binding dispersion is proportional to γs(k), so that the gap is totally isotropic at the
Fermi surface. In the present case, the gap consists of the four symmetry functions
presented in Fig. 18(b). Near the Brillouin zone center, where the topmost band is of
a1g character, the gap is again determined by γs(k). However, closer to the Brillouin
zone boundary, the band switches to mainly e′g character and the functions Ψs2, Ψs3

and Ψs4 start to dominate the gap reversing its sign. They bring strong anisotropy to
the gap function at the Fermi surface which attains 30−60% at nd = 0.55 depending
on the a1g-e′g splitting. Such a strong anisotropy of the gap may lie behind the
absence of the coherence peak in the nuclear spin relaxation rate data.57),58)

§8. Conclusions

We have discussed a strongly correlated model for NaxCoO2 which is based on
the spin-state quasidegeneracy of S = 0 and S = 1 states of Co3+ and the specific
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geometry of the CoO2 planes in layered cobaltates. The basic idea of the model is
that t2g-eg hopping of 3d electrons between nearest-neighbor cobalt ions, which is
enabled thanks to the 90◦ geometry of Co-O-Co bonds, allows to employ the low-
lying S = 1 t52ge

1
g state of Co3+. This new degree of freedom is exploited by the

Co4+ holes as they move in the CoO2 plane.
In the sodium-rich region, when the Co4+ holes are dilute, the model naturally

explains experimentally observed strong correlations and interprets them in terms
of a spin-polaron formation. At higher concentration of the doped holes, when the
Fermi-liquid regime is established, we have derived effective interactions between
the holes and discussed their impact on spin fluctuations. The superconductivity
mediated by the spin-state fluctuations of Co3+ ions emerges in the model, at exper-
imentally observed compositions. Finally, we discussed the symmetry of the effective
interaction in the context of the possible role of e′g bands in the superconductivity.

Given the simplicity and experimentally motivated design of the model, its suc-
cess can hardly be accidental. Therefore, t-t̃ Hamiltonian, Eqs. (2.1) and (2.2), can
be regarded as a basic minimal model for NaxCoO2. The idea of spin-state fluctu-
ations may also have broader applications, e.g., in oxides of Rh and Ir ions with a
similar spin-orbital structure and lattice geometry.

Formally, systems like LaCoO3 and NaCoO2 fall into the category of band in-
sulators because Co3+ ions have an even number of electrons forming a completely
filled, spinless configuration t62g in their ground state. Nevertheless, they are strongly
correlated materials due to a proximity of virtual magnetic configurations of Co3+

which can easily be activated by doping, temperature, etc. We conclude that the
presence of such low-lying magnetic states is responsible for the rich and nontrivial
physics of cobaltates.
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