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Spin-orbital resonating valence bond liquid on a triangular lattice:
Evidence from finite-cluster diagonalization
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We investigate the ground state of the d1 spin-orbital model for triply degenerate t2g orbitals on a triangular
lattice that unifies intrinsic frustration of spin and orbital interactions with geometrical frustration. Using full
or Lanczos exact diagonalization of finite clusters, we establish that the ground state of the spin-orbital model
that interpolates between superexchange and direct exchange interactions on the bonds is characterized by
valence-bond correlations. In the absence of Hund’s exchange the model describes a competition between various
possible valence-bond states. By considering the clusters with open boundary conditions we demonstrate that
orbital interactions are always frustrated, but this frustration is removed by pronounced spin singlet correlations
that coexist with dimer orbital correlations supporting them. Such local configurations contribute to the disordered
ground states found for the clusters with periodic boundary conditions that interpolate between a highly resonating,
dimer-based, entangled spin-orbital liquid phase and a valence-bond state with completely static spin-singlet
states. We argue that these states are also realized for the infinite lattice and anticipate that pronounced transitions
between different regimes found for particular geometries will turn out to smooth crossovers in the properties of
the spin-orbital liquid in the thermodynamic limit. Finally, we provide evidence that the resonating spin-orbital
liquid phase involves entangled states on the bonds. In such a phase classical considerations based on the
mean-field theory cannot be used, spin exchange interactions do not determine spin bond correlations, and
quantum fluctuations play a crucial role in the ground states and magnetic transitions.

DOI: 10.1103/PhysRevB.83.094406 PACS number(s): 75.10.Kt, 03.65.Ud, 64.70.Tg, 75.10.Jm

I. SPIN-ORBITAL FRUSTRATION

Frustration in magnetic systems is usually of geometrical
origin, but it may also arise due to competing exchange
interactions.1–5 A common feature of frustrated spin systems
is that the interactions along different bonds compete with one
another, and this leads in some cases to disordered states and
to quantum phase transitions when the interaction strength is
varied. Another possibility is so-called “order-by-disorder,”
and several microscopic mechanisms that stabilize ordered
state in spin systems have been investigated.2–5 Here we
focus on the triangular lattice, where frustrated interactions
suggest that valence-bond configurations in a spin model with
antiferromagnetic (AF) interactions could play an important
role,6 and we supplement them in this work with the frustrated
orbital degrees of freedom.

Recently interesting physical realizations of frustrated
interactions were introduced in the context of spin-orbital
superexchange, which arises in transition metal oxides with
active orbital degrees of freedom.7,8 In such models frustration
is intrinsic and follows from the directional nature of orbital
interactions.9 Therefore, the orbital part of the spin-orbital
superexchange is frustrated even without any geometrical
frustration. Generic features of these direction-dependent
interactions are captured within the two-dimensional (2D)
quantum compass model,10 which exhibits a quantum phase
transition through an isotropic point with a highly degenerate
ground state (g.s.).11–13 This high degeneracy is a fingerprint
of highly frustrated interactions and occurs also in the one-
dimensional (1D) compass model.14 It is also characterized
by a rather surprising hidden dimer order in the g.s., which
follows from the symmetry of compass interactions.15

Frustration in the orbital superexchange models is some-
what more subtle—the interactions depend on the type of
active orbital degree of freedom and, in each case, differ from
those in the quantum compass model. In the case of eg orbitals
the interactions are directional as in the quantum compass
model, but they are Ising type only for one cubic axis; for
example, for bonds 〈ij 〉 along the c cubic axis, one has the
interaction ∝σ z

i σ z
j , while for the bonds 〈ij 〉 in the ab planes

they involve linear combinations of {σ z
i ,σ x

i } operators that
arise from the directional orbital states along the considered
(a or b) axis9,16 (here σ z

i and σx
i are Pauli matrices). This

particular structure follows from the fact that although only
one of the eg orbital states participates in charge excitations
along each single cubic axis and the interactions appear to
be classical in a 1D eg orbital model,17 their superposition is
quantum either in a 2D model18 or in a 3D one.19 In contrast,
two t2g orbitals are active and participate in charge excitations
along each cubic direction, so the respective interactions
involve a priori all three components of the orbital pseudospin
τ = 1/2 doublet, with the restriction that the active orbital
t2g doublet changes with the cubic axis.20 For instance, where
the degeneracy of t2g orbitals is removed by the crystal field
in the vanadium perovskites and xy orbitals are filled, the
{yz,zx} orbital doublet contributes with orbital fluctuations to
the bonds along the c axis.21,22

Realistic superexchange models for perovskite transition
metal oxides include both orbital and spin degrees of freedom,
which are strongly interrelated.7,23 Two important questions
for these models are (i) whether the orbital frustration can
be removed by properly selected spin states or frustration is
even enhanced by spin-orbital quantum fluctuations and (ii) to
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what extent spin dynamics may be treated as independent of
orbital dynamics.24 A disordered g.s. was suggested for the t2g

orbitals in the d1 configuration on the perovskite lattice.20

In the present paper we focus on the model derived for
transition metal ions in the d1 configuration for a triangular
lattice,25 with frustration being both of orbital and geometrical
origin. This spin-orbital model corresponds to the undistorted
NaTiO2 and describes magnetic interactions in the spin-orbital
space, with superexchange and direct exchange. In the direct
exchange case the model is exactly solvable and the g.s. was
determined by considering the dimer coverings of the lattice,
with each dimer containing a spin singlet accompanied by two
active orbitals on the direct exchange bond.26 In the general
case the g.s. and the ratio of superexchange and direct exchange
are not known—the latter depends on the respective effective
hopping elements via the oxygen orbitals responsible for the
superexchange and the (ddσ ) hopping that gives the direct
exchange. Therefore, we use it below as a model parameter.
The second parameter of the spin-orbital model considered
here is Hund’s exchange interaction. One might expect that
also in the case of superexchange interactions t2g orbitals could
order and remove the frustration in the triangular lattice, as
they do, for instance, in LiVO2.27 It was argued, however,
in Ref. 25 that the g.s. of the present d1 spin-orbital model is
disordered and dominated by dimer correlations for practically
any ratio of the superexchange and direct exchange interaction.
This conclusion was drawn by considering the mean-field
(MF) states, variational wave functions with valence-bond
correlations, and exact diagonalization of small systems of
not more than N = 4 sites.

The purpose of this paper is to reanalyze the spin-orbital
states in the d1 spin-orbital model on a triangular lattice25 and
provide evidence in favor of a disordered spin-orbital liquid
g.s. from numerical studies of larger finite systems, having up
to N = 10 sites. We use Lanczos diagonalization extensively,
but for rather small systems, of size up to N = 6 sites, where
full diagonalization is also possible in the subspace of Sz = 0
total spin, the two methods are compared. Thereby, we address
a few general questions which concern the spin-orbital physics
for varying parameters of the model: (i) the nature of dimer
spin and orbital correlations, (ii) the nature of the transition to
the spin-polarized ferromagnetic (FM) state with increasing
Hund’s exchange, and (iii) the importance of spin-orbital
entanglement24 and its consequences for the transition from
low-spin to high-spin states. We provide answers to these
questions by considering systems of various sizes and with
different boundary conditions. Altogether, we demonstrate
that quantum fluctuations determine the g.s. and the magnetic
transitions to such an extent that classical considerations
cannot be used in several situations.

The paper is organized as follows. In Sec. II A we introduce
the d1 spin-orbital model on a triangular lattice (as for Ti3+ or
V4+ ions) as derived in Ref. 25. Basic information about the
cluster sizes and geometries used in Lanczos diagonalization
is contained in Sec. II B. The numerical results obtained
for the isolated clusters of up to N = 10 sites are analyzed
in Sec. III. In this section we investigate the model in the
absence of Hund’s exchange and analyze bond correlations—
spin, orbital, and spin-orbital ones—as well as the orbital
occupation. They allow us to find certain general trends which

are expected to determine the behavior of the model in the
thermodynamic limit. The generic transition from quantum to
classical regime in the singlet sector, with interactions evolving
from superexchange to direct exchange, is illustrated by a
hexagonal cluster in Sec. III A. Next we consider triangular
clusters with open boundary conditions in Sec. III B and show
that the singlet correlations are robust in the entire regime
of the exchange interactions. The results obtained for the
clusters with periodic boundary conditions are reported in
Sec. III C. In Sec. IV A we present the orbital model obtained
in the spin-polarized case and investigate the transition from
low-spin to high-spin states for a few representative clusters,
presenting the respective phase diagrams in Sec. IV B. Finally,
we present the consequences of spin-orbital entanglement
in Sec. V A and show that it modifies the phase diagrams
significantly with respect to those obtained when spin and
orbital operators are disentangled, particularly in the regime
of purely superexchange interactions. We also point out in
Sec. V B that meaningful exchange constants cannot be intro-
duced in cases where spin-orbital entanglement dominates and
stabilizes the low-spin g.s. with large spin-orbital fluctuations.
General discussion and summary are presented in Sec. VI.

II. SPIN-ORBITAL MODEL

A. Superexchange versus direct exchange

We consider the spin-orbital model on a triangular lattice
derived in Ref. 25, which describes interactions between
S=1/2 spins for d1 electron configurations, such as in NaTiO2.
The magnetic transition metal ions form a triangular lattice for
the 〈111〉 planes of a compound with cubic symmetry. The
bonds 〈ij 〉 span three directions, labeled γ = a,b,c.

To explain the physical content of the model we consider
a representative bond along the c axis shown in Fig. 1(a). For
realistic parameters of NaTiO2 the 3d electrons are almost
localized in d1 configurations of Ti3+ ions, hence their inter-
actions with neighboring sites can be described by the effective
superexchange and kinetic exchange processes. Virtual charge
excitations, d1

i d1
j

⇀↽ d2
i d0

j , between neighboring sites generate
magnetic interactions which arise from two hopping processes
for active t2g orbitals: (i) effective hopping t = t2

pd/�, which
occurs via oxygen 2pz orbitals with the charge transfer
excitation energy � and consists of two tpd steps,28 in the
present case along the 90◦ bonds; and (ii) direct hopping t ′,
which couples the t2g orbitals along the bond and gives direct
(kinetic exchange) interaction. Note that the latter processes
couple orbitals with the same flavor, while the former ones
couple different orbitals, and there the occupied orbitals may
be interchanged as a result of a virtual charge excitation.

For convenience, we introduce the notation

|a〉 ≡ |yz〉, |b〉 ≡ |xz〉, |c〉 ≡ |xy〉 (2.1)

for the three t2g orbital flavors (colors), following the one used
in the perovskite systems,20 adopted here for the triangular
lattice.29 It follows from the symmetry of orbital wave
functions that only two of the three t2g orbitals allow for d-p
hopping tpd and are active in superexchange on any given bond
〈ij 〉 [Fig. 1(b)], while the remaining γ orbitals couple directly
along the γ axis, so they contribute to the direct (kinetic)
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FIG. 1. (Color online) (a) Schematic view of the hopping pro-
cesses between t2g orbitals along a bond parallel to the c axis in
NaTiO2: (i) tpd between Ti(t2g) orbitals and O(2pz) orbitals, with two
tpd transitions contributing to an effective hopping t ; and (ii) direct
d-d hopping, t ′. The hopping t interchanges two orbital flavors on
two sites and contributes to the effective superexchange interactions
on a bond in the triangular lattice, while the latter (diagonal) hopping
element t ′ contributes to the direct (kinetic) exchange. The t2g orbitals
are shown by different gray scales (color) and are labeled a, b, and c;
see Eq. (2.1). Hopping processes contributing to (b) superexchange
and (c) direct exchange are shown for the bonds along γ = a,b,c

axes in the triangular lattice.

exchange [see Fig. 1(c)]. In addition, each site is occupied by
precisely one electron, so the density operators satisfy a local
constraint at each site i:

nia + nib + nic ≡ 1. (2.2)

These symmetry properties on the triangular lattice are
analogous to those which decide about the form of the kinetic
energy for t2g electrons in the perovskite lattice.20,21

Local Coulomb interactions at transition-metal ions are
described by two parameters: the intraorbital Coulomb inter-
action U and Hund’s exchange JH .30 In the limit of a large in-
traorbital Coulomb interaction U , intersite charge excitations
are transformed away and one finds the Hamiltonian25

H = J {(1 − α) Hs +
√

(1 − α)α Hm + α Hd}, (2.3)

where J is the exchange energy. The parameter α is the first
parameter in the present model, Eq. (2.3), and is given by the
hopping elements as follows:

α = t ′2

t2 + t ′2
; (2.4)

it interpolates between the superexchange (α = 0) and the
direct exchange (α = 1) limit, as explained in Ref. 25. The

second parameter of the spin-orbital model, Eq. (2.3), is
Hund’s exchange:

η = JH

U
. (2.5)

It enters the superexchange and direct exchange (see below)
via the coefficients

r1 = 1

1 − 3η
, r2 = 1

1 − η
, r3 = 1

1 + 2η
, (2.6)

which follow from the multiplet structure of d2 ions.31 They
correspond to the triplet excitation at energy (U − 3JH ) and
to singlet excitations at energies (U − JH ) and (U + 2JH ).
Although the actual values of the Coulomb and Hund’s
exchange elements were deduced from the spectroscopic data
for Ti2+ ions corresponding to charge excitations by Zaanen
and Sawatzky,32 U = 4.35 eV and JH = 0.59 eV, which gives
a value of η � 0.14, we use η as a parameter below in order
to investigate the transition from low-spin to high-spin states
for various cluster sizes and to highlight the difference in the
orbital correlations in the low- and high-η regimes.

The superexchange part of H can be specified as

Hs = 1

2

∑
〈ij〉‖γ

{
r1

(

Si · 
Sj + 3

4

)[
A

(γ )
ij + 1

2
(niγ + njγ ) − 1

]

+ r2

(

Si · 
Sj − 1

4

)[
A

(γ )
ij − 1

2
(niγ + njγ ) + 1

]

− 2

3
(r2 − r3)

(

Si · 
Sj − 1

4

)
B

(γ )
ij

}
, (2.7)

and contains two spin operators-a projection on the triplet
state (
Si · 
Sj + 3

4 ) and an operator −(
Si · 
Sj − 1
4 ), which is

a projection on the singlet state. These operators accompany
the coefficients {r1,r2,r3} and express the dependence on the
excited d2 states.

The orbital operators Aij and Bij in Eq. (2.7) depend on the
bond direction γ and involve two orbital flavors active in the
superexchange:

A
(γ )
ij =(T +

iγ T +
jγ + T −

iγ T −
jγ ) − 2T z

iγ T z
jγ + 1

2n
(γ )
i n

(γ )
j , (2.8)

B
(γ )
ij =(T +

iγ T −
jγ + T −

iγ T +
jγ ) − 2T z

iγ T z
jγ + 1

2n
(γ )
i n

(γ )
j . (2.9)

The operator niγ in Eq. (2.7) stands for the number of electrons
at site i in the orbital inactive in superexchange processes, for
instance, niγ ≡ nic in the example depicted in Fig. 1. On the
contrary, n

(γ )
i is the total electron number operator at site i for

orbitals active in superexchange; that is, in the case shown in
Fig. 1 it is n

(c)
i = nia + nib. The orbital operators {T +

iγ ,T −
iγ ,T z

iγ }
refer to the orbital doublet active in the superexchange on
the bond 〈ij 〉 ‖ γ . For a single bond, the orbital operators in
Eqs. (2.8) and (2.9) may be written in a very suggestive form by
performing a local transformation in which the active orbitals
are exchanged on one bond site,29 for example, |a〉 → |b〉 and
|b〉 → |a〉 on bond 〈ij 〉 ‖ c:

A
(γ )
ij ≡ 2

{
( 
Ti · 
Tj )(γ ) + 1

4 n
(γ )
i n

(γ )
j

}
, (2.10)

B
(γ )
ij ≡ 2

{
( 
Ti � 
Tj )(γ ) + 1

4 n
(γ )
i n

(γ )
j

}
. (2.11)

094406-3
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Here the scalar product in Aij is the conventional expression
for pseudospin T = 1/2 variables transformed as described
above, and the product in Bij is the usual term which
follows from the structure of local Coulomb interactions, also
transformed. They are defined as follows:

( 
Ti · 
Tj )(γ ) ≡ 1
2 (T +

iγ T −
jγ + T −

iγ T +
jγ ) + T z

iγ T z
jγ , (2.12)

( 
Ti � 
Tj )(γ ) ≡ 1
2 (T +

iγ T +
jγ + T −

iγ T −
jγ ) + T z

iγ T z
jγ . (2.13)

This form follows from the local transformation at site j , which
is introduced for the superexchange in the present case.29

These operators select favored orbital configurations on two
neighboring sites via the T z

iγ T z
jγ terms, and orbital fluctuations

are described by the T ±
iγ T ∓

jγ and T ±
iγ T ±

jγ terms. Note that the
zth pseudospin component is not conserved. For a bond along
the axis γ orbital, operators at site i are defined by the electron
creation {a†

i ,b
†
i ,c

†
i } and annihilation {ai,bi,ci} operators for

fermions with a given flavor. For instance, for the bonds along
the a or b axis they are

T +
ia =b

†
i ci , T +

ib = c
†
i ai,

(2.14)
T −

ia = c
†
i bi, T −

ib = a
†
i ci ,

T z
ia = 1

2 (nib − nic), T z
ib = 1

2 (nic − nia). (2.15)

The direct (kinetic) exchange term involves only virtual
excitations of γ orbitals on a bond 〈ij 〉 ‖ γ ,

Hd = 1

4

∑
〈ij〉‖γ

{[
− r1

(

Si · 
Sj + 3

4

)
+ r2

(

Si · 
Sj − 1

4

)]

× [niγ (1 − njγ ) + (1 − niγ )njγ ]

+ 1

3
(2r2 + r3)

(

Si · 
Sj − 1

4

)
4niγ njγ

}
. (2.16)

Therefore the structure of the orbital operators is simpler:
they enter as projection operators and give two different
individual terms:25 either (i) when only one active orbital
is occupied, ∝niγ (1 − njγ ), or (ii) when both orbitals are
occupied, ∝niγ njγ . For the bond shown in Fig. 1, γ ≡ c.
The structure of d2 excited states is the same here as for the
superexchange, so the same coefficients given in Eqs. (2.6)
occur in both terms, superexchange, Eq. (2.7), and kinetic
exchange, Eq. (2.16).

As explained in Ref. 25, the two different types of hopping
processes (t and t ′) may contribute in a two-step virtual
d1

i d1
j

⇀↽ d2
i d0

j excitation, in such a way that the occupied
orbitals are changed at both sites. In this case the resulting
effective interaction are expressed in terms of orbital fluctua-
tion operators. For the bond shown in Fig. 1 these terms are

H(c)
m =−1

4

∑
〈ij〉‖c

{
r1

(

Si · 
Sj + 3

4

)
− r2

(

Si · 
Sj − 1

4

)}

× (T +
ia T +

jb + T −
ib T −

ja + T +
ib T +

ja + T −
ia T −

jb), (2.17)

where the orbital operators are defined in Eqs. (2.14). The
form of the H(a)

m and H(b)
m terms is obtained from Eq. (2.17)

by cyclic permutations of the orbital indices. Note that these
terms describe fluctuations that go beyond any static orbital
configuration, so they represent corrections to the classical

treatment of the spin-orbital correlations, as discussed in
Secs. V A and V B.

In the subsequent sections we focus first on the frustrated
interactions in the model of Eq. (2.3) at η = 0. This case is
rather special, as the multiplet structure collapses to a single
excitation with energy U (spin singlet and triplet excitations
are then degenerate), and the Hamiltonian depends only on
the ratio of superexchange to direct exchange, parametrized
by 0 � α � 1, and has the following form:

H0=J
∑

〈ij〉‖γ

{
(1 − α)

[
2

(

Si · 
Sj + 1

4

)

×
[

( 
Ti · 
Tj )(γ ) + 1

4
n

(γ )
i n

(γ )
j

]
+ 1

2
(niγ + njγ ) − 1

]

+ α

[ (

Si · 
Sj − 1

4

)
niγ njγ − 1

4
(niγ (1 − njγ )

+ (1 − niγ )njγ )

]
− 1

4

√
α(1 − α)

× (T +
iγ̄ T +

j γ̃ + T −
iγ̃ T −

j γ̄ + T +
iγ̃ T +

j γ̄ + T −
iγ̄ T −

j γ̃ )

}
. (2.18)

Here the orbital scalar product
(


Ti · 
Tj

)(γ )
is given by

Eq. (2.12). The Hamiltonian H0 describes AF interactions
between spins, but the orbital terms favor either orbital
fluctuations (superexchange) or a static configuration of the
same orbitals (direct exchange) on the bond. The form of the
superexchange ∝ (1 − α) suggests that the spin and orbital
sectors could be completely equivalent and symmetrical at
α = 0 for a single bond. However, this remains true only as
long as active orbitals can be selected to contribute to the
superexchange as this bond, that is, for n

(γ )
i n

(γ )
j ≡ 1, and this

equivalence is broken when more bonds are considered.25

A remarkable feature of the Hamiltonian, Eq. (2.18), is the
lack of higher symmetry in any of the points when α is varied.
Even at α = 0.5, where all electron transitions have the same
amplitude, no higher symmetry occurs, as the superexchange
(α = 0) and direct exchange α result from quite distinct
processes and cannot be transformed into each other. The only
analytical solution was found in the α = 1 case, where at η = 0
the extremely degenerate g.s. is a liquid of hard-core dimers.26

This degeneracy is removed at η > 0, and a valence-bond
crystal with a large unit cell of 20 sites is formed.

B. Lanczos diagonalization and cluster size

To establish unbiased results concerning the nature of the
g.s. and spin and orbital correlations in the present spin-orbital
model, Eq. (2.3), providing evidence in favor of spin-orbital
liquid state, we have used diagonalization of finite clusters.
As the number of degrees of freedom per site is 2 × 3 = 6,
the size of the Hilbert space increases very rapidly with
increasing system size N . The only symmetry which could
straightforwardly be implemented is the conservation of the
zth component of total spin,

Sz =
N∑

i=1

Sz
i , (2.19)
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while the orbital state is a priori undetermined. Therefore,
the use of full exact diagonalization is practically limited to
systems of up to N = 6 sites, where the size of the Hilbert
space is 66 = 46 656 and the largest (Sz = 0) subspace has
the dimension 14 580. The use of the Lanczos method allowed
us to investigate systems of up to N = 10 sites.

Although several other clusters were studied as well, we
would like to concentrate here on only two classes of clusters
which help to identify certain general trends for the present
spin-orbital model. The first class consists of triangular clusters
with open boundary conditions (OBC), which, by construction,
have nonequivalent sites and are expected to favor dimer
correlations. They were used to identify the dimer correlations
and to find their evolution with increasing size. These clusters
help us to understand the interrelation between spin and
orbital states on the bonds which become transparent when
the symmetry in the orbital space is broken by geometry. The
clusters considered here contain N = 3, 6, 10 sites and are
labeled N3, N6, and N10, respectively [see Fig. 2(a)].

The second class of clusters, shown in Fig. 2(b), consists
of three clusters with up to 9 sites which cover the triangular
lattice entirely and can thus be investigated using periodic
boundary conditions (PBC): rhombic cluster N4, hexagonal
cluster N7, and large rhombic cluster N9. However, the PBCs
are not unique and, as we have verified, lead to nonequivalent
results. Therefore in each case displayed in Fig. 2(b) we
selected PBCs that result from ordering the considered clusters
in rows on the triangular lattice, as indicated by the clusters

N3

N9

(b)

(a) N6 N10

N7N4

2

1
1

2

1

2

1

2

3

1

1

FIG. 2. Clusters (shown in gray) used to investigate the spin-
orbital model, Eq. (2.3), by full or Lanczos exact diagonalization:
(a) triangular clusters with open boundary conditions N3, N6, and
N10-here nonequivalent sites and bonds used later are indicated by
labels 1, 2, and 3, respectively; and (b) clusters with periodic boundary
conditions—rhombic N4, hexagonal N7, and rhombic N9. In the latter
case positions of neighboring clusters which cover the triangular
lattice are indicated and all the sites and bonds are equivalent (label
1 is used for equivalent sites and bonds in N7 and N9 clusters).

surrounding the one used for Lanczos (or full) diagonalization.
Unlike some other lattice coverings, these boundary conditions
guarantee that all the bonds and sites are equivalent in each
considered cluster. Therefore, no additional frustration of
interactions is introduced by selecting the PBC, and the internal
symmetry of the considered cluster is preserved. Hence, we
suggest that these clusters may serve to simulate the situation
in the thermodynamic limit.

C. Correlation functions and entanglement

In Secs. III–IV we compute and discuss the g.s.’s of several
clusters, by looking at their energies, degeneracies, and site
occupations, as well as the spin, orbital, and spin-orbital (four-
operator) correlation functions for a bond 〈ij 〉 along the γ axis,
given, respectively, by

Sij ≡ 1

d

∑
n

〈n| 
Si · 
Sj |n〉, (2.20)

Tij ≡ 1

d

∑
n

〈n|( 
Ti · 
Tj )(γ )|n〉, (2.21)

Cij ≡ 1

d

∑
n

〈n|(
Si · 
Sj − Sij )( 
Ti · 
Tj − Tij )(γ )|n〉

= 1

d

∑
n

〈n|(
Si · 
Sj )( 
Ti · 
Tj )(γ )|n〉 (2.22)

− 1

d

∑
n

〈n| 
Si · 
Sj |n〉 1

d

∑
m

〈m|( 
Ti · 
Tj )(γ )|m〉,

where d is the g.s. degeneracy, and the pseudospin scalar
product in Eqs. (2.21) and (2.22) is defined by Eq. (2.12).
In clusters with OBC the correlations depend on the bond,
but for the clusters with PBC all the bonds are equivalent
and these correlations are uniform. The summations include
all independent quantum states {|n〉} which span the possibly
degenerate g.s. manifold.

The degeneracy d of the g.s. and the corresponding state
vectors are easily obtained if full exact diagonalization can be
used. On the other hand, due to the appearance of spurious
degeneracies, the Lanczos diagonalization in its basic form is
not able to quantify reliably the degeneracy and to generate the
set of suitable g.s. vectors. In the present work we have used the
following method to remedy this problem: The Lanczos algo-
rithm is performed several times using random initial vectors
and a sufficient number of the g.s. vectors is generated. The
orthonormalization of this set then yields the degeneracy of the
g.s., as the number of independent vectors and the orthonormal
g.s. vectors themselves can be used in the g.s. averaging
implied by Eqs. (2.20)–(2.22). Furthermore, it is possible to
determine the range of possible values of the quantities of inter-
est within the g.s. manifold. This is achieved by evaluating the
minimum and maximum eigenvalue of the matrix representing
the corresponding operator within this manifold. In such cases
the obtained ranges of possible values are indicated in all the
relevant figures in the form of vertical lines.

The last correlation function Cij in Eq. (2.22) quantifies the
average difference between the complete spin-orbital operator
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and its decoupled product. Therefore, we use it here as the sim-
plest measure of spin-orbital entanglement. If Cij = 0, the MF
decoupling of spin and orbital operators on the bond 〈ij 〉 is ex-
act, and both subsystems may be treated independently of each
other. This implies that the g.s. wave function can be written as
a product of its spin and orbital parts. For instance, this happens
for the high-spin states which become the g.s. at large η.24

However, we note that the criterion of spin-orbital entangle-
ment introduced above as Cij �= 0 can be rigorously applied
only for systems with nondegenerate g.s. (d = 1). If d > 1,
the averaging introduced in Sij and Tij , used in Eq. (2.22),
implies that Cij could be (small but) finite even in cases when
de facto spin-orbital decoupling takes place, and the measure
of entanglement would have to be more subtle. Nevertheless,
here we use Cij Eq. (2.22) as a simple diagnostic tool and
comment in more detail on particular cases, where Cij �= 0.

III. TOWARD SPIN-ORBITAL LIQUID

A. Quantum and classical dimers in a hexagonal cluster

To understand the consequences of frustration on spin,
orbital, and spin-orbital correlations on the triangular lattice,
it is instructive to start by analyzing the simpler case of
a honeycomb lattice, where the geometrical frustration is
absent.25 A representative cluster for such a lattice is hexagonal
cluster H6 [obtained from the N7 cluster in Fig. 2(b) by
removing the central site], which is considered here with
OBC. It serves to unravel the generic behavior of the orbital
correlations for increasing α and to investigate the spin-orbital
entanglement in different parameter regimes of the spin-orbital
model, Eq. (2.3). This cluster was analyzed using Lanczos
diagonalization, and we present also the degeneracy of the g.s.
below.

One finds that all the orbitals contribute equally in the entire
range of α, and each orbital state is occupied at two out of six
sites in the g.s., in the entire regime of α. However, the orbital
state changes under increasing α and one finds four distinct
regimes by analyzing the evolution of the g.s. shown by the
correlation functions and orbital densities displayed in Fig. 3.
The transitions between them are abrupt (first order) and occur
by level crossing. Each site in the hexagonal cluster participates
only in two bonds which breaks the spatial symmetry in
the orbital space in a particular way. In the super exchange
model at α = 0 there is precisely one orbital at each site
which contributes to the interactions along both bonds, and
we have found that indeed niγ = 1 for this particular orbital
[for site i = 1, c orbital is active along both bonds, as shown in
Fig. 1(b)]. This results in a unique g.s. which is characterized
by a frozen orbital configuration and triplet orbital correlations
at each bond 〈ij 〉, i.e., T

γ

ij = 0.25, see Fig. 3(a). Under these
circumstances the orbitals decouple from spins and Eq. (2.18)
reduces to the AF Heisenberg model on this cluster. Therefore,
the g.s. is disentangled, with Cij = 0, and one finds that the
spin correlations are exactly the same as for the 1D chain of
N = 6 sites with PBC; that is, Sij = −0.4671.

Orbital fluctuations gradually increase with increasing α,
but the above g.s. remains stable up to α � 0.10. For larger
0.10 < α < 0.44 the fluctuations “soften” the orbital state and
allow for local fluctuations along the bonds. As spins are also
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FIG. 3. (Color online) Evolution of the g.s. for a hexagon H6 with
OBC as a function of α in the absence of Hund’s exchange (η = 0).
(a) Bond correlations: spin Sij , Eq. (2.20), circles; orbital Tij ,
Eq. (2.21), squares; and spin-orbital Cij , Eq. (2.22), triangles. (b)
Orbital electron densities n1γ at site i = 1 (left-most site): n1a (cir-
cles), n1b (squares), and n1c (triangles). Insets: Orbital configurations
realized in the superexchange limit (α = 0), for 0.44 < α < 0.63,
and in the direct exchange limit (α = 1). Vertical lines indicate the
range of possible values of the particular quantity (bond correlation
or electron density). They should not be confused with any kind of
numerical error, as they indicate an exactly determined range due to
the g.s. degeneracy.

involved, this change of the g.s. is not gradual but occurs as
a quantum transition to the state with degeneracy d = 2. In
this g.s. the spin correlations weaken to Sij � −0.27 and the
joint spin-and-orbital fluctuations contribute with finite mixed
correlation function, Cij � −0.12 [see Fig. 3(a)].

The degeneracy of the g.s. results in different values of the
possible orbital occupancy at each site: while the probability
of occupying the orbital c at site 1 is now reduced to n1c = 2/3
in each component, the remaining orbital with finite density
is either a or b, depending on the actual wave function. Each
component satisfies the local constraint given in Eq. (2.2). As a
result, the average density n1a = n1b = 1/6 follows from two
contributing eigenfunctions, with either n1a = 1/3 or n1b =
1/3, and the third orbital empty (n1b = 0 or n1a = 0). This is
marked in Fig. 3(b) by the vertical lines (error bars), which
indicate the range of possible values for the relevant electron
density n1γ .

In agreement with intuition, when α = 0.5 and all interor-
bital transitions shown in Fig. 1 have equal amplitude, there
is large orbital mixing, which is the most prominent feature in
the g.s. found in the intermediate regime of 0.44 < α < 0.63.
It is not centered at α = 0.5, as there are fewer processes
which contribute to direct exchange than to superexchange,
the energy gain is lower in the direct exchange regime, and
thus this regime, which comes next, is narrower. Although
both superexchange and direct exchange suggest AF spin
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couplings, the orbitals fluctuate here strongly and couple to the
spins. Therefore, AF spin correlation function is again reduced
to Sij � −0.21. Remarkably, both the orbital correlations,
Tij � −0.18, and the mixed correlations, Cij � −0.13, are
also negative, and the g.s. is unique (d = 1). Here all the
orbitals contribute equally and n1γ = 1/3, as shown in the
inset in Fig. 3(b). We recognize this state as a prerequisite of
the spin-orbital liquid state which dominates the behavior of
the triangular lattice, as we demonstrate in Sec. III C. Actually,
there is also some similarity between this fluctuating g.s. and
the g.s. of the 1D SU(4) spin-orbital model on a finite chain
with PBC,24 but here the symmetry is lower by construction.

The regime of larger values of α > 0.63 favors direct
exchange interactions, supported by pairs of identical orbitals
active on an exchange bond. Having only one orbital flavor
active along each bond, only three bonds may be occupied by
spin singlets and contribute with a direct exchange energy,
and there are two distict configurations with differently
distributed orbital occupations along the hexagonal ring,
shown in Fig. 3(b). These two distinct g.s.’s (degeneracy
d = 2) again cause two distributions of the orbital densities,
this time varying between 0 and 1 in the majority of the direct
exchange regime, that is, for α > 0.7. After averaging over
two degenerate states, the average occupancy for the orbitals
which are active on one of the bonds originating from each
site i is nia = nib = 0.5. However, there is also a narrow
range of 0.63 < α < 0.7, where such fluctuations have a lower
amplitude, only between 1/3 and 2/3. This suggests that the
orbital fluctuations still play an important role here and couple
weakly since Cij � 0.05, in contrast to α > 0.7, characterized
simply by two distinct orbital configurations and factorized
spin and orbital degrees of freedom, that is, Cij = 0. Indeed,
as a result of averaging over two degenerate wave functions
in the g.s. [see inset in Fig. 3(b)], one finds at α = 1 the
bond correlations Sij = −3/8 and Tij = 1/8. These results
demonstrate that two orbital configurations are static.

B. Triangular clusters with open boundary conditions

In contrast to the hexagonal cluster considered above,
triangular clusters in Fig. 2(a) are characterized by frustrated
spin-orbital interactions and contain nonequivalent bonds.
Therefore the case of decoupled spin and orbital dynamics
cannot be realized in the superexchange limit (at α = 0) in
any of the clusters. In fact, the orbitals try to adjust themselves
to the frustrated geometry, but in general several equivalent
configurations contribute and the obtained results follow from
averaging over them. The smallest triangular cluster N3 was
already analyzed in Ref. 25; we therefore concentrate here
on N6 and N10. Below we first discuss the bond correlation
functions and then explain them by presenting the electron
distribution over t2g orbital states.

The intersite spin, orbital, and spin-orbital correlations are
presented in Fig. 4 for two classes of bonds shown in Fig. 2(a):
a bond involving a corner site labeled 1 and an internal bond
that is close to the corner labeled 2. To simplify the notation
we label the respective bond correlation functions for a bond
n = 1,2 with the bond index Sn, Tn, and Cn, respectively.
The data points indicate three physically different regimes
(similar, to some extent, to the H6 cluster in Sec. III A:
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FIG. 4. (Color online) Bond correlations for triangular clusters
for increasing α in the absence of Hund’s exchange (η = 0), as
obtained for topologically equivalent bonds n = 1,2 in triangular
clusters N6 (top) and N10 (bottom) with OBC [see Fig. 2(a)]: spin
(Sn; circles), orbital (Tn; squares), and spin-orbital (Cn; triangles)
correlations.

(i) the superexchange regime in a range of small values
α � 0, (ii) an intermediate regime for values of α close to
but typically larger than α = 0.5, and (iii) the direct exchange
regime far large values of α close to α = 1. The range of values
of α for each of these three regimes depends on the cluster
size, but certain common features can easily be recognized in
Fig. 4. Altogether, the intermediate regime where the electrons
are almost equally distributed and spin-orbital fluctuations are
strong becomes broader with increasing cluster size from N6
to N10.

TABLE I. Degeneracy of different ground states found in the d1

spin-orbital model, Eq. (2.18), at the superexchange point (α = 0), at
finite but small α = ε, in the intermediate regime (α = 0.6), close to
(1 − α = ε) and at the direct exchange (α = 1) point for the triangular
N3, N6, and N10 clusters shown in Fig. 2(a).

Cluster α = 0 α = ε α = 0.6 α = 1 − ε α = 1

N3 6 4 2 8 12
N6 2 1 2 1 2
N10 1 2 1 2 6
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Clusters N6 and N10 do not have any spin degeneracy and
the total spin state is a singlet S = 0 in the entire parameter
range. The degeneracy of the N6 cluster (see Table I) therefore
follows from the distribution of three spin singlets over the
cluster accompanied by matching the orbital state in such
a way that the energy of these singlet states can indeed
contribute to the g.s. energy. The overall tendency toward
singlet spin correlations on the bonds originating from corner
site 1 [see Fig. 2(a)] is observed in both the N6 and the
N10 clusters, where S1 < −0.12 in the entire regime of α.
Gradual localization of spin singlets near corner sites with
increasing α is suggested by the decreasing values of S1,
with the lowest values reached at α = 1 in both cases. The
superexchange regime extends up to α � 0.54 (α � 0.51) for
the N6 (N10) cluster, while the direct exchange dominates
for α > 0.64 (α > 0.67), respectively. A small increase in S1

in the N6 cluster for 0 < α < 0.54 could be understood as
a consequence of the gradual increase in orbital fluctuations
toward the intermediate regime, where the spin and orbital
dynamics start to decouple from each other. This trend is
recognized by a simultaneous decrease in spin correlations S1

and increase in spin-orbital correlations C1. A common feature
for both the N6 and the N10 clusters in the regime of large α

is the vanishing spin-orbital correlation function (C1 = 0) (see
Fig. 4).

We remark that also the correlations on bonds labeled 2
in clusters N6 and N10 [see Fig. 2(a)] have several common
features. First, spin correlations are negative (S2 < 0) in the
entire range of α except for α = 1, where one findsS2 = 0. We
argue that this result manifests frustration of the internal bonds
(labeled 2) in both clusters, in contrast to the bonds originating
from a corner (labeled 1). Second, the orbital correlations T2

are positive for both small and large values of α, while in the
intermediate regime these correlations are negative due to large
orbital fluctuations. Finally, the spin-orbital correlations vanish
on bonds 2 in both clusters when the direct exchange point α=1
is approached. These results confirm the observations made
above for bonds 1 originating from a corner, that spin-orbital
entanglement is absent at the direct exchange point.

Three regimes of spin and orbital correlations recognized
in N6 and N10 clusters are characterized by quite different
density distributions of electrons which obey the local con-
straint Eq. (2.2). The electron densities, shown in Fig. 5,
confirm the observations made above by analyzing the intersite
correlations that the g.s.’s of both clusters can be classified as
belonging to three regimes, dominated by (i) superexchange,
(ii) orbital fluctuations, and (iii) direct exchange. Different
roles played by the orbitals {a,b,c} along particular directions
in the N6 cluster are highlighted by the two insets in Fig. 5. The
bonds which originate at a corner site i = 1 are remarkably
similar to each other. The common active orbital c for the
superexchange along both bonds has a high electron density,
while the remaining orbitals may contribute along only one of
these bonds. In the smaller N6 cluster the density distribution
at α = 0 amounts to n1c � 0.74 and n1a = n1b � 0.13. This
density distribution cannot be easily deduced by analyzing
the degeneracy of the g.s. (Table I) and by averaging spin
singlet configuration over the bonds in the N6 cluster, which
gives instead {n1a,n1b,n1c} = {1/6,1/6,2/3}. Therefore, we
find here the first example where the orbital fluctuations play a
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FIG. 5. (Color online) Orbital occupations n1γ in triangular
clusters for increasing α in the absence of Hund’s exchange (η = 0):
at sites i = 1,2 for the N6 cluster (top) and at sites i = 1,2,3 for
the N10 cluster (bottom) [see Fig. 2(a)]. Insets: Two representative
orbital occupancy distributions for the superexchange (left) and direct
exchange (right) regimes.

role and modify the electron density distribution with respect
to the classical expectations. Nevertheless, the spin singlets
are accompanied by appropriate active orbitals along three
isolated bonds, each of them originating from one corner site of
N6 triangle. This is also confirmed by the density distribution
found for site i = 2, where one finds a density of 0.5 for both
orbitals active along the bonds on the triangle edge and 0 for the
third orbital, which contributes to the superexchange along the
other two triangle edges. To some extent this is also observed
in the larger N10 cluster.

The density distribution at sites i = 1 and i = 2 changes
toward a more isotropic one for increasing α, but the symmetry
in the orbital space is always broken by geometry and the
densities differ somewhat even in the intermediate regime
for α ∼ 0.6 (Fig. 5). For larger values of α one easily
recognizes the situation of singlet spin dimers distributed over
the cluster. Each dimer is based on a single orbital flavor
active in the direct exchange on a particular bond. This state
is surprisingly robust against orbital fluctuations in the N6
cluster, where only orbitals a and b are occupied at site i = 1,
and n1a = n1b = 0.5. Actually, a similar situation is also found
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in the N10 cluster, but here the g.s. is degenerate (see Table I)
and a range of possible electron densities {n1a,n1b} is found
instead. Altogether, we have found that n1c = 0 in all the
considered triangular clusters when the direct exchange limit
is approached.

The distribution of orbital densities at sites labeled i = 2
in clusters N6 and N10 in the regime of large α > 0.7
demonstrates that indeed these clusters are dominated by the
spin singlets touching a corner site each. It is for this reason that
the density n2a approaches n2a = 1 when α → 1, and the other
two orbitals are empty. In the N10 cluster the density n2a is
somewhat reduced due to geometric constraints and additional
frustration introduced by the total number of five spin singlets,
which implies several equivalent states with different orbital
density distributions in the cluster.

The only site in the triangular clusters which recovers full
symmetry in the orbital space is the central i = 3 site of
the N10 cluster. Here we have found that all three orbitals
contribute equally in the g.s. in the entire range of α, with
n3γ = 1/3 (Fig. 5), but certain fluctuations around this average
value are observed in both the superexchange (α < 0.52) and
the direct exchange (α > 0.66) regime. This result may be
treated as a precursor of the situation encountered in the infinite
lattice, where the geometrical frustration favors the disordered
state. Such an interpretation is also supported by the fact that
the g.s. energies per bond (not shown) systematically increase
with increasing cluster size (for fixed α) among N3, N6, and
N10 clusters, particularly close to superexchange (α = 0) and
direct exchange (α = 1) points. We investigate this situation
in more detail below (in Sec. III C) by considering the clusters
with PBC.

C. Clusters with periodic boundary conditions

After analyzing the triangular clusters with OBC in
Sec. III B, we turn to clusters N4, N7, and N9, with PBC,
shown in Fig. 2(b), which have all sites equivalent and are thus
representative for a triangular lattice in the thermodynamic
limit. The intersite correlation functions obtained for the N4
cluster were analyzed in Ref. 25, and we concentrate here on
both larger clusters, N7 and N9.

Unlike for the triangular clusters, where abrupt transitions
between distinct regimes of particular spin and orbital cor-
relations were found, one finds here that the intersite spin,
orbital, and spin-orbital correlations evolve continuously with
increasing α for N7 and N9 clusters, and no distinct regimes
with dominating either superexchange or direct exchange can
be identified. In the case of the N7 cluster the spin correlations
are AF and constant; Sij � −0.11. Note that this value is
somewhat higher than the average obtained by considering
randomly distributed spin singlets over the triangular lattice,
that is, occupying every sixth bond in the lattice and leading
to 〈Sij 〉 = −0.125. However, the smaller value obtained can
be justified as follows. In the low-spin phase one has S = 1/2
total spin, and one can determine the intersite spin correlations
using the following identity:


S2 = 7
S2
i + 42〈
Si · 
Sj 〉. (3.1)

For this cluster every pair of sites {i,j} is a nearest-neighbor
pair and forms a bond (due to PBC), so Eq. (3.1) follows.

TABLE II. Degeneracy d of the ground states found for the d1

spin-orbital model, Eq. (2.18), at the superexchange point (α = 0),
in the intermediate regime (0 < α < 1), and at the direct exchange
point (α = 1) obtained for N7 and N9 clusters with PBC. The first
factor in d gives the orbital degeneracy, which is multiplied by spin
degeneracy 2 for the ground state with S = 1/2 total spin.

Cluster N7 N9

0 � α < 0.26 6 × 2 6 × 2
0.26 < α < 0.41 6 × 2 4 × 2
0.41 < α < 0.85 6 × 2 2 × 2
0.85 < α < 1 1 × 2 6 × 2
α = 1 147 × 2 756 × 2

The value 〈
Si · 
Sj 〉 = −3/28 = −0.107 obtained from it is
much reduced from the classical AF spin correlations −1/4
in the Néel state on a square lattice, which is a consequence
of the high frustration of the triangular lattice. Note that spin
correlations here are substantially reduced by the geometrical
frustration and seem not to be hindered further by orbital
fluctuations, unlike in the 1D SU(4) model,33 where the
coupling to the orbital correlations is crucial and reduces spin
correlations, although the geometrical frustration is absent.

For values of α < 0.8 the orbital correlations Tij are
even a bit lower than the spin ones, and decrease some-
what with increasing α for α < 0.6. We emphasize that
both spin and orbital correlations are negative here, so the
present spin-orbital model on the triangular lattice violates the
Goodenough-Kanamori rules that these correlations should be
complementary.34 This is also reflected in the finite spin-orbital
correlations Cij � −0.07, which indicate that entangled states
play an important role in this parameter range (see Fig. 6).
When α increases further, however, the orbital state is
reorganized and the orbital correlations rapidly decrease. At
the same time the mixed spin-orbital correlations also decrease,
suggesting gradual disentanglement of spin and orbital degrees
of freedom. Finally, at α = 1 the spins decouple from the
orbitals, which agrees with the g.s. consisting of uncoupled
spin singlets distributed over the triangular lattice.26

As all the orbitals are equivalent, the average occupancy
is niγ = 1/3 (see Fig. 6). However, apart from the spin
degeneracy due to the total spin state S = 1/2 realized for the
cluster with odd N = 7 sites, one finds that several equivalent
orbital configurations contribute, with one of the orbitals
occupied by three electrons and the other two by two each.
For this reason we have found degeneracy d = 6 × 2 = 12
(see Table II) and large fluctuations of the density distribution,
typically between 0.1 and 0.6 for low values of α < 0.5,
increasing toward α = 0.85. Next the quantum nature of the
g.s. makes it only spin degenerate and d = 2 for α > 0.85,
and no fluctuations in the orbital occupancies were found.
Finally, in the direct exchange limit α = 1 independent dimer
distributions over the cluster dominate and determine a large
orbital degeneracy d = 147 × 2 of the g.s.. This degeneracy
due to the orbital distribution over the cluster can be understood
as being given by three possibilities of having one dominating
orbital flavor, seven positions of this extra flavor in the cluster,
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FIG. 6. (Color online) Evolution of the frustrated g.s. for the
N7 cluster with PBC shown in Fig. 2(b) with increasing α in the
absence of Hund’s exchange: (a) intersite bond correlations—spin
(Sij ; circles), orbital (Tij ; squares), and spin-orbital (Cij ; triangles);
(b) orbital occupations n1γ per site (at a representative site i = 1).

and seven possible distributions of singlets over the cluster,
that is, 3 × 7 × 7 = 147.

The second cluster with PBC contains N = 9 sites and is
better designed to study the present model, as the degeneracy
of the g.s. is expected to be lower (except at α = 1). In this
case electrons can be equally distributed over the orbitals,
and three electrons occupy each of them. Fluctuations over
different values of bond orbital correlations Tij and differently
occupied orbital states [see Figs. 7(a) and 7(b)] cannot be
avoided within the cluster, but they are typically smaller than
those found for the N7 cluster. All average values for the
intersite correlations are rather similar to those found in the
N7 cluster for small α, with Sij � −0.90, Tij � −0.97, and
Cij � −0.64 at α = 0. Here all the orbital states are equally
populated, as shown in the inset in Fig. 7, but undergo local
fluctuations, seen both in the intersite correlation functions
{Sij ,Tij ,Cij } and in the electron densities {nia,nib,nic}.

The range of fluctuations in bond correlations is reduced
but stays finite up to α � 0.41. Here the orbital degeneracy
of the g.s. is first 6, up to α = 0.26, and then drops to 4
(see Table II). This regime is followed by a qualitatively new
situation in the intermediate regime of α values (compared
to N7 cluster), with no fluctuations in the orbital distribution
when 0.41 < α < 0.85. This regime is characterized by the
low degeneracy 2 in the orbital space. In this case the
orbitals undergo strong local quantum fluctuations but their
distribution in the cluster does not change, as seen in the
stable density distribution, with n1γ = 1/3. This regime can
be identified as dominated by orbital fluctuations due to the
mixing terms Hm, Eq. (2.17), with gradual suppression of
spin-orbital fluctuations under increasing α seen in the reduced
values of |Cij |.
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FIG. 7. (Color online) Evolution of the frustrated ground state for
the N9 cluster with PBC shown in Fig. 2(b) with increasing α in the
absence of Hund’s exchange: (a) intersite bond correlations—spin
(Sij , circles), orbital (Tij , squares), and spin-orbital (Cij , triangles);
(b) orbital occupations n1γ per site (at a representative site i = 1).
Insets: typical orbital patterns in the superexchange (α = 0) limit and
direct exchange (α = 1) limit.

Finally, when the orbital mixing terms decrease sufficiently,
one finds that both spin and orbital correlations fluctuate more
strongly above α = 0.85, which follows from the random
electron distribution over the available orbital states. In
contrast to the superexchange regime with equally distributed
electrons over the orbital flavors, the representative state,
shown in the inset in Fig. 7, is dominated by c orbitals.
Equivalent configurations can be obtained by cyclic permu-
tations of the density distribution in the {a,b,c} orbitals and
changing favored dimer direction in the cluster. For this reason,
degeneracy of the g.s. increases by a factor of 3, reflecting three
possible states dominated by one orbital flavor (see Table II).
The direct exchange limit is again special and characterized
by the large orbital degeneracy 756.

The g.s. energies obtained for the N4, N7, and N9
clusters with PBC (Fig. 8) exhibit a monotonous increase
with increasing α. The energy is the lowest for the smallest
N4 cluster and increases when the cluster size is increased
to N7 or N9, indicating frustrated interactions. However,
the energies obtained for the N7 and N9 clusters are very
close to each other, which we take as an evidence that these
clusters are already representative for the situation in the
thermodynamic limit. We remark that the energy obtained for
the N7 cluster with OBC is lower than that found for the same
cluster size with PBC, which is again consistent with strongly
frustrated spin-orbital interactions on the triangular lattice.
This resembles the situation in spin systems with frustrated
interactions, where one expects that clusters with OBC would
give a lower energy per bond than clusters with PBC, as then
additional breaking of symmetry is possible in the g.s.
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with PBC for increasing α. For comparison the result obtained for
cluster N7 with OBC is shown by open squares. Parameter: η = 0.

IV. THE MODEL AT LARGE HUND’S EXCHANGE

A. Orbital model for the FM phase

Until now we considered the spin-orbital model Eq. (2.3)
in the regime of no Hund’s exchange, η = 0. Finite Hund’s
exchange is responsible for the competition of FM with AF
spin interactions in the perovskite Mott insulators described
by similar spin-orbital models, and the orbital order is usually
modified in a particular way. Well-known examples are the
A-AF phase in LaMnO3

16 and the C-AF phase in LaVO3.21

The present and an earlier25 study of the spin-orbital d1

model on the triangular lattice, however, suggest that orbital
disorder is favored in this geometrically frustrated lattice.
Having no orbital order excludes de facto an intermediate
phase (at intermediate values of η) with coexisting FM and
AF interactions in the present case. This is confirmed by
the exact diagonalization of finite clusters, at least in the
case considered when all the interactions along three bond
directions are equivalent. Thus, there are two problems to be
addressed in the theory: (i) the nature of orbital correlations
in the FM phase in the range of large values of η and (ii) the
phase diagram in the (α,η) plane. The first of these questions
is easier to answer and we consider it below; the second one
is discussed in Secs. IV B and V.

The exchange interactions in H given by Eq. (2.3) sim-
plify in the FM phase, when only excitations to high-spin
states contribute and all the low-spin terms vanish, i.e.,
〈
Si · 
Sj − 1

4 〉 ≡ 0. The Hamiltonian then reduces to the orbital
model,

Horb = −1

4
J r1

∑
〈ij〉‖γ

{ − (1 − α)
[
2A

(γ )
ij + (niγ + njγ ) − 2

]
+

√
α(1 − α) (T +

iμT +
jν + T +

iν T +
jμ + T −

iν T −
jμ + T −

iμT −
jν)

+ α [niγ (1 − njγ ) + (1 − niγ )njγ ]
}
. (4.1)

In the superexchange regime (α � 0) it favors pairs of different
orbitals, neither oriented along the considered bond; in the
direct exchange regime (α � 1), pairs of different orbitals,
one oriented along the bond and the other not.

Complete information about the orbital correlations in
the parameter regime where the FM phase is stable may
be obtained by considering the following orbital projection
operators for a bond 〈ij 〉 ‖ γ :

P
(γ )
ij = 〈niγ njγ 〉, (4.2)

Q
(γ )
ij = 〈niγ (1 − njγ )〉 + 〈(1 − niγ )njγ 〉, (4.3)

R
(γ )
ij = 〈(1 − niγ )(1 − njγ )〉. (4.4)

Here the operator niγ stands for the electron density in the
orbital oriented along the bond 〈ij 〉 at site i, while (1 − niγ )
is the complementary electron density in the two remaining
orbitals, as given by the local constraint Eq. (2.2). The
above projection operators may be treated as probabilities to
encounter a given orbital configuration, and they obey the usual
condition,

P
(γ )
ij + Q

(γ )
ij + R

(γ )
ij = 1 . (4.5)

Knowing these probabilities allows us for a complete charac-
terization of the orbital state on a representative bond 〈ij 〉 ‖ c.

First, we present distinct differences in the distribution of
occupied orbitals between the superexchange (α � 0) and the
direct exchange (α � 1) regime found for the FM hexagonal
H6 cluster. Here the orbital bond correlations change from
Tij � −0.34 at α = 0 to Tij � 0 at α = 1, while the spins
are FM (Sij = 0.25) and disentangled from the orbital state
(Cij = 0) [see Fig. 9(a)]. The latter feature is common for
FM states in other clusters as well (see below), and the
Goodenough-Kanamori rule34 is obeyed; that is, FM spin
correlations are accompanied by negative orbital correlations
which indicate that orbitals show a tendency toward alternating
orbital order.

The FM state in the superexchange regime (α � 0) is
stabilized by pairs of orbitals which do not include the one
oriented along the considered bond. This is indicated by the
inset in Fig. 9(c), where two possible configurations with pairs
of active orbitals on the bonds of H6 cluster, forming almost
orbital singlets, are shown. In this case the largest average
projection operator is 〈R(γ )

ij 〉 [see Fig. 9(b)], and the orbital
density is the largest for the c orbital, which participates in the
singlets for both possible cluster coverings, that is, n1c = 0.5
and n1a = n1b = 0.25.

The intermediate regime extends in the FM H6 cluster from
α = 0.19 to α = 0.77, where the orbital densities are the same
in each orbital, n1γ = 1/3 [see Fig. 9(c)]. However, the orbital
correlations on the bonds are not constant but gradually change
toward pairs of one γ orbital accompanied by a different
orbital on each bond 〈ij 〉 ‖ γ with increasing α, as depicted
by the projection operator 〈Q(γ )

ij 〉 in Fig. 9(b). Simultaneously
the orbital correlation Tij is gradually reduced. Finally, for
α > 0.77 the orbital distribution changes to pairs of orbitals,
one oriented along the bond and the other not, favored in the
direct exchange regime. Once again, there are two possible
distributions of orbitals over the H6 cluster, and for site i = 1
this gives two contributing densities, n1a = n1b = 0.5, while
the orbital that participates in the direct exchange on only two
horizontal bonds is empty, that is, n1c = 0 [see Fig. 9(c)].
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FIG. 9. (Color online) Evolution of the orbital state in the FM
ground state of the hexagonal H6 cluster with OBC, as found at
large η = 0.2 for increasing α: (a) spin S ≡ Sij , orbital T ≡ Tij , and
spin-orbital C ≡ Cij bond correlations; (b) orbital bond projection
operators P ≡ P

(γ )
ij (circles), Q ≡ Q

(γ )
ij (squares), and R ≡ R

(γ )
ij

(triangles); (c) orbital electron densities n1γ on the leftmost cluster
site i = 1. Insets in (c): Two equivalent states in the superexchange
(α = 0) and direct exchange (α = 1) limit.

The above transparent picture of the occupied orbitals in
different α regimes for the H6 cluster is strongly modified in
the g.s. of the symmetric N7 cluster by frustration of spin-
orbital interactions and by the absence of symmetry breaking
in the orbital space due to the PBC (see Fig. 10). At α = 0 one
finds negative orbital correlation function Tij � −0.23 [see
Fig. 10(a)]. The orbital correlations are quite well developed
here, as they are not hindered by spin fluctuations, as was the
case at η = 0 (Fig. 6). With increasing α the orbital correlations
are gradually reduced and reach the limiting value Tij =
−0.0357 at α = 1, which corresponds to randomly distributed
dimers consisting of a pair of an active and an inactive orbital
in the direct exchange over the bonds of the N7 cluster.

Two distinct regimes: one with fluctuating values of Tij for
α < 0.85, and the other with uniquely determined Tij for α >

0.85, correspond to the degenerate and nondegenerate g.s. of
the N7 cluster, respectively. Similar fluctuating results for the
average projection operators {P (γ )

ij ,Q
(γ )
ij ,R

(γ )
ij } and for the or-

bital densities {n1a,n1b,n1c} were found in the range of α<0.85
[see Figs. 10(b) and 10(c)]. In the regime of small α < 0.4,
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FIG. 10. (Color online) Evolution of the orbital state in the FM
g.s. of the N7 cluster for increasing α, found with PBC at large
η = 0.2: (a) bond orbital correlations T ≡ Tij ; (b) orbital occupation
correlations P ≡ P

(γ )
ij (circles), Q ≡ Q

(γ )
ij (squares), and R ≡ R

(γ )
ij

(triangles); (c) orbital electron densities n1γ .

configurations with two orbitals active in the superexchange
processes are the most probable ones, that is, R

(γ )
ij > P

(γ )
ij and

R
(γ )
ij > Q

(γ )
ij . On the contrary, when α > 0.4, pairs of orbitals,

one active and the other one inactive in the direct exchange
processes, dominate; that is, Q

(γ )
ij > R

(γ )
ij and P

(γ )
ij → 0 when

α → 1. Here the results suggest a single quantum state with
equally distributed orbital flavors over the cluster n1γ = 1.

We have verified that the above evolution of the orbital state
in the N7 cluster is representative for the present triangular
lattice in the FM regime by considering two larger clusters
with PBC (not shown): (i) the N12 cluster, obtained by adding
5 sites to N7, for example, on the right-hand side and on
top; and (ii) a star-like N13 cluster, obtained by adding a
triangle to each side of the N7 cluster. Both clusters have
all sites equivalent and may be used to cover the lattice (in
the second case two equivalent coverings differ by chirality).
In both cases we found that the orbital bond correlations Tij

increase from Tij � −0.23 at α = 0 to Tij � 0 at α = 1. The
occupied orbitals give, again (as for N7), the large R

(γ )
ij � 0.5 at

the superexchange limit α = 0. It decreases with increasing α,
and one finds instead large Q

(γ )
ij � 2/3 in the direct exchange

case α = 1. Interestingly, the orbital fluctuations shown by the
vertical lines are reduced in both cases, and they do not occur
at all in the N12 cluster for either α < 0.62 or α > 0.81.
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B. Phase diagrams

Perhaps the most intriguing question concerning the g.s.
of the spin-orbital model, Eq. (2.3), is the phase diagram and
the way the FM state occurs as a function of both model
parameters, α and η. Having no possibility of accessing the
phase diagram in the thermodynamic limit (see also Sec. V),
we concentrate here on a few representative clusters trying to
extract the common and generic features of the low-to-high
spin transition.

The hexagonal H6 cluster, with low-spin and high-spin
states shown in Figs. 3 and 9, serves here as an example of
unfrustrated geometry. The transition to the high-spin S = 3
state is then gradual and passes through intermediate S = 1
and (in some cases) S = 2 states when α is close to 0 or 1 (see
Fig. 11). In contrast, for the intermediate values of 0.22 < α <

0.62 the transition takes place directly between the S = 0 and
the S = 3 states. We recall that in the regime of intermediate
α values orbital fluctuations play an important role, and they
also couple to spin fluctuations. Therefore, this behavior in
the phase diagram reflects the stabilizing role of the joint
spin-orbital fluctuations in the singlet phase, S = 0. When
the spin value increases, such fluctuations are partly damped
and therefore intermediate spin values are not realized here.

An interesting result was obtained for the H6 cluster in
the superexchange regime (at α � 0). Here the transition
from the singlet to the S = 1 state occurs at η = 0.186. It
is followed by the transition to the S = 2 state at η = 0.231,
and the final transition to the spin-polarized S = 3 state takes
place only at η = 0.242. Here the phases with intermediate
spin values arise as a consequence of spin fluctuations that
stabilize them in between the low-spin and the high-spin
states. A similar situation was found close to but not at the
direct exchange point α = 1. In fact, spin fluctuations in
the direct exchange limit concern only pairs of spins in the
singlet S = 0 phase, so a singlet-triplet transition for a single
bond here induces the global transition to the S = 3 phase.
Altogether, the transition to the high-spin phase occurs here at
ηc � 0.188, in agreement with the classical expectation [see
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FIG. 11. (Color online) Phase diagram in the (α,η) plane as
obtained for the hexagonal H6 cluster with OBC. The total spin
of the g.s. is indicated in the transition regime from the singlet phase
(S = 0) to the high-spin (S = 3) phase.
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FIG. 12. (Color online) Phase diagram in the (α,η) plane as
obtained for triangular clusters with OBC: N3 (squares),35 N6
(diamonds), and N10 (circles). The phase diagrams of N6 and N10
clusters also contain intermediate spin phases and the corresponding
phase boundaries are shown as dashed lines (for the N6 cluster only
near α = 1).

also Eq. (5.10) in Sec. V], and this critical value is enhanced
in the superexchange-dominated regime due to spin-orbital
fluctuations, which are stronger here in the singlet phase.

The phase diagrams obtained for three triangular clusters,
N3, N6, and N10, are shown in Fig. 12. As for the hexagonal
H6 cluster, the transition to the high-spin phase occurs for η �
0.18, but the critical value of η is larger for two bigger clusters
(N6 and N10) than for the smallest N3 triangular cluster.35 One
finds here, once again, a signature of the stabilizing role played
by orbital fluctuations in the low-spin phase. Particularly in the
regime dominated by the superexchange, onset of the high-spin
phase occurs at values of η that are higher than at α � 0.5 and
increase from N3 (η = 0.158) to larger clusters (η = 0.211
and η = 0.198 for N6 and N10 clusters). In all three cases
the transition occurs to the phases with maximal spin and no
intermediate phases in between.

Phases with intermediate spin values occur for two larger
triangular clusters in the intermediate and direct exchange
regime. We suggest that they are stabilized by orbital fluctua-
tions that can couple to only partly polarized spin subsystems
and provide certain energy gain. While this feature is general,
the actual range of stability of the phases with intermediate
spin values depends on the cluster size. At α = 1 one finds
for N6 a transition to the S = 3 phase at a rather large value
of η = 0.238, which demonstrates here particular stability of
states with lower spin values, where more energy can be gained
due to quantum fluctuations for certain orbital arrangements.
However, in a larger N10 cluster this transition occurs at the
lower value of η = 0.202.

When the phase diagrams obtained for the triangular
clusters (Fig. 12) are compared with those for clusters N7
and N9 with PBC (Fig. 13), one finds that the transition to
the high-spin states occurs in general for somewhat lower
values of η in the latter case. An extreme case here is the
N4 cluster with PBC, where a rather small value of α � 0.02
suffices to destabilize the singlet phase at α = 0. This peculiar
result follows from the small size of this cluster, which
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allows one to accommodate only two spin singlets when the
orbital state is constrained to the pairs of orbitals supporting
the superexchange processes, while in the high-spin S = 2
state these constraints are released and orbital fluctuations of
different kinds stabilize it. In contrast, a similar critical value,
in the range of 0.15 < η < 0.175, is found for the low-to-high
spin transition in all the clusters N4, N7, and N9 with PBC
at α = 1. This common feature, which is almost independent
of the cluster size, suggests that static dimer configurations
dominate in this case not only for the low-spin phase,26 but
also for the high-spin phase, where pairs of different orbitals
are stable on individual bonds (see Fig. 10).

The proximity of critical values of η found for N7 and
N9 clusters is very encouraging and suggests that one may
expect the FM phase for η > 0.16 in the thermodynamic limit,
independently of the ratio of superexchange to direct exchange
(i.e., on the actual value of α). In both clusters we have
also found a range of stability for phases with intermediate
values of total spin, which suggests that this transition is
likely to be continuous, via weakly polarized FM states, also
in the thermodynamic limit. It is remarkable, however, that
intermediate spin states do not occur for the direct exchange
interactions at α = 1, which demonstrates once again that
quantum fluctuations do not play an important role in this case,
and simple configurational averaging over available orbital
dimer configurations on the lattice suffices for understanding
the magnetic transition described here.

V. SPIN-ORBITAL ENTANGLEMENT

A. Disentangled spin-orbital interactions

When analyzing the phase diagrams for the clusters with
PBC, we emphasized the role played by orbital and spin-orbital
fluctuations, as well as spin-orbital entanglement in the g.s..
Now we present additional data to support this claim. To
address this question we introduce an approximate treatment
of the spin-orbital Hamiltonian that uses MF decoupling of
spin and orbital variables on the bonds.38 Focusing on the
magnetic interactions that concern here S = 1/2 quantum

spins coupled by an SU(2) symmetric interaction, we rewrite
the d1 spin-orbital model, Eq. (2.3), in a general form,23

H =
∑

〈ij〉‖γ

{
Ĵ (γ )

ij (
Si · 
Sj ) + K̂(γ )
ij

}
, (5.1)

where the operators Ĵ (γ )
ij and K̂(γ )

ij contain orbital pseudospin
operators for a bond 〈ij 〉 along the direction γ . This form is
helpful, as one can deduce the values of spin exchange con-
stants directly from it when the orbital operators are replaced
by their averages in a particular (ordered or disordered) state.
In particular, it helped to understand the origin of magnetic
interactions in LaMnO3,16 where such a decoupling scheme
may well be justified and gives predictions for the optical
spectral weights23 that agree with the experimental data.37

Here we introduce the MF procedure to simplify Eq. (5.1)
as follows:

HMF =
∑

〈ij〉‖γ

〈
Ĵ (γ )

ij

〉
(
Si · 
Sj )

+
∑

〈ij〉‖γ

{
Ĵ (γ )

ij 〈
Si · 
Sj 〉 + K̂(γ )
ij

}

−
∑

〈ij〉‖γ

〈
Ĵ (γ )

ij

〉〈
Si · 
Sj 〉. (5.2)

The first term in Eq. (5.2) is the spin model as introduced in
Ref. 23, the second one is a purely orbital model, and the last
one is a double-counting correction term for the spin-orbital
part of the Hamiltonian Eq. (5.1). As an example we consider
the orbital operator Ĵ (c)

ij , which stands as a coefficient of the
Heisenberg spin interaction for a bond 〈ij 〉 along the c axis,

Ĵ (c)
ij = J (1 − α)

{
r1 − r2

2

[
1

2
(nic + nic) − 1

]

+ r1 + r2

2

(
T +

ic T +
jc + T −

ic T −
jc − 2T z

icT
z
jc + 1

2n
(c)
i n

(c)
j

)
− r2 − r3

2

(
T +

ic T −
jc + T −

ic T +
jc − 2T z

icT
z
jc + 1

2n
(c)
i n

(c)
j

)}

+ J
√

α(1 − α)
r2 − r1

4
(T +

ia T +
jb + T −

ib T −
ja + T +

ib T +
ja

+ T −
ia T −

jb) + Jα

{
r2 − r1

4
[nic(1 − njc)

+ (1 − nic) njc] + 2r2 + r3

3
nicnjc

}
. (5.3)

The operators for the bonds along two other lattice directions
can be obtained by permutations of {a,b,c} orbital indices.
However, as all the bonds are equivalent, it suffices to consider
the above operator Ĵ (c)

ij for a representative bond to derive the
exchange constant by averaging the orbital operators over the
g.s. wave function |�0〉,

JMF ≡ 〈
�0

∣∣Ĵ (γ )
ij

∣∣�0
〉
. (5.4)

Here the orbital fluctuation operators in the term ∝ √
α(1 − α)

contribute and couple different components of the wave
function |�0〉.

We also consider a simplified classical quantity,

J 0
MF ≡

∑
n

〈n|Ĵ (γ )
ij |n〉 |〈n|�0〉|2, (5.5)
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where the summation includes basis states {|n〉} with all
possible orbital configurations in the considered cluster. The
basis states are used to calculate the average in Eq. (5.5),
which is the same along all the bonds. This result may be
derived from Eq. (5.3) by neglecting the orbital dynamics, inter
alia the terms ∝√

α(1 − α), and keeping only the diagonal
orbital terms. One then finds the approximate form of the spin
interaction,

J̄ (c)
ij =J (1 − α)

{
−3r1 + r2 + 2r3

3

(
T z

icT
z
jc − 1

4n
(c)
i n

(c)
j

)
+ r1 − r2

4
(nic + njc − 2)

}

+ Jα

{
r2 − r1

4
[nic(1 − njc) + (1 − nic)njc]

+ 2r2 + r3

3
nicnjc

}
. (5.6)

Further simplification follows from the observation that for a
uniform electron distribution in the spin-orbital liquid state,
one finds the following averages for the relevant density and
pseudospin operators:

〈niγ 〉 = 1

3
,

〈
n

(γ )
i

〉 = 2

3
,

〈
T z

iγ T z
jγ

〉 = 0 . (5.7)

Using these expectation values in Eq. (5.5), it follows that

J 0
MF = 1

3
J (1 − α)

{
3r1 + r2 + 2r3

9
− r1 + r2

}

+ 1

9
Jα

{
r2 − r1 + 2r2 + r3

3

}
, (5.8)

and one arrives at an analytic expression,

J 0
MF = J (2 − α)

−3r1 + 5r2 + r3

27
. (5.9)

The classical exchange constant J 0
MF, Eq. (5.9), is AF for

small values of η, in agreement with the results presented
in Secs. III B and III C, and changes sign at the critical value
of Hund’s exchange,

ηc = 0.188, (5.10)

where the present classical evaluation of the exchange constant
predicts a transition to the FM phase. The present classical
treatment suggests that this transition would occur simulta-
neously for all the bonds directly from the low-spin to the
high-spin state, with the maximal value of total spin S = N/2
for the cluster of N sites.

As usual, the MF Hamiltonian Eq. (5.2) implies a self-
consistent solution of spin and orbital correlations. For
instance, by solving a similar 1D problem within the MF
approach self-consistently, one finds dimerization in FM spin-
orbital chains at finite temperature.38 Here we have applied
the following iterative procedure for a system with spin and
orbital interactions assumed to be isotropic on the triangular
lattice: (i) for an initial value of spin scalar product 〈
Si · 
Sj 〉, we
solved the orbital Hamiltonian; (ii) then the effective exchange
constants given by Eq. (5.4) were obtained, and (iii) they were
used to determine the spin scalar product. This cycle was
repeated until a self-consistent solution was found. We also
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FIG. 14. (Color online) Phase diagrams obtained for disentangled
spin-orbital interactions following Eq. (5.2), obtained for the N4,
N7, and N9 clusters with PBC. No intermediate phases were found
between low-spin (S = Smin) and high-spin (S = Smin) phases.

used certain damping along the iteration process and enforced
the symmetry of the considered clusters to accelerate the con-
vergence, as all the bonds are equivalent when PBC are used.

The phase diagrams obtained following the above MF
procedure for clusters N4, N7 and N9, with PBC are presented
in Fig. 14. The applied procedure does not use the total
spin symmetry, so the intermediate (partial) spin polarization
of the cluster could not be resolved. Since here we solve
the effective spin Hamiltonian independently of the orbital
problem, the total spin state is determined entirely by the
sign of the exchange constant JMF. Spin correlations were
found to be either negative when JMF > 0, indicating local
AF (singlet-like) correlations, or classical and FM, that is,
〈
Si · 
Sj 〉 = + 1

4 , when JMF < 0. One finds that the low-spin
states are stable in a narrower range of the (α,η) phase
diagram for all three considered clusters (see Fig. 14) than
when the exact diagonalization of the full Hamiltonian (2.3) is
performed (shown in Fig. 13). In general, the phase boundary
between the low-spin (S = Smin) and the high-spin (S = Smax)
phase was found at a lower value of η in each cluster considered
than for the data extracted from exact diagonalization.

Moreover, the superexchange and direct exchange cases
are rather special and FM states appear in these limits already
at infinitesimal values of η. While the low-spin and high-spin
states are degenerate in the direct exchange limit (at α = 1) for
all three clusters shown in Fig. 14, in the superexchange case
(at α = 1) such a degeneracy was found only for the N4 cluster.
Both larger clusters, N7 and N9, are FM already at η = 0 over
a range of small values of α: for α < 0.27 in the case of N7
and for α < 0.05 in the case of N9 cluster. This behavior is
surprising and suggests that the present MF procedure is unable
to describe the present spin-orbital problem in a realistic way.
We address this question in more detail in the next Sec. V B.

B. Effective spin exchange constants

In a spin system, such as the one obtained from the spin-
orbital model, intersite spin correlations follow the sign of
the exchange constant; that is, when the exchange constant
changes sign and becomes negative, the spins align in the FM
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phase. The spin model extracted in the MF approximation from
the spin-orbital model, Eq. (2.3), is given by

Hs = JMF

∑
〈ij〉


Si · 
Sj , (5.11)

where the exchange constant is given by Eq. (5.4).
Let us consider now, once again, the N7 cluster as a

representative case to contrast with the results obtained from
the exact diagonalization and the present MF approach.
The low-spin phase has S = 1/2, and the transition takes
place to the S = 7/2 phase. Knowing that all the bonds are
equivalent when PBC are used and that each site has six
neighbors, one finds that the spin correlation function for
the low-spin S = 1/2 phase is 〈
Si · 
Sj 〉 = −3/28, as deduced
from Eq. (3.1). The phase diagram shown in Fig. 14 may
be understood as following from the change of sign of the
MF exchange constant, Eq. (5.4). Indeed, when the effective
exchange constant is obtained for the entire (α,η) plane,
the onset of the FM phase corresponds to the line JMF = 0
[see Fig. 15(a)] . In general, the value of JMF decreases with
increasing η for any value of α, but positive values of the
effective exchange constant are found only in a range of
η values, if 0.27 < α < 1. This situation is unusual, as the
effective superexchange obtained in the MF approach favors
FM spin order, even in the absence of Hund’s exchange.
It could be understood as a consequence of strong orbital
fluctuations in this regime that provide another mechanism
of FM interactions playing an important role in the magnetic
properties of the RVO3 perovskites (R = La,Y, etc.).21,22

We remark that the phase diagram of the N7 cluster (see
Fig. 13) is quite different from the transition line shown in
Fig. 15(a). Therefore, we conclude that the MF decoupling
scheme does not capture the essential features of the joint
spin-orbital dynamics that stabilizes the low-spin phase in a
broad regime of parameters. Furthermore, the results shown in
Fig. 15(b) prove that spin transition in the spin-orbital model is
not related to the apparent sign change in the exchange constant
JMF, Eq. (5.4), when it is calculated within the exact diagonal-
ization approach. This also demonstrates that the frequently
used MF procedure to extract the spin exchange constants23

might lead to uncontrolled results, particularly for frustrated
systems with disorder in a form of spin-orbital liquid.

Comparing the values of JMF obtained using the MF
procedure and the exact diagonalization [Figs. 15(a) and 15(b),
respectively], a qualitative change is found for the direct
exchange case (α = 1), where positive values of JMF now
extend up to the transition point η � 0.156. Also, for lower
values of α the range of JMF > 0 is extended, particularly
close to α = 0. However, the value of η corresponding to
JMF = 0 systematically decreases with decreasing α and is
as low as η̃c � 0.01 at α = 0. This behavior is in drastic
contrast with the transition obtained from the low-spin to the
high-spin state, which occurs within the exact diagonalization
method at the much higher value of η � 0.16 in the entire
range of α. Therefore, we conclude that the MF decoupling
procedure given in Eq. (5.2) cannot be used in the present
situation, similar to the situation for the entangled states in 1D
spin-orbital chains with active t2g orbitals.24
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FIG. 15. (Color online) Contour plots of the effective exchange
constant JMF as obtained for the N7 cluster with PBC from Eq. (5.4):
(a) within the MF calculation, which includes orbital fluctua-
tions, and (b) using the exact g.s. found in exact diagonalization.
(a) The transition from low-spin to high-spin phase occurs when
the exchange constant JMF changes sign and becomes negative.
(b) Thick lines indicate the phase boundaries obtained between phases
with increasing total spin value S = 1/2, 3/2, 5/2, and 7/2 for
increasing η.

VI. SUMMARY AND CONCLUSIONS

The present study unravels dimer correlations present in
the spin-orbital model on a triangular lattice. By considering
finite clusters with open boundary conditions we have shown
that such dimer correlations do exist when the interactions are
either of the superexchange or of the direct exchange type.
When the symmetry of the lattice is broken by the boundary
in triangular clusters, spin singlets are favored on bonds that
originate from corner sites, and the orbital flavors adjust to
the stronger channel, either to superexchange or to direct
exchange. In fact, as different orbital states support these
two types of magnetic interactions, the orbital distribution
over the lattice is partly frustrated in the entire parameter
regime, and this frustration contributes to the orbital disorder
in the crossover regime, typically around α = 0.6. The most
striking result here is the collapse of valence-bond states in
the intermediate regime and the onset of spin-orbital liquid.
Such a disordered state, realized already in finite clusters
with open boundary conditions in the regime of competing
interactions, suggests that it could extend over a broader regime
of parameters when the geometry does not favor a particular
way of symmetry breaking in the spin-orbital space.

Our study of clusters with periodic boundary conditions
provides indeed evidence that a quantum spin-orbital liquid
phase is realized in the present d1 spin-orbital model designed
for t2g electrons on a geometrically frustrated triangular lattice.
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We would like to emphasize here that the frustrated lattice is
necessary to remove the tendency toward a certain type of or-
bital order that could break the lattice symmetry in other cases,
such as in the titanium or vanadium perovskites, and would
support phases with long-range orbitals accompanied by spin
order of a certain kind (usually following the Goodenough-
Kanamori rules).34 Thus, the spins behave differently here
than in the spin model with Heisenberg interactions on the
triangular lattice, and no spin order emerges when the spins
couple to orbitals and both degrees of freedom undergo joint
quantum fluctuations.

Although a mathematical proof is not possible, we pro-
vided, we think, rather complete and convincing evidence
that the present d1 spin-orbital model realizes a paradigm
of spin-orbital liquid phase, and the order-out-of-disorder
mechanism does not apply when the Hilbert space contains
coupled spin and orbital sectors. Previous searches for this
quantum state of matter in other systems, particularly in
LiNiO2, where eg orbitals are active on the triangular lattice,39

were unsuccessful.40,41 After considering the present model
in more detail we suggest that the triple degeneracy of t2g

orbitals plays a crucial role in the onset of spin-orbital liquid,
as the number of orbital flavors fits to the geometry of the
triangular lattice. However, one might expect that, instead,
a three-sublattice ordered state could arise, similar to the
one known for spin systems.3 We argue that the coupling to
the spins plays a very important role here and spin-orbital
entanglement is a characteristic feature of the disordered state
found in the absence of Hund’s exchange (at JH = 0).

We have shown than both geometry and spin-orbital
interactions are the origin of frustration in the model under
consideration. One may wonder in this context whether
geometrical frustration on a triangular lattice enhances
interaction frustration for spin-orbital models. Quite generally,
spin-orbital models contain, in principle, more channels that
can be used to relieve enhanced frustration, so one might still
expect that some kind of ordered states would emerge. We
argue that this problem is more subtle, and its essence lies in the
nature of spin-orbital entangled states. We have demonstrated
by evaluating spin-orbital correlations that spin and orbital
operators are entangled on the bonds and cannot be factorized.
Under these circumstances important contributions to the
ground state energy arise from joint spin-orbital fluctuations.

We have also found that Goodenough-Kanamori rules34

are not obeyed by spin and orbital bond correlations in some
cases. This concerns, in particular, the superexchange regime
where the low-spin phase is stabilized by them. Such entangled
states play an important role in vanadium perovskites at finite
temperature21,22 and lead to topological constraints on the hole
motion, which couples simultaneously to spin and optical
excitation when states with entangled spin-orbital order are
doped.42 We emphasize that the spin-orbital entanglement

occurs here on the bonds and should not be confused with spin-
orbital singlets arising from strong on-site spin-orbit coupling,
which leads to spin-orbital liquid with local singlets43 and
might also generate exotic phases, as shown recently in the
case of spin S = 1/2 and a higher orbital quantum number
(pseudospin), L = 1.44

By considering the magnetic transition to the FM phase,
we have shown that a likely scenario for this transition is
a crossover via the intermediate spin states before a fully
polarized FM state sets in. This suggests that spin-orbital
entangled states also play an important role in phases with
partial spin polarization, stabilizing them in the regime of
transition toward the fully polarized FM phase. Moreover, we
detected a general principle concerning the applicability of
effective spin models derived from spin-orbital Hamiltonians.
While this is a common practice nowadays, which helps us
to understand and interpret the experimental data in systems
with active orbital degrees of freedom,23 we have presented
evidence that even in the case when magnetic exchange
constants can be accurately evaluated using the relevant orbital
correlations, they might be inadequate to describe the magnetic
ground state and excitations in such a system. This qualitative
limitation could play a role particularly in disordered systems,
where the physical consequences of entangled spin-orbital
states are more severe.

In summary, the present spin-orbital model on a triangular
lattice provides a beautiful example of highly frustrated
interactions with the ground state, dominated by (i) quantum
fluctuations and (ii) spin-orbital entanglement. It is for this
reason that several naive expectations that have their roots in
classical expectations for complex spin systems do not apply,
and it is even impossible to describe correctly the interactions
for the magnetic degrees of freedom by decoupling them from
the orbital ones. Although lattice distortions and coupling
between the planes of a triangular lattice might destabilize the
spin-orbital liquid found here, we hope that its experimental
example could be established by future experimental studies.
The spin-orbital disordered state provides a challenge, for both
theory and for experiment, to find a way to describe magnetic
excitations arising in a spin-orbital liquid phase.
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