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Foreword

This diploma work has been elaborated as a part of my Mastgedén Physics. It was advertised by the
Department of Condensed Matter Physics of Masaryk UniyeirsiBrno, Czech Republic, in a cooperation
with the Institute of Physics of Materials, the Academy ofeBces of the Czech Republic.

The subject of this thesis is:
On the precipitation in NiTi based shape memory alloys.

Although this discourse is a theoretical work it has a vergreg experimental background and the problems
addressed here arose from need of better technologicatstadding of the microstructural development
and the improvement &fiTi shape memory technology. Results known prior to this wodktaa objectives

of the present thesis are summarized in the first introdyatbapter. The following three chapters focuses
on known theoretical results relevant to this work (chagedesign of microstructural models (chapter 3)
and analytical and numerical methods (chapter 4).

Chapters 5 and 6 constitute the main part of this work as thesemt results of the stress state analysis under
diverse conditions (chapter 5) and the influence of stredistrioutions on the preferential precipitation
(chapter 6). The obtained results are discussed and cochfiarecently published experimental data in
chapter 7.

The results of this work were partially presented at therirggonal conferencépplied mechanics 2005
held in Marh 2005 in Hrotovice, Czech Republic.

The present work should progress currently studied issyastinducing a new methodology used in nu-
merical studies of the microstructural development in shaygmory alloys. However, the suggested me-
chanisms of the stress redistribution could be importanafmuch wider class of problems associated with
polycrystalline materials. Nevertheless, much more effmuld be needed in the future to achieve a more
complete quantitative agreement between the numericaltseand the experimental data. | hope that some
of my colleagues or | myself will continue in these studies.
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Annotation

The present work deals with stress redistributions and téisequent influence on the precipitation in
NiTi based shape memory alloys. Two mechanisms which may regalthe stress redistribution are
selected. The calculations based on the linear elastho@gry are performed upon three simple models of
microstructures with increasing complexity.

The obtained results clearly show that the selected mesimargive a rise to the stress redistribution over the
microstructures. The interaction energy between religid stress and the precipitate—matrix misfit strain
is calculated. The selection of crystallographic preaigitvariants as a result of the minimum interaction
energy criterion is demonstrated. The obtained resulte@rgared to the experimental data. The results
suggest that it is possible to explain qualitatively theesi@e precipitation by the mechanisms of stress
redistributions but for a quantitative agreement with expental data the more detailed description of
microstructures and the inclusion of other relevant preegss needed.

Anotace

Predkladana prace se zabyva vznikem redistribup@tha jejim naslednym vlivem na prednostni precipi
taci krystalografickych variant ve slitinach s tvarovangeti na bazNiTi. Byly navrzeny dva mechanismy
vzniku redistribuce napéti. VypocCty vychazi z lamai teorie elasticity a jsou provedeny na tfech mikrdstr
turnich modelech se vzrustajici sloZitosti.

Dosazené vysledky jasné ukazuji, Ze zvolené mashmanvedou k redistribuci napéti v mikrostrukture. Je
napocitana interakéni energie mezi redistribugmamapétim a deformaci spojenou s misfitem krystalové
struktury precipitatu a matrice. Dale je ukazano, gbarové kriterium zalozené na minimalni interakc
energii vede k selektivni precipitaci krystalografickyeariant. Na zavér jsou dosazené vysledky disku-
tovany ve vztahu ke znamych experimentalnim datlikaZuje se, Ze pfednostni precipitaci Ize kvalitativhé
vysveétlit pomoci redistribuovanych elastickych paivSak pro kvantitativni porovnani by bylo tfebaaiait”
detailn&jSi popis mikrostruktury a zahrnout i daevantni vlivy.



Contents

List of symbols and abbreviations

1. Introduction

1.1. General background and history of shape memory alloys

1.2. Shape memory effect
1.3. NiTi based alloys

1.4. Martensitic transformations in NiTi alloys

1.5. Objectives of the present work

2. Linear theory of elasticity. Eshelby method

2.1. Notation of linear elasticity theory

2.2. Eshelby method for elastic continuum

2.2.1. Stress field generated by an elastic inclusion irielasntinuum

2.3. Energetics of the inclusion — stress field interaction

2.4. Energy of precipitates

3. Models

3.1. Modell — two semi-infinite grains

3.2. Modelll — 2D periodic model of two grains

3.3. Modellll — 3D microstructure with periodic planar pattern . . . . . . . ... ... .. ..

4. Stress redistribution in the microstructure — modellingmethodologies

4.1. Decomposition of the displacement field

4.2. Thermal expansion anisotropy models

4.2.1. Cooling of two semi-infite grains

4.2.2. Periodic two-grain pattern

4.3. Elastic constants anisotropy models

4.3.1. Analytical solution for the specimen under the exdéload

4.3.2. Finite difference method

12
12
13
14
16

17

18
18
19
20



4.3.3. Finite element method

4.3.4. Modification of FEM for models with periodic struabgr

5. Calculated stress distributions

5.1. Thermal expansion models

5.1.1. Stress distributions forthemodel . . . . . . . . . .. ... ...

5.1.2. Stress redistributions forthemodel . . . . . . . . ... ... ..

5.1.3. Concluding remarks
5.2. External loading models

5.2.1. Stress distribution for the model

5.2.3. Stress distributions for the modgl . . . . . . . .. . ... ...

6. Crystallographic variants and their preferential precipitation
6.1. Approximation of constant stress inside the predipita

6.1.1. Precipitates in two semi-infinite grains

6.1.2. Precipitates in 2D periodic two-grain pattern . . ... . .. ..

6.1.3. Four-grain periodic pattern — 3D model

6.2. Approximation of variable stress inside the prectpita

7. Discussion of the results
7.1. Numerical techniques
7.1.1. Surface term of elastic potential

7.1.2. Search for a global minimum

7.2. Comparision of calculated and experimentaldata . . . . . . ... ...

7.2.1. Stress-free aging
7.2.2. Stress assisted aging

7.3. Self-stress of precipitates

7.4. Minimal interaction energy versus maximum/minimunnmal stress

8. Summary and conclusions

Bibliography

5.2.2. Stress distributions forthemodel . . . . . . . . ... ... ...

Vi

29
30

33
33
33
33
35
37
37
38
44

48
48
48
50
53
54

57
57
57
58

59

59
60
62

62

64

66



List of symbols and abbreviations

symbol

o, 1, (9
b1, bo
B19Y

B2

g

C, Cijki
AG
A(;’chem

AC;’elast
AO’, AO’Z‘J‘
AU, Aul

Eint
€, &jj

el

o(r)
G1, G2

meaning definition
side length of a hexagonal grain (3D model) or Section 3.3 or
height of FEM elements (2D models) Chapter 4

temperature at which transformation martensit@ustenite finishes Section 1.2
temperature at which transformation martensiteustenite starts Section 1.2
mutual misorientation between type 1 grain and global doatd Section 3.1
system

thermal expansion coefficients Section 3.1
widths of FEM elements (2D models) Subsection 4.3.3
martensite phase INiTi alloys Section 1.3
austenite phase iNiTi alloys Section 1.3

mutual misorientation between type 2 grain and global doatd Section 3.1
system

elastic constants Section 2.1

Gibbs free energy change associated with coherent pratigpit Section 2.4
part of AG representing the energy drop due to formation of mo&ection 2.4
stable precipitate phase

part of AG representing the energy increment due to elastic str&ection 2.4
field created by the precipitate

deviation from the average stress over the surfacesS,, and Eq.(7.4)
Sbottorn

deviation from the average displacem@aruver the surfaceS;,, and Eq.(7.6)

Sbottorn

interaction energy between a precipiate and a parent matrix Eq. (2.29)
strain tensor Eq. (2.2)

precipitate—matrix misfit strain Eq. (1.3)
harmonic potential Eq. (2.12)

groups of crystallographic variants with the same IED thation Eq. (6.3)
(2D models)

half-height of a layer of grains Chapter 3
heights of grains after cooling Section 4.2
cutting distance for a model with semi-infinite grains Sulisa 4.3.3
length of a periodic pattern of the modél Section 3.2

temperature at which transformation austenritenartensite finishes Section 1.2
temperature at which transformation austeritenartensite starts Section 1.2
parameters describing the 2D FEM meshes Subsection 4.3.2
outer normal to the surface of the precipitate Section 2.2

outer normal to the surface of the specimen Section 2.1



P1, P2, P3, Pa

II
,
R
Ri, Ry

p
S, Sijkl

S

Sp

Stopy Sbottonu S

g, 04j

abbreviation

DSC
FDM
FEM
GB
IED
MT
SMA
SME
TEM

List of symbols and abbreviations

groups of crystallographic variants with the same IED thstion
(3D model)

elastic potential energy

volume ratio of grains type 1 within one period

soft martensite phase NiTi alloys

transformation matrices from local grain coordinate systénto the
global coordinate system

linear size of an inclusion

elastic compliances

surface of the specimen

surface of the precipitate

planar surfaces of the grain layer perpendicular tojtais

stress tensor

average stress over the surfadgs, and.Syottom

extrenaly applied stress

stress tensor connected with relaxation of the layer of Hodge
after insertion of an inclusion

precipitate — matrix misfit stress tensor

annealing temperature

room temperature

surface tractions

displacement field

average displacement over the surfasgs andShottom
displacement of non-interacting grains subjected to thereally ap-
plied stress are mutually independent

displacement field connected with relaxation of the bodgddayer
after insertion of an inclusion

minimizing displacement field, second part in decompasitbthe
displacements (the first term isu”)

displacement representing a macroscopic translatioreafbcimen
z-components ofs™ for 2D models when FEM is used

volume of the specimen

volume of the precipitate

y-components ofr™ for 2D models when FEM is used

strain energy density

nodes representing FEM discretization mesh for 2D models
biharmonic potential

meaning

differential scanning calorimetry
finite difference method

finite element method

Graing boundary

interacion energy density
martensitic transformation

shape memory alloy

shape memory effect
transmission electron microscopy

Eqg. (6.4)

Eq. (2.6)
Section 3.2
Section 1.3
Eq. (3.1)

Section 7.3
Section 2.1
Section 2.1
Section 2.2
Section 7.1.1
Eq. (2.3)

Eq. (7.4)
Section 4.3
Section 2.2

Eq. (2.9)
Section 3.1
Section 5.1
Eq. (2.8)
Eq. (2.1)
Eq. (7.6)
Section 4.1

Section 2.2
Eq. (4.1)

Subsection 7.1.2

Subsection 4.3.3

Section 2.1
Section 2.3

Subsection 4.3.3

Eq. (2.7)
bs&ation 4.3.3
Eq. (2.13)

definition

Section 1.4
Subsection 4.3.2
Subsection 4.3.3
Subsection 7.2.2
Section 6.1
Section 1.2
Section 1.1
Section 1.2

Section 1.3



1 Introduction

1.1 General background and history of shape memory alloys

The exciting field of smart materials is expanding rapidlythadne of the most interesting areas being
that of shape memory alloys. The teghape memory alloy6SMAS) is applied to that group of metallic
materials that demonstrate the ability to return to someipusly defined shape or size when subjected to
appropriate thermal procedure during the preparationeofithterial. In general, these materials can undergo
a significant plastic deformation. After exposing them tmedigher temperature they are returning to their
original shape.

HobGsoN et al. (on-line) introduce further defininion of a SMA as one thatlgs a thermoelastic
martensite. In this case, the alloy undergoes a martensitisformation of a type that allows the alloy
to be deformed by a twinning mechanism below the transfaamaemperature. The deformation is then
reversed when the twinned structure reverts upon heatitigetparent phase.

The first recorded observation of the shape memory transftiomwas by GANG and READ (1951) in
1932 . They noted the reversibility of the transformatiominCd by the metallographic observations and
resistivity changes, and in 1951 the shape memory effectolvasrved in a bent bar ¢gfuCd. In 1938,

the transformation was seen in brag&i¥n). However, the serious research in both the metallurgy and
potential practical uses began in 1962, whereBLER et al. (1963) discovered the effect in equiatomic
nickel-titanium NiT1i). Since then the SMAs are intensively studied and the nuof@actical applications
coming to the market is rapidly increasing each year.

As the shape memory transformation became better unddrsiommber of other SMAs were investigated.
Table 1.1 lists some of them with their basic charactensatOf all these systems, only ttaTi alloy and
a few of the copper-base alloys have received the most dawelot effort and commercial exploitation.

The area of commercial use of SMAs is very wide and it variesflaeronautical applications (flap/clap
adjusters) to medicine tools (orthodontic archwires,regtelips, bone plates) and everyday-use applicati-
ons (kettle switchers, mobile phone antennas). One of th& often used materials for manufacturing
“smart parts” of these devices I&iTi. This is the reason why we are interested in a more detailddrun
standing ofNiTi properties. This work focuses on some aspects related fartleessing and associated to
microstructures oNiTi shape memory alloys that modify the shape memory behaviour.

1.2 Shape memory effect

The shape memory transformation is a phase transformatiam solid state. Common name for the
low- and high-temperature phases anartensiteand austenite respectively. The transformation is often
referred to asnartensitic transformatiofMT). The typical temperature—transformation curve atediin
one cooling—heating cycle is shown in Fig. 1.1. This figuteoiduces characteristic phase transition tem-
peratures. When heating the specimen up from the low-temtyrer martensitic domain, the transformation
martensite— austenite starts at the temperatutg (austenite start) and the transformation is finished at
the temperaturel, (austenite finish). At this temperature the entire specimséransformed into the aus-
tenite phase. Similarly, on cooling from the high-tempemtaustenite domain the phase transformation
austenite— martensite starts at the temperatig (martensite start) and finishes/at; (martensite finish).
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transformation

temperature
alloy composition range
Ag —Cd 44/49 at%Cd —190°C to —50°C
Au - Cd 46.5/50 at%Cd 30°C to 100°C
Cu — Al — Ni 14/14.5 wt%Al, 3/4.5 wt%Ni  —140°C to 100°C
Cu — Sn approx.15 at%Sn —120°C to 30°C
Cu—"7n 38.5/41.5 wt%Zn —180°Cto —10°C
Cu—Z7Zn—X (X=Si, Sn, Al) afewwt% of X —180°C to 200°C
In —Ti 18/23 at%Ti 60°C to 100°C
Ni — Al 36/38 at%Al —180°C to 100°C
Ni—Ti 49/51 at%Ni —50°Cto 110°C
Fe — Pt approx.25 at%Pt approx.—130°C
Mn — Cu 5/35 at%Cu —250°C to 180°C
Fe — Mn — Si 32 wt%Cu, 6 wt%Si —200°C to 150°C

TABLE 1.1: View of some most important SMAs (passed fré@mimizu and TADAKI, 1987).

100 1+ >

martensite, %

A, Ay T

FIGURE 1.1: Typical temperature—transformation curve for a specimdregted to one cooling—
heating cycle. The four characteristic temperatutesAy, My andM; of the phase transition
process are also shown.

The temperaturesdl,, Ay, M, and M are generally all different and thus the transformation reeyibit
hysteresigly,.

The shape memory effedSME) requires a certain succession of steps. First, thpdemture of the alloy
temperature is lowered below the temperatlife. At this stage the piece of the alloy is completely com-
posed of martensite which can be easily deforfedifter distorting the shape of the piece the original
shape can be recovered simply by heating the specimen abeverhperaturel;. The heat transferred
to the specimen initiates the martensiteaustenite transition and contributes thus to the rearrarge of
the alloy at an atomic scale. The deformed martensite is namstormed to the austenite which has the
microscopic as well as macroscopic configuration of théahitndeformed state. The succession of SME
events is schematically illustrated in Fig. 1.2.

D Martensite phase is softer than austenite phase.
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FIGURE 1.2: Schematic illustration of how the martensite austenite transformation recovers
the original shape. A shape of a specimen in martensiticepfeagleformed. After heating it
transforms to the autenite phase where the atoms are rgad&rto their original positions. When
the specimen is cooled it still keeps its original shape.

1.3 NiTi based alloys

The SME in near-equiatomiiTi based alloys is controlled by the concentratiorNof(SABURI, 1998)

in the range betwee#9 =+ 51 at%. The austenite phase NiTi alloys has the cubi®2 structure with
the lattice paramett = 0.3007 nm. The arrangement of atoms in one unit cell is shown in Fig(a).3
The crystal lattice of the martensite phd3e9’ is monoclinic and it belongs t&, /,, space group. The
unit cell of theB19’ phase inTi — 49.2 at%Ni alloy is described by lattice parameters= 0.2898 nm,

b = 0.4108nm, ¢ = 0.4646 nm and 3 = 97.78° (SABURI, 1998). The arrangement of atoms forming
one unit cell is shown in Fig. 1.3(b). There are cases of a rnomeplexB2 — B19’ transformation path
(so called two, three or generally multiple step MTs) whea thoft” martensiteR phase forms as the
intermediate transformation produd8q — R — B19’). The R-phase has a trigonal lattice with lattice
parametera = 0.738 nm, ¢ = 0.532 nm and belongs to the space groilg (SABURI, 1998). The atomic
setup of this phase is illustrated in Fig. 1.3(c). We note the lattice parameters depend on temperature
and precise composition.

During processingNi-rich NiTi alloys are generally subjected to solution annealing abdesguent aging
(SABURI, 1998) where metastable cohereXi,Tiz precipitates form (ADAKI etal, 1986). This is
illustrated in Fig. 1.4(a) where a transmission electrorroscopy (TEM) micrograph is presented that
documents a state dfi — 50.7 at% Ni alloy after stress free aging &80°C for 11 hours. TheNi,Tiz par-
ticles have lenticular shape and their atomic structuréasnbohedral (88URI, 1998) (see Fig. 1.4(b)).
The unit cell parameters are= 0.6704 nm anda = 113.83°.

The space group of tHg2 phase of th&iTi matrix is P,,,3,,, With 48 operations of symmetry while the space
group of theNi Tiz precipitate isk; with only 6 symmetry operations @URI, 1998). The number
of coherentNi,Tiz variants coherent with th&iTi B2 matrix may be determined by decomposing the
space group of the parent phase into the coset of the paeidORTIER and (RATIAS, 1982). L and
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(@) (b)

FIGURE 1.3: Unit cells of different phases ilNiTi alloy: (a) cubic lattice of32 austenite,
(b) monoclinic lattice ofB19’ martensite and (c) trigonal lattice @t-phase (soft martensite).

\\ P 0.

'\ e -
\ e ] ~ -, ~
By i - |
Q\r ‘\ . f\
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(@) (b)

FIGURE 1.4: NiyTi3 precipitates: (a) a TEM micrograph afiTi B2 matrix with NizTi4 preci-
pitates after stress free agingsa0°C for 11 hours; (b) the arrangement of atoms in one unit cell
of the rhombohedral structure of the,Ti3 precipitate.

CHEN (1997) have shown that the decomposition exists
Prsm = (h1 + ha + hs + hy + hiz + hia + his + hlG)Rg[l 11] * (1.2)

wherehy, ho, ..., hig are operations of symmetry given in Table 1.2.

Taking into account the results oDRTIER and GRATIAS (1982), L and GHEN (1997) conclude that there
are 8 possible crystallographic orientationsNif; Ti3 precipitates in théNiTi matrix. The experimental

crystallographic relationship between the coherent pitde NiyTis and the crystal lattice of the parent
phase olNiTi is (SABURI, 1998)

[010]NiyTis || [21 3]NiTi s

(1.2)
(00 1)NiyTis [ (11 1)Nisi -

This means that the habit plaf@0 1)x;, 1, Of lenticular-shaped precipitates matches with one froerstit
of eight equivalent planefl 1 1}x;1; in the parenB2 phase.
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symmetry element operation axis angle

hq identity transformation

ha rotation [100]p2 180°
hs rotation [010]B2 180°
hy rotation [001]p2 180°
his rotation [110]p2 180°
hi4 rotation [001]p2 90°
hia rotation [001]p2 270°
his rotation [110]p2 180°

TABLE 1.2: Operations of symmetry in decompositiéy,s,, space group into the coset of preci-
pitate withR5 space group.

Ni, Tis particles shrink2.7% along [00 1]ni, i, direction and0.3% along their perpendicular directions
relative to the matrix (8BURI, 1998). The precipitate—matrix misfit strain matrix (latsed in the section
2.2) thus takes a form

—0.003 0 0
el = 0  —0003 0 : (1.3)
0 0 —0.027

1.4 Martensitic transformations in NiTi alloys

MTs in NiTi alloys proceed in single-step2 < B19’ transitions on heating and cooling after solution
annealing and water quenching; by single-step transitiermean that, as shown in the differential scan-
ning calorimetry (DSC) chart in Fig. 1.5, there is one singdjitinct peak on cooling from thB2-regime
(temperature range where tB& phase is stable) and one distinct peak on heating fror319&-regime.

0.4 —
B1Y B2
— 0.2+
o0 .
~ <+—— cooling
=3
07
= ,
§ 02— heating —
a B1Y B2
—0.4 —

{ { { { { { { { {
-80 —60 —40 -20 O 20 40 60 80

Temperature [°C]

FIGURE 1.5: DSC chatrt for single-step martensitic transformation i'&@i alloy.
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After thermo mechanical processiiNj-rich NiTi alloys can undergo two and three step transformations
(Liu etal, 2003, ®’RROL et al, 2004). The change from a one-step to a two-step transfamiatNiTi
SMAs has often been considered as well understood becatisé&kguhase and319’-phase are potential
martensite candidates €R et al,, 2001). This is suggested by the observation of correspgrshft pho-
nons in inelastic neutron scattering experimentE(ZE et al,, 1984, MoINE et al,, 1984). The coherent
NiyTis precipitates resist large deformations associated wihfahmation ofB19” habit plane variants.
The growingR-phase produces a significantly smaller deformation andushtess affected by particles.
Therefore the presence of precipitates favours the foomaif R-phase (RN et al., 2001) which results

in the first transformation steB2 — R (first DSC peak in Fig. 1.6) and only later at lower tempera-
ture (stronger undercooling) the second transformatiep Bt — B19’ (second DSC peak) is observed
(KHALIL -ALLAFI etal., 2002a).

R-phase — B19’
in regions with NiyTig

B19’ B2
0.4 B2 — B19/
’ in precipitate B2 — R-phase
o5 free areas in regions with NiyTig
2 0.2 ol :
= <+«—— cooling
E 0-
= heating —»
+~
T B19' — B2
in precipitate BlY — B2 —*
—-0.4—+ B1Y free areas in regions with NiyTis B2
I I I I I I \
—40 —20 0 20 40 60 80

Temperature [°C]

FIGURE 1.6: DSC chart for multiple-step martensitic transformatiorNifT'i alloy with Ni,Tis
precipitates.

However, recent careful neutron diffraction experimenipported by TEM investigations revealed that
already in the temperature range between the first and s&8@dpeaks the alloy microstructure consists
of a mixture of R- and B19’-phases (8EPuU et al., 2002). In this case th&i — 50.7 at% Ni alloy was
subjected to a standard annealing treatm&59(C /900 s/water quench) and subsequently aged(af C

for 20 hours. Also the role oNiyTiz precipitates in multiple step (more than two steps) MTs aepled
using DSC (BTAILLARD et al,, 1998) has been discussed controversially in the litezatlinere presently
are three different explanations for multiple step MT®&inArich NiTi SMAs:

(i) MoRrAWIEC et al. (1995, 2002) suggest that the first DSC peak on cooling ineetktep transfor-
mation observed for a solution annealed, cold deformed alnskegjuently ageNi-rich NiTi material
corresponds to the formation &f-phase. There then follow two martensite peaks, which age-as
ciated with a heterogeneous dislocation substructure.rdgiictural regions with low dislocation
densities produce a second DSC peak on cooling. Dislocalistacles like subgrain boundaries sup-
press the MT until stronger undercooling provides the dgviorce for a third transformation step.
Microstructural evidence for subgrain boundaries reprisg obstacles for the growth @19 was
presented by EGELERet al. (2000) and KJALIL -ALLAFI et al. (2001).

(i) BATAILLARD et al. (1998) tackled the problem of multiple step MTSNirrich NiTi alloys using in-
situ TEM. They provided clear evidence for the microstrugtaetails of the overall transformation
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process. They found that boftrphase and319’ martensite nucleate nehiisTiz particles and then
grow into the matrix. However, they reported a differencehi@ growth behaviour oR-phase and
B19’ martensite. Thé&k-phase grows smoothly without apparent interruptionst (fiesxsformation
step). In contrast, thB19' martensite nucleates in sudden bursts and grows rapidlysignéficant
size; it then requires further undercooling before consignihe rest of the matrix. BAILLARD

et al. (1998) explain the two-step transformation Rfphase toB19’ (and thus the overall three-
step transformation) by pointing out that the transfororatiemperatures in regions near particles
(governed by high coherency stresses) are different thaagions far from particles (where coherency
stresses are not important). These two regions therefansform in two steps at a higher (near
particles) and lower (far from particles) temperature.

(i) KHALIL-ALLAFI et al. (2002a) used DSC for a systematic investigation of the ¢owiwf transfor-
mation behaviour with aging temperature and time. They detnated that during aging ofi-rich
NiTi alloys, DSC curves exhibit two transformation peaks oniogoéfter short aging times, three
after intermediate aging times and finally again two peates &ing aging times (2-3-2 transformation
behaviour). They proposed a new explanation for the 24@42sformation behaviour that consists of
two basic elements: (i) the composition inhomogeneity évatves diffusion controlled during aging
asNiyTis precipitates grow. (ii) The difference between nucleabarriers forR-phase (small) and
B19’ (large). This third explanation can in principle ratiogelithe evolution of DSC charts during
aging including the number of distinct DSC peaks and thesitims; however, it is based on a
microstructure with a homogeneous distributionNaf, Tiz-precipitates; and KALIL -ALLAFI et al.
(2002a) did not attempt to provide microstructural evideta support their claim and they did not
consider the back transformation frddi9’ to B2.

Particularly, the homogeneity &fi,Ti3 precipitation has become an issue. Short-term stress diag m

the temperature range betwet1)—600°C can result in heterogeneous precipitation (F and MAZANEC,
2001, KHALIL -ALLAFI et al., 2002b); this normally means thalti,Tiz particles nucleate and grow pre-
ferentially near grain boundaries, oxide inclusions antbidas while precipitate free regions characterize
the grain interior (KHALIL -ALLAFI et al,, 2002b); in this case different microstructural regiores @rarac-
terized by different particle volume densities. Superisipg an external stress enforces a homogeneous
particle volume density throughout the microstructuredfKiL -ALLAFI et al., 2002b). A microstructure
of this type that formed after stress assistdtbur aging a600°C and8 MPa is shown in the montage of
transmission electron microscopy micrographs of Figure A.closer look at higher magnification into the
upper right corner in Figure 1.7 reveals that the precipitaprocess is by no means fully homogeneous.
When looking at zoomed detail of Fig. 1.7 shown in Fig. 1.8 itstnbe kept in mind that differemi, Tis
variant disks appear in different projections. It can beaudleseen that the variant which is projected in an
ellipsoidal shape (wider dark ellipsoids are precipitagkslalmost parallel to image plane) only appears in
some distance from the grain boundary; near the grain boyratdy thin traces of projected edge-on vari-
ant disks are observed. Since this type of heterogeneityegbtecipitate population may well govern mul-
tiple step martensitic transformation behaviour as dbedrin the literature (KALIL -ALLAFI et al,, 2002b,
KHALIL -ALLAFI et al, 2002a, RTAILLARD et al,, 1998, DLOUHY et al,, 2003, G\RROL et al., 2004) it

is important to investigate this microstructural featuraidetail. A quantitative experimental study of the
inhomogeneity olNi,Tiz precipitate variants in specimens after stress assisiad hgs been presented in
(BoJbaetal, 2005).

1.5 Objectives of the present work

The precipitateNi4 Tis give rise to coherency stress fields and therefore extentibainternal stresses
can favour or suppress the occurrence of cefdifilis variants (L and GHEN, 1998). Coherency stress
fields and/orNi concentration gradients associated with NigTi3 precipitation influence considerably
the B2 — B19’ transformation characteristics. This work should contebto the understanding of how
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FIGURE 1.7: A uniform distribution ofNi4Tis precipitates (in terms of number of particles per
unit volume) after stress assisteédhour aging ab00°C and8 MPa. Grain boundary areas and
grain interiors of grains 1-3 are shown in the montage of TEktagraphs.



1.5 Objectives of the present work 11
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FIGURE 1.8: The formation of different crystallographi§i, Tis variants near to and far from the
grain boundary as documented in the upper grain (see alspahe3 in Fig.1.7).

heterogeneoudli, Tiz microstructures arise. Modelling of microstructural meses that contribute to the
heterogeneous precipitation will be the basic methodoldtperefore, the aims of the thesis are as follows:
1. to select relevant mechanisms that can result in loc@trémiitions of stress over the microstructure,
2. to introduce models of microstructure suitable for nuoamodelling,
3. to calculate the stress redistribution within the frameunof presented models and

4. to estimate the energy and distribution of different talsgraphicNi, Tis precipitate variants in the
external stress field redistributed over the microstrigctur



2 Linear theory of elasticity. Eshelby method

2.1 Notation of linear elasticity theory

The computations of stress redistributions will be perfednwithin a framework of linear elasticity theory
(BRDICKA et al., 2000, NvE, 2001).

Let
Uy (1) g (z,y, 2)
U(I‘) = uy(r) = Uy(ﬁ,y, Z) (21)
u(r) uy(x,y, 2)

denote a displacement vector field in Cartesian coordinaies0zyz. Then the strain tenserhas com-

ponents
- ouy S _1 ouy +8uy
S VR W9\ oy oxr )’

Ouy 1 /0u, Ou,

= Qa5 vz — Sz — 3 ; 2.2

Suy oy’ © c 2(82+8x> (2:2)
_ % e = (O O
22 T 0z’ fy2 T Sy T 2\ 0z oy

The stress tensar is related to the strain tenseithrough a generalized Hook’s l&lv
O0ij = Cijkl€kl » iajv k>l € {CE, Y, Z} ) (23)
wherec;;,; are components of fourth-rank tensor of elastic constdrtts.inverse relation

€ij = SijkiOkl (2.4)

introduces a fourth-rank tensor called elastic compliaritére, 2001).

Six-indices notation often simplifies the numerical impéartation: to every pair of indiceg we assign a
single-value index according to following rules

11 -1, 22—2, 33—3, 23,324, 13,31—5, 12,21 —6.

In this notation, the elastic constants tensgy; can be represented a$ a 6 matrix. For media with cubic

2 n all following formulas the sum rule over repeated indiceassumed. If the sum rule should not be applied it would be
mentioned explicitly. In expressions like,, £y, ..., 0.. the repeated indices, y andz do not invoke the summation.
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symmetry this matrix takes a form

ci1 c2 c2 0

ci2 enn ¢z 0

ci2 ci2 e 0
0 0 0 cuq
0 0 0 0 cu
0 0 0 0 0 cu

(2.5)

Cijkl ™~

o o o O

0
0
0
0
0

A method based on the minimisation of the elastic potentizérgy II (BRDICKA et al., 2000) is
employed to obtain the stress distribution. The stablee sthta system is determined by a minimum of
the potential

H:/W(s)dV—/T-udS (2.6)
1% S
wherelV (e) is a density of strain energy given by
1
W(E) = §Cijkl5ij5kl (2'7)

andT represents surface tractions related to the compowentd the stress-tensor at the surfaces by
Ti = O45Vj. (28)

In Eqg. (2.8)r represents an outer normal vector to the surface of therapeciThe integration in Eq. (2.6)
is performed over the specimen’s voluivieand the specimen’s surfaég respectively.

2.2 Eshelby method for elastic continuum

EsSHELBY (1961) developed a method that enables evaluating of efésitis and energies caused by elastic
inclusions and inhomogeneities. The method is based oneseg of cutting and welding operations. This
process is schematically illustrated in Fig. 2.1.

To find a state of stress caused by a misfitting particle (8ich) in an infinite elastic body we start with a
virtual closed surface), (Fig. 2.1(a)). A cut is made arourfs}, and the inclusion is removed (Fig. 2.1(b)).
After this operation, the inclusion undergoes a stress dremge of shape (a transformation) outside the
body (Fig. 2.1(c)). After the transformation the inclusiom longer fits the cavity defined by the surfase
and it is necessary to apply surface foraas%nj to the surface of the inclusion to produce a strah‘f;—
which restores the original shape of the inclusion (Fig(d®)1 The relation between the applied stress and
the produced strain is

T T

The inclusion is now put back to the cavity and welded withrtragrix across the surfacs, (Fig. 2.1(e)).
The matrix is still unstressed and this state differs fromfihal state only in the presence of the layer of
body force

dF; = —o}in;ds. (2.10)

Let these tractions relax (Fig. 2.1(f)). The relaxationgass introduces a displaceme#it associated with
the stress staie® .
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FIGURE 2.1: The Eshelby’s method
After this virtual operation there is a stress describedtt®ss tensoe® in the matrix and the state of stress
in the inclusion is characterized by a tensor

ol =6 -0". (2.11)

2.2.1 Stress field generated by an elastic inclusion in elast ic continuum

LoVE (1954) has shown that the Green’s function method providetation between the displacemarft
and the stress state’ . Let

dv
o(r) = /vp m (2.12)

be an ordinary harmonic potential of attracting matter af dansity and the inclusion of the volumg is
assumed to be bounded by the surfageThe corresponding biharmonic potential is

w(r)—/v r—r|av. (2.13)

Using these two potentials the relation between the dispentu® and the stress” is obtained as

c 1 r_ 0% 1 19

- = : — 2.14
Ui 167u(l —v) Ujkﬁxzﬁxjﬁxk Ay ik Oxy, (2.14)
Similar relation can be also obtained for the strain
3
oL p 0% 1 p0p v g0 (2.15)
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In the special case when the inclusion is of an ellipsoidapshwhich is a reasonable approximation of the
precipitate form, the analytical formulas for the potelstiaand:> can be found. For the inclusion bounded
by the ellipsoid

2 2 2

ESHELBY (1961) has derived

0?1 a? oy v? oy
_ 2 217
0x10x9  a? — b2 i 0x1 * 22— 2! Oxy’ ( )
0?1 b? Op c? Op
_ 2.1
0x90x3 b2 — (2 3 Ozo + c? — b2 2 Oxs’ (2.18)
0?1 c? Op a? Oy
Oxsdr, 2 — 22 Bs 0x3 + a? — cngaxl ’ (2.19)

Equation (2.15) requires further manipulation to casttih imform suitable for further calculations. Particu-
larly the third partial derivatives of the potentiglare needed. For example, we can write

83 _a(a?w)

8.%'1(31‘18.%’2 N 8—.%'1 8.%'1((’)1'2
(2.20)
B <\ N (<o W O i
8.%'1(31‘18.%’1 N (31‘1 (31‘2 8.%'18.%’2 (31‘3 8.%'18.%’3 '
The first of these relations is obvious, the second followmfr
Vi = 2. (2.21)

Substituting Egs. (2.17)—(2.20) into Eq. (2.15) for 1 gives

el, —el, 0 Dy Oy el —el, 0 0y 8@
1ol = 22" 9 [ 2. _p2 3—¢fn 9 (2,90 2.
Sr(l=v)ur a? — b2 Oxy T2 1 0wy 0T + ¢z —a? Oxs e

T

0 0 0 —
—2{(1 = v)ef; + v(ed, + 633)}8;01 41 —v) <€1T28—;p2 + SE. + 8—9016’ (2.22)

B = 2¢1 a2x23_@ - b2x18_g0 + 265 b2m38—(p - 02m23_<p +
ory Ors c T T

The potential inside the inclusion is given by

o(r) = %(cﬂ -y %(b — 2D, + ;(c ey (2.24)
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wherel,, I, andI, are constants for the ellipsoidal inclusi®n From Egs. (2.22)—(2.24) it follows imme-
diately thatu® is a linear function of the coordinates, =2, =3 and thus the straia® is constant inside the
inclusion.

KELLOG (1929) and M\CMILLAN (1958) showed that outside the ellipsoid the potentialddake form

2mabe [ (o 23 a3 z? 3 3 l ¢ o B ,
=7 Kl T T ) POR T (e ke e ) EOR g g e
(2.25)

where
A=+/a’+x, B=+VV+x, C=vV+x,
2 2
=V _@, K=1_p2=2"b (2.26)

a2 _ 2’
a? > b >,

and F', E are elliptic integrals of moduluk and argument, given by

l
inf = —. 2.27
sin 0 1 ( )

x is the greatest (and in fact the only positive) root of

$2 y2 22

2.3 Energetics of the inclusion — stress field interaction

Let us assume that the specimen is under externally appiiegsg that produces straia. ESHELBY
(1961) in his work argues that the strainsande” are independent. The independence means that the
strain generated due to the formation of an inclusion woeldhe same in the stressed as in the unstressed
specimen. The interaction energy is then given by the wotdoaly tractionsr;;n; during the formation of

the inclusion;n; being the outer normal to the body surface which enclosesdhsidered inclusion.

The interaction energy term can be expressed in the forndétails see work by SHELBY (1961))
Fipg = — / oijes; AV, (2.29)
p

where,V,, denotes the volume of the inclusion (precipitate).

% The factorsl,, I, andI.. can be expressed in terms of elliptic integrald), k)andE(0, k) as

4mabe

I, =
(a2 — b2)(a? — 2)1/2

[F(97 k) - E(07 k)] )

Ib:4ﬂ'_]a_lc7

[ 4dmrabe {b(b2 —

(b2 — 2)(a? — 2)1/2

- E(e,m} ,

ac

a2 7027 a2

2 32 2\ 1/2
szu sinf = (1—0—) .
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For the ellipsoidal inclusion we have found (Egs. (2.22)249) that the strair® is constant inside the
precipitate and the strait is (by definition) homogeneous and thus constant in thegbanblume. If the
external stress is homogeneous over the whole inclusion, the integratiq@2.i29) results in

Eing = V05564, - (2.30)

As it was described in the literature A8URI, 1998), the transformation strairf can be associated with
the misfit strain for coherent precipitates, and for the cd$&Ti matrix andNi, Tis precipitates is given by
Eqg. (1.3). Consequently the distribution of the externasst (independent of the presence of an inclusion in
the specimen) is a key factor that controls the selectionpafricular crystallographic variant precipitating
in a given location in the microstructure.

2.4 Energy of precipitates

Due to the lower symmetry of the precipitate crystal latt@c®l given the crystallographic relationship,
the precipitation may result in a number of crystallograpariants that can be unambiguously distingu-
ished using, e.g. transmission electron microscopyr@dH et al., 1977). It is well known (see e.g. the
monograph by BRTER and EASTERLING (1977)) that the Gibbs free energy chanyé&' associated with
the coherent precipitation can be separated into two terms

AG = AC;'Chem + AGYelast s (231)

whereAG .o represents a free energy drop due to the formation of a maiéegprecipitate phase and the
term AG..¢ iS a free energy increment accounting for the energy of thstiel strain field created by the
coherent precipitate. According to Eq. (2.31), the amotithe free energy change may be different for
different crystallographic variants of coherent pre@if@s in cases when the parent phase carries a distribu-
ted streser already before the precipitation.

Equation (2.29) gives the expression for the energy chaggéting from the interaction between the stress
field o distributed in the parent phase before the precipitatich astrain fielde” of the new misfitting
particle. Since the interaction ener@y,; is generally different for different crystallographic iats of
coherent particles inserted into a given location of theplcrystal and since the interaction enefgy;
represents an important contribution to the second terngin(£31), a selective precipitation of coherent
particles can occur in the stress fietd

The contribution ofE;,; to the total Gibbs free energy change associated with thapitaion is used
as criteria for the selection of different crystallograplprecipitate variants. In each position inside the
specimen interaction energies of all eight different aljsgraphic variants of precipitates are evaluated and
the variant with the minimum value @, is selected to be the preferred one in the considered positio



3 Models

3.1 Model I —two semi-infinite grains

The simplest 2D model considered here deals with two sefimiie grains. As it is shown in Fig. 3.1,
the grain 1 occupies the half-space< 0 and the grain 2 fills the half-space > 0. The selected global
coordinate systerizy is also drawn in Fig. 3.1. When thecoordinate is needed, it is assumed that the
specimen’s state is constant along thaxis (i.e. it does not depend on theoordinate).

yll

ho

Grain 1 0 Grain 2 >

—ho

FIGURE 3.1: Geometry and global coordinate systemy of the model | .

Both grains are unstressed in the initial state. The sizé@fgrains in the unstressed stat@ig in the
y-direction. The grains 1 and 2 differ in their properties wldifferent mechanisms responsible for the
stress generation are taken into account:

(a) Inthefirst case, a stress state builds up during coofititesspecimen from the annealing temperature
due to different coefficients of thermal expansion in thergrd and 2. For simplicity the thermal
expansion is allowed only along thyedirection and no other external load is applied to the speni
This means that the thermal expansion tersd@s replaced by a scalar parametewhich is constant
over each grain but different in the left and in the right graDuring cooling each grain shrinks at
different rate. The requirement that the grains are “wél@ed: = 0 results in a deformation (and a
stress related to this deformation) in a region near to tasdroundary (see Fig. 3.2).

(b) The second case deals with a stress state in the specirhbgtted to an applied external load at
constant temperature. Here it is assumed that the two ghaives mutually rotated crystal lattices.
The anisotropy of elastic constants and the external loadsaurces of a stress distribution in the
system. The investigated grains have a cubic crystal steicto the most convenient coordinate
system in both grains is Cartesian orthonormal system tedeparallel to the correspondirig 0 0)
crystal axes.

Transformations from the coordinate systebmsy; and0zsy- into the global coordinate frantery
(see Figs. 3.1 and 3.3) are linear transformations and tnube described by matric& (1 = 1, 2),
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yﬂ

4}-i(—m)// ho

ha

h1 Qg (€5)

X

FIGURE 3.2: Variables and parameters describing model | in the case Wigestress state builds
up during cooling of a specimen from the annealing tempegdil. The situation shown in the
figure corresponds to a temperatilte< T,.

Y1 a
Yy T2
ho 2 \ /
«
s — NN
Grain 1 Grain 2
—ho

FIGURE 3.3: Local coordinate systems in both grains and their relatiotheé global coordinate
systemOxy defined in Fig.3.1 This geometry represents the specimen subjected to thie@pp
external stress at constant temperature.

that take forms

cosa —sina 0 cos —sinf 0
R, = |sina cosa 0], Ry = | sin3 cosB 0 (3.1)
0 0 1 0 0 1

wherez = z; = 2o is assumed as an axis of rotation andnd are the angles of rotation between
the coordinate systefry and the corresponding systems in the individual grains.

Although the above described modélg¢a) and/ (b) seem to be oversimplified when compared to real
microstructures, they satisfactorily catch the processtraiss redistribution and their simplicity facilitates
calculations. This geometry thus provides a reasonabliegbaiend for a qualitative assessment.

3.2 Model Il — 2D periodic model of two grains

This model is a periodic boundary conditions based gerzat@in of the model introduced in the previous
section. The basic building pattern of two grains is the sami@ the model except that the two grains are
constrained to lengths\ and(1 — )\ in the z-direction — see Figs. 3.4 and 3.5. Hekés the length of the
periodic two-grain pattern ande (0, 1) is a volume ratio of the grain 1 within one period (and thughimit
the whole specimerf). The neighbouring grains are “welded” along all boundaaiggosition

xr=kX and z=(k—r)\, wherekeZ.

4 A volume ratio of the grain 2 i$ — 7.
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The nature of the studied stress redistribution requirestimtinuity of displacement throughout the speci-
men. The periodicity of the two-grain pattern allows to otkie problem over just one period In that
case the periodic boundary condition

O(z,y) = D(z + A y)
must be fulfilled for ally € (—hg, ho), all —oo < = < oo and an arbitrary quantitp.

The geometry adopted for the case of thermal expansionwadraFig. 3.4 and for the anisotropy of elastic
constants in Fig. 3.5.

y A
: ] \ hg
aq (07 hy ha
rA 0 (- r)A N

FIGURE 3.4: Parameters describing the model Il in the case when thesstate originates due
to the anisotropy of thermal expansion coefficients. Theasibn is drawn for = % The bottom
part of the specimeny(< 0) can be obtained via a mirror operation on the upper part () with
thexz mirror plane.

y A
*yl 4 Y2
T
T2
—r 0 1—7)\ x
Grain Grain Grain Grain
type 2 type 1 type 2 type 1
A

FIGURE 3.5: Periodic two-grain pattern (model 1) in which misoriemdtcrystal lattices of both
grain types are shown. The volume fraction of the type 2 gdaiminates the microstructure

(r < %)

3.3 Model Il — 3D microstructure with periodic planar pattern

The third model is a further extension of the mode#nd !l into three dimensions and serves calculations
in which the stress redistribution originates due to the@nbpy of elastic constants in systems loaded by
external stress at constant temperature. The specimerfinés &eight2h along they-axis and extends to
infinity in the xz-plane. In this plane a periodic hexagonal pattern was chese Fig. 3.6. The hexagonal
shape of grains approximates closer the real grain micrsires as compared to, e.g. the grains of a
rectangular cross-section, but it is still simple enoughvoid complex calculations.
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The entire specimen consists of grains of two types markédras type 1” and “grain type 2”. These
two types differ in mutually misorientated crystal latdceThe coordinate systems connected with grains
1 and 2 are Cartesian and thus the transformations to thalgiobrdinate systerizyz (see Fig. 3.7) are
orthogonal and described by orthogonal matriBgsand R, respectively. The grains of each type form
rows through the specimen shown in Fig. 3.6(b). The smajiesnh set that repeats periodically consists of
four grains — two grains of each type delimited by a bold ba@updn Fig. 3.6(b). Any arbitrary quantitg
must exhibit the same behaviour at boundaries marked wétlsdme number in Fig. 3.6(c) — this ensures
the periodicity of this model. A 3D view of one periodic matiis shown in Fig. 3.7.

The modellll is rather complex and demanding as far as the complexity lolilegions is concerned.
Therefore, this model will be used only to demonstrate thevamt differences that the 3D geometry brings
about in comparison to the 2D modéland// .

C < =<
| St

(@)

FIGURE 3.6: Hexagonal periodic four-grain pattern of the model Il . {&exy-plane projection.
(b) Thexz-plane projection. They-plane cut shown in (a) is marked by a broken line. Bold solid
line delimits one cell of the periodic structure. (c) Foufatient grains of two types form the basic
cell of the microstructure. Encircled numbers indicateaf related boundaries that fit together
snugly and establish thus proper periodic boundary cantdti
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z

FIGURE 3.7: 3D view of a periodic cell used in the model Ill. Grains are dgons of a side in
thexz-plane. The height of the layer of grains2is,. The global coordinate systebny - is also
shown.

22



4 Stress redistribution in the microstructure — modelling
methodologies

4.1 Decomposition of the displacement field

The displacement field (Eq. (2.1)) is an additive quantity within the linear ela#i theory. Consequently,
we can employ a following concept. Let us first assume thatgoaie can be represented by homogeneous
elastic continuum in an initial stress-free state. Thergthén shrinks in the case of the specimen cooling
or deforms in the case when the grain is subjected to an etieapplied load. In the case of cooling, the
state of the isolated grain after the shrinkage is still thess-free continuum. For a model of misorientated
grains subjected to the applied external load, the dispiace is described by a vector fiedd!. The set of
isolated grains forming the specimen can be regarded asufVicuts were made along all grain boundaries
— that would interrupt all mutual interactions between ggai

To restore the mutual interactions among grains and esltahlcontinuity of the resulting displacement, the
second displacement fiel’ must be introduced. The total displacemernin the specimen can thus be
decomposed as

u=u'+u". (4.2)

The displacemen#™ must fulfil following conditions:

1. the total displacement = u* + u™ must be continuous over the whole specirfleand

2. elastic potential energyl given by Eq. (2.6) must reach its minimum with respect to alieeivable
displacements’ .

4.2 Thermal expansion anisotropy models

4.2.1 Cooling of two semi-infite grains

The basic geometry of the modehnd the characteristics of the thermal expansion process described
in the section 3.1. Let us first investigate the case of twad-gefinite grains (see Fig. 3.1 on page 18). The
thermal expansion coefficients; andas, respectively, describe the expansion alongyttexis in the left
and right grain. The specimen is thought to be rigid alongittaeis. Thus the only non-zero component of
the displacement vectar is they-component

h(l’) B ha
ha
wherea = 1 for x < 0 anda = 2 for x > 0. This form of the displacement provides a uniform defororati
of the specimen along thgaxis. According to Eq. (2.2), the non-zero components efstinain tensor are

h(x) — hq 1 h'(x)
eyy(T,y) = —0—— and  eyy(z,y) = zy . (4.3)
ha 27 hq
% |f the displacementi”* connected with the grain deformation has discontinuitiesr grain boundaries, the “minimizing”
displacement™ has the same discontinuities of the opposite sign in the $apagions to ensure continuity of the total displace-
mentu.
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Substituting Eq. (4.3) into Eqg. (2.7) yields the strain gyedtensity in the form

2 / T 2
W(z,y) = ciu1 <W> + 3644 (yh}f )> . (4.4)

There are no external tractions over the specimen surfaddhars the minimisation of elastic potential
energyll (Eq. (2.6)) is equivalent to minimisation of the strain ey

/ dm/ dy [cn (h xil_ h“>2 + 3044 (yh;ff)>2] (4.5)
:/Oodx [2h c1 (WT}LY éhgm (h;ff)f] .

The strain energ¥ is now, in fact, a functional{ || of an unknown functiork(z). This functional has to
be minimised. According to the concept described in the@edt 1, the total energd/ is divided into two
parts that correspond to the left and right grain

0 _ 2 / 2
i) = [ ar [omen (M=) L (B i, (4.6)
oo hq 6 hi
0o _ / 2
tolhe] = [~ do |2hen fal@) ~ P2 )" Sgess (MDY i, (@.7)
0 h2 hg
that are minimized separately with the boundary condition
h1(0) = ha(0). (4.8)
The extremities at = —co andx = oo are assumed to behave as free, that means
hi(—00) = h1 = ho(1 + 1 AT), (4.9)

The above equations constitute two minimization problenithk ¥ixed values of minimizing functions at
boundaries.

A function with given endpoints that minimizes the funcebn
b
Ulh = / Fla,h(z), W () dz, hla)= A, h(b) =B, (4.11)

is a solution of the Euler differential equationd®ASIL, 2000, GELFAND and FomIN, 2000)

OF  9*F  0°F , O0*F ,

oh  OWOr ah’ﬁhh - ah/Qh =0, h(a)=A, h(b)=0B. (4.12)
The Euler equation for the problem described by Eqg. (4.6) Wwidundary conditions given by Egs. (4.8)
and (4.9) is

deny (hl(w) - 1) - %044h1h’1’(x) =0, lim h(z)=h, h(0)=¢. (4.13)

h1 r——00

The general solution to the homogeneous part of differeatjgation (4.13) is a linear combination of two
exponential functions. A requirement of convergency at- —oo excludes the exponential function that
diverges ag — —oo. The functionh, (z) thus takes form

hi(xz) = h1 + (£ — h1) exp <H 1121 }%) . (4.14)
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In a similar way we obtain the solutidm (x) for the second grain

ha(x) = ha + (§ — ha) exp <—\/ liil %) . (4.15)

The complete solution requires the determination of tharpater{. In fact, the function

12 .
h1+(§—h1)exp<\/ C”hﬁ), if 2 <0,
Cf; ! (4.16)
hg—i—({—hg)exp(—,/ Clli), if x>0.
caa o

now depends also on the parameger Introducing the functiom(z,¢) into Eq. (4.5) give the elastic
potential energy as a function of the parameéteiThe parametef must attain a value that minimizes the
elastic potential energy of the complete two-grain strect@rhe minimum of the functiot¥(£) occurs when

h(:ﬂ,f) =

g th ‘2* ha (4.17)
The Eq. (4.3) then yields the non-zero components of thengasor as
— 12 .
ha — In exp a1 , if £ <0,
2h1 C44 h1
eyy(2,y) = (4.18)
hl_th 12c11 if £ >0
«<p [ — -+ :
2hy P caq ha)’ 7
ho —
2 hl exp ( 12611 £> 12611 i’ if - é 0’
B 4hy V cas cas
sxy(:v,y) = (4.19)
hg — hl ox (_\/12611 i) \/12611 i If >0
4hy P caa ho cas hy’ '

Finally, according to the relation (2.3) the componentstiefss tensor are

O (T,y) = 02z(7,y) = Cl2£yy(5'3a Y)
Uyy(xa y) = Cllgyy(xa y) ) (420)

Ua:y(x7 y) = C445$y($a y) :

4.2.2 Periodic two-grain pattern

The modelll describes a non-uniform thermal expansion in a periodicastoucture (see Fig. 3.4 on page
20). The solution procedure is almost the same as in caseoadd@mi-infinite grains. The minimization of
the elastic potential energy over the complete specimequiz&ent to the minimization of the energy over
one period\. The functional/[h] is again divided into two parts each of them correspondingni grain
of the periodic pattern. The boundary conditions of the rhodé the extremitiess = —oo andz = oo are
replaced by periodic boundary condition

hi(—r\) = ha((1 — 1)A) = C. (4.21)

Minimization of the functional{([h] leads to the Euler equations for unknown functiénéz) in the grain
of type 1 andhy(z) in the grain of type 2. The general solution takes a form

12 12
hi(x) = hy + ky exp (H al £> + ko exp (‘N / il i) , (4.22)
cu h cqa hy
12 12
ho(x) = he + K1 exp <’ / il £> + Ko exp <— e £> . (4.23)
caa ho V' caa ho
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The boundary conditions are described by the system of ieqisat

hi+ ki + ke =€, (4.24)
he + k1 + ko =&, (4.25)
12 —rA 12 —rA
h1 + ki exp <\/ aL-r ) + ko exp <—,/ a1 T > =, (4.26)
cu caa  hy
12 1-— 12 1-—
ho + K1 exp < ﬂ( 70))\> + K €xp <— u ( 7a))\> =, (4.27)
Caa ha Casa ho

and the surface profile(x) is given by

hi(x), if —rA<z<0,
W) = hg(l’), if0§$<(1—7“))\, (4.28)
)z =), ifz>(1-r)A, '

h(z + X), otherwise

Solution of the system of Egs. (4.24)—(4.27) for the unknawefficientsky, k2, k1 andks and substitution
of hi(x) andhy(z) into the elastic potential energy

u :/ W(z,y)dV
one period

(I=rA - rha h(z) —ha\* | 1 K (z))?
— dx/ dy |c <7a> + ~cyy <y )
/M —hq H ha 4 ! ha
yields U as function of two parameters, and . Their values are determined by the minimization of

the potential/ (¢, (). In view of the complexity associated with the solution ie tanalytical form, the
minimizing parameterg and¢ were found numerically.

(4.29)

4.3 Elastic constants anisotropy models

4.3.1 Analytical solution for the specimen under the extern al load

When the crystal lattices in different grains are misoaésd, no preliminary assumption about the minimi-
zing displacement can be made. Thus the displacementftélohust be composed of two general functions
ud (x,y) andu})! (x,y) of two variablesr andy.

In line with the general concept described in section 4.1s fiossible to rewrite the expression for the
density of strain energy (Eq. (2.7)) as

1
/W(s)dei/ Cz‘jkz(ﬁé*-ﬁf‘f)(ﬁﬁﬂ'g%)dvz
1% 1%

1 1
= 5/\/Cijk1635?l dV"‘/‘/CijklE%g%dV‘i‘5/‘/62‘3‘]@18%6%(1‘/ (4.30)

Vo Vo Vo
constant term mixed term minimizing term

where the symmetry;;i,; = ;5 Of elastic constants was employed. The mixed term can biegfusimpli-
fied to

/ cijklgées% dVv :/ af}gf\f dVv (4.31)
\%4 \%4

and similarly

1 1
3 / CijreiEm AV = 3 / o dV . (4.32)
Vv Vv
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Let us assume that the applied load is constant over the whole specimen. Using the Gauss theforem
the second term in Eq. (2.6) yields

0
T-udS:/O’ZA-I/Z'U'dS:/(O'ZA-U')I/Z'dS:/ —(ofu;)dV =
/s s s 7 y Oz
:/U,Al Ou; +8“Z' dV:/JA-e-'dV:/JA-(sA-+sM)dV (4.33)
v 72\ 0x; Oz; v Y vy Y S

Substituting expressions Egs. (4.31)—(4.33) into Eq.)(2t® final formula for elastic potential energy is
obtained in the forrf

Vv 1
M=o+ /V el M av | (4.35)

The dependence of strain tengdf on unknown displacements’ andu,)’ is given by Eq (2.2). Therefore,
the energy functional depends only on partial derivativieth@displacements’’ andu,)’

= [ Pl aufl) av, (4.36)
where
ouM ouM ouM ouM
uyx = Dz y Uy, = Yz , uMJC =—Y and uM =L . (4.37)
: ox 4 oy Y ox L oy

The region, over which the integration indicated in Eq. @.& performed, ig—oo,00) x (—hg, hg).
Similarly to the minimization problem described by Eq. ®.,1the minimisation of the functional in
Eq. (4.36) translates to the system of Euler equations

d d
M M M M M M M M\ _
@Fu%z(um,mux,y’ y,mauy,y)_i'd_yFuMy(u:v,m x> Uy.x» y,y)_oa
(4.38)
iF(MMMM)_i_iF(MMMM)_O
Az Wi Ugqs Ugp s Uy oy Uy gy dy ull, Uz g5 Uz gy Uy Uy gy) = U -

The boundary conditions for the case of two semi-infinitdrgraequire that the minimizing displacement
u™ vanishes at = —oo andz = co

lim ui\/l(az,y) =0, Em ué\/l(az,y) =0 forally € (—hg,ho). (4.39)

r—*+00 r—*+o00
The surfaces aj = hy andy = —hg constitute free boundaries to the minimization probleme $b called
transversality conditions take, in this case, a form
M M M M _
Fué&{y (ux7x7 uxvy7 uy7x7 uyvy) ‘y::tho - O )
(4.40)

o M M M)‘ _
y==ho

M
udl, (U Ui s Uy 5 Uy

® We note, that the difference between the two types of grainsidered in the model rests in the misorientations of tirgital
lattices. This affects coordinate representation of tihedec which has to be projected into the global coordinate sygiem
When the transformation from the grain coordinate systeimtime global coordinate frame is described by a ma@jxhen the
component;;; of the tensorc takes in the coordinate frante:y a form

Cijkl = Ria Rjg Ri~y Ris Capys , (4.34)

wherec.s+s is a component of the tenserin the grain coordinate frame.
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The last condition, which must be satisfied by the minimizigplacement’, is the continuity of the total
displacemenu = u? + u™. If the displacement due to the uniformly distributed laad is respectively
described by;* andus' in the left and in the right grain, then the continuity corait

Timug! () + () (0,y) = lim w!(z,9) + (0):(0,9),

(4.41)
lim ué\/[(m, y) + (uf‘)y(O,y) = xl m uéw(x,y) + (uf)y(O,y)

i
z—0~ —0t

must hold along the whole boundary where the grains meetatheh, i.e. for ally € (—hg, ho) 7.

The system (4.38) with boundary conditions given by Eqs39%4-(4.41) is rather complicated. Therefore,
one can hardly expect any analytical solutions in a closedh.foThus the models based on the elastic
constants anisotropy were further solved by numerical outh

4.3.2 Finite difference method

Finite difference method (FDM) is often used for numeriaadli§on of differential equations. The method
replaces differentials by finite differences. Since thebfm of stress redistribution is represented by the
system of partial differential equations (4.38), this noetlseems to be a first choice to find a solution.

Instead of continuous function, the FDM uses a set of functialues in a system of nodes. The set of
nodes covers an area of interest. It is clear that the densier metworks in the investigated region provide
better approximations of the solution. However, calcolai based on the denser network are also more
CPU demanding. It is important to choose a suitable commeméetween these two factors.

Discretization of the two-grain region is described by pagtersa, b, andb, and indiciesiy, ne andny, as it

is illustrated in Fig. 4.1. The nodes;; corresponding to the discretization are numbered
Jj = 1,2,...,n;n, for each graini = 1,2. There are two unknown variables; andw; ; for each pair
(i,4), i € {1,2}, 1 < j < nyny,. These variables represent values of unknown functidfisaindw)’ at the
nodeX; ;.

by by
X110 X112 = Xo19 X204
jﬁ. L] L] L] o L] L] ([ ]
a Grain type 1 Grain type 2
J;. [ ] L] [ ] (] L] [ ] ( ]
X1 Xi3=Xo1 Xaog

FIGURE 4.1: A network of FDM nodes which discretizes a two-grain regidie index ranges
that determine the disretization are in this example givenb= 3, no = 6 andn;, = 4. The
number of elements in the grain 1 is 6, the number of nodesdamgthin 1 is 12. The grain 2
consists of 24 nodes and 15 elements. The parameteyrandb, determine the size of individual
elements.

) The above described concept is quite general. For the asismsip* = 0, u, = 0 andu,(z,y) = yh(z) the system of
equations (4.38) simplifies to the equation of the type of @dL3).
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In this notation, the approximations to the derivativestii@ volume of the grain 1) are

auy( )~ Vit1, — Vi1, Ould (Xi5) ~ Vi 41— Vij—1
ox T 2by Toay T 2a ’
(4.42)
aué\/j (X ) ~ wi+1,j — ’LUZ',L]' aué\/j (X ) ~ wi,j+1 - 'LUZ"]'fl
ox 2b; ooy 2a ’

and the differences for the boundary nodes are replacedrbysponding “one-side” differences.

Applying the FDM to the system of partial differential egoat (4.38) with boundary conditions Egs.
(4.39)—(4.41) results in a system of linear algebraic eégnat Although the above sketched procedure is,
in principle, applicable, it does not yield satisfactorgults. The system of linear equations is usually ill
conditioned which makes the solution unreliable.

4.3.3 Finite element method

Finite element method (FEM) is a robust numerical tool slédor solving of variational problems. It is
again based on a discretization of the investigated redioilas to the case of FDM (see the subsection
4.3.2 and Fig. 4.1).

Let X; ; be aj-th node in the grairi. Letwv;; andw; ; be components of unknown displacemer in
the nodeX; ;. The elements are delimited by four nod¥s;, X; 11, X jtn;, Xijtni+1 (¢ = 1,2 and
i=12....n;—1.n;+1,....,n;mp —1).

FIGURE 4.2: Linear approximation of the functiofi(x,y) defined by Eq(4.43). Element size is
given bya = 6, b = 7 and functional values in the element nodes fare- 2, fo = 5, f3 = 4 and

fa=1

The functionsu)’ and )’ are approximated over the area of each element. alénote the height of

element ¢ = 2hg/(ny — 1)) andb; the length of element in the grain The linear approximation of any

function f over a rectangular element given by the functional valfjesf., fs; andf, at element nodes is

b—xa-— ra— b—x T
Crpttt 2 (4.43)

b a b a b a ba
Using this type of approximation for functiong’ andué” , the strain tensor, the stress tensor and finally the
elastic potential energy related to each element can béebtas a function of eight variables;, v; ;1.

Vi, j+n;r Vi, j+n;+1, Wi g, Wi 41, Wi j4+n;y Wi j4+n;+1-

f(xay) :fl
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The total elastic potential is a sum of elastic potentiahtepver the number of elements. The total energy
is thus a function of(n; + ng)ny, variablesvy 1, . .., w2 non), -

In the next step, the boundary conditions are applied. Théragty condition atz = 0 requires

[Uf‘(Xl,jm)} + V1 jny = [”?(XZ(J'*l)anrl)} + V2, (j-Dna 41
* v j=1,...,n4. (4.44)

[Ui“(Xl,jm)} , W = [U?(Xl(j—l)nz-i-l)} , WG na

When the specimen extends to infinity along thexis, a cutting distancéfrom the grain boundary must
be chosen, at which the displacements are given by theiesatinfinity. This stems from the fact that a
numerical approach could not treat the infinite dimensiothefinvestigated domain. Thusat= +/ the
displacemenu™ is negligibly small and the boundary conditions take a form

ULG-Dni+1 = 0, W1, (j—1)n1+1 — 0,
1 1 J=1...,np. (4.45)

V2 jny = 0, wajn, =0,

This approximation thus contributes to the error assodiwi¢h the applied numerical method. Results of
the numerical solution suggest that they are insensiblee@hoice of the valué provided that takes on
reasonably high valueg & 4hy).

Sets of equations (4.44) and (4.45) reduce the number opémdient variables by the numbsr;,.

Now the elastic potential energy is constructed and, afterapplication of the boundary conditions, the
function of2(n; 4+ ny — 3)n;, independent variables is obtained. This function is minédiwith respect to
the vector of unknown variables.

4.3.4 Modification of FEM for models with periodic structure S

The models based on a periodic grain pattern were introdircedctions 3.2 and 3.3. We assume that
the sizes of the periodic motive along and z-direction remain constant during the specimen loading.
Additional stress components;, (and in a 3D case alse?) are needed to keep the dimensions of the
periodic pattern constant. However, values of these st@sponents are not known prior to loading — they
depend on the value of the applied Iaaﬁ and result from the calculations.

The fact that the components’. ando?. remain unknown during the computation precludes the déterm
nation of the displacement field*. Consequently, the periodic boundary conditions cannettitéen in a
form

Kot 0 = [0 Kagn)| F 03, 1 s
7=1,...,ny. .

[UlA(Xl,(j—nmﬂ)} T W D1 = [”?(lenz)] . WYy

To overcome these difficulties we must abandon the conceg¢@dmposition of the total displacemant
into u + ™. The elastic potential, the minimum of which characteriaes$able state,

H:/VW(s)dv—/ST-uds (4.47)

consists now of two terms which are both non-constant.

Let us first concentrate on the 2D model (mode). The strain energy/ (the first term in Eq. (4.47)) is
calculated using FEM and the same rectangular elementslas @ase of model of two semi-infinite grains
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(see Fig. 4.1 on page 28). The only difference is that insté#ue displacement field? we now consider
the total displacement.

The boundary conditions at= 0 (Eq. (4.44)) take a form

Uljni = U2,(j—Dna+1> Wijng = W2,(j—1)ng+1> J=1....,nn, (4.48)

and at the periodic boundary conditions at points= —Ar in grain 1 andr = (1 — )\ in grain 2 (Eq.
(4.46)) take a form

VLG—Dni+1 = V25ng > W1,(j—1)ni+1 = W2jns J=1...,np. (4.49)

The complete potential for minimization requires the entatien of the integral, T - udS. Because the
integration has to be performed over the surface of one famgeriod we employ one dimensional ele-
ments. The surface element is represented by an abscissactiog two neighbouring surface nodes. The
displacement over the surface element is approximated imearldependence, which is fully determined
by values in the two nodes forming endpoints of the element.

The surface integral can be decomposed into two parts: thgrad over the part of the surface which is
parallel to therz-plane and the integral over the rest of the surface. Duegt@dhiodicity of the model for
each planar pafl of the surface with the outer norm@) which is perpendicular to the-axis, there exists a
corresponding planar part of the surface with the outer abrw. Since the corresponding surface tensions
represent pairs of reaction forces and regarding the boyrdaditions Egs. (4.49), the integrafsT - u d.S
over these parts of the surface cancel each other. Therdfiersecond term in Eq. (4.47) simplifies to

/T-udS:/aijyiuj dS%afy/ u, dS (4.50)
S S !

whereS’ is the part of the surface of one period which is perpendidaléhey-axis.

The componene&zj‘y of the applied stress is known and thus the second term ofi@it€Eq. (4.47)) can be
expressed in terms of known constants and unknown dispkaatsm, in the surface nodes.

In the 3D case (modéll ) a planar mesh is generated to cover the area of four graims petriodic pattern.
The mesh is illustrated in Fig. 4.3(a). This mesh takes intwant the fact that the grain boundary regions
are expected to carry a considerable stress redistribufidve planar mesh is copied,-times along the
y-axis and a 3D mesh of the periodic pattern is thus obtaingd 4=3(b)).

The 3D mesh consists of the prismatic elements with trizargusses in thez-plane. Each element is fully
characterized by the set of six forming nodes. The appraiamaof any functionf over an element is
linear, i.e. the three nodes in each base determine a lippapxdmation of the functiorf in a form

fbase(x> Z) =azx+bz+c, (4.51)

where constants, b andc are uniquely determined by the values of the functfan the nodes. The linear
approximations within each base are linearly changing otwethe other along thg-axis (the bottom- and
the upper-base approximations are multiplied by the fadtor— y)/h andy/h, respectively). Here is
the height of the element. The 3D elements and the linearoappations of the displacement field over
each element allow to determine the first term of the elasiiergial given by Eq. (4.47) as a function of
unknown displacements in each ndile

The surface elements are in fact of two kinds: the surfacaeiés in therz-plane are triangles while the
surface elements in the planes perpendicular tarthplane are rectangles. A similar type of argument as

® By planar part of the surface in the 2D case we mean a straight |
9 We note that, since the model deals with a 3D structure, dktbomponents of the displacement vector are non-zera@hn ea
node.
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y/ho

T~
=
=

(@) (b)

FIGURE 4.3: An example of the FEM mesh of the model Ill. (a) Discretizatio thexz-plane,
nodes and planar elements. The number of elements that eogeside of the hexagonal grain
(which has an edge lengif) is 8. (b) The complete 3D mesh with three layers along the
y-direction @, = 3) and thinner discretization inz-plane as compared to the case (a).

in the 2D case permits to simplify the second term in Eq. (Yidtd the form of Eq. (4.50). This term can
be directly rewritten into the expression that is a functidrinknown displacements and thus is applicable
for numerical minimization.

The last condition needed for correct formulation of the imimation problem within the framework of
FEM concerns the periodic boundary conditions. These gobeabin the same way as in the case of 2D
models and, similarly to 2D models, reduce the number ofpeddent variables that minimize the objective
function. The sides of the four-grain cell related due taqmicity are marked in Fig. 3.6(c) on page 21.



5 Calculated stress distributions

5.1 Thermal expansion models

Analytical formulas for the functions representing suef@n microstructures described by mode(&gs.
(4.16), (4.17)) andl (Egs. (4.22)—(4.29)) were derived in the section 4.2. Patamvalues obtained
experimentally were used to investigate the behaviour eftalytical solutions. The elastic constants for
NiTi alloy at the annealing temperattfg = 773K, when the microstructure is stress-free, are summarized
in Tab. 5.1 (EN et al., 2001).

e [GPa) | e (GPa) | culGPa] | ay (K | ao kY |

190 140 40 14 x 10~ 8 x 1076 ‘

TABLE 5.1: The input parameters for thermal expansion models.

In view of the other model inaccuracies, these values awavasd to be independent of temperature during

cooling from the annealing temperatufg to the room temperaturé. = 300 K. Since the main objective

of this work is to qualitatively account for the effects asated with stress redistributions, the above appro-

ximation is fully sufficient. We note that on cooling the @ifénces of elastic constants are more than one
order of magnitude smaller as compared to their actual sdleen et al., 2001).

The thermal expansion coefficienis andas are chosen such that they slightly differ from the tabulated
value forNiTi (J. MATTEY, INC., on-line) @uit; = 11 x 1076 K~1!). Their values are also included in
Tab. 5.1.

5.1.1 Stress distributions for the model [

The upper surface of two-grain structure after cooling fflaf@ K to 300 K is shown in Fig. 5.1. The scale
of both axes is chosen so that the distahcerresponds ta.

In accord with the assumptions of the model, there is no aigrhent along the-axis. The displacement
exhibits its maximum at the surface of the specimen, i.ey at —hy andy = hg. Therefore, the stress
component,,, also attains its maximum value at the specimen surface. e oomponents of the stress
tensor do not depend on thecoordinate. In agreement with Eq. (4.20), the- and zz-components of
the stress tensor are identical. The spatial distributiothe stress components,., o, ando,,, over the
specimen are plotted in Fig. 5.2. The results presentedgn %R suggest that the affected area (the area
where stresses differ significantly from zero) extends dnlyhe region betweerar% and % along the
z-axis. Consequently, only in this region one can expect éiegts associated with the stress redistribution.

5.1.2 Stress redistributions for the model [l

As in the modell, also the numerical calculations based on the méldekere performed with the same set
of elastic constants and thermal expansion coefficienengivTab. 5.1. The length of one two-grain period
is A = 4hg and the volume fraction of grain 1 within one period is eithet 0.5 or » = 0.05. Coordinates
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y/ho
A
1.000 —
0.998 —
0.996 — ,
)
0.994 — t
i h
0992 P | OOOAOOaa0OBCA000a0aaa00aa000a0a00Ea00aaa00aa0000000000000000d E ..................................................................................
Grain 1 : Grain 2
0.990 I I I i I I I = z/ho
) ~1.5 -1 —0.5 0 0.5 1 1.5 2

FIGURE 5.1: The upper surface of the specimen after cooling from the amgetemperature
773 K to the room temperature. The profile results from calcutatibased on the model | of two
semi-infinite grains.

A Grain boundary
e b
200 —
100 —
i~
ol
= 0
S
~100 — !
Grain 1 i QGrain 2
O R — S ——
[}
l
—300 | I | i | | | >
—2 —1.5 -1 —0.5 0 0.5 1 1.5 2
x/ho

FIGURE 5.2: The distribution of the stress componeats,, o, ando,, along thex-direction in
the two-grain structure after cooling. The calculationresponds to the model I.
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normalized by the parametgy are used to plot the surface profiles at the end of cooling.

The specimen surface is drawn in Fig. 5.3. Itis worth nogjdhmat in the equi-volume fraction case=£ 0.5)
there are regions within the grains 1 and 2 that are esdgntiaffected by the minimizing displacement
u™ . The surface in the interiors of both grains is very closéhgosition where it would be if the grains
were not welded. On the contrary, in the case ef 0.05 the smaller grain (grain 1) is too small and the
redistribution of deformation is significant over its eatirolume.

y/ho
A
1.000 1 5 surface h(x) .......... — ho
" : > ---- grain boundary
0.997 E i i :- i .
0.994 \ f \ f \
' e NS Ao g,
0.091 . Grainl | Grain2 |, Grainl | Grain2
. i ! i i i »z/ho
-2 0 2 4 6
(a)
y/ho
1.000 - 3 surface h(x) [ — ho
i ™ ---- grain boundary
0.997 bl L o n
|| || ||
0.994 (i (i | h
el el el 1
0.991 {"NGrain 1] Grain 2 {"NGrain 1] Grain 2 *N Grain 1]
. | . | S —
0 2 4 6 8
(b)

FIGURE 5.3: The surface of the periodic two-grain system after coolifigvo surface profiles
are plotted for (a) = 0.5 and (b)r = 0.05. Calculations cover the cooling from the annealing
temperaturd, = 773 K down to the room temperatuiié = 300 K.

The non-zero components of the strain tensor can be cadulaised on Eq. (4.3). The non-zero stress
components are then related to the strain components thiegg(4.20). The resulting stress distributions
for r = 0.5 andr = 0.05 are plotted in Fig. 5.4(a) and 5.4(b), respectively. Thecomponent ., and the
rx-componentr ., are identical.

5.1.3 Concluding remarks

The NiTi alloy crystallizes in a cubic typ82 lattice. Nve (2001) poited out that the tensor of thermal
expansion coefficients is always isotropic for cubic l&icTherefore, the modeland/l calculating stress
redistributions due to the anisotropy of thermal expansi@not applicable to the caselfTi B2 alloys.
Nevertheless, these models can be applied to other systgmthevlattice symmetry lower than cubic. The
results clearly support the idea that for non-cubic systémastress state generated due to the anisotropy of
thermal expansion can possess features characteristiefstress redistribution in a polycrystalline sample.

The anisotropy of thermal expansion is directly connectétth whe misorientation of crystal lattices in
neighbouring grains. Therefore, for the non-cubic systenigected to an externally applied load, the
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FIGURE 5.4: Spatial distribution of the stress over the specimen ctingi®f two-grain periodic
pattern in thex-direction. The grains of different types have differenefticients of thermal
expansion. The specimen was cooled from the annealing tetopel, = 773K to the room
temperaturd,. = 300 K. The stress distributions were calculated for positiorikatipper surface
(y = hg). The geometry is given by the paramelee= 4h, (length of one period) and by the
volume ratior of the grain 1: (a) = 0.5 and (b)r = 0.05.
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non-uniform strains due to the thermal expansion anisgtanyl due to the external load may superimpose
provided the crystal lattices of individual grains are misotated. Fortunately, in the case fTi the
thermal expansion strain is isotropic and thus does notriboite to the stress redistribution. Therefore,
results obtained for misorientated crystal latticeNof'i alloys subjected to the externally applied load and
presented in next sections of this work do not include thentlaé expansion effects. In passing we note
that, whatever the crystal lattice, the thermal expansftatis do not contribute to the stress redistribution
during isothermal heat treatments.

The stress generated during cooling the microstructureaadtermal expansion would cause just a constant
contribution to the total stress state and thus this pati@tdtal stress is not interesting from the point of
view of the local stress redistribution.

5.2 External loading models

The analytical solution presented in the subsections &idl5.1.2 shown that a special class of problems
can be solved under the assumption that components of thlacksnent vector are linear functions of the
coordinatey. However, this form of the function™ (x,7) does not fulfil the system of Eqs. (4.38)—(4.41)
and thus does not minimize the elastic potential in more ig¢mases. These more general formulations
require the components of the displacement vector beingrgefunctions of variables andy and the
system of Eqs. (4.38)—(4.41) then becomes to complicate@ralytical solutions. The finite element
method described in the subsection 4.3.3 is the most seitalherical tool to solve these general problems
when the energy minimisation principle is applied.

5.2.1 Stress distribution for the model [

As depicted in Fig. 3.3, the system of two semi-infinite misotated grains is loaded by the applied stress
a;“y and the grains are welded at= 0. General steps of the solution were discussed in the slidsect
4.3.3. The discretization of the microstructure is showRim 4.1. The semi-infinite grain does not fit the
concept of the FEM and it is thus important to select an apjatgpcut-off distancé that limits the region

of the solution with respect to the-coordinate. The analytical solution presented for the acdghermal
expansion in the subsection 5.1.1 suggested that thereisaamae/ from the grain boundary at = 0
where the minimizing displacement is negligibly small andeve the stress redistribution ceases. It has
been found that the results are not affected when the cuisitincel fulfils ¢ => 4hy.

The results of the numerical solution presented below wetaimed for material constants NiTi alloy at
the temperaturg73 K, see work of BN et al. (2001). The grain misorientations are described by theesng|
« andp (see Fig. 3.3). The applied load is characterized by theoten§. The only non-zero component
of o4 is o—?j‘y. All these parameters are summarized in Tab. 5.2. The vzilugyocorresponds to the loads
used experimentally during the stress assisted agitNj'bf alloys (BoJpa et al., 2005).

c11 [GPa] c12 [GPa] caq [GPa] a [rad] 3 [rad] U?y [MPa|

190 140 40 0 /6 8

TABLE 5.2: The basic input parameters for external loading models.

The geometry of the loaded specimen is fully characterizethbe parametehg; 2hq is the y-size of the
grains. For purposes of the computation, both coordinat¥e wormalized by, and, in what follows, the
results are plotted in these dimensionless coordinates adbpted value of the cut-off parametes 5h,.

The discretization (see Fig. 4.1) of the investigated meggajiven by a rectangular element mesh described
by the parametera; = 30, no = 30 andn; = 10. The number of nodes in each grain3i@ and the
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FIGURE 5.5: The upper surface of the specimen composed of two semitmfinains with mutu-
ally misorientated crystal lattices. The top surface is azoatal line aty = hy before loading.
When the load§MPa) is applied and the grains are treated independently, therugurface of
each grain moves and its new position is drawn by the blue Angubsequent welding operation
restores the continuity of the surface and, at the same tirmginizes the strain energy. The final
surface profile after these operations is represented bethine.

number of elements &61. Considering the boundary conditionszat 0 (continuity of the displacement)
and atr = +/¢ (where the minimizing displacement vanishes), the totahlmer of independent variables
reduces tal 160 for the designed mesh. Consequently, the energy term (E85)§4o be minimized is a
function of thesel 160 variables. A build-in function of the system MathematicagW¥rAm, 1999) was
used to minimize the objective energy function.

Figure 5.5 shows the calculated profile of the upper speci#néiace after loading and the energy minimi-
sation. Prior to loading, the upper surface of the specimenaty = hg. The blue line represents the upper
surface of loaded grains when they are not welded togetheh (grain deforms as a free homogeneous con-
tinuum and corresponding surfaces of one grain are patalkich other). The minimisation displacement
u™ is computed so that it restores the continuity of the disptaent over the microstructure and, at the
same time, it minimizes the total strain energy. Finallg tbtal displacemend is obtained by adding the
two vector fieldsu” andu™ and its values at the specimen surface are represented bydtiee in Fig.
5.5.

Corresponding stress components are plotted in Fig. 5.6df¢ethat, far away from the grain boundary, the
only non-zero component of the stress tenser,isand its value converges to the externally applied stress
of 8 MPa. The component,, and its spatial distribution is similar to the componept. The components
o, andoy, of the stress tensor are identically zero which follows e that the model is 2D.

5.2.2 Stress distributions for the model [l

The FEM discussed in the subsection 4.3.4 can be also easilginented to calculate stress redistribution
for the modelll of the periodic two-grain pattern of mutually misorienthigrystal lattices. The periodic
pattern is described by two parameters: the length of onegearwhich was selected as = 4h( and the
volume ratior of grain 1 within one period = 0.5. In addition to the boundary conditions at= 0, the
periodic boundary conditions at= —r\ andz = (1 — )\ are now applied. The the material constants,
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Oz [MPa]

Oy [MPa]
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FIGURE 5.6: The distribution of the individual stress components oheréntire specimen com-

posed of two semi-infinite grains with mutually misorieetétrystal lattices. The cut-off parame-
terist = 5hyg.
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misorientation of the lattices and the applied stress atediin Tab. 5.2.

The upper surface of the specimen after loading is plottdeign 5.7 over two\ periods. The blue lines
represent the top surface of each grain in a situation whegrhins were independently loaded by external
stress%“y = 8 MPa. The red line shows the upper surface profile for the graingedetogether and after
the minimisation of the strain energy.

The red line is shifted towards smaller displacements agpaoad to the blue line. This effect is associated
with the boundary conditions set at the grain boundariesfre, the individual grains subjected to the
applied load would shrink such that gaps between each paeighbouring grains would appear (note the
drastically different scales on both axes due to which theoganot be directly observed in Fig. 5.7). When
the grains are welded, these gaps must be refilled with theriralatvhich leads (under the assumption
of a constant volume) to the shrinkage of each grain alongttieection and to the widening along the

z-direction. This strain component is associated with themanentss4. of the applied stress discussed in
the subsection 4.3.4.

I .
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FIGURE 5.7: The upper surface of a periodic two-grain pattern. One gesidlengthA = 4h
consists of two grains with mutually misorientated crysa#tices (v = 0, 3 = ). The red line
represents the final top surface.

All the non-zero components of the stress tensor are plotted). 5.8 over one two-grain period. The stress
distributions correspond to the displacement field showrign 5.7. Contour plots of the stress component
profiles are plotted next to the corresponding surface plots

The experimental results mentioned in the chapter 1 weesradat for three different values of the externally
applied stress2 MPa, 8 MPa and20 MPa. Therefore, simulations based on the moldetere performed

for the same set of three external Ioax:f; and the results are presented in Fig. 5.9. There is no quaaita
difference between the stress distributions obtainediffardnt a;‘y loads. The quantitative difference rela-
tes to the scaling factor for the stress coordinate thaeasas with the increasing external stress. This result
reflects the linearity anticipated for the elastic contimuwithin a framework of the linear elasticity theory.
Since the deformation is proportional to the applied loaglhér applied load results in larger deformation.
Therefore, the vector fields computed for the same type but increasing loads are mutpiifyortional.

This fact translates also into the shape of stress surfamdighself-similar as it is demonstrated in Fig. 5.9.
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two-grain pattern. The grains have mutually misorientatgtbtal lattices. The length of one
period is\ = 4hy and the externally applied Ioadaig‘y = 8MPa. (@) « = —7/6, § = 7/6,
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The results presented so far in this subsection have beamettfor constant values of the parameters
(£ andr given in Tab. 5.2. We are now interested in changes in thesstistribution due to the variations
of parametersy, 5 andr. The results obtained far = —7/6, 3 = 7/6 andr = 0.5 are shown in
Fig. 5.10(a) whereas the stress redistributionsifer 0, 8 = 7 /6 andr = 0.25 are shown in Fig. 5.10(b).

The decomposition of the displacement vector fisld= u* + u™ used in calculations within a fra-
mework of the model is not always a proper approach. A related erroneous resuleiostrated in
Fig. 5.11. Here displacement fiedd" associated with the applied load was calculated under twgstion
that the only non-zero component of the applied streegyisThis is, in fact, not correct as it was discussed
in the subection 4.3.4. As an evidence of the incorrect tegelnote that the average value of the redis-
tributed stress componeat,,, is significantly higher than the expected valuesdfiPa equal to the applied
stress.

0
x/ho -2

FIGURE 5.11: Distribution of the component,, over one two-grain period when the contribution
of the component . is neglected. This simplification results in a redistribatiof oyy With
average value aboda8 MPa which is much higher than the expected value equal to thaezppl
streswr;} = 8 MPa.

5.2.3 Stress distributions for the model 11

The FEM mesh generated for the 3D model of the misorientatashgywas introduced in the subsection
4.3.4. The mesh consisted of eight elements along each &itie bexagonal grain (see Fig. 4.3(b)) and
contained2780 nodes that delimi8648 elements. The basic motive of the periodic pattern conefstsur
grains (see Fig. 3.6 on page 21). These four grains can bedsfoirther into two classes where each class
represents grains with the same orientation with respettidaglobal coordinate system. However, the
grains from different classes exhibit different crystghaphic orientation as far as the relation to the global
coordinate system is concerned.

TEM micrographs ofNiTi alloy were presented in the chapter 1. The evaluation of dmeesponding
electron diffraction patterns provides information on hitve crystal lattices in different grains are orien-
tated with respect to the global coordinate system. Then@ti®n of each grain can be described by the
transformation matrixR from the global coordinate systetnyz into the local coordinate systef;y; z;

of thei-type grain. The transformation matrices were obtainethftle TEM micrograph in Fig. 1.7 and
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from corresponding diffraction patterns for the grain 1 #&melgrain 2 as

0.9505 —0.1901 —0.2458 0.6694  0.1116 —0.7345
R, =] —0.2791 —0.2072 —0.9377 | , Ry = | —0.1570 —0.9368 —0.3126 | . (5.1)
0.1254  0.9612 —0.2456 —0.72012 0.3444 —0.6023

These matrices were used in the calculations. The model gfepis further described by the undefined
parameteh (2hy is the thickness of the investigated layer of grains) andbystde length of the hexagonal
graina = hg.

All other material constants remain the same as in previ@lsulations NiTi alloy at 773 K), see
Tab. 5.2 and the layer is subjected to the strxﬁs: 8 MPa applied externally.

When the periodic boundary conditions are correctly tied(sge Fig. 3.6(c) on page 21) the number
of independent unknown variables is reduced. In the s@nativestigated here, the final elastic energy
potential is a function 06840 independent variables.

The upper surface of the 3D specimen, which was initiallyamelaty = ho before loading, is drawn in
Fig. 5.12. The discontinuous surface shown in Fig. 5.1gjasents a situations after loading the mutually
independent grains by the applied stre§§ = 8 MPa. The continuous surface in Fig. 5.12(b) results from
the energy minimisation that introduces the smoothinglaismentu? and restores the continuity of the
displacement field. The four grains that make up an elemegotlr of the periodic pattern are highlighted
and are plotted together with all surrounding grains. Theosunding grains are included in Fig. 5.12 to
demonstrate the proper application of the boundary cantiti

Figure 5.13 illustrates all components of the stress tethsdrcorrespond to the displacement shown in Fig.
5.12(b). These graphs suggest that the hydrostatic comaee generally larger than the shear compo-
nents. It is also evident that the stress redistributioacasf preliminary grain boundary regions. Therefore,
near grain boundaries one can expect the most pronouncad aff far as the selection of crystallographic
precipitate variants is concerned.
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FIGURE 5.12: The upper surface of the periodic 3D specimen after Ioaojngjp = 8MPa. The
figure demonstrates how the total displacemeifb) recovers the continuity of the surface after
application of the external stress when compared to thef sedividual grains (a) subjected to the

applied load.
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FIGURE 5.13: Distributions of the individual stress tensor componentsy one cell of the periodic
pattern calculated for the positions at the upper surface [iy). The microstructure is subjected
to the applied load af;‘y = 8 MPa. The stress components vary significantly especially immgra
boundary regions. The hydrostatic components are largerttie shear components.



6 Crystallographic variants and their preferential precip I-
tation

All calculations summarized in following section focus twe interaction energy that contributes to the total
energy of the crystal when a particle is placed in a prelodsiedss fieldr) elastic continuum. The equation
for the interaction energy was derived bg#ELBY (1961)

Eint = —/ O'm‘&% dv. (61)
VP

The meaning of the strain tenset” and the crystallographic relationship betweenThigNi, precipitates

and theNiTi matrix were discussed in the chapter 1.

The selection principle that specifies which crystallogiaprariant most probably precipitates in a given
location of the microstructure is based on the interactioergy given by Eq. (6.1). Each crystallographic
variant is placed into a position in the matrix where a paffic stress state is present and the interaction
energy is computed. The variant associated with the lowéstaction energy, is then identified as the
selected variant. In the present approximation, we do niesider contributions to the stress statdéhat
might be associated with the presence of other particldseivitinity of the given location.

6.1 Approximation of constant stress inside the precipitat e

In the first step, it is convenient to simplify the evaluatiohthe interaction energy and to assume that
the precipitate is so small that the stress fieldloes not vary too much in the precipitate volume. This
approximation yields qualitatively correct results withany special computational effort.

Within the approximation of the constant stress field insigeprecipitate, the equation (6.1) simplifies to

Eint = —V},O’Z‘J'Eg; . (62)

In what follows, the variable chosen for the comparison edent crystallographic variants is the inter-
action energy density (IEDYiyt/Vp.

6.1.1 Precipitates in two semi-infinite grains

The calculated stress distributions over the two semiitefigrains loaded by the external stress
ajy = 8 MPa were presented in the subsection 5.2.1. The eight differgrtallographic variants are
divided into two group$j; andg, according to the orientation of their habit plane normabfiat to one of
eight{1 1 1}xi1i B2-plane normals

G = {[111], 11, [117], [1T1]}, Go = {[TlT], 11, 1711, [111]}. (6.3)

The numerical results show that variants within each groefdythe same interaction energy in a given
location of the system. It is worth noticing that so calledrfiplementary variants” (variants with a parallel
(but opposite) axis of the disk, e.f.11] and[111]), are always in the same group.

The spatial distributions of IED for the precipitates frdme groupG; and group, are plotted in Fig. 6.1(a)
and (b), respectively. Since all precipitates belongingre variant group (e.g. grouf) are equivalent
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FIGURE 6.1: Spatial distribution of the interaction energy densityoassted with theTisNiy
precipitation. Precipitates are treated as elastic ifmhssin theNiTi matrix. The parenNiTi
B2 phase consists of two semi-infinite grains subjected to xtermally applied stres8 MPa.
(a) Energy distribution for crystallographic varianitsi 1], [111], [111], [111] (groupGi),
(b) energy distribution for crystallographic variafts 1], [111], [111], [111] (groupGs).
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as far as the IED is concerned, it is now sufficient to inveséghe IED differences for only one variant
type from the grougj; and one from the grou@,. This comparison of the IED vyields the energetically
more convenient group of variants for a given location inrfierostructure. The corresponding IED map
is plotted in Fig. 6.2.
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FIGURE 6.2: Energy map showing the preferential precipitation of vasdrom either the group
G1 or Gy. The underlying stress distributian was calculated using the 2D model of two semi-
infinite grains subjected to the applied stress BfPa. The preferential precipitation of variants
from groupG, can be expected in red regions, the precipitates from thepgie are beneficial in
green regions. Dashed line represents the grain boundary.

More intensive colour in the map means a larger bias in faedyrecipitates from a either group. The

energy map in Fig. 6.2 suggests that the preferential saheof variants is expected in regions near the
grain boundary. The results suggest that when the varigttam is mainly based on the interaction energy
between the precipitate strain field and the external stistsbuted over the matrix, then only four out of

eight variants would be observed in the vicinity of the giagundary. Taking into account the fact that it
is very difficult to distinguish the complementary variaetgperimentally, the modelling results show that
in some regions near to the grain boundary only two out of &istinguishable variants would grow. This

result is in a qualitative agreement with the experimenkeeovation in the Introduction and published in
the literature (B®JDA et al., 2005).

6.1.2 Precipitates in 2D periodic two-grain pattern

The calculated stress distribution resulting from the nhaéd@D periodic two-grain pattern) was presented
in the subsection 5.2.2. The estimate of the interactiomggnis again based on Eq. (6.2). Similarly to
the case of two semi-infinite grains, the set of eight vasiamtivided into two subsets, andG, given by
Eq. (6.3). The variants within each group exhibit the sanobdability of growth in a particular position as
assessed based on the interaction energy of the precipita¢eapplied load ia;j‘y = 8 MPa.

Figure 6.3 presents the energy distribution for variandsnfigroupG; (part (a)) and from grou- (part
(b)). The IED is grater then zero everywhere in the micrastme and thus makes the precipitation less
favourable (when the elastic part of the overall energykisrianto account). The situation may change when
the chemical energy associated with the precipitate foomas considered. Since the chemical energy term
is the same for all crystallographic variants, the IED detaes the most favourable crystallographic variant
that will form in a given location. The energy map for the miasburable variants is shown in Fig. 6.4.
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FIGURE 6.3: Spatial distribution of the interaction energy densityoatted with theT'izNiy
precipitation. Precipitates are treated as elastic ifmfgsin theNiTi matrix. The parrenNiTi
B2 phase consists of two-grain periodic pattern subjectetida@kternally applied stre8VPa.
(a) Energy distribution for crystallographic variantsi 1], [111], [111], [111] (groupG),
(b) energy distribution for crystallographic variafits 1], [111], [111], [111] (groupGs).
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FIGURE 6.4: Energy map for the 2D model of periodic two-grain patternai@s are subjected
to the applied stress &MPa. Variants from the grouj, are favourable in red regions, the
precipitates from the grou@, are preferred in green regions. Dashed lines representrdire g

boundaries.
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FIGURE 6.5: Spatial distribution of interaction energies for varianmgpsG, andG,. Results are
plotted for the 2D model of periodic two-grain pattern. @Ggaare loaded b¥MPa (left column)

and20 MPa (right column).
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The stress distributions for different values of the ampl@ad were presented in the subsection 5.2.2. Ac-
cording to the arguments mentioned in the subsection 5i2ibased on Eq. (6.2), the different loads cause
only a scaling in IED for the two variant grougg andg- but the energy map in Fig. 6.4 is not affected.
Each contour on this map connects positions with a constdaewf the IED that a given fraction of the dif-
ference between the global minimal and the global maximakvaf the IED over the entire microstructure).
The energy distributions for both grougs andg, and for different applied loads are plotted in Fig. 6.5.

6.1.3 Four-grain periodic pattern — 3D model

The concept of the favourable precipitate variant selaégimow demonstrated for a 3D specimen composed
of a four-grain periodic pattern. The corresponding stredsstribution was investigated in the subsection
5.2.3.

ANy,
LAVZa :é-(
[7‘1\'%‘

<7

Xy
&

&
il
IRA] ‘
‘hmﬁvv“@x \
YIRS
7

2 WAV
NP
il S AW 17—

\‘ A
Feamesss
il

ARREX WS

VAN
\Ymmmm:v S

]

FIGURE 6.6: Interaction energy distributions calculated for four paif complementary precipi-
tate variantsP?, — P in one periodic cell that representN&I'i microstructure in the model Ill.
The energies were evaluated for positions at the uppercaud&the specimeny(= hg).

The assessment of the interaction energy was again baseq. d6.E). The IED of all variants are almost
identical in the interiors of the grains. On the contrarythie grain boundary regions the IEDs of individual
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variants differ significantly. Therefore, the preferehgieecipitation of crystallographic variants due to their
different interaction energies can be expected mainly tieaugrain boundaries. Similarly to the results
obtained for the 2D two-grain periodic model, the IED of eaahant is positive everywhere. For a final
decision whether a particular position is energeticaliyotaable or not, the chemical term contributing to
the changeAG of the Gibbs free energy must be taken into account.

The IEDs were calculated and compared for all eight variantsit was found that the energy distribution
for complementary variants are identically the same. Thieesponding IED distributions obtained for pairs

Py — P4 are shown in Fig. 6.6.
P = {[111], [TT1]}, Py = {[1 11, [T 1]},

733:{[1T1], [Tll]}, 734:{[T11], [111]}.

However, the IED differs when different pairs of the compéstary variants are investigated. The IED
calculations were performed for each node of the FEM meshtlaisdmade it possible to estimate the
energy of crystallographic variants in each node. The caloap that indicates variant with the lowest IED
in a given location of the 3D specimen is shown in Fig. 6.7.

=l

(6.4)

6.2 Approximation of variable stress inside the precipitat e

More accurate values of the interaction energy are obtaiviezh the actual stress distribution inside the
precipitate is taken into account and calculations areopmidd in accord with Eqg. (6.1). The calculations
are CPU demanding and thus they were performed only for then®Bel | of two semi-infinite grains.
Results are representative enough to demonstrate charitiesespect to the approximation of constant
stress inside the precipitate volume. The shape of the pitate was approximated by an ellipsoid of
rotation with a diameted and a thicknesé. The particulard andh values used for the calculation were

h d
d==2  h=-, (6.5)
10 )
see Fig. 6.8.

The distribution of crystallographic variants that exhithie lowest interaction energy in a given location
near the grain boundary is drawn in Fig. 6.9. The four pairsoofiplementary variant®, — P, (Eq. (6.4))
are distinguished by four colours (red, blue, green anayelhnd the two complementary variants within
each pair are represented by the same colour but differaiesh This figure clearly shows that in some
locations only one of the two complementary variants reathe energy minimum.

A preliminary conclusion supported by the more preciseuations is that there always are two regions in
the microstructure where the variants with the lowest gnarg either from the grou@, or G, (the basic
division into two groups is described in the subsection1§.1These variants never precipitate simultane-
ously in the same location. Moreover, the more exact contipntaallowed distinguishing the energies of
complementary variants. The minimum interaction energyften reached by two of four experimentally
distinguishable variants® — P,) but each distinguishable variant is then (sometimes)ssted by only
one of the two complementary particles.

It is worth noticing that there are also some locations whieedowest interaction energy is associated with
only one of the eight crystallographic variantsMify Ti3 precipitates. However, these results are strongly
burden by the numerical part of the calculations and thuslebatable. The differences between energies
of different variants are of the order 6f - 107 Jm~3 and smaller whereas the total interaction energies
are found in thes} - 104 Jm =3 range.
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FIGURE 6.7: Node positions in which the IED was calculated within a fraragk of the 3D
model. The precipitation of the most favourable variant paithe individual node is indicated
by a corresponding colour dot. Layer 1 and layer 5 refer tobibitom and top surfaces of the
specimen, respectively, while layers 2, 3 and 4 are locatgd=a —hy /2, y = 0 andy = hy/2,
respectively. The stress redistribution which causes tategential precipitation results from the
externally applied stress 8M\MPa.
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FIGURE 6.8: The precipitate shape is approximated by an ellipsoid @itian. (a) 3D view, (b)
projection parallel to and (c) perpendicular to the rotatais.
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FIGURE 6.9: The distribution of crystallographic variants near theigitzoundary calculated for
the non-uniform stress state inside the particle volume sktess distributioa in the matrix prior
to precipitation results from the 2D model of two semi-irtgngrains loaded by the externally
applied stress af MPa. This map can be compared with the energy map in 3.



7 Discussion of the results

7.1 Numerical techniques

7.1.1 Surface term of elastic potential

Solutions to the problems in the present work were found hyimigation of the elastic potential given by
Eq. (2.6). The second term of this potential

/ T udS (7.2)
s
deals with virtual works done by surface tensions. The serfansion are given by

Ti = O45Vj . (72)

It was discussed in the subsection 4.3.4 that, for modelsidered in this investigation, a value of the work
in Eq. (7.1) is given by the surface tensions acting over #réspf the surface that were originally planes
perpendicular to thg-axis. These parts are two — the top surfégg, and bottom surfacé,qtom Of the
grains, see Figs. 3.3, 3.5 and 3.6. In what follows, we ref@itherS;;, or Shottom ass.

Let us decompose the stress field

o=0+ Ao, (7.3)
where
_ 1 1
Oij = = /~ Oij dS and 0= —= /~ AO’Z‘j ds. (7.4)
S Jg S Js

Let us similarly decompose the displacement field

u=u+Au, (7.5)
where
_ 1 1
S Js S Js
Substituting these expressions into the surface term yields
/~ T -udS= [Eijujyi ds + /~ AO’ijﬂjVi ds + /~ AO’Z']'AZL]‘VZ' ds. (77)
S S S S

The average displacementand the outef normalsy; in the second term of Eq. (7.7) are constant variables
over the integration range. Following the second conditivkq. (7.4), we found out that the second term

in Eq. (7.7) is zero. The third term in Eq. (7.7) constituteseaond order corrections that we neglect. To
support the omission of the last term in Eq. (7.7) we propbsed two arguments: (i) correctionsf of

a quantity f are usually small when compared fo(for both stress fieldr and displacement field) and
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(i) considering the geometry of models used in this worknedy the periodic boundary conditions, and
the continuity of all quantities this term presents a venakrontribution. By these arguments we finally
obtain the following approximation of the surface tensioorkv

/ T udS~ / Eijujyi ds'. (78)
5 5

In standard elasticity problems the boundary conditiorsgibe either stress distribution or displacement
field in each position over the surface. In our problems wesictar a little bit different boundary condition
in a form

=04 (7.9)

on both surfacesS;,, and Syottom. BY summing approximations of the form of Eq. (7.8) fs,, and
Shottom W€ 0btain the final expression for the potential surface &sm

/T-udSw / opuiv;dS. (7.10)
s s
This form was used in the calculations.

7.1.2 Search for a global minimum

All the numerical calculations were performed using the FHKis technique aims at the minimization of
a function of many-variables with the objective to find a glbminimum of the investigated function in
the region of interest. Naturally, a question arises wheghgearch for the global minimum could always
be successful. The FEM approximates any function in themelof one element by a polynomial with
coefficients that consist of constants and powers of theamirfunction values in the element nodes. The
integral of this function over the element volume remaink/pamial in the unknown function values in
nodes. Solutions obtained in this work were all based oratig@proximations of the unknown functions
(displacements). Therefore, obtained coefficients wespgational either to zero or to the first power of the
function values in nodes. Since the objective function @lastic potential) is composed of sums of such
integrals it remains a polynomial in unknown values of theptiicements in nodes.

The build-in functionM ni ni ze of the system Mathematica 5.0 that was employed in the mhaition
process guarantees, se®\WRAM (1999), that, for objective functions of a polynomial fortine procedure
always reaches a global minimum of the objective functiath@investigated region. Therefore the obtained
minimum constitutes a true global minimum for the considgveoblem.

It is worth noticing that displacement field that minimizae bbjective function is not, in general, a unique
solution. Let us assume thatis a displacement field that minimizes the elastic potential that the
potential

/ W(e(u))dV — / T -udS (7.12)
v S

reaches its minimum possible value. Let us now assume an@tirestant) displacement field*. The first
term in Eqg. (7.11) depends only on strain associated witldib@acement field. Strain is given by partial
derivatives of individual components of the displacemegitifand thus an additional constant term does not
effect the resulting strain field

e(u) =e(u+u"™) — /‘/W(s(u))dV = /‘/W(s(u+ u™))dV . (7.12)

When the applied stress is uniform over the volume of a spatijrthe second term in Eg. (7.11) can be
converted to

/T-(u+utr)dS:/T-udS+/T-utrdS. (7.13)
S S S
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Recalling the relation between stressand surface traction¥, the second term in Eq. (7.13) further
simplifies to

/ T - Utr ds = / aiju;-rui ds = u;r/ OijVi ds = O, (7.14)
S S S

wherev represents the outer normal to the surface. The last intagfaq. (7.14) is zero due to the
equilibrium conditions.

Altogether we obtain

/V W (e(u))dV — /ST cudS = /‘/W(s(u +u™))dV — /ST (w4 u™)dS. (7.15)

The last equation means that a displacement field composadwferimposed constant displacement and
the displacement field that minimizes the elastic poteméallts in the same (minimum) value of the po-
tential. Therefore, the global minimum of the elastic ptisdrin terms of displacement is unique except
for adding a constant displacement field. The constant atisphent fieldu'™ constitutes a macroscopic
translation of the whole specimen in the direction giverutdyand thus does not contribute to the defor-
mation of the elastic body. We are interested in stresstréalifons that are proportional to strain and thus
they are not affected by a possible additional displacer®ent connected with the translation of the entire
specimen.

7.2 Comparision of calculated and experimental data

Although the microstructural models presented in preaedactions are oversimplified with respect to real
microstructures, it is interesting to compare the numerisults with TEM observations. The contribution
E; to the total Gibbs free energy was described by Eq. (2.31is ddntribution is related to the interaction
of the precipitate coherency strain and the stress diséxdbin the microstructure prior to precipitation. The
part AG...m Of the Gibbs free energy change related to the nucleatiorgemath of the precipitate was
not addressed. Therefore, the numerical results are nagivieaevith respect to whether the presence of
a precipitate in a particular location decreases or inedise overall energy of the system. Thg
contribution only indicates which crystallographic vatiavould precipitate in the position assuming that
AG4em provides enough driving force for precipitation. The disition of precipitates presented in the
previous chapter thus does not give any information on wheeeprecipitates will appear but rather on
which crystallographic variant would be preferred.

7.2.1 Stress-free aging

The models based on the anisotropy of thermal expansion @&y d potential to explain the distribution
of precipitates in specimens aged without applied streb® dbtained results (Figs. 5.2 and 5.4) suggest
that the relevant stress redistribution exists only inrgfadundary regions. Therefore, the preferential
precipitation of crystallographic variants can be expedtethe vicinity of grain boundaries. However,
systems (likeNiT'i) with cubic crystal lattice have always isotropic tensoth@rmal expansion coefficients
and thus there is no stress redistribution associated hatthiermal expansion.

The TEM micrograph in Fig. 7.1 documents a grain boundaryoreqm the specimen which was aged
without external stress. Since the precipitates are ondgiled near to the grain boundary one can argue
that this heterogeneous precipitation results due to teesstedistribution. Nevertheless, this interpretation
suffers from several weaknesses: (i) The results of thestedistribution analysis do not suggest that the
precipitates would occur only in grain boundary regionsdad they predict a selection of crystallographic
variants there. (ii) A closer examination of the TEM micragih does not confirm any variant selection.
All variants observed near to the grain boundary in Fig. Teldistributed with a similar volume fraction.
(i) As it has already been pointed out, the models of thérexpansion are not applicable for thaTi
system.
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FIGURE 7.1: A TEM micrograph ofNiTi microstructure after stress-free aging. The precipita-
tes are observed only in grain boundary regions but no viapieeferential precipitation can be
deduced — all crystallographic variants are distributeith wimilar volume fraction.

A more plausible reason for the documented heterogene@cipjiation has been suggested recently by
KHALIL -ALLAFI et al. (2002b) and F.IP and MazANEC (2001). It is now well established fact that the
specimens aged without applied stress exhibit heterogisiéiQTis precipitation when particles nucleate
and grow preferentially near grain boundariesTafNi,O oxide inclusions and daf'iC carbide particles
while there are regions in the grain interior that are frepretipitates. The new explanation of this phe-
nomenon suggested byidHIDA et al. (2003) underlines the importance of the furnace atmosphszd
during the heat treatment of the alloy. Questions relatethéoprecise determination of microstructural
parameters resulting from different heat treatment prosiare currently addressed.

7.2.2 Stress assisted aging

Microstructures that were subjected to the externallyiag@tress during the aging treatment match more
closely situations modelled in this work, namely casesyameal in terms of the anisotropy of elastic con-
stants. The microstructural models considered here, the@dk| of two semi-infinite grains, the 2D model
of periodic two-grain pattern and the 3D model of periodiarfgrain structure, yield a stress redistribution
when subjected to an externally applied stress. These modahimously predict the identical behaviour
of the complementary crystallographic variants (variamith parallel but opposite orientation of the main
particle disk axis). This conclusion cannot be directlyaa by existing TEM data because the experimen-
tal separation of the complementary variants would requioge sophisticated TEM techniques. However,
this prediction seems quite reasonable for both oppositanta have, in fact, identical atomic structure and
habit plane orientation in thB2 matrix. There is thus no reason why these variants showddact with the
parent matrix differently.

The other conclusion supported by all models is that thengraériors do not exhibit any strong bias as far
as the interaction energy.,; is concerned. However, the 3D modgIpredicts almost the same distribution
of the IED for all crystallographic variants inside the gimi Closer to the grain boundary the preference of
some variants is observed. Depending on the model and o#i@op in the grain boundary region, one or
two variants reach the lowest interaction energy. The doaimdaries themselves separate regions with a
preference for one particular variant on one side that hagitnges into the preference for another variant
on the other side of the boudary. Therefore, the interaaiwergy right at the grain boundary is almost the
same for all variants.
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The strength of the preference precipitation not only ddpesn the position in the microstructure but it
also depends on the grain orientation with respect to thectiim of the applied load. In the case of two
semi-infinite grains, there is much smaller difference leetvenergies of variants from groupsandgs in
the grain 1, which has a rather special orientation=( 0) with respect to the applied load{* ~ o—;‘y), as
compared to the difference of the energies of precipitates these two groups computed for the grain 2.

Figure 7.2 shows a part of grain boundary (GB) and adjacegibme in the specimen after aging for
1 hour under the applied stress ®MPa at temperaturé00°C. The TEM micrograph illustrates clearly
that the grain interiors do not exhibit any strong selectdrvarinats — all crystallographic variants are
present with almost the same volume fraction. This resuft diacussed by 8JDA et al. (2005). These
authors estimate a distance of abdutm from the GB above which no pronounced selection of varirets i
observed. In the region closer to the grain boundary in Fig, fivo out of four possible pairs of com-
plementary variants are strongly preferred. This expantale€eature is in qualitative agreement with the
results of calculations where mainly the regions close ¢ogttain boundary are affected by the preferential
precipitation of variants. Moreover, the TEM micrographFig. 7.2 reveals a region of thickness about
0.2 ym next to the GB where no precipitation occurs. This denudetk ztannot be predicted from our
calculations. Here the “chemical terr®G ..., Of Gibbs free energy starts to play a significant role that
was not included in the present modelling approach.
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FIGURE 7.2: Detail of a TEM micrograph oNiTi microstructure after aging fdr hour under
the applied stress 6fMPa at temperatur800°C. A preferential precipitation of two out of four
complementary variant pairs is clearly seen in the graimbaty region. On the contrary, the
grain interiors do not exhibit any strong selection of vatsa

All the calculation were performed within the framework bétlinear elasticity theory. It is thus no surprise
that higher applied stress results in the self-similar lmgdbed redistribution of the stress. Therefore, the
energy distribution is also boosted for higher appliedsstrdn the shape memory technology there is an
interest related to the width of the grain boundary regidacé#d by the selective precipitation Ni,Tis
variants. The extent of the selective precipitation infeesntheB2 — R — B'19 transformation path and may
thus well govern the characteristics of the shape memoegistf In this respect, results of the calculations
provide an important information on the size of grain bougdagions in which selective variant preci-
pitation occurs. When we set a criterion requiring that digalar crystallographic variant nucleates and
grows in a particular location only whef,,; is lower then a threshold,,.;,, then the higher applied stress
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causes widening of the region where the selection takeg plEus result is again in qualitative agreement
with the experimental data presented bgBA et al. (2005). According to the data tabulated bp A

et al. (2005) the affected region for th&® MPa aging is approximatelyt.5 um which is about2.25-times
bigger then for the case when the aging was assisted by thie@gfpress o8 MPa. Our calculations wi-
thin the framework of the linear elasticity theory preditat for 20 MPa the affected area should be about
2.5-times bigger then fog MPa. This is in a surprisingly good agreement with the experitaletata.

In passing we can conclude, that the results obtained inrésept work qualitatively agree with the TEM
observations of real microstructres performed after thesstassisted aging of théTi shape memory
alloy. Therefore, the suggested mechanisms of stresdribdion and the subsequent precipitate—stress
field interactions seem to describe the processes in mioobgte in a rather satisfactory way.

7.3 Self-stress of precipitates

Results obtained by $HELBY (1961), LOVE (1954), KELLOG (1929) and M\CMILLAN (1958) were pre-
sented in the theoretical overview in the chapter 2. Thefimoaaiderived an explicit formulas for defor-
mation due to an elastic inclusion inserted into the elas@trix. There are at least two reasons why the
analytical formulas are not convenient for our calculadiorirst, the expression in Eq. (2.25) is truly
complicated to investigate the stress field outside theigitate. Second, Eq. (2.25) assumes that all the
three axes of the ellipsoidal inclusion possess differengths. In our case, we have a lenticular shaped
precipitate witha = b > ¢ and this considerably complicates the evaluation of themi@l according to
Eqg. (2.25).

Fortunately, far from the inclusion the potentigt¢ér) and(r) can be approximated by, /r andV,r,
respectively. Here}, is the volume of precipitate. Inserting these potentiate Bq. (2.22) yields the
displacement field. A standard procedure then providesoatippnents of the stress field. Using the “far-
from-inclusion” approximation of the potentials we foundtdhat all stress components are negligibly
small from the distance of abo@ip wherep is the linear size of the inclusion. This means that the self-
stress of precipitates is important only in a relatively Bmesgion near the precipitate. However, just a brief
examination of the TEM micrograph in Fig. 7.2 suggests tliaheso small region close to a precipitate still
contains neighbouring particles. Therefore, a more peesi@mination of the variant precipitation would
give an account of the stress fields associated with thecfegrtilistributed in a vicinity of the investigated
location. In this sense, the precipitate—precipitaterattions could play an important role in the variant
selection.

7.4 Minimal interaction energy versus maximum/minimum nor mal stress

An interesting outcome of the numerical analysis perforimethis work is an explicit prediction which
variant yields the minimum interaction energy for a giveodton in the microstructure. The interaction
energy term can be expressed in the coordinate frame of @jpa¢e. Equation (6.2) reveals that the
interaction energy is composed of three terms and it hasha for

Eing = —Vp(0aabry + Oyyeny + 02:61.) - (7.16)

The first two terms are products of the stress and particlétreigain components acting in the habit plane
of the precipitate. The third term has a similar structureegx it is constructed of components normal to
the precipitate habit plane. Since all the stress compereet of the same order and because the normal
component of the misfit strai?’ ' is about ten-times bigger than the two in-plane componémsinteraction
between the normal component of the stress and the normalarent of the misfit straia” represents the
main contribution to the interaction energy.

Due to the fact that the normal component of misfit strain gatige and due to the structure of the inter-
action energy term (see Eqg. (7.16)), the minimum of the tiotaraction energy is attained either for the
lowest normal tensile stress or the highest normal comioressress.
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In principle, all the models considered in this work showeeramlency to follow this criterion. As an example
we can discuss the results obtained with the 3D model of aplauar-grain periodic microstructure (model
III'). Figure 7.3(a) shows the distribution of variants basethercriterion of the lowest IED as calculated
for positions at the upper surface of the specimen. FigBéYy shows the similar distribution of variants
now based on the criterion of the lowest value of a normalileestress component. We can conclude that
in most investigated locations these two variant distidng correspond to each other. In regions where the
energy-based and normal stress-based distributions, difie habit plane components of the stress tensor
dominate the particle—stress field interaction and theitrgmutions to the interaction energy outnumber the
contribution due to the normal stress.
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FIGURE 7.3: Comparison of particle distributions of precipitates oédted for locations at the
upper surface of one four-grain cell (model 1ll) using théezion of (a) the lowest interaction
energy and (b) the lowest stress component normal to thé iabie of the precipitate.

Therefore, the selection according to the lowest normassticomponent can be only used as a rough
criterion. Moreover, the estimate of the normal stress ammepts needs the same computational effort as
the evaluation of the interaction energies for all partideants.
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Shape memory alloys are rapidly developing perspectiveriadt. The wide range of applications requires
precise knowledge of microstructures and processes gagemricrostructural changes of SMAs. The most
often used SMAs are those based on I¥i&'i intermetallic system and thus the input in the calculations
relies on theNiTi material data. The presented work has focused on the origimomogeneous distribu-
tions of precipitateNi4 Tis in NiTi microstructures since this feature essentially influeticegnartensitic
transformations and shape memory characteristics.

Two mechanisms that can give a rise to stress redistrilaitimmughout the microstructures were selected.
The first mechanism deals with the anisotropy of thermal esiom coefficients. This type of anisotropy
results in different rate of shrinkage between mutuallyaméntated neighbouring grains when the alloy
is cooled from the annealing temperature to the room teryreraThe second mechanism addresses the
anisotropy of elastic constants and operates when a spedsreged under the assistance of the exter-
nally applied stress. Because the pamSiifi B2 phase has cubic crystal lattice the second mechanism is
particularly relevant.

The microstructure was described by three models with @sing complexity but simultaneously with
increasing similarity to the real systems. The simplest@h@l2D and consists of two semi-infinite grains.
The next model is also 2D and represents infinite layer coegbo$a two-grain periodic pattern of a finite
height. The most complex model is 3D and considers a layérpétiodic pattern of four hexagonal grains.

The methods used to calculate stress redistributions aealn the linear elasticity theory, a minimisation
of the elastic potential energy and Eshleby’s concept dtielanclusions within an elastic continuum. The
finite element method was employed for the numerical miratios of the elastic potential.

All models considered in this work predicted in stress fidlistions. The numerical results support the

conclusion that the stress is redistributed namely in tléngooundary regions whereas the interiors of
grains are influenced only little. The numerical result® algggest that the hydrostatic components of the
stress tensor are about one order of magnitude larger teah#ar components. The models further predict
that the higher applied stress results in larger displaoémued that the stress redistributions for the same
model of microstructure but subjected to different extesti@sses are self-similar.

The interaction energy between precipitate misfit straid #e stress state in the parent matrix prior to
the precipitate formation was calculated. Generally, tteengboundary regions show a tendency for the
preferential precipitation aNisTis crystallographic variants. In both 2D models the eighteddht crys-
tallographic variants divide into two groups. The pregifst variants within each group exhibit the same
interaction energy in a given location in the microstruetuFor the 3D model the eight crystallographic
variants form four equi-energy pairs each composed of twoptementary variants. These results are in a
gualitative agreement with the published experimentatplagions. The grain boundary regions are the lo-
cations where pronounced changes in the preferentialgit&tidn of variants occur. The interaction energy
calculations in combination with the energy thresholdeciiin show that higher applied stress causes wide-
ning of the region along the grain boundary affected by therbgeneous precipitation. This result is in a
good qualitative agreement with the experimental data.

The results obtained in this work support the suggested amsims of a heterogeneous variant precipitation
in specimens during the stress assisted aging. Althoughstbe models of microstructures are oversimpli-
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fied when compared to the real systems they yield qualitagiselts that are in agreement with experimental
findings. Objectives of this work have been fully reached. uitfer work should deepen the qualitative
predictions and their correspondence to TEM experimeriabvations. The extensions should namely
concentrate on (i) large scale models that better correspmmeal microstructures, (ii) the self-stress of
precipitates that may result in some autocatalytic pretipn processes and (iii) the nucleation and growth
of the precipitate (the termAG ..., Of the Gibbs free energy).
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