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with the Institute of Physics of Materials, the Academy of Sciences of the Czech Republic.

The subject of this thesis is:

On the precipitation in NiTi based shape memory alloys.

Although this discourse is a theoretical work it has a very strong experimental background and the problems
addressed here arose from need of better technological understanding of the microstructural development
and the improvement ofNiTi shape memory technology. Results known prior to this work and the objectives
of the present thesis are summarized in the first introductory chapter. The following three chapters focuses
on known theoretical results relevant to this work (chapter2), design of microstructural models (chapter 3)
and analytical and numerical methods (chapter 4).

Chapters 5 and 6 constitute the main part of this work as they present results of the stress state analysis under
diverse conditions (chapter 5) and the influence of stress redistributions on the preferential precipitation
(chapter 6). The obtained results are discussed and compared to recently published experimental data in
chapter 7.

The results of this work were partially presented at the international conferenceApplied mechanics 2005
held in Marh 2005 in Hrotovice, Czech Republic.

The present work should progress currently studied issues by introducing a new methodology used in nu-
merical studies of the microstructural development in shape memory alloys. However, the suggested me-
chanisms of the stress redistribution could be important for a much wider class of problems associated with
polycrystalline materials. Nevertheless, much more effort would be needed in the future to achieve a more
complete quantitative agreement between the numerical results and the experimental data. I hope that some
of my colleagues or I myself will continue in these studies.

Acknowledgement
I would like to acknowledge the professional supervision, many hours of fruitful discussions and last but not
least hundreds of stimulative suggestions, corrections and advices by RNDr. Antonı́n Dlouhý, CSc. I would
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Annotation
The present work deals with stress redistributions and their subsequent influence on the precipitation in
NiTi based shape memory alloys. Two mechanisms which may result into the stress redistribution are
selected. The calculations based on the linear elasticity theory are performed upon three simple models of
microstructures with increasing complexity.

The obtained results clearly show that the selected mechanisms give a rise to the stress redistribution over the
microstructures. The interaction energy between redistributed stress and the precipitate–matrix misfit strain
is calculated. The selection of crystallographic precipitate variants as a result of the minimum interaction
energy criterion is demonstrated. The obtained results arecompared to the experimental data. The results
suggest that it is possible to explain qualitatively the selective precipitation by the mechanisms of stress
redistributions but for a quantitative agreement with experimental data the more detailed description of
microstructures and the inclusion of other relevant processes is needed.

Anotace
Předkládaná práce se zabývá vznikem redistribuce napětı́ a jej́ım následným vlivem na přednostnı́ precipi-
taci krystalografických variant ve slitinách s tvarovou pamětı́ na báziNiTi. Byly navrženy dva mechanismy
vzniku redistribuce napětı́. Výpočty vycházı́ z line´arnı́ teorie elasticity a jsou provedeny na třech mikrostruk-
turnı́ch modelech se vzrůstaj́ıcı́ složitostı́.

Dosažené výsledky jasně ukazuj́ı, že zvolené mechanismy vedou k redistribuci napětı́ v mikrostruktuře. Je
napočı́tána interakčnı́ energie mezi redistribuovan´ym napětı́m a deformacı́ spojenou s misfitem krystalové
struktury precipitátu a matrice. Dále je ukázano, že v´yběrové kritérium založené na minimálnı́ interakčnı́
energii vede k selektivnı́ precipitaci krystalografických variant. Na závěr jsou dosažené výsledky disku-
továny ve vztahu ke známých experimentálnı́m datům. Ukazuje se, že přednostnı́ precipitaci lze kvalitativně
vysvětlit pomocı́ redistribuovaných elastických poĺı, avšak pro kvantitativnı́ porovnánı́ by bylo třeba uv´ažit
detailnějšı́ popis mikrostruktury a zahrnout i dalšı́ relevantnı́ vlivy.
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1 Introduction

1.1 General background and history of shape memory alloys

The exciting field of smart materials is expanding rapidly with one of the most interesting areas being
that of shape memory alloys. The termshape memory alloys(SMAs) is applied to that group of metallic
materials that demonstrate the ability to return to some previously defined shape or size when subjected to
appropriate thermal procedure during the preparation of the material. In general, these materials can undergo
a significant plastic deformation. After exposing them to some higher temperature they are returning to their
original shape.

HODGSON et al. (on-line) introduce further defininion of a SMA as one that yields a thermoelastic
martensite. In this case, the alloy undergoes a martensitictransformation of a type that allows the alloy
to be deformed by a twinning mechanism below the transformation temperature. The deformation is then
reversed when the twinned structure reverts upon heating tothe parent phase.

The first recorded observation of the shape memory transformation was by CHANG and READ (1951) in
1932 . They noted the reversibility of the transformation inAuCd by the metallographic observations and
resistivity changes, and in 1951 the shape memory effect wasobserved in a bent bar ofAuCd. In 1938,
the transformation was seen in brass (CuZn). However, the serious research in both the metallurgy and
potential practical uses began in 1962, when BUEHLER et al. (1963) discovered the effect in equiatomic
nickel-titanium (NiTi). Since then the SMAs are intensively studied and the numberof practical applications
coming to the market is rapidly increasing each year.

As the shape memory transformation became better understood, a number of other SMAs were investigated.
Table 1.1 lists some of them with their basic characterisation. Of all these systems, only theNiTi alloy and
a few of the copper-base alloys have received the most development effort and commercial exploitation.

The area of commercial use of SMAs is very wide and it varies from aeronautical applications (flap/clap
adjusters) to medicine tools (orthodontic archwires, arterial clips, bone plates) and everyday-use applicati-
ons (kettle switchers, mobile phone antennas). One of the most often used materials for manufacturing
“smart parts” of these devices isNiTi. This is the reason why we are interested in a more detailed under-
standing ofNiTi properties. This work focuses on some aspects related to theprocessing and associated to
microstructures ofNiTi shape memory alloys that modify the shape memory behaviour.

1.2 Shape memory effect

The shape memory transformation is a phase transformation in a solid state. Common name for the
low- and high-temperature phases aremartensiteandaustenite, respectively. The transformation is often
referred to asmartensitic transformation(MT). The typical temperature–transformation curve obtained in
one cooling–heating cycle is shown in Fig. 1.1. This figure introduces characteristic phase transition tem-
peratures. When heating the specimen up from the low-temperature martensitic domain, the transformation
martensite→ austenite starts at the temperatureAs (austenite start) and the transformation is finished at
the temperatureAf (austenite finish). At this temperature the entire specimenis transformed into the aus-
tenite phase. Similarly, on cooling from the high-temperature austenite domain the phase transformation
austenite→ martensite starts at the temperatureMs (martensite start) and finishes atMf (martensite finish).
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alloy composition

transformation
temperature
range

Ag − Cd 44/49 at%Cd −190◦C to−50◦C

Au − Cd 46.5/50 at%Cd 30◦C to 100◦C

Cu − Al − Ni 14/14.5 wt%Al, 3/4.5 wt%Ni −140◦C to 100◦C

Cu − Sn approx.15 at%Sn −120◦C to 30◦C

Cu − Zn 38.5/41.5 wt%Zn −180◦C to−10◦C

Cu − Zn − X (X = Si, Sn, Al) a fewwt% of X −180◦C to 200◦C

In − Ti 18/23 at%Ti 60◦C to 100◦C

Ni − Al 36/38 at%Al −180◦C to 100◦C

Ni − Ti 49/51 at%Ni −50◦C to 110◦C

Fe − Pt approx.25 at%Pt approx.−130◦C

Mn − Cu 5/35 at%Cu −250◦C to 180◦C

Fe − Mn − Si 32 wt%Cu, 6 wt%Si −200◦C to 150◦C

TABLE 1.1: View of some most important SMAs (passed from(SHIMIZU and TADAKI , 1987)).
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FIGURE 1.1: Typical temperature–transformation curve for a specimen subjected to one cooling–
heating cycle. The four characteristic temperaturesAs, Af , Ms andMf of the phase transition
process are also shown.

The temperaturesAs, Af , Ms andMf are generally all different and thus the transformation mayexhibit
hysteresisTh.

Theshape memory effect(SME) requires a certain succession of steps. First, the temperature of the alloy
temperature is lowered below the temperatureMf . At this stage the piece of the alloy is completely com-
posed of martensite which can be easily deformed1). After distorting the shape of the piece the original
shape can be recovered simply by heating the specimen above the temperatureAf . The heat transferred
to the specimen initiates the martensite→ austenite transition and contributes thus to the rearrangement of
the alloy at an atomic scale. The deformed martensite is now transformed to the austenite which has the
microscopic as well as macroscopic configuration of the initial undeformed state. The succession of SME
events is schematically illustrated in Fig. 1.2.

1) Martensite phase is softer than austenite phase.
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FIGURE 1.2: Schematic illustration of how the martensite→ austenite transformation recovers
the original shape. A shape of a specimen in martensitic phase is deformed. After heating it
transforms to the autenite phase where the atoms are rearranged into their original positions. When
the specimen is cooled it still keeps its original shape.

1.3 NiTi based alloys

The SME in near-equiatomicNiTi based alloys is controlled by the concentration ofNi (SABURI , 1998)
in the range between49 ÷ 51 at%. The austenite phase inNiTi alloys has the cubicB2 structure with
the lattice parametra = 0.3007 nm. The arrangement of atoms in one unit cell is shown in Fig. 1.3(a).
The crystal lattice of the martensite phaseB19′ is monoclinic and it belongs toP21/m space group. The
unit cell of theB19′ phase inTi − 49.2 at%Ni alloy is described by lattice parametersa = 0.2898 nm,
b = 0.4108 nm, c = 0.4646 nm andβ = 97.78◦ (SABURI , 1998). The arrangement of atoms forming
one unit cell is shown in Fig. 1.3(b). There are cases of a morecomplexB2 − B19′ transformation path
(so called two, three or generally multiple step MTs) when the “soft” martensiteR phase forms as the
intermediate transformation product (B2 − R − B19′). The R-phase has a trigonal lattice with lattice
parametersa = 0.738 nm, c = 0.532 nm and belongs to the space groupP3 (SABURI , 1998). The atomic
setup of this phase is illustrated in Fig. 1.3(c). We note that the lattice parameters depend on temperature
and precise composition.

During processing,Ni-rich NiTi alloys are generally subjected to solution annealing and subsequent aging
(SABURI , 1998) where metastable coherentNi4Ti3 precipitates form (TADAKI et al., 1986). This is
illustrated in Fig. 1.4(a) where a transmission electron microscopy (TEM) micrograph is presented that
documents a state ofTi − 50.7 at% Ni alloy after stress free aging at530◦C for 11 hours. TheNi4Ti3 par-
ticles have lenticular shape and their atomic structure is rhombohedral (SABURI , 1998) (see Fig. 1.4(b)).
The unit cell parameters area = 0.6704 nm andα = 113.83◦.

The space group of theB2 phase of theNiTi matrix isPm3m with 48 operations of symmetry while the space
group of theNi4Ti3 precipitate isR−

3 with only 6 symmetry operations (SABURI , 1998). The number
of coherentNi4Ti3 variants coherent with theNiTi B2 matrix may be determined by decomposing the
space group of the parent phase into the coset of the precipitate (PORTIER and GRATIAS, 1982). LI and
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(a) (b) (c)

FIGURE 1.3: Unit cells of different phases inNiTi alloy: (a) cubic lattice ofB2 austenite,
(b) monoclinic lattice ofB19′ martensite and (c) trigonal lattice ofR-phase (soft martensite).

(a) (b)

FIGURE 1.4: Ni4Ti3 precipitates: (a) a TEM micrograph ofNiTi B2 matrix with Ni3Ti4 preci-
pitates after stress free aging at530◦C for 11 hours; (b) the arrangement of atoms in one unit cell
of the rhombohedral structure of theNi4Ti3 precipitate.

CHEN (1997) have shown that the decomposition exists

Pm3m = (h1 + h2 + h3 + h4 + h13 + h14 + h15 + h16)R
−

3 [1 1 1] , (1.1)

whereh1, h2, . . . , h16 are operations of symmetry given in Table 1.2.

Taking into account the results of PORTIER and GRATIAS (1982), LI and CHEN (1997) conclude that there
are 8 possible crystallographic orientations ofNi4Ti3 precipitates in theNiTi matrix. The experimental
crystallographic relationship between the coherent precipitateNi4Ti3 and the crystal lattice of the parent
phase ofNiTi is (SABURI , 1998)

[0 1 0]Ni4Ti3 ‖ [2 1 3]NiTi ,

(0 0 1)Ni4Ti3 ‖ (1 1 1)NiTi .
(1.2)

This means that the habit plane(0 0 1)Ni4Ti3 of lenticular-shaped precipitates matches with one from the set
of eight equivalent planes{1 1 1}NiTi in the parentB2 phase.
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symmetry element operation axis angle

h1 identity transformation

h2 rotation [1 0 0]B2 180◦

h3 rotation [0 1 0]B2 180◦

h4 rotation [0 0 1]B2 180◦

h13 rotation [1 1 0]B2 180◦

h14 rotation [0 0 1]B2 90◦

h14 rotation [0 0 1]B2 270◦

h15 rotation [1 1 0]B2 180◦

TABLE 1.2: Operations of symmetry in decompositionPm3m space group into the coset of preci-
pitate withR−

3 space group.

Ni4Ti3 particles shrink2.7% along [0 0 1]Ni4Ti3 direction and0.3% along their perpendicular directions
relative to the matrix (SABURI , 1998). The precipitate–matrix misfit strain matrix (laterused in the section
2.2) thus takes a form

ε
T =








−0.003 0 0

0 −0.003 0

0 0 −0.027







. (1.3)

1.4 Martensitic transformations in NiTi alloys

MTs in NiTi alloys proceed in single-stepB2 ↔ B19′ transitions on heating and cooling after solution
annealing and water quenching; by single-step transition we mean that, as shown in the differential scan-
ning calorimetry (DSC) chart in Fig. 1.5, there is one singledistinct peak on cooling from theB2-regime
(temperature range where theB2 phase is stable) and one distinct peak on heating from theB19′-regime.
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FIGURE 1.5: DSC chart for single-step martensitic transformation in aNiTi alloy.
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After thermo mechanical processingNi-rich NiTi alloys can undergo two and three step transformations
(L IU et al., 2003, CARROL et al., 2004). The change from a one-step to a two-step transformation in NiTi
SMAs has often been considered as well understood because both R-phase andB19′-phase are potential
martensite candidates (REN et al., 2001). This is suggested by the observation of corresponding soft pho-
nons in inelastic neutron scattering experiments (TIETZE et al., 1984, MOINE et al., 1984). The coherent
Ni4Ti3 precipitates resist large deformations associated with the formation ofB19′ habit plane variants.
The growingR-phase produces a significantly smaller deformation and is much less affected by particles.
Therefore the presence of precipitates favours the formation of R-phase (REN et al., 2001) which results
in the first transformation stepB2 → R (first DSC peak in Fig. 1.6) and only later at lower tempera-
ture (stronger undercooling) the second transformation step R → B19′ (second DSC peak) is observed
(KHALIL -ALLAFI et al., 2002a).
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FIGURE 1.6: DSC chart for multiple-step martensitic transformation inNiTi alloy with Ni4Ti3
precipitates.

However, recent careful neutron diffraction experiments supported by TEM investigations revealed that
already in the temperature range between the first and secondDSC peaks the alloy microstructure consists
of a mixture ofR- andB19′-phases (SITEPU et al., 2002). In this case theTi − 50.7 at% Ni alloy was
subjected to a standard annealing treatment (850◦C/900 s/water quench) and subsequently aged at400◦C
for 20 hours. Also the role ofNi4Ti3 precipitates in multiple step (more than two steps) MTs as observed
using DSC (BATAILLARD et al., 1998) has been discussed controversially in the literature. There presently
are three different explanations for multiple step MTs inNi-rich NiTi SMAs:

(i) M ORAWIEC et al. (1995, 2002) suggest that the first DSC peak on cooling in a three step transfor-
mation observed for a solution annealed, cold deformed and subsequently agedNi-rich NiTi material
corresponds to the formation ofR-phase. There then follow two martensite peaks, which are asso-
ciated with a heterogeneous dislocation substructure. Microstructural regions with low dislocation
densities produce a second DSC peak on cooling. Dislocationobstacles like subgrain boundaries sup-
press the MT until stronger undercooling provides the driving force for a third transformation step.
Microstructural evidence for subgrain boundaries representing obstacles for the growth ofB19’ was
presented by EGGELER et al. (2000) and KHALIL -ALLAFI et al. (2001).

(ii) B ATAILLARD et al. (1998) tackled the problem of multiple step MTs inNi-rich NiTi alloys using in-
situ TEM. They provided clear evidence for the microstructural details of the overall transformation
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process. They found that bothR-phase andB19′ martensite nucleate nearNi4Ti3 particles and then
grow into the matrix. However, they reported a difference inthe growth behaviour ofR-phase and
B19′ martensite. TheR-phase grows smoothly without apparent interruptions (first transformation
step). In contrast, theB19′ martensite nucleates in sudden bursts and grows rapidly to asignificant
size; it then requires further undercooling before consuming the rest of the matrix. BATAILLARD

et al. (1998) explain the two-step transformation ofR-phase toB19′ (and thus the overall three-
step transformation) by pointing out that the transformation temperatures in regions near particles
(governed by high coherency stresses) are different than inregions far from particles (where coherency
stresses are not important). These two regions therefore transform in two steps at a higher (near
particles) and lower (far from particles) temperature.

(iii) K HALIL -ALLAFI et al. (2002a) used DSC for a systematic investigation of the evolution of transfor-
mation behaviour with aging temperature and time. They demonstrated that during aging ofNi-rich
NiTi alloys, DSC curves exhibit two transformation peaks on cooling after short aging times, three
after intermediate aging times and finally again two peaks after long aging times (2-3-2 transformation
behaviour). They proposed a new explanation for the 2-3-2-transformation behaviour that consists of
two basic elements: (i) the composition inhomogeneity thatevolves diffusion controlled during aging
asNi4Ti3 precipitates grow. (ii) The difference between nucleationbarriers forR-phase (small) and
B19′ (large). This third explanation can in principle rationalize the evolution of DSC charts during
aging including the number of distinct DSC peaks and their positions; however, it is based on a
microstructure with a homogeneous distribution ofNi4Ti3-precipitates; and KHALIL -ALLAFI et al.
(2002a) did not attempt to provide microstructural evidence to support their claim and they did not
consider the back transformation fromB19′ to B2.

Particularly, the homogeneity ofNi4Ti3 precipitation has become an issue. Short-term stress free aging in
the temperature range between400−600◦C can result in heterogeneous precipitation (FILIP and MAZANEC,
2001, KHALIL -ALLAFI et al., 2002b); this normally means thatNi4Ti3 particles nucleate and grow pre-
ferentially near grain boundaries, oxide inclusions and carbides while precipitate free regions characterize
the grain interior (KHALIL -ALLAFI et al., 2002b); in this case different microstructural regions are charac-
terized by different particle volume densities. Superimposing an external stress enforces a homogeneous
particle volume density throughout the microstructure (KHALIL -ALLAFI et al., 2002b). A microstructure
of this type that formed after stress assisted1 hour aging at500◦C and8MPa is shown in the montage of
transmission electron microscopy micrographs of Figure 1.7. A closer look at higher magnification into the
upper right corner in Figure 1.7 reveals that the precipitation process is by no means fully homogeneous.
When looking at zoomed detail of Fig. 1.7 shown in Fig. 1.8 it must be kept in mind that differentNi4Ti3
variant disks appear in different projections. It can be clearly seen that the variant which is projected in an
ellipsoidal shape (wider dark ellipsoids are precipitate disks almost parallel to image plane) only appears in
some distance from the grain boundary; near the grain boundary only thin traces of projected edge-on vari-
ant disks are observed. Since this type of heterogeneity of the precipitate population may well govern mul-
tiple step martensitic transformation behaviour as described in the literature (KHALIL -ALLAFI et al., 2002b,
KHALIL -ALLAFI et al., 2002a, BATAILLARD et al., 1998, DLOUHÝ et al., 2003, CARROL et al., 2004) it
is important to investigate this microstructural feature in a detail. A quantitative experimental study of the
inhomogeneity ofNi4Ti3 precipitate variants in specimens after stress assisted aging has been presented in
(BOJDA et al., 2005).

1.5 Objectives of the present work

The precipitatesNi4Ti3 give rise to coherency stress fields and therefore external and/or internal stresses
can favour or suppress the occurrence of certainNi4Ti3 variants (LI and CHEN, 1998). Coherency stress
fields and/orNi concentration gradients associated with theNi4Ti3 precipitation influence considerably
the B2 − B19′ transformation characteristics. This work should contribute to the understanding of how
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FIGURE 1.7: A uniform distribution ofNi4Ti3 precipitates (in terms of number of particles per
unit volume) after stress assisted1 hour aging at500◦C and8MPa. Grain boundary areas and
grain interiors of grains 1–3 are shown in the montage of TEM micrographs.
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FIGURE 1.8: The formation of different crystallographicNi4Ti3 variants near to and far from the
grain boundary as documented in the upper grain (see also thegrain 3 in Fig.1.7).

heterogeneousNi4Ti3 microstructures arise. Modelling of microstructural processes that contribute to the
heterogeneous precipitation will be the basic methodology. Therefore, the aims of the thesis are as follows:

1. to select relevant mechanisms that can result in local redistributions of stress over the microstructure,

2. to introduce models of microstructure suitable for numerical modelling,

3. to calculate the stress redistribution within the framework of presented models and

4. to estimate the energy and distribution of different crystallographicNi4Ti3 precipitate variants in the
external stress field redistributed over the microstructure.



2 Linear theory of elasticity. Eshelby method

2.1 Notation of linear elasticity theory

The computations of stress redistributions will be performed within a framework of linear elasticity theory
(BRDIČKA et al., 2000, NYE, 2001).

Let u(r) =








ux(r)
uy(r)
uz(r) =








ux(x, y, z)

uy(x, y, z)

uz(x, y, z)








(2.1)

denote a displacement vector field in Cartesian coordinate system0xyz. Then the strain tensorε has com-
ponents

εxx =
∂ux

∂x
, εxy = εyx =

1

2

(
∂ux

∂y
+
∂uy

∂x

)

,

εyy =
∂uy

∂y
, εxz = εzx =

1

2

(
∂ux

∂z
+
∂uz

∂x

)

,

εzz =
∂uz

∂z
, εyz = εzy =

1

2

(
∂uy

∂z
+
∂uz

∂y

)

.

(2.2)

The stress tensorσ is related to the strain tensorε through a generalized Hook’s law2)

σij = cijklεkl , i, j, k, l ∈ {x, y, z} , (2.3)

wherecijkl are components of fourth-rank tensor of elastic constants.The inverse relation

εij = sijklσkl (2.4)

introduces a fourth-rank tensor called elastic compliances (NYE, 2001).

Six-indices notation often simplifies the numerical implementation: to every pair of indicesij we assign a
single-value index according to following rules

11 → 1 , 22 → 2 , 33 → 3 , 23, 32 → 4 , 13, 31 → 5 , 12, 21 → 6 .

In this notation, the elastic constants tensorcijkl can be represented as a6× 6 matrix. For media with cubic

2) In all following formulas the sum rule over repeated indicesis assumed. If the sum rule should not be applied it would be
mentioned explicitly. In expressions likeεxx, εyy, . . . , σzz the repeated indicesx, y andz do not invoke the summation.
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symmetry this matrix takes a form

cijkl ∼

















c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44

















. (2.5)

A method based on the minimisation of the elastic potential energy Π (BRDIČKA et al., 2000) is
employed to obtain the stress distribution. The stable state of a system is determined by a minimum of
the potential

Π =

∫

V
W (ε) dV −

∫

S
T · u dS (2.6)

whereW (ε) is a density of strain energy given by

W (ε) =
1

2
cijklεijεkl (2.7)

andT represents surface tractions related to the componentsσij of the stress-tensor at the surfaces by

Ti = σijνj . (2.8)

In Eq. (2.8)ν represents an outer normal vector to the surface of the specimen. The integration in Eq. (2.6)
is performed over the specimen’s volumeV and the specimen’s surfaceS, respectively.

2.2 Eshelby method for elastic continuum

ESHELBY (1961) developed a method that enables evaluating of elastic fields and energies caused by elastic
inclusions and inhomogeneities. The method is based on a sequence of cutting and welding operations. This
process is schematically illustrated in Fig. 2.1.

To find a state of stress caused by a misfitting particle (inclusion) in an infinite elastic body we start with a
virtual closed surfaceSp (Fig. 2.1(a)). A cut is made aroundSp and the inclusion is removed (Fig. 2.1(b)).
After this operation, the inclusion undergoes a stress freechange of shape (a transformation) outside the
body (Fig. 2.1(c)). After the transformation the inclusionno longer fits the cavity defined by the surfaceSp

and it is necessary to apply surface forces−σT
ijnj to the surface of the inclusion to produce a strain−εTij

which restores the original shape of the inclusion (Fig. 2.1(d)). The relation between the applied stress and
the produced strain is

σT
ij = cijklε

T
kl . (2.9)

The inclusion is now put back to the cavity and welded with thematrix across the surfaceSp (Fig. 2.1(e)).
The matrix is still unstressed and this state differs from the final state only in the presence of the layer of
body force

dFi = −σT
ijnjdS . (2.10)

Let these tractions relax (Fig. 2.1(f)). The relaxation process introduces a displacementuC associated with
the stress stateσC .
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FIGURE 2.1: The Eshelby’s method

After this virtual operation there is a stress described by stress tensorσC in the matrix and the state of stress
in the inclusion is characterized by a tensor

σ
I = σ

C − σ
T . (2.11)

2.2.1 Stress field generated by an elastic inclusion in elast ic continuum

LOVE (1954) has shown that the Green’s function method provides arelation between the displacementuC

and the stress stateσT . Let

ϕ(r) =

∫

Vp

dV

|r − r ′| (2.12)

be an ordinary harmonic potential of attracting matter of unit density and the inclusion of the volumeVp is
assumed to be bounded by the surfaceSp. The corresponding biharmonic potential is

ψ(r) =

∫

Vp

|r − r ′|dV . (2.13)

Using these two potentials the relation between the displacementuC and the stressσT is obtained as

uC
i =

1

16πµ(1 − ν)
σT

jk

∂3ψ

∂xi∂xj∂xk
−

1

4πµ
σT

ik

∂ϕ

∂xk
. (2.14)

Similar relation can be also obtained for the strainε
T

uC
i =

1

8π(1 − ν)
εTjk

∂3ψ

∂xi∂xj∂xk
−

1

2π
εTik

∂ϕ

∂xk
−

ν

4π(1 − ν)
εTkk

∂ϕ

∂xi
. (2.15)
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In the special case when the inclusion is of an ellipsoidal shape, which is a reasonable approximation of the
precipitate form, the analytical formulas for the potentials ϕ andψ can be found. For the inclusion bounded
by the ellipsoid

x2
1

a2
+
x2

2

b2
+
x2

3

c2
= 1, (2.16)

ESHELBY (1961) has derived

∂2ψ

∂x1∂x2
=

a2

a2 − b2
x2
∂ϕ

∂x1
+

b2

b2 − a2
x1
∂ϕ

∂x2
, (2.17)

∂2ψ

∂x2∂x3
=

b2

b2 − c2
x3
∂ϕ

∂x2
+

c2

c2 − b2
x2
∂ϕ

∂x3
, (2.18)

∂2ψ

∂x3∂x1
=

c2

c2 − a2
x1
∂ϕ

∂x3
+

a2

a2 − c2
x3
∂ϕ

∂x1
. (2.19)

Equation (2.15) requires further manipulation to cast it into a form suitable for further calculations. Particu-
larly the third partial derivatives of the potentialψ are needed. For example, we can write

∂3ψ

∂x1∂x1∂x2
=

∂

∂x1

(
∂2ψ

∂x1∂x2

)

,

∂3ψ

∂x1∂x1∂x1
= 2

∂ϕ

∂x1
−

∂

∂x2

(
∂2ψ

∂x1∂x2

)

−
∂

∂x3

(
∂2ψ

∂x1∂x3

)

.

(2.20)

The first of these relations is obvious, the second follows from

∇2ψ = 2ϕ. (2.21)

Substituting Eqs. (2.17)–(2.20) into Eq. (2.15) fori = 1 gives

8π(1−ν)uC
1 =

eT22 − eT11
a2 − b2

∂

∂x2

(

a2x2
∂ϕ

∂x1
− b2x1

∂ϕ

∂x2

)

+
eT33 − eT11
c2 − a2

∂

∂x3

(

c2x1
∂ϕ

∂x3
− a2x3

∂ϕ

∂x1

)

−

− 2{(1 − ν)eT11 + ν(eT22 + eT33)}
∂ϕ

∂x1
− 4(1 − ν)

(

eT12
∂ϕ

∂x2
+ eT13

∂ϕ

∂x3

)

+
∂

∂x1
β , (2.22)

where

β =
2eT12
a2 − b2

(

a2x2
∂ϕ

∂x1
− b2x1

∂ϕ

∂x2

)

+
2eT23
b2 − c2

(

b2x3
∂ϕ

∂x2
− c2x2

∂ϕ

∂x3

)

+

+
2eT31
c2 − a2

(

c2x1
∂ϕ

∂x3
− a2x3

∂ϕ

∂x1

)

. (2.23)

The potential inside the inclusion is given by

ϕ(r) =
1

2
(a2 − x2

1)Ia +
1

2
(b2 − x2

2)Ib +
1

2
(c2 − x2

3)Ic, (2.24)
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whereIa, Ib andIc are constants for the ellipsoidal inclusion3). From Eqs. (2.22)–(2.24) it follows imme-
diately thatuC is a linear function of the coordinatesx1, x2, x3 and thus the strainεC is constant inside the
inclusion.

KELLOG (1929) and MACM ILLAN (1958) showed that outside the ellipsoid the potential takes the form

ϕ(r) =
2πabc

l3

[(

l2 −
x2

1

k2
+
x2

2

k2

)

F (θ, k) +

(
x2

1

k2
−

x2
2

k2k′2
+
x2

3

k′2

)

E(θ, k) +
l

k′2

(
C

AB
x2

2 −
B

AC
x2

3

)]

(2.25)

where

A =
√

a2 + χ , B =
√

b2 + χ , C =
√

c2 + χ ,

l =
√

a2 − c2 , k2 = 1 − k′2 =
a2 − b2

a2 − c2
,

a2 > b2 > c2 ,

(2.26)

andF , E are elliptic integrals of modulusk and argumentθ, given by

sin θ =
l

A
. (2.27)

χ is the greatest (and in fact the only positive) root of

x2

A2
+
y2

B2
+
z2

C2
= 1 . (2.28)

2.3 Energetics of the inclusion – stress field interaction

Let us assume that the specimen is under externally applied stressσ that produces strainε. ESHELBY

(1961) in his work argues that the strainsε and ε
T are independent. The independence means that the

strain generated due to the formation of an inclusion would be the same in the stressed as in the unstressed
specimen. The interaction energy is then given by the work ofbody tractionsσijni during the formation of
the inclusion,ni being the outer normal to the body surface which encloses theconsidered inclusion.

The interaction energy term can be expressed in the form (fordetails see work by ESHELBY (1961))

Eint = −

∫

Vp

σijε
T
ij dV , (2.29)

where,Vp denotes the volume of the inclusion (precipitate).

3) The factorsIa, Ib andIc can be expressed in terms of elliptic integralsF (θ, k) andE(θ, k) as

Ia =
4πabc

(a2
− b2)(a2

− c2)1/2
[F (θ, k) − E(θ, k)] ,

Ib = 4π − Ia − Ic ,

Ic =
4πabc

(b2
− c2)(a2

− c2)1/2

[
b(b2

− c2)1/2

ac
− E(θ, k)

]

,

where

k
2 =

a2
− b2

a2
− c2

, sin θ =

(

1 −

c2

a2

)1/2

.
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For the ellipsoidal inclusion we have found (Eqs. (2.22)–(2.24)) that the strainεC is constant inside the
precipitate and the strainεT is (by definition) homogeneous and thus constant in the particle volume. If the
external stressσ is homogeneous over the whole inclusion, the integration in(2.29) results in

Eint = −Vpσijε
T
ij . (2.30)

As it was described in the literature (SABURI , 1998), the transformation strainεT can be associated with
the misfit strain for coherent precipitates, and for the caseof NiTi matrix andNi4Ti3 precipitates is given by
Eq. (1.3). Consequently the distribution of the external stress (independent of the presence of an inclusion in
the specimen) is a key factor that controls the selection of aparticular crystallographic variant precipitating
in a given location in the microstructure.

2.4 Energy of precipitates

Due to the lower symmetry of the precipitate crystal latticeand given the crystallographic relationship,
the precipitation may result in a number of crystallographic variants that can be unambiguously distingu-
ished using, e.g. transmission electron microscopy (HIRSCH et al., 1977). It is well known (see e.g. the
monograph by PORTER and EASTERLING (1977)) that the Gibbs free energy change∆G associated with
the coherent precipitation can be separated into two terms

∆G = ∆Gchem + ∆Gelast , (2.31)

where∆Gchem represents a free energy drop due to the formation of a more stable precipitate phase and the
term∆Gelast is a free energy increment accounting for the energy of the elastic strain field created by the
coherent precipitate. According to Eq. (2.31), the amount of the free energy change may be different for
different crystallographic variants of coherent precipitates in cases when the parent phase carries a distribu-
ted stressσ already before the precipitation.

Equation (2.29) gives the expression for the energy change resulting from the interaction between the stress
field σ distributed in the parent phase before the precipitation and a strain fieldεT of the new misfitting
particle. Since the interaction energyEint is generally different for different crystallographic variants of
coherent particles inserted into a given location of the parent crystal and since the interaction energyEint

represents an important contribution to the second term in Eq. (2.31), a selective precipitation of coherent
particles can occur in the stress fieldσ.

The contribution ofEint to the total Gibbs free energy change associated with the precipitation is used
as criteria for the selection of different crystallographic precipitate variants. In each position inside the
specimen interaction energies of all eight different crystallographic variants of precipitates are evaluated and
the variant with the minimum value ofEint is selected to be the preferred one in the considered position.



3 Models

3.1 Model I – two semi-infinite grains

The simplest 2D model considered here deals with two semi-infinite grains. As it is shown in Fig. 3.1,
the grain 1 occupies the half-spacex < 0 and the grain 2 fills the half-spacex > 0. The selected global
coordinate system0xy is also drawn in Fig. 3.1. When thez coordinate is needed, it is assumed that the
specimen’s state is constant along thez-axis (i.e. it does not depend on thez coordinate).

x

y

−h0

h0

0Grain 1 Grain 2

FIGURE 3.1: Geometry and global coordinate system0xy of the model I .

Both grains are unstressed in the initial state. The size of the grains in the unstressed state is2h0 in the
y-direction. The grains 1 and 2 differ in their properties when different mechanisms responsible for the
stress generation are taken into account:

(a) In the first case, a stress state builds up during cooling of the specimen from the annealing temperature
due to different coefficients of thermal expansion in the grains 1 and 2. For simplicity the thermal
expansion is allowed only along they-direction and no other external load is applied to the specimen.
This means that the thermal expansion tensorα is replaced by a scalar parameterα which is constant
over each grain but different in the left and in the right grain. During cooling each grain shrinks at
different rate. The requirement that the grains are “welded” at x = 0 results in a deformation (and a
stress related to this deformation) in a region near to the grain boundary (see Fig. 3.2).

(b) The second case deals with a stress state in the specimen subjected to an applied external load at
constant temperature. Here it is assumed that the two grainshave mutually rotated crystal lattices.
The anisotropy of elastic constants and the external load are sources of a stress distribution in the
system. The investigated grains have a cubic crystal structure so the most convenient coordinate
system in both grains is Cartesian orthonormal system oriented parallel to the corresponding〈1 0 0〉
crystal axes.

Transformations from the coordinate systems0x1y1 and0x2y2 into the global coordinate frame0xy
(see Figs. 3.1 and 3.3) are linear transformations and thus can be described by matricesRi (i = 1, 2),
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x

y

h0

h2

h1

h(x)

α2α1

FIGURE 3.2: Variables and parameters describing model I in the case whenthe stress state builds
up during cooling of a specimen from the annealing temperature Ta. The situation shown in the
figure corresponds to a temperatureT < Ta.
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−h0

h0

0
Grain 1 Grain 2

x1

y1 x2

y2

β
α

FIGURE 3.3: Local coordinate systems in both grains and their relation to the global coordinate
system0xy defined in Fig.3.1. This geometry represents the specimen subjected to the applied
external stress at constant temperature.

that take formsR1 =








cosα − sinα 0

sinα cosα 0

0 0 1







, R2 =








cos β − sin β 0

sin β cos β 0

0 0 1








(3.1)

wherez ≡ z1 ≡ z2 is assumed as an axis of rotation andα andβ are the angles of rotation between
the coordinate system0xy and the corresponding systems in the individual grains.

Although the above described modelsI (a) andI (b) seem to be oversimplified when compared to real
microstructures, they satisfactorily catch the process ofstress redistribution and their simplicity facilitates
calculations. This geometry thus provides a reasonable background for a qualitative assessment.

3.2 Model II – 2D periodic model of two grains

This model is a periodic boundary conditions based generalization of the modelI introduced in the previous
section. The basic building pattern of two grains is the sameas in the modelI except that the two grains are
constrained to lengthsrλ and(1− r)λ in thex-direction – see Figs. 3.4 and 3.5. Here,λ is the length of the
periodic two-grain pattern andr ∈ (0, 1) is a volume ratio of the grain 1 within one period (and thus within
the whole specimen)4). The neighbouring grains are “welded” along all boundariesat position

x = kλ and x = (k − r)λ , wherek ∈ Z .

4) A volume ratio of the grain 2 is1 − r.
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The nature of the studied stress redistribution requires the continuity of displacement throughout the speci-
men. The periodicity of the two-grain pattern allows to solve the problem over just one periodλ. In that
case the periodic boundary condition

Φ(x, y) = Φ(x+ λ, y)

must be fulfilled for ally ∈ 〈−h0, h0〉, all −∞ < x <∞ and an arbitrary quantityΦ.

The geometry adopted for the case of thermal expansion is drawn in Fig. 3.4 and for the anisotropy of elastic
constants in Fig. 3.5.

x

y

−rλ 0 (1 − r)λ λ

h0

h2h1

h(x)

α2α1

FIGURE 3.4: Parameters describing the model II in the case when the stress state originates due
to the anisotropy of thermal expansion coefficients. The situation is drawn forr = 1

2 . The bottom
part of the specimen (y < 0) can be obtained via a mirror operation on the upper part (y ≥ 0) with
thexz mirror plane.

Grain
type 1

Grain
type 2

Grain
type 2

Grain
type 1

λ

x

y

−rλ (1 − r)λ0

x1

x2

y1 y2

FIGURE 3.5: Periodic two-grain pattern (model II) in which misorientated crystal lattices of both
grain types are shown. The volume fraction of the type 2 graindominates the microstructure
(r < 1

2 ).

3.3 Model III – 3D microstructure with periodic planar pattern

The third model is a further extension of the modelsI andII into three dimensions and serves calculations
in which the stress redistribution originates due to the anisotropy of elastic constants in systems loaded by
external stress at constant temperature. The specimen has afinite height2h0 along they-axis and extends to
infinity in thexz-plane. In this plane a periodic hexagonal pattern was chosen, see Fig. 3.6. The hexagonal
shape of grains approximates closer the real grain microstructures as compared to, e.g. the grains of a
rectangular cross-section, but it is still simple enough toavoid complex calculations.
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The entire specimen consists of grains of two types marked as“grain type 1” and “grain type 2”. These
two types differ in mutually misorientated crystal lattices. The coordinate systems connected with grains
1 and 2 are Cartesian and thus the transformations to the global coordinate system0xyz (see Fig. 3.7) are
orthogonal and described by orthogonal matricesR1 andR2, respectively. The grains of each type form
rows through the specimen shown in Fig. 3.6(b). The smallestgrain set that repeats periodically consists of
four grains – two grains of each type delimited by a bold boundary in Fig. 3.6(b). Any arbitrary quantityΦ
must exhibit the same behaviour at boundaries marked with the same number in Fig. 3.6(c) – this ensures
the periodicity of this model. A 3D view of one periodic motive is shown in Fig. 3.7.

The modelIII is rather complex and demanding as far as the complexity of calculations is concerned.
Therefore, this model will be used only to demonstrate the relevant differences that the 3D geometry brings
about in comparison to the 2D modelsI andII .

x

z

y

x
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y

(a) (b)

1
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1
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Grain
type 2

Grain
type 2

Grain
type 1

Grain
type 1

(c)

FIGURE 3.6: Hexagonal periodic four-grain pattern of the model III . (a)Thexy-plane projection.
(b) Thexz-plane projection. Thexy-plane cut shown in (a) is marked by a broken line. Bold solid
line delimits one cell of the periodic structure. (c) Four different grains of two types form the basic
cell of the microstructure. Encircled numbers indicate pairs of related boundaries that fit together
snugly and establish thus proper periodic boundary conditions.
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a

2h0

x

z

y

0

FIGURE 3.7: 3D view of a periodic cell used in the model III . Grains are hexagons of a sidea in
thexz-plane. The height of the layer of grains is2h0. The global coordinate system0xyz is also
shown.



4 Stress redistribution in the microstructure – modelling
methodologies

4.1 Decomposition of the displacement field

The displacement fieldu (Eq. (2.1)) is an additive quantity within the linear elasticity theory. Consequently,
we can employ a following concept. Let us first assume that onegrain can be represented by homogeneous
elastic continuum in an initial stress-free state. The grain then shrinks in the case of the specimen cooling
or deforms in the case when the grain is subjected to an externally applied load. In the case of cooling, the
state of the isolated grain after the shrinkage is still the stress-free continuum. For a model of misorientated
grains subjected to the applied external load, the displacement is described by a vector fielduA. The set of
isolated grains forming the specimen can be regarded as if virtual cuts were made along all grain boundaries
– that would interrupt all mutual interactions between grains.

To restore the mutual interactions among grains and establish a continuity of the resulting displacement, the
second displacement fielduM must be introduced. The total displacementu in the specimen can thus be
decomposed asu = uA + uM . (4.1)

The displacementuM must fulfil following conditions:

1. the total displacementu = uA + uM must be continuous over the whole specimen5) and

2. elastic potential energyΠ given by Eq. (2.6) must reach its minimum with respect to all conceivable
displacementsuM .

4.2 Thermal expansion anisotropy models

4.2.1 Cooling of two semi-infite grains

The basic geometry of the modelI and the characteristics of the thermal expansion process were described
in the section 3.1. Let us first investigate the case of two semi-infinite grains (see Fig. 3.1 on page 18). The
thermal expansion coefficientsα1 andα2, respectively, describe the expansion along they-axis in the left
and right grain. The specimen is thought to be rigid along thex-axis. Thus the only non-zero component of
the displacement vectoru is they-component

uy(x, y) = y
h(x) − ha

ha
(4.2)

wherea = 1 for x < 0 anda = 2 for x > 0. This form of the displacement provides a uniform deformation
of the specimen along they-axis. According to Eq. (2.2), the non-zero components of the strain tensor are

εyy(x, y) =
h(x) − ha

ha
and εxy(x, y) =

1

2
y
h′(x)

ha
. (4.3)

5) If the displacementuA connected with the grain deformation has discontinuities over grain boundaries, the “minimizing”
displacementuM has the same discontinuities of the opposite sign in the samelocations to ensure continuity of the total displace-
mentu.
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Substituting Eq. (4.3) into Eq. (2.7) yields the strain energy density in the form

W (x, y) = c11

(
h(x) − ha

ha

)2

+
1

4
c44

(

y
h′(x)

ha

)2

. (4.4)

There are no external tractions over the specimen surface and thus the minimisation of elastic potential
energyΠ (Eq. (2.6)) is equivalent to minimisation of the strain energy U

U =

∫

V
W (x, y) dV

=

∫
∞

−∞

dx

∫ ha

−ha

dy

[

c11

(
h(x) − ha

ha

)2

+
1

4
c44

(

y
h′(x)

ha

)2
]

=

∫
∞

−∞

dx

[

2hac11

(
h(x) − ha

ha

)2

+
1

6
h3

ac44

(
h′(x)

ha

)2
]

.

(4.5)

The strain energyU is now, in fact, a functionalU [h] of an unknown functionh(x). This functional has to
be minimised. According to the concept described in the section 4.1, the total energyU is divided into two
parts that correspond to the left and right grain

U1[h1] =

∫ 0

−∞

dx

[

2h1c11

(
h1(x) − h1

h1

)2

+
1

6
h3

1c44

(
h′1(x)

h1

)2
]

→ min , (4.6)

U2[h2] =

∫
∞

0
dx

[

2h2c11

(
h2(x) − h2

h2

)2

+
1

6
h3

2c44

(
h′2(x)

h2

)2
]

→ min , (4.7)

that are minimized separately with the boundary condition

h1(0) = h2(0) . (4.8)

The extremities atx = −∞ andx = ∞ are assumed to behave as free, that means

h1(−∞) = h1 = h0(1 + α1∆T ) , (4.9)

h2(+∞) = h2 = h0(1 + α2∆T ) . (4.10)

The above equations constitute two minimization problems with fixed values of minimizing functions at
boundaries.

A function with given endpoints that minimizes the functional

U [h] =

∫ b

a
F (x, h(x), h′(x)) dx , h(a) = A , h(b) = B , (4.11)

is a solution of the Euler differential equation (POSṔIŠIL, 2000, GELFAND and FOMIN , 2000)

∂F

∂h
−

∂2F

∂h′∂x
−

∂2F

∂h′∂h
h′ −

∂2F

∂h′2
h′′ = 0 , h(a) = A , h(b) = B . (4.12)

The Euler equation for the problem described by Eq. (4.6) with boundary conditions given by Eqs. (4.8)
and (4.9) is

4c11

(
h1(x)

h1
− 1

)

−
1

3
c44h1h

′′

1(x) = 0 , lim
x→−∞

h1(x) = h1 , h(0) = ξ . (4.13)

The general solution to the homogeneous part of differential equation (4.13) is a linear combination of two
exponential functions. A requirement of convergency atx → −∞ excludes the exponential function that
diverges asx→ −∞. The functionh1(x) thus takes form

h1(x) = h1 + (ξ − h1) exp

(√
12c11
c44

x

h1

)

. (4.14)
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In a similar way we obtain the solutionh2(x) for the second grain

h2(x) = h2 + (ξ − h2) exp

(

−

√
12c11
c44

x

h2

)

. (4.15)

The complete solution requires the determination of the parameterξ. In fact, the function

h(x, ξ) =







h1 + (ξ − h1) exp

(√
12c11
c44

x

h1

)

, if x ≤ 0 ,

h2 + (ξ − h2) exp

(

−

√
12c11
c44

x

h2

)

, if x > 0 .

(4.16)

now depends also on the parameterξ. Introducing the functionh(x, ξ) into Eq. (4.5) give the elastic
potential energy as a function of the parameterξ. The parameterξ must attain a value that minimizes the
elastic potential energy of the complete two-grain structure. The minimum of the functionU(ξ) occurs when

ξ =
h1 + h2

2
. (4.17)

The Eq. (4.3) then yields the non-zero components of the strain tensor as

εyy(x, y) =







h2 − h1

2h1
exp

(√
12c11
c44

x

h1

)

, if x ≤ 0 ,

h1 − h2

2h2
exp

(

−

√
12c11
c44

x

h2

)

, if x > 0 ;

(4.18)

εxy(x, y) =







h2 − h1

4h1
exp

(√
12c11
c44

x

h1

)√
12c11
c44

y

h1
, if x ≤ 0 ,

h2 − h1

4h2
exp

(

−

√
12c11
c44

x

h2

)√
12c11
c44

y

h2
, if x > 0 .

(4.19)

Finally, according to the relation (2.3) the components of stress tensor are

σxx(x, y) = σzz(x, y) = c12εyy(x, y) ,

σyy(x, y) = c11εyy(x, y) ,

σxy(x, y) = c44εxy(x, y) .

(4.20)

4.2.2 Periodic two-grain pattern

The modelII describes a non-uniform thermal expansion in a periodic microstructure (see Fig. 3.4 on page
20). The solution procedure is almost the same as in case of two semi-infinite grains. The minimization of
the elastic potential energy over the complete specimen is equivalent to the minimization of the energy over
one periodλ. The functionalU [h] is again divided into two parts each of them corresponding toone grain
of the periodic pattern. The boundary conditions of the model I at the extremitiesx = −∞ andx = ∞ are
replaced by periodic boundary condition

h1(−rλ) = h2((1 − r)λ) = ζ . (4.21)

Minimization of the functionalU [h] leads to the Euler equations for unknown functionsh1(x) in the grain
of type 1 andh2(x) in the grain of type 2. The general solution takes a form

h1(x) = h1 + k1 exp

(√
12c11
c44

x

h1

)

+ k2 exp

(

−

√
12c11
c44

x

h1

)

, (4.22)

h2(x) = h2 + κ1 exp

(√
12c11
c44

x

h2

)

+ κ2 exp

(

−

√
12c11
c44

x

h2

)

. (4.23)
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The boundary conditions are described by the system of equations

h1 + k1 + k2 = ξ , (4.24)

h2 + κ1 + κ2 = ξ , (4.25)

h1 + k1 exp

(√
12c11
c44

−rλ

h1

)

+ k2 exp

(

−

√
12c11
c44

−rλ

h1

)

= ζ , (4.26)

h2 + κ1 exp

(√
12c11
c44

(1 − r)λ

h2

)

+ κ2 exp

(

−

√
12c11
c44

(1 − r)λ

h2

)

= ζ , (4.27)

and the surface profileh(x) is given by

h(x) =







h1(x) , if −rλ ≤ x < 0 ,

h2(x) , if 0 ≤ x < (1 − r)λ ,

h(x− λ) , if x ≥ (1 − r)λ ,

h(x+ λ) , otherwise.

(4.28)

Solution of the system of Eqs. (4.24)–(4.27) for the unknowncoefficientsk1, k2, κ1 andκ2 and substitution
of h1(x) andh2(x) into the elastic potential energy

U =

∫

one period
W (x, y) dV

=

∫ (1−r)λ

−rλ
dx

∫ ha

−ha

dy

[

c11

(
h(x) − ha

ha

)2

+
1

4
c44

(

y
h′(x)

ha

)2
] (4.29)

yields U as function of two parameters,ξ and ζ. Their values are determined by the minimization of
the potentialU(ξ, ζ). In view of the complexity associated with the solution in the analytical form, the
minimizing parametersξ andζ were found numerically.

4.3 Elastic constants anisotropy models

4.3.1 Analytical solution for the specimen under the extern al load

When the crystal lattices in different grains are misorientated, no preliminary assumption about the minimi-
zing displacement can be made. Thus the displacement fielduM must be composed of two general functions
uM

x (x, y) anduM
y (x, y) of two variablesx andy.

In line with the general concept described in section 4.1, itis possible to rewrite the expression for the
density of strain energy (Eq. (2.7)) as

∫

V
W (ε) dV =

1

2

∫

V
cijkl(ε

A
ij + εMij )(εAkl + εMkl ) dV =

=
1

2

∫

V
cijklε

A
ijε

A
kl dV

︸ ︷︷ ︸

constant term

+

∫

V
cijklε

A
ijε

M
kl dV

︸ ︷︷ ︸

mixed term

+
1

2

∫

V
cijklε

M
ij ε

M
kl dV

︸ ︷︷ ︸

minimizing term

(4.30)

where the symmetrycijkl = cklij of elastic constants was employed. The mixed term can be further simpli-
fied to

∫

V
cijklε

A
ijε

M
kl dV =

∫

V
σA

ijε
M
ij dV (4.31)

and similarly

1

2

∫

V
cijklε

A
ijε

A
kl dV =

1

2

∫

V
σA

ijε
A
ij dV . (4.32)
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Let us assume that the applied loadσ
A is constant over the whole specimen. Using the Gauss theoremfor

the second term in Eq. (2.6) yields

∫

S
T · u dS =

∫

S
σA

ijνiuj dS =

∫

S
(σA

ijuj)νi dS =

∫

V

∂

∂xi
(σA

ijuj) dV =

=

∫

V
σA

ij

1

2

(
∂uj

∂xi
+
∂ui

∂xj

)

dV =

∫

V
σA

ijεij dV =

∫

V
σA

ij(ε
A
ij + εMij ) dV . (4.33)

Substituting expressions Eqs. (4.31)–(4.33) into Eq. (2.6), the final formula for elastic potential energy is
obtained in the form6)

Π = −
V

2
σA

ijε
A
ij +

1

2

∫

V
cijklε

M
ij ε

M
kl dV . (4.35)

The dependence of strain tensorε
M on unknown displacementsuM

x anduM
y is given by Eq (2.2). Therefore,

the energy functional depends only on partial derivatives of the displacementsuM
x anduM

y

Π =

∫

V
F (uM

x,x, u
M
x,y, u

M
y,x, u

M
y,y) dV , (4.36)

where

uM
x,x ≡

∂uM
x

∂x
, uM

x,y ≡
∂uM

x

∂y
, uM

y,x ≡
∂uM

y

∂x
and uM

y,y ≡
∂uM

y

∂y
. (4.37)

The region, over which the integration indicated in Eq. (4.36) is performed, is(−∞,∞) × 〈−h0, h0〉.
Similarly to the minimization problem described by Eq. (4.11), the minimisation of the functional in
Eq. (4.36) translates to the system of Euler equations

d

dx
FuM

x,x
(uM

x,x, u
M
x,y, u

M
y,x, u

M
y,y) +

d

dy
FuM

x,y
(uM

x,x, u
M
x,y, u

M
y,x, u

M
y,y) = 0 ,

d

dx
FuM

y,x
(uM

x,x, u
M
x,y, u

M
y,x, u

M
y,y) +

d

dy
FuM

y,y
(uM

x,x, u
M
x,y, u

M
y,x, u

M
y,y) = 0 .

(4.38)

The boundary conditions for the case of two semi-infinite grains require that the minimizing displacementuM vanishes atx = −∞ andx = ∞

lim
x→±∞

uM
x (x, y) = 0 , lim

x→±∞
uM

y (x, y) = 0 for all y ∈ 〈−h0, h0〉 . (4.39)

The surfaces aty = h0 andy = −h0 constitute free boundaries to the minimization problem. The so called
transversality conditions take, in this case, a form

FuM
x,y

(uM
x,x, u

M
x,y, u

M
y,x, u

M
y,y)

∣
∣
∣
y=±h0

= 0 ,

FuM
y,y

(uM
x,x, u

M
x,y, u

M
y,x, u

M
y,y)

∣
∣
∣
y=±h0

= 0 .

(4.40)

6) We note, that the difference between the two types of grains considered in the model rests in the misorientations of theircrystal
lattices. This affects coordinate representation of the tensor
 which has to be projected into the global coordinate system0xy.
When the transformation from the grain coordinate system into the global coordinate frame is described by a matrixR, then the
componentcijkl of the tensor
 takes in the coordinate frame0xy a form

cijkl = Riα Rjβ Rkγ Rlδ c̃αβγδ , (4.34)

wherec̃αβγδ is a component of the tensor
 in the grain coordinate frame.
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The last condition, which must be satisfied by the minimizingdisplacementuM , is the continuity of the total
displacementu = uA + uM . If the displacement due to the uniformly distributed loadσ

A is respectively
described byuA

1 anduA
2 in the left and in the right grain, then the continuity condition

lim
x→0−

uM
x (x, y) + (uA

1 )x(0, y) = lim
x→0+

uM
x (x, y) + (uA

2 )x(0, y) ,

lim
x→0−

uM
y (x, y) + (uA

1 )y(0, y) = lim
x→0+

uM
y (x, y) + (uA

2 )y(0, y)
(4.41)

must hold along the whole boundary where the grains meet eachother, i.e. for ally ∈ 〈−h0, h0〉
7).

The system (4.38) with boundary conditions given by Eqs. (4.39)–(4.41) is rather complicated. Therefore,
one can hardly expect any analytical solutions in a closed form. Thus the models based on the elastic
constants anisotropy were further solved by numerical methods.

4.3.2 Finite difference method

Finite difference method (FDM) is often used for numerical solution of differential equations. The method
replaces differentials by finite differences. Since the problem of stress redistribution is represented by the
system of partial differential equations (4.38), this method seems to be a first choice to find a solution.

Instead of continuous function, the FDM uses a set of function values in a system of nodes. The set of
nodes covers an area of interest. It is clear that the denser node networks in the investigated region provide
better approximations of the solution. However, calculations based on the denser network are also more
CPU demanding. It is important to choose a suitable compromise between these two factors.

Discretization of the two-grain region is described by parametersa, b1 andb2 and indiciesn1, n2 andnh as it
is illustrated in Fig. 4.1. The nodesXi,j corresponding to the discretization are numbered
j = 1, 2, . . . , ninh for each graini = 1, 2. There are two unknown variablesvi,j andwi,j for each pair
(i, j), i ∈ {1, 2}, 1 ≤ j ≤ ninh. These variables represent values of unknown functionsuM

x anduM
y at the

nodeXi,j .

a

b1 b2

X1,1 X1,3 ≡ X2,1 X2,6

X1,12 ≡ X2,19X1,10 X2,24

Grain type 1 Grain type 2

FIGURE 4.1: A network of FDM nodes which discretizes a two-grain region.The index ranges
that determine the disretization are in this example given by n1 = 3, n2 = 6 andnh = 4. The
number of elements in the grain 1 is 6, the number of nodes in the grain 1 is 12. The grain 2
consists of 24 nodes and 15 elements. The parametersa, b1 andb2 determine the size of individual
elements.

7) The above described concept is quite general. For the assumptions σ
A = 0, ux ≡ 0 anduy(x, y) = yh̃(x) the system of

equations (4.38) simplifies to the equation of the type of Eq.(4.13).
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In this notation, the approximations to the derivatives (inthe volume of the grain 1) are

∂uM
x

∂x
(Xi,j) ≈

vi+1,j − vi−1,j

2b1
,

∂uM
x

∂y
(Xi,j) ≈

vi,j+1 − vi,j−1

2a
,

∂uM
y

∂x
(Xi,j) ≈

wi+1,j − wi−1,j

2b1
,

∂uM
y

∂y
(Xi,j) ≈

wi,j+1 − wi,j−1

2a
.

(4.42)

and the differences for the boundary nodes are replaced by corresponding “one-side” differences.

Applying the FDM to the system of partial differential equations (4.38) with boundary conditions Eqs.
(4.39)–(4.41) results in a system of linear algebraic equations. Although the above sketched procedure is,
in principle, applicable, it does not yield satisfactory results. The system of linear equations is usually ill
conditioned which makes the solution unreliable.

4.3.3 Finite element method

Finite element method (FEM) is a robust numerical tool suitable for solving of variational problems. It is
again based on a discretization of the investigated region similar to the case of FDM (see the subsection
4.3.2 and Fig. 4.1).

Let Xi,j be aj-th node in the graini. Let vi,j andwi,j be components of unknown displacementuM in
the nodeXi,j . The elements are delimited by four nodesXi,j , Xi,j+1, Xi,j+ni, Xi,j+ni+1 (i = 1, 2 and
j = 1, 2, . . . , ni − 1, ni + 1, . . . , ninh − 1).
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xx

y

f(x, y)

FIGURE 4.2: Linear approximation of the functionf(x, y) defined by Eq.(4.43). Element size is
given bya = 6, b = 7 and functional values in the element nodes aref1 = 2, f2 = 5, f3 = 4 and
f4 = 1.

The functionsuM
x anduM

y are approximated over the area of each element. Leta denote the height of
element (a = 2h0/(nh − 1)) andbi the length of element in the graini. The linear approximation of any
functionf over a rectangular element given by the functional valuesf1, f2, f3 andf4 at element nodes is

f(x, y) = f1
b− x

b

a− y

a
+ f2

x

b

a− y

a
+ f3

b− x

b

y

a
+ f4

x

b

y

a
. (4.43)

Using this type of approximation for functionsuM
x anduM

y , the strain tensor, the stress tensor and finally the
elastic potential energy related to each element can be obtained as a function of eight variablesvi,j, vi,j+1,
vi,j+ni, vi,j+ni+1, wi,j, wi,j+1, wi,j+ni, wi,j+ni+1.
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The total elastic potential is a sum of elastic potential terms over the number of elements. The total energy
is thus a function of2(n1 + n2)nh variablesv1,1, . . . , w2,n2nh

.

In the next step, the boundary conditions are applied. The continuity condition atx = 0 requires

[uA
1 (X1,jn1

)
]

x
+ v1,jn1

=
[uA

2 (X2,(j−1)n2+1)
]

x
+ v2,(j−1)n2+1 ,

[uA
1 (X1,jn1

)
]

y
+ w1,jn1

=
[uA

2 (X2,(j−1)n2+1)
]

y
+ w2,(j−1)n2+1 ,

j = 1, . . . , nh . (4.44)

When the specimen extends to infinity along thex-axis, a cutting distanceℓ from the grain boundary must
be chosen, at which the displacements are given by their values at infinity. This stems from the fact that a
numerical approach could not treat the infinite dimension ofthe investigated domain. Thus atx = ±ℓ the
displacementuM is negligibly small and the boundary conditions take a form

v1,(j−1)n1+1 = 0, w1,(j−1)n1+1 = 0 ,

v2,jn2
= 0 , w2,jn2

= 0 ,

j = 1, . . . , nh . (4.45)

This approximation thus contributes to the error associated with the applied numerical method. Results of
the numerical solution suggest that they are insensible to the choice of the valueℓ provided thatℓ takes on
reasonably high values (ℓ & 4h0).

Sets of equations (4.44) and (4.45) reduce the number of independent variables by the number6nh.

Now the elastic potential energy is constructed and, after the application of the boundary conditions, the
function of2(n1 + n2 − 3)nh independent variables is obtained. This function is minimized with respect to
the vector of unknown variables.

4.3.4 Modification of FEM for models with periodic structure s

The models based on a periodic grain pattern were introducedin sections 3.2 and 3.3. We assume that
the sizes of the periodic motive alongx- and z-direction remain constant during the specimen loading.
Additional stress componentsσA

xx (and in a 3D case alsoσA
zz) are needed to keep the dimensions of the

periodic pattern constant. However, values of these stresscomponents are not known prior to loading – they
depend on the value of the applied loadσA

yy and result from the calculations.

The fact that the componentsσA
xx andσA

zz remain unknown during the computation precludes the determi-
nation of the displacement fielduA. Consequently, the periodic boundary conditions cannot bewritten in a
form

[uA
1 (X1,(j−1)n1+1)

]

x
+ vM

1,(j−1)n1+1 =
[uA

2 (X2,jn2
)
]

x
+ vM

2,jn2
,

[uA
1 (X1,(j−1)n1+1)

]

y
+wM

1,(j−1)n1+1 =
[uA

2 (X2,jn2
)
]

y
+ wM

2,jn2
,

j = 1, . . . , nh . (4.46)

To overcome these difficulties we must abandon the concept ofdecomposition of the total displacementu
into uA + uM . The elastic potential, the minimum of which characterizesa stable state,

Π =

∫

V
W (ε) dV −

∫

S
T · u dS (4.47)

consists now of two terms which are both non-constant.

Let us first concentrate on the 2D model (modelII ). The strain energyU (the first term in Eq. (4.47)) is
calculated using FEM and the same rectangular elements as inthe case of model of two semi-infinite grains
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(see Fig. 4.1 on page 28). The only difference is that insteadof the displacement fielduM we now consider
the total displacementu.

The boundary conditions atx = 0 (Eq. (4.44)) take a form

v1,jn1
= v2,(j−1)n2+1 , w1,jn1

= w2,(j−1)n2+1 , j = 1, . . . , nh , (4.48)

and at the periodic boundary conditions at pointsx = −λr in grain 1 andx = (1 − r)λ in grain 2 (Eq.
(4.46)) take a form

v1,(j−1)n1+1 = v2,jn2
, w1,(j−1)n1+1 = w2,jn2

, j = 1, . . . , nh . (4.49)

The complete potential for minimization requires the enumeration of the integral
∫

S T · u dS. Because the
integration has to be performed over the surface of one two-grain period we employ one dimensional ele-
ments. The surface element is represented by an abscissa connecting two neighbouring surface nodes. The
displacement over the surface element is approximated by a linear dependence, which is fully determined
by values in the two nodes forming endpoints of the element.

The surface integral can be decomposed into two parts: the integral over the part of the surface which is
parallel to thexz-plane and the integral over the rest of the surface. Due to the periodicity of the model for
each planar part8) of the surface with the outer normalν, which is perpendicular to they-axis, there exists a
corresponding planar part of the surface with the outer normal−ν. Since the corresponding surface tensions
represent pairs of reaction forces and regarding the boundary conditions Eqs. (4.49), the integrals

∫ T ·u dS
over these parts of the surface cancel each other. Therefore, the second term in Eq. (4.47) simplifies to

∫

S
T · u dS =

∫

S
σijνiuj dS ≈ σA

yy

∫

S′

uy dS , (4.50)

whereS′ is the part of the surface of one period which is perpendicular to they-axis.

The componentσA
yy of the applied stress is known and thus the second term of potential (Eq. (4.47)) can be

expressed in terms of known constants and unknown displacementsuy in the surface nodes.

In the 3D case (modelIII ) a planar mesh is generated to cover the area of four grains – the periodic pattern.
The mesh is illustrated in Fig. 4.3(a). This mesh takes into account the fact that the grain boundary regions
are expected to carry a considerable stress redistribution. The planar mesh is copiednh-times along the
y-axis and a 3D mesh of the periodic pattern is thus obtained (Fig. 4.3(b)).

The 3D mesh consists of the prismatic elements with triangular bases in thexz-plane. Each element is fully
characterized by the set of six forming nodes. The approximation of any functionf over an element is
linear, i.e. the three nodes in each base determine a linear approximation of the functionf in a form

fbase(x, z) = ax+ bz + c , (4.51)

where constantsa, b andc are uniquely determined by the values of the functionf in the nodes. The linear
approximations within each base are linearly changing one into the other along they-axis (the bottom- and
the upper-base approximations are multiplied by the factors (h − y)/h andy/h, respectively). Here,h is
the height of the element. The 3D elements and the linear approximations of the displacement field over
each element allow to determine the first term of the elastic potential given by Eq. (4.47) as a function of
unknown displacements in each node9).

The surface elements are in fact of two kinds: the surface elements in thexz-plane are triangles while the
surface elements in the planes perpendicular to thexz-plane are rectangles. A similar type of argument as

8) By planar part of the surface in the 2D case we mean a straight line.
9) We note that, since the model deals with a 3D structure, all three components of the displacement vector are non-zero in each

node.
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FIGURE 4.3: An example of the FEM mesh of the model III. (a) Discretization in thexz-plane,
nodes and planar elements. The number of elements that coverone side of the hexagonal grain
(which has an edge lengtha) is 8. (b) The complete 3D mesh with three layers along the
y-direction (nh = 3) and thinner discretization inxz-plane as compared to the case (a).

in the 2D case permits to simplify the second term in Eq. (4.47) into the form of Eq. (4.50). This term can
be directly rewritten into the expression that is a functionof unknown displacements and thus is applicable
for numerical minimization.

The last condition needed for correct formulation of the minimization problem within the framework of
FEM concerns the periodic boundary conditions. These are applied in the same way as in the case of 2D
models and, similarly to 2D models, reduce the number of independent variables that minimize the objective
function. The sides of the four-grain cell related due to periodicity are marked in Fig. 3.6(c) on page 21.



5 Calculated stress distributions

5.1 Thermal expansion models

Analytical formulas for the functions representing surfaces in microstructures described by modelsI (Eqs.
(4.16), (4.17)) andII (Eqs. (4.22)–(4.29)) were derived in the section 4.2. Parameter values obtained
experimentally were used to investigate the behaviour of the analytical solutions. The elastic constants for
NiTi alloy at the annealing temperatureTa = 773K, when the microstructure is stress-free, are summarized
in Tab. 5.1 (REN et al., 2001).

c11 [GPa] c12 [GPa] c44 [GPa] α1 [K−1] α2 [K−1]

190 140 40 14 × 10−6 8 × 10−6

TABLE 5.1: The input parameters for thermal expansion models.

In view of the other model inaccuracies, these values are assumed to be independent of temperature during
cooling from the annealing temperatureTa to the room temperatureTr = 300K. Since the main objective
of this work is to qualitatively account for the effects associated with stress redistributions, the above appro-
ximation is fully sufficient. We note that on cooling the differences of elastic constants are more than one
order of magnitude smaller as compared to their actual values (REN et al., 2001).

The thermal expansion coefficientsα1 andα2 are chosen such that they slightly differ from the tabulated
value forNiTi (J. MATTEY, INC., on-line) (αNiTi = 11 × 10−6 K−1). Their values are also included in
Tab. 5.1.

5.1.1 Stress distributions for the model I

The upper surface of two-grain structure after cooling from773K to 300K is shown in Fig. 5.1. The scale
of both axes is chosen so that the distance1 corresponds toh0.

In accord with the assumptions of the model, there is no displacement along thex-axis. The displacement
exhibits its maximum at the surface of the specimen, i.e. aty = −h0 andy = h0. Therefore, the stress
componentσxy also attains its maximum value at the specimen surface. The other components of the stress
tensor do not depend on they-coordinate. In agreement with Eq. (4.20), thexx- andzz-components of
the stress tensor are identical. The spatial distribution of the stress componentsσxx, σyy andσxy over the
specimen are plotted in Fig. 5.2. The results presented in Fig. 5.2 suggest that the affected area (the area
where stresses differ significantly from zero) extends onlyin the region between−h0

2 and h0

2 along the
x-axis. Consequently, only in this region one can expect any effects associated with the stress redistribution.

5.1.2 Stress redistributions for the model II

As in the modelI , also the numerical calculations based on the modelII were performed with the same set
of elastic constants and thermal expansion coefficients given in Tab. 5.1. The length of one two-grain period
is λ = 4h0 and the volume fraction of grain 1 within one period is eitherr = 0.5 or r = 0.05. Coordinates
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FIGURE 5.1: The upper surface of the specimen after cooling from the annealing temperature
773K to the room temperature. The profile results from calculations based on the model I of two
semi-infinite grains.
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FIGURE 5.2: The distribution of the stress componentsσxx, σyy andσxy along thex-direction in
the two-grain structure after cooling. The calculation corresponds to the model I.
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normalized by the parameterh0 are used to plot the surface profiles at the end of cooling.

The specimen surface is drawn in Fig. 5.3. It is worth noticing that in the equi-volume fraction case (r = 0.5)
there are regions within the grains 1 and 2 that are essentially unaffected by the minimizing displacementuM . The surface in the interiors of both grains is very close to the position where it would be if the grains
were not welded. On the contrary, in the case ofr = 0.05 the smaller grain (grain 1) is too small and the
redistribution of deformation is significant over its entire volume.
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FIGURE 5.3: The surface of the periodic two-grain system after cooling.Two surface profiles
are plotted for (a)r = 0.5 and (b)r = 0.05. Calculations cover the cooling from the annealing
temperatureTa = 773K down to the room temperatureTr = 300K.

The non-zero components of the strain tensor can be calculated based on Eq. (4.3). The non-zero stress
components are then related to the strain components through Eq. (4.20). The resulting stress distributions
for r = 0.5 andr = 0.05 are plotted in Fig. 5.4(a) and 5.4(b), respectively. Thezz-componentσzz and the
xx-componentσxx are identical.

5.1.3 Concluding remarks

The NiTi alloy crystallizes in a cubic typeB2 lattice. NYE (2001) poited out that the tensor of thermal
expansion coefficients is always isotropic for cubic lattices. Therefore, the modelsI andII calculating stress
redistributions due to the anisotropy of thermal expansionare not applicable to the case ofNiTi B2 alloys.
Nevertheless, these models can be applied to other systems with the lattice symmetry lower than cubic. The
results clearly support the idea that for non-cubic systemsthe stress state generated due to the anisotropy of
thermal expansion can possess features characteristic forthe stress redistribution in a polycrystalline sample.

The anisotropy of thermal expansion is directly connected with the misorientation of crystal lattices in
neighbouring grains. Therefore, for the non-cubic systemssubjected to an externally applied load, the
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FIGURE 5.4: Spatial distribution of the stress over the specimen consisting of two-grain periodic
pattern in thex-direction. The grains of different types have different coefficients of thermal
expansion. The specimen was cooled from the annealing temperatureTa = 773K to the room
temperatureTr = 300K. The stress distributions were calculated for positions atthe upper surface
(y = h0). The geometry is given by the parameterλ = 4h0 (length of one period) and by the
volume ratior of the grain 1: (a)r = 0.5 and (b)r = 0.05.
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non-uniform strains due to the thermal expansion anisotropy and due to the external load may superimpose
provided the crystal lattices of individual grains are misorientated. Fortunately, in the case ofNiTi the
thermal expansion strain is isotropic and thus does not contribute to the stress redistribution. Therefore,
results obtained for misorientated crystal lattices ofNiTi alloys subjected to the externally applied load and
presented in next sections of this work do not include the thermal expansion effects. In passing we note
that, whatever the crystal lattice, the thermal expansion effects do not contribute to the stress redistribution
during isothermal heat treatments.

The stress generated during cooling the microstructure dueto thermal expansion would cause just a constant
contribution to the total stress state and thus this part of the total stress is not interesting from the point of
view of the local stress redistribution.

5.2 External loading models

The analytical solution presented in the subsections 5.1.1and 5.1.2 shown that a special class of problems
can be solved under the assumption that components of the displacement vector are linear functions of the
coordinatey. However, this form of the functionuM (x, y) does not fulfil the system of Eqs. (4.38)–(4.41)
and thus does not minimize the elastic potential in more general cases. These more general formulations
require the components of the displacement vector being general functions of variablesx andy and the
system of Eqs. (4.38)–(4.41) then becomes to complicated for analytical solutions. The finite element
method described in the subsection 4.3.3 is the most suitable numerical tool to solve these general problems
when the energy minimisation principle is applied.

5.2.1 Stress distribution for the model I

As depicted in Fig. 3.3, the system of two semi-infinite misorientated grains is loaded by the applied stress
σA

yy and the grains are welded atx = 0. General steps of the solution were discussed in the subsection
4.3.3. The discretization of the microstructure is shown inFig. 4.1. The semi-infinite grain does not fit the
concept of the FEM and it is thus important to select an appropriate cut-off distanceℓ that limits the region
of the solution with respect to thex-coordinate. The analytical solution presented for the case of thermal
expansion in the subsection 5.1.1 suggested that there is a distanceℓ from the grain boundary atx = 0
where the minimizing displacement is negligibly small and where the stress redistribution ceases. It has
been found that the results are not affected when the cut-offdistanceℓ fulfils ℓ & 4h0.

The results of the numerical solution presented below were obtained for material constants ofNiTi alloy at
the temperature773K, see work of REN et al. (2001). The grain misorientations are described by the angles
α andβ (see Fig. 3.3). The applied load is characterized by the tensor σ

A. The only non-zero component
of σ

A is σA
yy. All these parameters are summarized in Tab. 5.2. The value of σA

yy corresponds to the loads
used experimentally during the stress assisted aging ofNiTi alloys (BOJDA et al., 2005).

c11 [GPa] c12 [GPa] c44 [GPa] α [rad] β [rad] σA
yy [MPa]

190 140 40 0 π/6 8

TABLE 5.2: The basic input parameters for external loading models.

The geometry of the loaded specimen is fully characterized by the parameterh0; 2h0 is they-size of the
grains. For purposes of the computation, both coordinates were normalized byh0 and, in what follows, the
results are plotted in these dimensionless coordinates. The adopted value of the cut-off parameterℓ is 5h0.

The discretization (see Fig. 4.1) of the investigated region is given by a rectangular element mesh described
by the parametersn1 = 30, n2 = 30 andnh = 10. The number of nodes in each grain is300 and the
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FIGURE 5.5: The upper surface of the specimen composed of two semi-infinite grains with mutu-
ally misorientated crystal lattices. The top surface is a horizontal line aty = h0 before loading.
When the load (8MPa) is applied and the grains are treated independently, the upper surface of
each grain moves and its new position is drawn by the blue line. A subsequent welding operation
restores the continuity of the surface and, at the same time,minimizes the strain energy. The final
surface profile after these operations is represented by thered line.

number of elements is261. Considering the boundary conditions atx = 0 (continuity of the displacement)
and atx = ±ℓ (where the minimizing displacement vanishes), the total number of independent variables
reduces to1160 for the designed mesh. Consequently, the energy term (Eq. (4.35)) to be minimized is a
function of these1160 variables. A build-in function of the system Mathematica (WOLFRAM, 1999) was
used to minimize the objective energy function.

Figure 5.5 shows the calculated profile of the upper specimensurface after loading and the energy minimi-
sation. Prior to loading, the upper surface of the specimen was aty = h0. The blue line represents the upper
surface of loaded grains when they are not welded together (each grain deforms as a free homogeneous con-
tinuum and corresponding surfaces of one grain are parallelto each other). The minimisation displacementuM is computed so that it restores the continuity of the displacement over the microstructure and, at the
same time, it minimizes the total strain energy. Finally, the total displacementu is obtained by adding the
two vector fieldsuA anduM and its values at the specimen surface are represented by thered line in Fig.
5.5.

Corresponding stress components are plotted in Fig. 5.6. Wenote that, far away from the grain boundary, the
only non-zero component of the stress tensor isσyy and its value converges to the externally applied stress
of 8MPa. The componentσzz and its spatial distribution is similar to the componentσxx. The components
σxz andσyz of the stress tensor are identically zero which follows the fact that the model is 2D.

5.2.2 Stress distributions for the model II

The FEM discussed in the subsection 4.3.4 can be also easily implemented to calculate stress redistribution
for the modelII of the periodic two-grain pattern of mutually misorientated crystal lattices. The periodic
pattern is described by two parameters: the length of one period λ which was selected asλ = 4h0 and the
volume ratior of grain 1 within one periodr = 0.5. In addition to the boundary conditions atx = 0, the
periodic boundary conditions atx = −rλ andx = (1 − r)λ are now applied. The the material constants,
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FIGURE 5.6: The distribution of the individual stress components over the entire specimen com-
posed of two semi-infinite grains with mutually misorientated crystal lattices. The cut-off parame-
ter isℓ = 5h0.
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misorientation of the lattices and the applied stress are listed in Tab. 5.2.

The upper surface of the specimen after loading is plotted inFig. 5.7 over twoλ periods. The blue lines
represent the top surface of each grain in a situation when the grains were independently loaded by external
stressσA

yy = 8MPa. The red line shows the upper surface profile for the grains welded together and after
the minimisation of the strain energy.

The red line is shifted towards smaller displacements as compared to the blue line. This effect is associated
with the boundary conditions set at the grain boundaries. Iffree, the individual grains subjected to the
applied load would shrink such that gaps between each pair ofneighbouring grains would appear (note the
drastically different scales on both axes due to which the gap cannot be directly observed in Fig. 5.7). When
the grains are welded, these gaps must be refilled with the material which leads (under the assumption
of a constant volume) to the shrinkage of each grain along they-direction and to the widening along the
x-direction. This strain component is associated with the componentsσA

xx of the applied stress discussed in
the subsection 4.3.4.
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FIGURE 5.7: The upper surface of a periodic two-grain pattern. One period of lengthλ = 4h0

consists of two grains with mutually misorientated crystallattices (α = 0, β = π
6 ). The red line

represents the final top surface.

All the non-zero components of the stress tensor are plottedin Fig. 5.8 over one two-grain period. The stress
distributions correspond to the displacement field shown inFig. 5.7. Contour plots of the stress component
profiles are plotted next to the corresponding surface plots.

The experimental results mentioned in the chapter 1 were obtained for three different values of the externally
applied stress:2MPa, 8MPa and20MPa. Therefore, simulations based on the modelII were performed
for the same set of three external loadsσA

yy and the results are presented in Fig. 5.9. There is no qualitative
difference between the stress distributions obtained for differentσA

yy loads. The quantitative difference rela-
tes to the scaling factor for the stress coordinate that increases with the increasing external stress. This result
reflects the linearity anticipated for the elastic continuum within a framework of the linear elasticity theory.
Since the deformation is proportional to the applied load, higher applied load results in larger deformation.
Therefore, the vector fieldsuM computed for the same type but increasing loads are mutuallyproportional.
This fact translates also into the shape of stress surface which is self-similar as it is demonstrated in Fig. 5.9.
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FIGURE 5.8: The distributions of stresses over one period composed of the two-grain pattern. The
grains have mutually misorientated crystal lattices. The length of one period isλ = 4h0 and the
externally applied load isσA

yy = 8MPa.
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FIGURE 5.9: Distributions of the stress componentsσyy for the periodic pattern of two-grains
loaded by the external stressσA

yy of: (a)2MPa, (b) 8MPa and (c)20MPa.
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FIGURE 5.10: Distributions of stress componentsσxx, σyy, σzz andσxy over one period of the
two-grain pattern. The grains have mutually misorientatedcrystal lattices. The length of one
period isλ = 4h0 and the externally applied load isσA

yy = 8MPa. (a) α = −π/6, β = π/6,
r = 0.5, (b) α = 0, β = π/6, r = 0.25.
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The results presented so far in this subsection have been obtained for constant values of the parametersα,
β andr given in Tab. 5.2. We are now interested in changes in the stress distribution due to the variations
of parametersα, β and r. The results obtained forα = −π/6, β = π/6 and r = 0.5 are shown in
Fig. 5.10(a) whereas the stress redistributions forα = 0, β = π/6 andr = 0.25 are shown in Fig. 5.10(b).

The decomposition of the displacement vector fieldu = uA + uM used in calculations within a fra-
mework of the modelI is not always a proper approach. A related erroneous result is demostrated in
Fig. 5.11. Here displacement fielduA associated with the applied load was calculated under the assumption
that the only non-zero component of the applied stress isσA

yy. This is, in fact, not correct as it was discussed
in the subection 4.3.4. As an evidence of the incorrect result we note that the average value of the redis-
tributed stress componentσyy is significantly higher than the expected value of8MPa equal to the applied
stress.
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FIGURE 5.11:Distribution of the componentσyy over one two-grain period when the contribution
of the componentσA

xx is neglected. This simplification results in a redistribution of σyy with
average value about13MPa which is much higher than the expected value equal to the applied
stressσA

yy = 8MPa.

5.2.3 Stress distributions for the model III

The FEM mesh generated for the 3D model of the misorientated grains was introduced in the subsection
4.3.4. The mesh consisted of eight elements along each side of the hexagonal grain (see Fig. 4.3(b)) and
contained2780 nodes that delimit3648 elements. The basic motive of the periodic pattern consistsof four
grains (see Fig. 3.6 on page 21). These four grains can be sorted further into two classes where each class
represents grains with the same orientation with respect tothe global coordinate system. However, the
grains from different classes exhibit different crystallographic orientation as far as the relation to the global
coordinate system is concerned.

TEM micrographs ofNiTi alloy were presented in the chapter 1. The evaluation of the corresponding
electron diffraction patterns provides information on howthe crystal lattices in different grains are orien-
tated with respect to the global coordinate system. The orientation of each grain can be described by the
transformation matrixR from the global coordinate system0xyz into the local coordinate system0xiyizi
of the i-type grain. The transformation matrices were obtained from the TEM micrograph in Fig. 1.7 and
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from corresponding diffraction patterns for the grain 1 andthe grain 2 asR1 =








0.9505 −0.1901 −0.2458

−0.2791 −0.2072 −0.9377

0.1254 0.9612 −0.2456







, R2 =








0.6694 0.1116 −0.7345

−0.1570 −0.9368 −0.3126

−0.72012 0.3444 −0.6023







. (5.1)

These matrices were used in the calculations. The model geometry is further described by the undefined
parameterh0 (2h0 is the thickness of the investigated layer of grains) and by the side length of the hexagonal
graina = h0.

All other material constants remain the same as in previous calculations (NiTi alloy at 773K), see
Tab. 5.2 and the layer is subjected to the stressσA

yy = 8MPa applied externally.

When the periodic boundary conditions are correctly tied up(see Fig. 3.6(c) on page 21) the number
of independent unknown variables is reduced. In the situation investigated here, the final elastic energy
potential is a function of6840 independent variables.

The upper surface of the 3D specimen, which was initially a plane aty = h0 before loading, is drawn in
Fig. 5.12. The discontinuous surface shown in Fig. 5.12(a) represents a situations after loading the mutually
independent grains by the applied stressσA

yy = 8MPa. The continuous surface in Fig. 5.12(b) results from
the energy minimisation that introduces the smoothing displacementuM and restores the continuity of the
displacement field. The four grains that make up an elementary cell of the periodic pattern are highlighted
and are plotted together with all surrounding grains. The surrounding grains are included in Fig. 5.12 to
demonstrate the proper application of the boundary conditions.

Figure 5.13 illustrates all components of the stress tensorthat correspond to the displacement shown in Fig.
5.12(b). These graphs suggest that the hydrostatic components are generally larger than the shear compo-
nents. It is also evident that the stress redistribution affects preliminary grain boundary regions. Therefore,
near grain boundaries one can expect the most pronounced effect as far as the selection of crystallographic
precipitate variants is concerned.
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FIGURE 5.12:The upper surface of the periodic 3D specimen after loading by σA
yy = 8MPa. The

figure demonstrates how the total displacementu (b) recovers the continuity of the surface after
application of the external stress when compared to the set of individual grains (a) subjected to the
applied load.
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FIGURE 5.13:Distributions of the individual stress tensor components over one cell of the periodic
pattern calculated for the positions at the upper surface (y = h0). The microstructure is subjected
to the applied load ofσA

yy = 8MPa. The stress components vary significantly especially in grain
boundary regions. The hydrostatic components are larger than the shear components.



6 Crystallographic variants and their preferential precip i-
tation
All calculations summarized in following section focus on the interaction energy that contributes to the total
energy of the crystal when a particle is placed in a preloaded(stress fieldσ) elastic continuum. The equation
for the interaction energy was derived by ESHELBY (1961)

Eint = −

∫

Vp

σijε
T
ij dV . (6.1)

The meaning of the strain tensorε
T and the crystallographic relationship between theTi3Ni4 precipitates

and theNiTi matrix were discussed in the chapter 1.

The selection principle that specifies which crystallographic variant most probably precipitates in a given
location of the microstructure is based on the interaction energy given by Eq. (6.1). Each crystallographic
variant is placed into a position in the matrix where a particular stress stateσ is present and the interaction
energy is computed. The variant associated with the lowest interaction energyEint is then identified as the
selected variant. In the present approximation, we do not consider contributions to the stress stateσ that
might be associated with the presence of other particles in the vicinity of the given location.

6.1 Approximation of constant stress inside the precipitat e

In the first step, it is convenient to simplify the evaluationof the interaction energy and to assume that
the precipitate is so small that the stress fieldσ does not vary too much in the precipitate volume. This
approximation yields qualitatively correct results without any special computational effort.

Within the approximation of the constant stress field insidethe precipitate, the equation (6.1) simplifies to

Eint = −Vpσijε
T
ij . (6.2)

In what follows, the variable chosen for the comparison of different crystallographic variants is the inter-
action energy density (IED)Eint/Vp.

6.1.1 Precipitates in two semi-infinite grains

The calculated stress distributions over the two semi-infinite grains loaded by the external stress
σA

yy = 8MPa were presented in the subsection 5.2.1. The eight differentcrystallographic variants are
divided into two groupsG1 andG2 according to the orientation of their habit plane normal parallel to one of
eight{1 1 1}NiTi,B2-plane normals

G1 =
{

[1 1 1], [1 1 1], [1 1 1], [1 1 1]
}

, G2 =
{

[1 1 1], [1 1 1], [1 1 1], [1 1 1]
}

. (6.3)

The numerical results show that variants within each group yield the same interaction energy in a given
location of the system. It is worth noticing that so called “complementary variants” (variants with a parallel
(but opposite) axis of the disk, e.q.[1 1 1] and[1 1 1]), are always in the same group.

The spatial distributions of IED for the precipitates from the groupG1 and groupG2 are plotted in Fig. 6.1(a)
and (b), respectively. Since all precipitates belonging toone variant group (e.g. groupG1) are equivalent
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FIGURE 6.1: Spatial distribution of the interaction energy density associated with theTi3Ni4
precipitation. Precipitates are treated as elastic inclusions in theNiTi matrix. The parentNiTi
B2 phase consists of two semi-infinite grains subjected to the externally applied stress8MPa.
(a) Energy distribution for crystallographic variants[1 1 1], [1 1 1], [1 1 1], [1 1 1] (group G1),
(b) energy distribution for crystallographic variants[1 1 1], [1 1 1], [1 1 1], [1 1 1] (groupG2).
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as far as the IED is concerned, it is now sufficient to investigate the IED differences for only one variant
type from the groupG1 and one from the groupG2. This comparison of the IED yields the energetically
more convenient group of variants for a given location in themicrostructure. The corresponding IED map
is plotted in Fig. 6.2.
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FIGURE 6.2: Energy map showing the preferential precipitation of variants from either the group
G1 or G2. The underlying stress distributionσ was calculated using the 2D model of two semi-
infinite grains subjected to the applied stress of8MPa. The preferential precipitation of variants
from groupG1 can be expected in red regions, the precipitates from the groupG2 are beneficial in
green regions. Dashed line represents the grain boundary.

More intensive colour in the map means a larger bias in favourof precipitates from a either group. The
energy map in Fig. 6.2 suggests that the preferential selection of variants is expected in regions near the
grain boundary. The results suggest that when the variant selection is mainly based on the interaction energy
between the precipitate strain field and the external stressdistributed over the matrix, then only four out of
eight variants would be observed in the vicinity of the grainboundary. Taking into account the fact that it
is very difficult to distinguish the complementary variantsexperimentally, the modelling results show that
in some regions near to the grain boundary only two out of fourdistinguishable variants would grow. This
result is in a qualitative agreement with the experimental observation in the Introduction and published in
the literature (BOJDA et al., 2005).

6.1.2 Precipitates in 2D periodic two-grain pattern

The calculated stress distribution resulting from the model II (2D periodic two-grain pattern) was presented
in the subsection 5.2.2. The estimate of the interaction energy is again based on Eq. (6.2). Similarly to
the case of two semi-infinite grains, the set of eight variants is divided into two subsetsG1 andG2 given by
Eq. (6.3). The variants within each group exhibit the same probability of growth in a particular position as
assessed based on the interaction energy of the precipitate. The applied load isσA

yy = 8MPa.

Figure 6.3 presents the energy distribution for variants from groupG1 (part (a)) and from groupG2 (part
(b)). The IED is grater then zero everywhere in the microstructure and thus makes the precipitation less
favourable (when the elastic part of the overall energy is taken into account). The situation may change when
the chemical energy associated with the precipitate formation is considered. Since the chemical energy term
is the same for all crystallographic variants, the IED determines the most favourable crystallographic variant
that will form in a given location. The energy map for the mostfavourable variants is shown in Fig. 6.4.
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FIGURE 6.3: Spatial distribution of the interaction energy density associated with theTi3Ni4
precipitation. Precipitates are treated as elastic inclusions in theNiTi matrix. The parrentNiTi
B2 phase consists of two-grain periodic pattern subjected to the externally applied stress8MPa.
(a) Energy distribution for crystallographic variants[1 1 1], [1 1 1], [1 1 1], [1 1 1] (group G1),
(b) energy distribution for crystallographic variants[1 1 1], [1 1 1], [1 1 1], [1 1 1] (groupG2).
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FIGURE 6.4: Energy map for the 2D model of periodic two-grain pattern. Grains are subjected
to the applied stress of8MPa. Variants from the groupG1 are favourable in red regions, the
precipitates from the groupG2 are preferred in green regions. Dashed lines represent the grain
boundaries.
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FIGURE 6.5: Spatial distribution of interaction energies for variant groupsG1 andG2. Results are
plotted for the 2D model of periodic two-grain pattern. Grains are loaded by2MPa (left column)
and20MPa (right column).
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The stress distributions for different values of the applied load were presented in the subsection 5.2.2. Ac-
cording to the arguments mentioned in the subsection 5.2.2 and based on Eq. (6.2), the different loads cause
only a scaling in IED for the two variant groupsG1 andG2 but the energy map in Fig. 6.4 is not affected.
Each contour on this map connects positions with a constant value of the IED that a given fraction of the dif-
ference between the global minimal and the global maximal value of the IED over the entire microstructure).
The energy distributions for both groupsG1 andG2 and for different applied loads are plotted in Fig. 6.5.

6.1.3 Four-grain periodic pattern – 3D model

The concept of the favourable precipitate variant selection is now demonstrated for a 3D specimen composed
of a four-grain periodic pattern. The corresponding stressredistribution was investigated in the subsection
5.2.3.
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FIGURE 6.6: Interaction energy distributions calculated for four pairs of complementary precipi-
tate variantsP1 – P4 in one periodic cell that represents aNiTi microstructure in the model III .
The energies were evaluated for positions at the upper surface of the specimen (y = h0).

The assessment of the interaction energy was again based on Eq. (6.2). The IED of all variants are almost
identical in the interiors of the grains. On the contrary, inthe grain boundary regions the IEDs of individual
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variants differ significantly. Therefore, the preferential precipitation of crystallographic variants due to their
different interaction energies can be expected mainly nearthe grain boundaries. Similarly to the results
obtained for the 2D two-grain periodic model, the IED of eachvariant is positive everywhere. For a final
decision whether a particular position is energetically favourable or not, the chemical term contributing to
the change∆G of the Gibbs free energy must be taken into account.

The IEDs were calculated and compared for all eight variantsand it was found that the energy distribution
for complementary variants are identically the same. The corresponding IED distributions obtained for pairs
P1 – P4 are shown in Fig. 6.6.

P1 =
{

[1 1 1], [1 1 1]
}

, P2 =
{

[1 1 1], [1 1 1]
}

,

P3 =
{

[1 1 1], [1 1 1]
}

, P4 =
{

[1 1 1], [1 1 1]
}

.
(6.4)

However, the IED differs when different pairs of the complementary variants are investigated. The IED
calculations were performed for each node of the FEM mesh andthis made it possible to estimate the
energy of crystallographic variants in each node. The colour map that indicates variant with the lowest IED
in a given location of the 3D specimen is shown in Fig. 6.7.

6.2 Approximation of variable stress inside the precipitat e

More accurate values of the interaction energy are obtainedwhen the actual stress distribution inside the
precipitate is taken into account and calculations are performed in accord with Eq. (6.1). The calculations
are CPU demanding and thus they were performed only for the 2Dmodel I of two semi-infinite grains.
Results are representative enough to demonstrate changes with respect to the approximation of constant
stress inside the precipitate volume. The shape of the precipitate was approximated by an ellipsoid of
rotation with a diameterd and a thicknessh. The particulard andh values used for the calculation were

d =
h0

10
, h =

d

5
, (6.5)

see Fig. 6.8.

The distribution of crystallographic variants that exhibit the lowest interaction energy in a given location
near the grain boundary is drawn in Fig. 6.9. The four pairs ofcomplementary variantsP1 –P4 (Eq. (6.4))
are distinguished by four colours (red, blue, green and yellow) and the two complementary variants within
each pair are represented by the same colour but different shades. This figure clearly shows that in some
locations only one of the two complementary variants reaches the energy minimum.

A preliminary conclusion supported by the more precise calculations is that there always are two regions in
the microstructure where the variants with the lowest energy are either from the groupG1 or G2 (the basic
division into two groups is described in the subsection 6.1.1). These variants never precipitate simultane-
ously in the same location. Moreover, the more exact computations allowed distinguishing the energies of
complementary variants. The minimum interaction energy isoften reached by two of four experimentally
distinguishable variants (P1 – P4) but each distinguishable variant is then (sometimes) represented by only
one of the two complementary particles.

It is worth noticing that there are also some locations wherethe lowest interaction energy is associated with
only one of the eight crystallographic variants ofNi4Ti3 precipitates. However, these results are strongly
burden by the numerical part of the calculations and thus aredebatable. The differences between energies
of different variants are of the order ofh3

0 · 10−5 J m−3 and smaller whereas the total interaction energies
are found in theh3

0 · 10
−4 J m−3 range.
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FIGURE 6.7: Node positions in which the IED was calculated within a framework of the 3D
model. The precipitation of the most favourable variant pair in the individual node is indicated
by a corresponding colour dot. Layer 1 and layer 5 refer to thebottom and top surfaces of the
specimen, respectively, while layers 2, 3 and 4 are located at y = −h0/2, y = 0 andy = h0/2,
respectively. The stress redistribution which causes the preferential precipitation results from the
externally applied stress of8MPa.
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(a) (b) (c)

FIGURE 6.8: The precipitate shape is approximated by an ellipsoid of rotation. (a) 3D view, (b)
projection parallel to and (c) perpendicular to the rotation axis.
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FIGURE 6.9: The distribution of crystallographic variants near the grain boundary calculated for
the non-uniform stress state inside the particle volume. The stress distributionσ in the matrix prior
to precipitation results from the 2D model of two semi-infinite grains loaded by the externally
applied stress of8MPa. This map can be compared with the energy map in Fig.6.2.



7 Discussion of the results

7.1 Numerical techniques

7.1.1 Surface term of elastic potential

Solutions to the problems in the present work were found by minimisation of the elastic potential given by
Eq. (2.6). The second term of this potential

∫

S
T · u dS (7.1)

deals with virtual works done by surface tensions. The surface tension are given by

Ti = σijνj . (7.2)

It was discussed in the subsection 4.3.4 that, for models considered in this investigation, a value of the work
in Eq. (7.1) is given by the surface tensions acting over the parts of the surface that were originally planes
perpendicular to they-axis. These parts are two – the top surfaceStop and bottom surfaceSbottom of the
grains, see Figs. 3.3, 3.5 and 3.6. In what follows, we refer to eitherStop or Sbottom asS̃.

Let us decompose the stress field

σ = σ + ∆σ , (7.3)

where

σij =
1

S̃

∫

S̃
σij dS and 0 =

1

S̃

∫

S̃
∆σij dS . (7.4)

Let us similarly decompose the displacement fieldu = u + ∆u , (7.5)

where

ui =
1

S̃

∫

S̃
ui dS and 0 =

1

S̃

∫

S̃
∆ui dS . (7.6)

Substituting these expressions into the surface term (7.1)yields
∫

S̃
T · u dS =

∫

S̃
σijujνi dS +

∫

S̃
∆σijujνi dS +

∫

S̃
∆σij∆ujνi dS . (7.7)

The average displacementuj and the outer̃S normalsνi in the second term of Eq. (7.7) are constant variables
over the integration range. Following the second conditionin Eq. (7.4), we found out that the second term
in Eq. (7.7) is zero. The third term in Eq. (7.7) constitutes asecond order corrections that we neglect. To
support the omission of the last term in Eq. (7.7) we propose these two arguments: (i) corrections∆f of
a quantityf are usually small when compared tof (for both stress fieldσ and displacement fieldu) and
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(ii) considering the geometry of models used in this work, namely the periodic boundary conditions, and
the continuity of all quantities this term presents a very small contribution. By these arguments we finally
obtain the following approximation of the surface tension work

∫

S̃
T · u dS ≈

∫

S̃
σijujνi dS . (7.8)

In standard elasticity problems the boundary conditions prescribe either stress distribution or displacement
field in each position over the surface. In our problems we consider a little bit different boundary condition
in a form

σ = σ
A (7.9)

on both surfacesStop andSbottom. By summing approximations of the form of Eq. (7.8) forStop and
Sbottom we obtain the final expression for the potential surface termas

∫

S
T · u dS ≈

∫

S
σA

ijujνi dS . (7.10)

This form was used in the calculations.

7.1.2 Search for a global minimum

All the numerical calculations were performed using the FEM. This technique aims at the minimization of
a function of many-variables with the objective to find a global minimum of the investigated function in
the region of interest. Naturally, a question arises whether a search for the global minimum could always
be successful. The FEM approximates any function in the volume of one element by a polynomial with
coefficients that consist of constants and powers of the unknown function values in the element nodes. The
integral of this function over the element volume remains polynomial in the unknown function values in
nodes. Solutions obtained in this work were all based on linear approximations of the unknown functions
(displacements). Therefore, obtained coefficients were proportional either to zero or to the first power of the
function values in nodes. Since the objective function (theelastic potential) is composed of sums of such
integrals it remains a polynomial in unknown values of the displacements in nodes.

The build-in functionMinimize of the system Mathematica 5.0 that was employed in the minimization
process guarantees, see WOLFRAM (1999), that, for objective functions of a polynomial form,the procedure
always reaches a global minimum of the objective function inthe investigated region. Therefore the obtained
minimum constitutes a true global minimum for the considered problem.

It is worth noticing that displacement field that minimizes the objective function is not, in general, a unique
solution. Let us assume thatu is a displacement field that minimizes the elastic potential, i.e. that the
potential

∫

V
W (ε(u)) dV −

∫

S
T · u dS (7.11)

reaches its minimum possible value. Let us now assume another (constant) displacement fieldutr. The first
term in Eq. (7.11) depends only on strain associated with thedisplacement field. Strain is given by partial
derivatives of individual components of the displacement field and thus an additional constant term does not
effect the resulting strain field

ε(u) ≡ ε(u + utr) −→

∫

V
W (ε(u)) dV =

∫

V
W (ε(u + utr)) dV . (7.12)

When the applied stress is uniform over the volume of a specimen, the second term in Eq. (7.11) can be
converted to

∫

S
T · (u + utr) dS =

∫

S
T · u dS +

∫

S
T · utr dS . (7.13)
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Recalling the relation between stressσ and surface tractionsT , the second term in Eq. (7.13) further
simplifies to

∫

S
T · utr dS =

∫

S
σiju

tr
j νi dS = utr

j

∫

S
σijνi dS = 0 , (7.14)

whereν represents the outer normal to the surface. The last integral in Eq. (7.14) is zero due to the
equilibrium conditions.

Altogether we obtain
∫

V
W (ε(u)) dV −

∫

S
T · u dS =

∫

V
W (ε(u + utr)) dV −

∫

S
T · (u + utr) dS. (7.15)

The last equation means that a displacement field composed ofa superimposed constant displacement and
the displacement field that minimizes the elastic potentialresults in the same (minimum) value of the po-
tential. Therefore, the global minimum of the elastic potential in terms of displacement is unique except
for adding a constant displacement field. The constant displacement fieldutr constitutes a macroscopic
translation of the whole specimen in the direction given byutr and thus does not contribute to the defor-
mation of the elastic body. We are interested in stress redistributions that are proportional to strain and thus
they are not affected by a possible additional displacementterm connected with the translation of the entire
specimen.

7.2 Comparision of calculated and experimental data

Although the microstructural models presented in preceding sections are oversimplified with respect to real
microstructures, it is interesting to compare the numerical results with TEM observations. The contribution
Eint to the total Gibbs free energy was described by Eq. (2.31). This contribution is related to the interaction
of the precipitate coherency strain and the stress distributed in the microstructure prior to precipitation. The
part ∆Gchem of the Gibbs free energy change related to the nucleation andgrowth of the precipitate was
not addressed. Therefore, the numerical results are not decisive with respect to whether the presence of
a precipitate in a particular location decreases or increases the overall energy of the system. TheEint

contribution only indicates which crystallographic variant would precipitate in the position assuming that
∆Gchem provides enough driving force for precipitation. The distribution of precipitates presented in the
previous chapter thus does not give any information on wherethe precipitates will appear but rather on
which crystallographic variant would be preferred.

7.2.1 Stress-free aging

The models based on the anisotropy of thermal expansion may have a potential to explain the distribution
of precipitates in specimens aged without applied stress. The obtained results (Figs. 5.2 and 5.4) suggest
that the relevant stress redistribution exists only in grain boundary regions. Therefore, the preferential
precipitation of crystallographic variants can be expected in the vicinity of grain boundaries. However,
systems (likeNiTi) with cubic crystal lattice have always isotropic tensor ofthermal expansion coefficients
and thus there is no stress redistribution associated with the thermal expansion.

The TEM micrograph in Fig. 7.1 documents a grain boundary region in the specimen which was aged
without external stress. Since the precipitates are only observed near to the grain boundary one can argue
that this heterogeneous precipitation results due to the stress redistribution. Nevertheless, this interpretation
suffers from several weaknesses: (i) The results of the stress redistribution analysis do not suggest that the
precipitates would occur only in grain boundary regions instead they predict a selection of crystallographic
variants there. (ii) A closer examination of the TEM micrograph does not confirm any variant selection.
All variants observed near to the grain boundary in Fig. 7.1 are distributed with a similar volume fraction.
(iii) As it has already been pointed out, the models of thermal expansion are not applicable for theNiTi
system.
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FIGURE 7.1: A TEM micrograph ofNiTi microstructure after stress-free aging. The precipita-
tes are observed only in grain boundary regions but no variant preferential precipitation can be
deduced – all crystallographic variants are distributed with similar volume fraction.

A more plausible reason for the documented heterogeneous precipitation has been suggested recently by
KHALIL -ALLAFI et al. (2002b) and FILIP and MAZANEC (2001). It is now well established fact that the
specimens aged without applied stress exhibit heterogeneous Ni4Ti3 precipitation when particles nucleate
and grow preferentially near grain boundaries, atTi4Ni2O oxide inclusions and atTiC carbide particles
while there are regions in the grain interior that are free ofprecipitates. The new explanation of this phe-
nomenon suggested by NISHIDA et al. (2003) underlines the importance of the furnace atmosphereused
during the heat treatment of the alloy. Questions related tothe precise determination of microstructural
parameters resulting from different heat treatment procedures are currently addressed.

7.2.2 Stress assisted aging

Microstructures that were subjected to the externally applied stress during the aging treatment match more
closely situations modelled in this work, namely cases analyzed in terms of the anisotropy of elastic con-
stants. The microstructural models considered here, the 2Dmodel of two semi-infinite grains, the 2D model
of periodic two-grain pattern and the 3D model of periodic four-grain structure, yield a stress redistribution
when subjected to an externally applied stress. These models unanimously predict the identical behaviour
of the complementary crystallographic variants (variantswith parallel but opposite orientation of the main
particle disk axis). This conclusion cannot be directly proved by existing TEM data because the experimen-
tal separation of the complementary variants would requiremore sophisticated TEM techniques. However,
this prediction seems quite reasonable for both opposite variants have, in fact, identical atomic structure and
habit plane orientation in theB2 matrix. There is thus no reason why these variants should interact with the
parent matrix differently.

The other conclusion supported by all models is that the grain interiors do not exhibit any strong bias as far
as the interaction energyEint is concerned. However, the 3D modelIII predicts almost the same distribution
of the IED for all crystallographic variants inside the grains. Closer to the grain boundary the preference of
some variants is observed. Depending on the model and on the position in the grain boundary region, one or
two variants reach the lowest interaction energy. The grainboundaries themselves separate regions with a
preference for one particular variant on one side that rapidly changes into the preference for another variant
on the other side of the boudary. Therefore, the interactionenergy right at the grain boundary is almost the
same for all variants.
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The strength of the preference precipitation not only depends on the position in the microstructure but it
also depends on the grain orientation with respect to the direction of the applied load. In the case of two
semi-infinite grains, there is much smaller difference between energies of variants from groupsG1 andG2 in
the grain 1, which has a rather special orientation (α = 0) with respect to the applied load (σ

A ∼ σA
yy), as

compared to the difference of the energies of precipitates from these two groups computed for the grain 2.

Figure 7.2 shows a part of grain boundary (GB) and adjacent regions in the specimen after aging for
1 hour under the applied stress of8MPa at temperature500◦C. The TEM micrograph illustrates clearly
that the grain interiors do not exhibit any strong selectionof varinats – all crystallographic variants are
present with almost the same volume fraction. This result was discussed by BOJDA et al. (2005). These
authors estimate a distance of about2µm from the GB above which no pronounced selection of varinats is
observed. In the region closer to the grain boundary in Fig. 7.2, two out of four possible pairs of com-
plementary variants are strongly preferred. This experimental feature is in qualitative agreement with the
results of calculations where mainly the regions close to the grain boundary are affected by the preferential
precipitation of variants. Moreover, the TEM micrograph inFig. 7.2 reveals a region of thickness about
0.2µm next to the GB where no precipitation occurs. This denuded zone cannot be predicted from our
calculations. Here the “chemical term”∆Gchem of Gibbs free energy starts to play a significant role that
was not included in the present modelling approach.

FIGURE 7.2: Detail of a TEM micrograph ofNiTi microstructure after aging for1 hour under
the applied stress of8MPa at temperature500◦C. A preferential precipitation of two out of four
complementary variant pairs is clearly seen in the grain boundary region. On the contrary, the
grain interiors do not exhibit any strong selection of variants.

All the calculation were performed within the framework of the linear elasticity theory. It is thus no surprise
that higher applied stress results in the self-similar but boosted redistribution of the stress. Therefore, the
energy distribution is also boosted for higher applied stress. In the shape memory technology there is an
interest related to the width of the grain boundary region affected by the selective precipitation ofNi4Ti3
variants. The extent of the selective precipitation influences theB2−R−B′19 transformation path and may
thus well govern the characteristics of the shape memory effects. In this respect, results of the calculations
provide an important information on the size of grain boundary regions in which selective variant preci-
pitation occurs. When we set a criterion requiring that a particular crystallographic variant nucleates and
grows in a particular location only whenEint is lower then a thresholdEmin, then the higher applied stress
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causes widening of the region where the selection takes place. This result is again in qualitative agreement
with the experimental data presented by BOJDA et al. (2005). According to the data tabulated by BOJDA

et al. (2005) the affected region for the20MPa aging is approximately4.5µm which is about2.25-times
bigger then for the case when the aging was assisted by the applied stress of8MPa. Our calculations wi-
thin the framework of the linear elasticity theory predict that for20MPa the affected area should be about
2.5-times bigger then for8MPa. This is in a surprisingly good agreement with the experimental data.

In passing we can conclude, that the results obtained in the present work qualitatively agree with the TEM
observations of real microstructres performed after the stress-assisted aging of theNiTi shape memory
alloy. Therefore, the suggested mechanisms of stress redistribution and the subsequent precipitate–stress
field interactions seem to describe the processes in microstructure in a rather satisfactory way.

7.3 Self-stress of precipitates

Results obtained by ESHELBY (1961), LOVE (1954), KELLOG (1929) and MACM ILLAN (1958) were pre-
sented in the theoretical overview in the chapter 2. These authors derived an explicit formulas for defor-
mation due to an elastic inclusion inserted into the elasticmatrix. There are at least two reasons why the
analytical formulas are not convenient for our calculations. First, the expression in Eq. (2.25) is truly
complicated to investigate the stress field outside the precipitate. Second, Eq. (2.25) assumes that all the
three axes of the ellipsoidal inclusion possess different lengths. In our case, we have a lenticular shaped
precipitate witha = b > c and this considerably complicates the evaluation of the potential according to
Eq. (2.25).

Fortunately, far from the inclusion the potentialsϕ(r) andψ(r) can be approximated byVp/r andVpr,
respectively. Here,Vp is the volume of precipitate. Inserting these potentials into Eq. (2.22) yields the
displacement field. A standard procedure then provides all components of the stress field. Using the “far-
from-inclusion” approximation of the potentials we found out that all stress components are negligibly
small from the distance of about5ρ whereρ is the linear size of the inclusion. This means that the self-
stress of precipitates is important only in a relatively small region near the precipitate. However, just a brief
examination of the TEM micrograph in Fig. 7.2 suggests that even so small region close to a precipitate still
contains neighbouring particles. Therefore, a more precise examination of the variant precipitation would
give an account of the stress fields associated with the particles distributed in a vicinity of the investigated
location. In this sense, the precipitate–precipitate interactions could play an important role in the variant
selection.

7.4 Minimal interaction energy versus maximum/minimum nor mal stress

An interesting outcome of the numerical analysis performedin this work is an explicit prediction which
variant yields the minimum interaction energy for a given location in the microstructure. The interaction
energy term can be expressed in the coordinate frame of a precipitate. Equation (6.2) reveals that the
interaction energy is composed of three terms and it has a form

Eint = −Vp(σxxε
T
xx + σyyε

T
yy + σzzε

T
zz) . (7.16)

The first two terms are products of the stress and particle misfit strain components acting in the habit plane
of the precipitate. The third term has a similar structure except it is constructed of components normal to
the precipitate habit plane. Since all the stress components are of the same order and because the normal
component of the misfit strainεT is about ten-times bigger than the two in-plane components,the interaction
between the normal component of the stress and the normal component of the misfit strainεT represents the
main contribution to the interaction energy.

Due to the fact that the normal component of misfit strain is negative and due to the structure of the inter-
action energy term (see Eq. (7.16)), the minimum of the totalinteraction energy is attained either for the
lowest normal tensile stress or the highest normal compression stress.
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In principle, all the models considered in this work showed atendency to follow this criterion. As an example
we can discuss the results obtained with the 3D model of a planar four-grain periodic microstructure (model
III ). Figure 7.3(a) shows the distribution of variants based onthe criterion of the lowest IED as calculated
for positions at the upper surface of the specimen. Figure 7.3(b) shows the similar distribution of variants
now based on the criterion of the lowest value of a normal tensile stress component. We can conclude that
in most investigated locations these two variant distributions correspond to each other. In regions where the
energy-based and normal stress-based distributions differ, the habit plane components of the stress tensor
dominate the particle–stress field interaction and their contributions to the interaction energy outnumber the
contribution due to the normal stress.

(a) (b)

[1 1 1], [1 1 1] [1 1 1], [1 1 1] [1 1 1], [1 1 1] [1 1 1], [1 1 1]

P1 P2 P3 P4

FIGURE 7.3: Comparison of particle distributions of precipitates calculated for locations at the
upper surface of one four-grain cell (model III ) using the criterion of (a) the lowest interaction
energy and (b) the lowest stress component normal to the habit plane of the precipitate.

Therefore, the selection according to the lowest normal stress component can be only used as a rough
criterion. Moreover, the estimate of the normal stress components needs the same computational effort as
the evaluation of the interaction energies for all particlevariants.



8 Summary and conclusions
Shape memory alloys are rapidly developing perspective materials. The wide range of applications requires
precise knowledge of microstructures and processes governing microstructural changes of SMAs. The most
often used SMAs are those based on theNiTi intermetallic system and thus the input in the calculations
relies on theNiTi material data. The presented work has focused on the origin of inhomogeneous distribu-
tions of precipitatesNi4Ti3 in NiTi microstructures since this feature essentially influencesthe martensitic
transformations and shape memory characteristics.

Two mechanisms that can give a rise to stress redistributions throughout the microstructures were selected.
The first mechanism deals with the anisotropy of thermal expansion coefficients. This type of anisotropy
results in different rate of shrinkage between mutually misorientated neighbouring grains when the alloy
is cooled from the annealing temperature to the room temperature. The second mechanism addresses the
anisotropy of elastic constants and operates when a specimen is aged under the assistance of the exter-
nally applied stress. Because the parentNiTi B2 phase has cubic crystal lattice the second mechanism is
particularly relevant.

The microstructure was described by three models with increasing complexity but simultaneously with
increasing similarity to the real systems. The simplest model is 2D and consists of two semi-infinite grains.
The next model is also 2D and represents infinite layer composed of a two-grain periodic pattern of a finite
height. The most complex model is 3D and considers a layer with periodic pattern of four hexagonal grains.

The methods used to calculate stress redistributions are based on the linear elasticity theory, a minimisation
of the elastic potential energy and Eshleby’s concept of elastic inclusions within an elastic continuum. The
finite element method was employed for the numerical minimisation of the elastic potential.

All models considered in this work predicted in stress redistributions. The numerical results support the
conclusion that the stress is redistributed namely in the grain boundary regions whereas the interiors of
grains are influenced only little. The numerical results also suggest that the hydrostatic components of the
stress tensor are about one order of magnitude larger than the shear components. The models further predict
that the higher applied stress results in larger displacement and that the stress redistributions for the same
model of microstructure but subjected to different external stresses are self-similar.

The interaction energy between precipitate misfit strain and the stress state in the parent matrix prior to
the precipitate formation was calculated. Generally, the grain boundary regions show a tendency for the
preferential precipitation ofNi4Ti3 crystallographic variants. In both 2D models the eight different crys-
tallographic variants divide into two groups. The precipitate variants within each group exhibit the same
interaction energy in a given location in the microstructure. For the 3D model the eight crystallographic
variants form four equi-energy pairs each composed of two complementary variants. These results are in a
qualitative agreement with the published experimental observations. The grain boundary regions are the lo-
cations where pronounced changes in the preferential precipitation of variants occur. The interaction energy
calculations in combination with the energy threshold criterion show that higher applied stress causes wide-
ning of the region along the grain boundary affected by the heterogeneous precipitation. This result is in a
good qualitative agreement with the experimental data.

The results obtained in this work support the suggested mechanisms of a heterogeneous variant precipitation
in specimens during the stress assisted aging. Although theused models of microstructures are oversimpli-
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fied when compared to the real systems they yield qualitativeresults that are in agreement with experimental
findings. Objectives of this work have been fully reached. A further work should deepen the qualitative
predictions and their correspondence to TEM experimental observations. The extensions should namely
concentrate on (i) large scale models that better correspond to real microstructures, (ii) the self-stress of
precipitates that may result in some autocatalytic precipitation processes and (iii) the nucleation and growth
of the precipitate (the term∆Gchem of the Gibbs free energy).
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