Advanced Quantum Field Theory

Exam problems

. Find the free massive propagator A(x — ') for a (1 + 1)-dimensional
spacetime and study the behavior for  — 2’ timelike (inside the light-
cone) and x — ’ spacelike (outside the lightcone).

. For a real scalar field with interaction Ap?*/4!, draw all the connected
Feynman diagram contributions to the two-point function G® and the
four-point function G up to order \3.

. Consider a four dimensional real scalar field with the Lagrangian
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Compute the lowest-order corrections to the propagator and compute
the Z-factors of the quadratic terms in the Lagrangian in the MS

scheme.

. Yukawa theory is defined as a 4D theory of a Dirac fermion and real
scalar field defined by the Lagrangian
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Derive the fermion-loop correction to the scalar propagator. Show that
there is an extra minus sign for a fermion loop as compared to a scalar

loop.

. Assume that starting with the Maxwell Lagrangian Ly, in 4D we fix
the gauge with the gauge fixing condition

DA, + g AP A, =0,

where ¢ is an arbitrary real constant. How would the gauge fixing term
and the ghost Lagrangian look like? Show that there are now self-
interactions among the photons. What is the gauge propagator? What
is the ghost propagator? What are the ghost-gauge vertices? Calculate
the divergent one-loop contributions to the two-point function of the
gauge field. Feynman gauge £ = 1 may be assumed.
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6. In pure Yang-Mills theory fix the gauge using the axial gauge condition
ntAl =0

for n* a fixed four-vector. Find the gluon and ghost propagators and
the ghost-gluon interaction vertices.

7. In four dimension, calculate the contribution to the Yang-Mills beta
function from a non-self-interacting complex scalar field transforming
in the representation R of the gauge group, coupled to a non-abelian
external gauge field

L=-D'¢'D,¢ —m?¢'¢.

8. Consider performing the path integral for a scalar field theory in the
presence of a background field @(z). We define
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Clearly W [J, 0] is the original W[.J]. We also define the quantum action
in the presence of the background field

where now J(z) is the solution of
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Show that I'[p, 0] is equal to the original quantum action I'[¢] and that
Ile+ @l =Tlp+¢,0] =Tp, ¢,

which means that we can calculate the original quantum action by

calculating vacuum graphs in the background action

I'lg] = I'[, 0] = I'[0, &].
Confirm this by computing the one-loop contribution to the two-point
function for a real scalar field in 4D with a %@4 potential using this
method and in the standard way and compare the results.



