Fyzikální vlastnosti materiálů FX001

- 1. Vazba v pevné látce, elastické a tepelné vlastnosti materiálů
- 2. Elektrické vlastnosti materiálů
- 3. Optické vlastnosti materiálů
- 4. Magnetické vlastnosti materiálů
- 5. Supravodiče a grafen

Fyzikální vlastnosti materiálů

- 3. Optické vlastnosti materiálů
 - a) Optická odezva materiálů Maxwellovy rovnice, Laplaceova transformace, materiálové vztahy a odezvové funkce, komplexní vodivost a dielektrická funkce, index lomu.
 - b) Rovinná vlna v materiálu komplexní vlnový vektor, Poyntingův vektor, intenzita, absorbovaná energie.
 - c) Elektromagnetická vlna v materiálu a na rozhraní okrajové podmínky na rozhraní, přenosové matice, efektivní indexy lomu pro šikmý dopad.
 - d) Kramersovy-Kronigovy relace odezvové funkce v komplexní rovině, kuzalita odezvy, Kramersovy-Kronigovy relace pro odezvové funkce a reflektivitu.
 - e) Absorpce mřížky Lorentzův model pro polární krystaly, spektrální závislosti, závislost na hmotnostech atomů a tuhosti vazeb, nepolární krystaly vícefononová absorpce.
 - f) Odezva volných nositelů náboje Drudeův model, plazmová frekvence, spektrální závislosti, elementární kovy.
 - g) Optická odezva vázaných elektronů mezipásové přechody, sdružená hustota stavů, nízkorozměrné heterostruktury.
 - h) Propustná oblast oblast mezi kmity mříže a elektronovou absorpcí, optická skla, tavený křemen, diamant, safír, materiály pro optická vlákna
 - i) Odezva v rtg oblasti index lomu, absorpční hrany

Optické obory frekvencí

obor	f (Hz)	λ (μm)	1/λ (cm ⁻¹)	ħω (eV)
Rádiové mikrovlny	3 x 10 ¹¹	1000	10	0.0012
FIR	1.5 x 10 ¹³	20	500	0.062
MIR	1.2 x 10 ¹⁴	2.5	4000	0.5
NIR	3.7 x 10 ¹⁴	0.8	12500	1.55
VIS	-			
	7.5 x 10 ¹⁴	0.4	25000	3.1
UV	1.7 x 10 ¹⁵	0.18	55000	6.8
VUV	-			
	3 x 10 ¹⁶	0.01	106	125
rtg				

Odezvové funkce

$$\sigma(\omega) = -\mathrm{i}\omega\epsilon_0(\epsilon(\omega) - 1)$$

Vztah mezi vodivostí a dielektrickou funkcí

$$\epsilon(\omega) = 1 + i \frac{\sigma(\omega)}{\omega \epsilon_0}.$$

$$(N + iK)^2 = \epsilon_1 + i\epsilon_2,$$

$$\epsilon_1 = N^2 - K^2, \quad \epsilon_2 = 2NK.$$

Vztah mezi dielektrickou funkcí a komplexním indexem lomu

$$N = \sqrt{\frac{\sqrt{\epsilon_1^2 + \epsilon_2^2} + \epsilon_1}{2}}, \quad K = \sqrt{\frac{\sqrt{\epsilon_1^2 + \epsilon_2^2} - \epsilon_1}{2}}$$

Odezvové funkce

Kramersovy-Kronigovy relace

$$\chi_{\mathbf{r}}(\omega_0) = \frac{2}{\pi} P \int_0^\infty \frac{\omega \chi_{\mathbf{i}}(\omega)}{\omega^2 - \omega_0^2} d\omega$$

and
$$\chi_{\mathbf{i}}(\omega_0) = -\frac{2\omega_0}{\pi} P \int_0^\infty \frac{\chi_{\mathbf{r}}(\omega)}{\omega^2 - \omega_0^2} d\omega$$

$$\ln r_{\rm c}(\omega) = \ln \sqrt{R(\omega)} + \mathrm{i}\phi(\omega)$$

$$\phi(\omega_0) = -\frac{2\omega_0}{\pi} \mathbf{P} \int_0^\infty \frac{\ln\sqrt{R(\omega)} - \ln\sqrt{R(\omega_0)}}{\omega^2 - \omega_0^2} \,\mathrm{d}\omega$$

Podrobnější odvození pro s-polarizaci – šíření podél osy x

$$\begin{array}{c}
 n_{1} \\
 n_{2} \\
 n_{3} \\
 x
\end{array}$$

$$E(x) = \begin{cases}
 E_{1}e^{ik_{1x}x} + E'_{1}e^{-ik_{1x}x}, x < 0 \\
 E_{2}e^{ik_{2x}x} + E'_{2}e^{-ik_{2x}x}, 0 < x < d \\
 E_{3}e^{ik_{3x}(x-d)} + E'_{3}e^{-ik_{3x}(x-d)}, x > d
\end{array}$$

$$\vec{E}_{1||} = \vec{E}_{1||} \Longrightarrow E_{1y} + E'_{1y} = E_{2y} + E'_{2y}$$
$$H_{1||} = H_{2||} \Longrightarrow H_{1z} + H'_{1z} = H_{2z} + H'_{2z} \Longrightarrow n_1 \cos\theta_1 E_{1y} - n_1 \cos\theta_1 E'_{1y} = n_2 \cos\theta_2 E_{2y} - n_2 \cos\theta_2 E'_{2y}$$

$$\begin{pmatrix} 1 & 1 \\ n_1 \cos \theta_1 & -n_1 \cos \theta_1 \end{pmatrix} \begin{pmatrix} E_{1y} \\ E'_{1y} \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ n_2 \cos \theta_2 & -n_2 \cos \theta_2 \end{pmatrix} \begin{pmatrix} E_{2y} \\ E'_{2y} \end{pmatrix} \Rightarrow D_1 \begin{pmatrix} E_{1y} \\ E'_{1y} \end{pmatrix} = D_2 \begin{pmatrix} E_{2y} \\ E'_{2y} \end{pmatrix}$$

$$D_{2}^{-1}D_{1}\left(\begin{array}{c}E_{1y}\\E'_{1y}\end{array}\right)=\left(\begin{array}{c}E_{2y}\\E'_{2y}\end{array}\right)\Longrightarrow D_{12}\left(\begin{array}{c}E_{1y}\\E'_{1y}\end{array}\right)=\left(\begin{array}{c}E_{2y}\\E'_{2y}\end{array}\right)$$

$$D_{2}^{-1}D_{1}\left(\begin{array}{c}E_{1y}\\E'_{1y}\end{array}\right) = \left(\begin{array}{c}E_{2y}\\E'_{2y}\end{array}\right) \Longrightarrow D_{12}\left(\begin{array}{c}E_{1y}\\E'_{1y}\end{array}\right) = \left(\begin{array}{c}E_{2y}\\E'_{2y}\end{array}\right)$$

$$D_{12} = D_{2}^{-1}D_{1} = \left(\begin{array}{c}1&1\\n_{2}\cos\theta_{2}&-n_{2}\cos\theta_{2}\end{array}\right)^{-1}\left(\begin{array}{c}1&1\\n_{1}\cos\theta_{1}&-n_{1}\cos\theta_{1}\end{array}\right) = \left(\begin{array}{c}\frac{1}{2}&\frac{1}{2n_{2}\cos\theta_{2}}\\\frac{1}{2}&-\frac{1}{2n_{2}\cos\theta_{2}}\end{array}\right)\left(\begin{array}{c}1&1\\n_{1}\cos\theta_{1}&-n_{1}\cos\theta_{1}\end{array}\right)$$

$$D_{12} = \left(\begin{array}{c}\frac{n_{2}\cos\theta_{2}+n_{1}\cos\theta_{1}}{2n_{2}\cos\theta_{2}}&\frac{n_{2}\cos\theta_{2}-n_{1}\cos\theta_{1}}{2n_{2}\cos\theta_{2}}\\\frac{n_{2}\cos\theta_{2}-n_{1}\cos\theta_{1}}{2n_{2}\cos\theta_{2}}&\frac{n_{2}\cos\theta_{2}+n_{1}\cos\theta_{1}}{2n_{2}\cos\theta_{2}}\end{array}\right)$$

Pro systém s jednou vrstvou

$$\begin{pmatrix} A_0 \\ B_0 \end{pmatrix} = D_0^{-1} D_1 P_1 D_1^{-1} D_s \begin{pmatrix} A'_s \\ B'_s \end{pmatrix} = M \begin{pmatrix} A'_s \\ B'_s \end{pmatrix}$$

Obecný mnohovrstevný systém – každá vrstva je popsána součinem tří matic $D_n P_n D_n^{-1}$

Celek je popsán maticí M = součin všech jednotlivých matic

Odrazivost systému R=|r|²=|M₂₁/M₁₁|²

Multivrstva – kolmá odrazivost

 $(SiO_2 20nm/Al_2O_3 20nm)x5$

(SiO₂ 20nm/Al₂O₃ 20nm)x50

Multivrstva – kolmá odrazivost

 $(SiO_2 20nm/Al_2O_3 20nm)x10$

(SiO₂ 100nm/Al₂O₃ 100nm)x10

$$\begin{split} \epsilon(\omega) &= 1 + \frac{Ne^2}{\epsilon_0 m} \frac{1}{\omega_0^2 - \omega^2 - i\omega/\tau} = 1 + \frac{Ne^2}{\epsilon_0 m} \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \omega^2/\tau^2} + i\frac{Ne^2}{\epsilon_0 m} \frac{\omega/\tau}{(\omega_0^2 - \omega^2)^2 + \omega^2/\tau^2} \\ \epsilon(\omega) &= 1 + \frac{F}{\omega_0^2 - \omega^2 - i\omega/\tau} = 1 + F \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \omega^2/\tau^2} + iF \frac{\omega/\tau}{(\omega_0^2 - \omega^2)^2 + \omega^2/\tau^2} \\ F &= \frac{Ne^2}{\epsilon_0 m} \\ \sigma(\omega) &= -i\omega\epsilon_0(\epsilon(\omega) - 1) = \frac{-i\omega\epsilon_0 F}{\omega_0^2 - \omega^2 - i\omega/\tau} = \epsilon_0 F \frac{\omega^2/\tau}{(\omega_0^2 - \omega^2)^2 + \omega^2/\tau^2} - i\omega\epsilon_0 F \frac{\omega_0^2 - \omega^2}{(\omega_0^2 - \omega^2)^2 + \omega^2/\tau^2} \\ \epsilon(0) &= 1 + \frac{F}{\omega_0^2}, \ \epsilon(\infty) = 1 \end{split}$$

$$\epsilon_1(\omega_{LO}) = 0, \quad \frac{F}{\omega_0^2 - \omega_{LO}^2} + 1 = 0, \quad \omega_{LO}^2 \approx \omega_0^2 + F$$

Pří LO frekvence je reálná část dielektrické funkce rovna nule

$$\frac{\omega_{LO}^2}{\omega_0^2} = \frac{\epsilon(0)}{\epsilon(\infty)}.$$

Odrazivost krystalického α-SiO₂

Odrazivost GaAs

fononová disperze ω=vk pro akustické fonony v≈1km/s

Frekvence oscilátoru je rovna frekvenci optických fononů v bodě Г

Dielektrická funkce krystalického α-SiO₂ a amorfního v-SiO₂

Index lomu amorfního SiO₂ skla

M. Fox: Optical properties of solids, Oxford university press, 2001.

SrTiO₃ – měření a fit Lorentzovým modelem

GaP disperzni relace polaritonu

GaP

$$\sigma(\omega) = -nev_0/E = \frac{\sigma_0}{1 - i\omega\tau} = \frac{\sigma_0}{1 + \omega^2\tau^2} + i\frac{\sigma_0\omega\tau}{1 + \omega^2\tau^2}$$

$$\sigma_0 = rac{Ne^2 au}{m}$$
 Stejnosměrná vodivost

$$\epsilon(\omega) = 1 - \frac{Ne^2}{\epsilon_0 m} \frac{1}{\omega^2 + i\omega/\tau} = 1 - \frac{Ne^2\tau}{\epsilon_0 m} \frac{1}{\omega(i+\omega\tau)} = 1 - \frac{\omega_P^2\tau}{\omega(i+\omega\tau)} = 1 - \frac{\sigma_0}{\epsilon_0 \omega} \frac{1}{i+\omega\tau}$$

$$\epsilon(\omega) = 1 - \frac{\omega_P^2 \tau^2}{1 + \omega^2 \tau^2} + \mathrm{i} \frac{\omega_P^2 \tau / \omega}{1 + \omega^2 \tau^2} = 1 - \frac{\sigma_0}{\epsilon_0} \frac{\tau}{1 + \omega^2 \tau^2} + \mathrm{i} \frac{\sigma_0}{\epsilon_0 \omega} \frac{1}{1 + \omega^2 \tau^2}$$

$$\begin{split} \sigma_0 &= \frac{N e^2 \tau}{m} = \epsilon_0 \omega_P^2 \tau \\ \epsilon_1(\omega_L) &= 0, \, \omega_L = \sqrt{\omega_P^2 - 1/\tau^2} \approx \omega_P \quad \begin{array}{l} \text{LO fr} \\ \text{frekv} \end{array} \end{split}$$

LO frekvence je rovna plazmové frekvenci

 $\sigma(0)=\sigma_0.~\sigma_1(1/ au)=\sigma_2(1/ au)=\sigma_0/2.$ Stejnosměrná vodivost

- ϵ real and > 0. For ω real, K is real and a transverse electromagnetic wave propagates with the phase velocity $c/\epsilon^{1/2}$.
- ϵ real and < 0. For ω real, K is imaginary and the wave is damped with a characteristic length 1/|K|.
- ϵ complex. For ω real, K is complex and the waves are damped in space.
- $\epsilon = \infty$. This means the system has a finite response in the absence of an applied force; thus the poles of $\epsilon(\omega, \mathbf{K})$ define the frequencies of the free oscillations of the medium.
- $\epsilon = 0$. We shall see that longitudinally polarized waves are possible only at the zeros of ϵ .

 $\omega^2 = \tilde{\omega}_p^2 + c^2 K^2 / \epsilon(\infty)$

(CGS)
$$\epsilon(\omega)\omega^2 = \epsilon(\infty)(\omega^2 - \tilde{\omega}_p^2)$$

(CGS)

Figure 2 Dispersion relation for transverse electromagnetic waves in a plasma. The group velocity $v_g = d\omega/dK$ is the slope of the dispersion curve. Although the dielectric function is between zero and one, the group velocity is less than the velocity of light in vacuum.

	ħω (eV), ε ₁ =0		
AI	11		
Au	5.5		
Ir	7.8		
Мо	1.5		
Ni	9.4		
Ag	3.8		
W	1.3		

Drudeho parametry čistých kovů

	ħω _P (eV)	τ (10 ⁻¹⁴ s)	ħ/τ (eV)
AI	7.5 – 13	0.3 – 2.1	1.4 – 0.2
Au	6.9 – 10.5	0.4 – 4.3	1-0.1
Ni	3.6 – 4.8	0.2 – 2.2	2.1 – 0.19
Ag	7.8 – 9.8	0.9 – 2.6	0.46 – 0.16

Drudeho parametry čistých kovů

The plasma frequency ω_p is calculated from eqn /.0, and λ_p is the wavelength consisting frequency.

Metal	Valency	$N (10^{28} \text{ m}^{-3})$	$\omega_{\rm p}/2\pi$ (10 ¹⁵ Hz)	λ _p (nm)
Li (77 K)	1	4.70	1.95	154
Na (5 K)	1	2.65	1.46	205
K (5 K)	1	1.40	1.06	282
Rb (5 K)	1	1.15	0.96	312
Cs (5 K)	1	0.91	0.86	350
Cu	1	8.47	2.61	115
Ag	1	5.86	2.17	138
Au	1	5.90	2.18	138
Be	2	24.7	4.46	67
Mg	2	8.61	2.63	114
Ca	2	4.61	1.93	156
Al	3	18.1	3.82	79

M. Fox: Optical properties of solids, Oxford university press, 2001.

Odrazivost stříbra

M. Fox: Optical properties of solids, Oxford university press, 2001.

A

Dopovaný polovodič InSb

Yu, Cardona, Fundamentals of semiconductors, Springer 1996.

Index lomu a absorpce Al, odrazivost

390 D. Y. Smith, E. Shiles, and Mitio Inokuti WAVELENGTH (µm) 60 40 10 6 06 0.4 0.2 0.1 0.06 0.04 0.02 100 10 10 n(w) and k(w) 10-Π.Π k (w) 10-2 10-2 10-1 10 ENERGY (eV)

Fig. 14. The complex refractive index $n(\omega) + ik(\omega)$ for aluminum. The curves are taken from Shiles *et al.*'s [7] analysis of uhv reflectance data. A portion of the uhv ellipsometric data of Mathewson and Myers [100] is given for comparison. Quincke's [33] and Drude's [34] results for polished bulk samples are shown for historical interest; considering the materials and techniques available, these early measurements are remarkably good, especially for $n(\omega)$. The remainder of the data points are given to show the range of values of $n(\omega)$ (\bigcirc) and $k(\omega)$ (1) reported in the literature. Most refer to evaporated films prepared in conventional or high vacuum and measured by using polarimetric, interferometric, and like methods. The sources of these data are given in the references [10, 11, 25, 26, 27, 51, 55, 56, 65, 66, 73, 75, 91, and 121–129]. Note that the curves for $n(\omega)$ and $k(\omega)$ curve cross each other at roughly 15 eV, the plasmon energy. This corresponds to the plasmon condition $r_1(\omega_p) = n^2(\omega_p) - k^2(\omega_p) \approx 0$. The onset of the L-shell absorption appears in the lower-right-hand corner. The corresponding dispersion

Quincke [33]. Q: Drude [34], *.)

Fig. 15. The reflectance $R(\omega)$ at normal incidence of a smooth oxide-free meta surface in vacuum. (After Shiles *et al.* [7].)

Palik, Handbook of Optical Constants of Solids, Elsevier 1998.

GaAs

Madelung, Semiconductors data handbook, Springer

GaAs – dielektrická funkce

Chelikovsky, Cohen, Electronic structure and optical properties of semiconductors, Springer, 1989.

InAs

states given by eqn 3.24. We therefore expect the following behaviour $(\hbar\omega)$:

For
$$\hbar\omega < E_g$$
, $\alpha(\hbar\omega) = 0$.
For $\hbar\omega \ge E_g$, $\alpha(\hbar\omega) \propto (\hbar\omega - E_g)^{\frac{1}{2}}$. (3)

InSb

Fig. 6.15. Semilogarithmic plot of the absorption coefficient of InSb at 5 K as a function of photon energy. The *filled circles* represent experimental results from [6.24]. The *curves* have been calculated using various models. The intercept with the x-axis gives the direct bandgap of InSb [6.25]

P. Yu, M. Cardona: Fundamentals of semiconductors, Springer 1996.

H. Kuzmany: Solid state spectroscopy, Springer 2009.

Fig. 6.17. Plots of the square root of the absorption coefficients of Si versus photon energy at several temperatures. The two segments of a straight line drawn through the experimental points represent the two contributions due to phonon absorption and emission [6.26]

P. Yu, M. Cardona: Fundamentals of semiconductors, Springer 1996.

Si_xGe_{1-x}

J. Humlíček, M. Garriga, M.I. Alonso, M. Cardona, J. Appl. Phys. 65, 2827 (1989).

Parametry polovodičů

	a (Å)	E _g (eV)	٤ _∞
C (diamant)	3.567	5.50	5.7
Si	5.431	1.2	11.6
Ge	5.657	0.7	16.0
α-Sn	6.491	0	

Parametry polovodičů

Table 1.2 Approximate transparency range band gap wavelength λ_g , and refractive inde *n* of a number of common semiconductors. is measured at 10 μ m. After [1], [2] and [3].

Crystal	Transparency range (µm)	λ_{g} (μ m)	n
Ge	1.8–23	1.8	4.00
Si	1.2–15	1.1	3.42
GaAs	1.0–20	0.87	3.16
CdTe	0.9–14	0.83	2.67
CdSe	0.75–24	0.71	2.50
ZnSe	0.45-20	0.44	2.41
ZnS	0.4–14	0.33	2.20

Amorfní polovodiče

Tauc, 1971

Amorfní polovodiče – hustota stavů

Gersten, Smith, The physics and chemistry of materials, Wiley 2001

Amorfní polovodiče

Region C: $\alpha(\hbar\omega) \sim exp (\hbar\omega/E_d),$ defekty

Tauc 1971

Amorfní křemík – dielektrická funkce

Gersten, Smith, The physics and chemistry of materials, Wiley 2001

Amorfní polovodiče

Gersten, Smith, The physics and chemistry of materials, Wiley 2001

Amorfní polovodiče

krystalický

amorfní

Palik, Handbook of Optical Constants of Solids, Elsevier 1998.

H₂O"; that is, the microcrystalline diameters are probably ≤100 Å (i.e., the same scale as

observed by Zarzycki40) (from Ref. 51).

Krystalický a amorfní GeO₂

Palik, Handbook of Optical Constants of Solids, Elsevier 1998.

Mezipásové přechody v kovech – hliník

Mezipásové přechody v kovech – měď

Fig. 7.5 Calculated band structure of copper. The transitions from the 3d bands responsible for the interband transitions around 2 eV are identified. The right hand side of the figure shows the density of states calculated from the band structure. The strongly peaked features between about -2 eV and -5 eV are due to the 3d bands. The dotted line is the integrated density of states. The Fermi level corresponds to the energy where the integrated density of states is equal to 11. After [5].

Fig. 7.6 Reflectivity of copper from the infrared to the ultraviolet spectral region. The reflectivity drops sharply above 2 eV due to interband transitions. After [6].

Mezipásové přechody v kovech – zlato

Mezipásové přechody v kovech – Cu, Au, Ag

Materials database project

Polovodičové nanostruktury

Fig. 6.1 (a) Schematic diagram of a single GaAs/AlGaAs quantum well. The quantum well is formed in the thin GaAs layer sandwiched between AlGaAs layers which have a larger band gap. The lower half of the figure shows the spatial variation of the conduction band (C.B.) and the valence band (V.B.). (b) Schematic diagram of a GaAs/AlGaAs multiple quantum well (MQW) or superlattice structure. The distinction between an MQW and a superlattice depends on the thickness *b* of the barrier separating the quantum wells.

Polovodičové nanostruktury

M. Fox: Optical properties of solids, Oxford university press, 2001.

Polovodičové nanostruktury

Fig. 6.15 Variation of the electron density of states with dimensionality. The dashed line is for a bulk semiconductor with a band gap of E_g . The thin solid line is for a quantum well of width d with infinite barriers. The thick solid lines are for a cubic quantum dot of dimension d with infinite barriers.

Excitony v GaAs

P. Yu, M. Cardona: Fundamentals of semiconductors, Springer 1996.

Optická skla

	Corning	Schott	n _d (587.56nm)	ν _d
517 642 korunové	B1764	BK7	1.517	64.2
805 254 flintové	E0525	SF6	1.805	25.4
křemenné			1.458	67.8

	SiO ₂	B ₂ O ₃	Al ₂ O ₃	Na ₂ O K ₂ O	BaO	CaO	PbO
517 642 korunové	68	11	1	16	1	2	-
805 254 flintové	27	-	-	2	-	-	71

Abbeho číslo

Vd = (nd-1)/(nF-nC)

D: 587.56 nm (Yellow helium line)

F: 486.13 nm (Blue hydrogen line)

C: 656.27 nm (Red hydrogen line)

Ve = (ne-1)/(nF'-nC') E: 546.07 nm (Green mercury line) F': 479.99 nm (Blue cadmium line) C': 643.85 nm (Red cadmium line)

http://refractiveindex.info/

Tavený křemen

Table 1.3 Refractive index of syntheticfused silica versus wavelength. After [2].

Wavelength (nm)	Refractive index
213.9	1.53430
239.9	1.51336
275.3	1.49591
334.2	1.47977
404.7	1.46962
467.8	1.46429
508.6	1.46186
546.1	1.46008
632.8	1.45702
706.5	1.45515
780.0	1.45367
1060	1.44968
1395	1.44583
1530	1.44427
1970	1.43853
2325	1.43293

Optická skla

Table 1.4 Composition, refractive index and ultraviolet transmission of common glasses. The letters after the names give the abbreviations used identify the glass type. The composition figures are the percentage by mass. The refractive index is measured at 546.1 nm, and the transmission for a 1 cm plate at 310 nm. After [1], [4].

Name	Si0 ₂	B ₂ O ₃	Al ₂ 0 ₃	Na ₂ 0	K ₂ 0	CaO	BaO	PbO	P_2O_5	n	Τ
Fused silica	100									1.460	0.91
Crown (K)	74			9	11	6				1.513	0.4
Borosilicate crown (BK)	70	10		8	8	1	3			1.519	0.35
Phosphate crown (PK)		3	10		12	5			70	1.527	0.46
Light flint (LF)	53			5	8			34		1.585	0.008
Flint (F)	47			2	7			44		1.607	_
Dense flint (SF)	33				5			62		1.746	-

Optická skla – vliv 1% at. příměsi na index lomu

OX	∆n (10 ⁻⁴)	Δν
B ₂ O ₃	0	0
Al ₂ O ₃	+4	-0.25
Na ₂ O	+15	-0.2
K ₂ O	+10	-0.2
BaO	+30	-0.3
CaO	+24	-0.4
PbO	+30	-0.65
La ₂ O ₃	+42	-0.3
TiO ₂	+54	-1.45
Optická skla, index lomu vs. Abbeho číslo

Optická skla, index lomu vs. Abbeho číslo

Martienssen, Warlimont, Springer Handbook of condensed matter materials data, Springer, 2004.

Optická skla – propustnost 10mm

COMPARISON OF UNCOATED EXTERNAL TRANSMITTANCES for ultraviolet grade synthetic fused silica (UVGSFS), optical quality synthetic fused silica (OQSFS) and a common optical glass (BK 7), all of 10mm thickness.

Optická skla

SEMILOGARITHMIC COMPARISON OF INTERNAL TRANSMITTANCES of UV grade synthetic fused silica and BK 7.

Korunové sklo

OPTICAL CROWN GLASS

Optical crown glass is a low index, commercial quality glass in which index of refraction, transmittance and homogeneity are not controlled as carefully as in optical quality glasses such as BK 7. Optical crown is a suitable material in applications where component tolerances are fairly loose or as a substrate material for mirrors. Transmittance characteristics for optical crown are shown in the graph; relevant properties of optical crown are tabulated below.

Refractive Index of Optical Crown Glass

Wavelength (nm)	Refractive Index,n	Fraunhofer Designation	Source	Spectral Region
435.8	1.53394	g	mercury are	blue
480.0	1.52960	F'	cadmium arc	blue
486.1	1.52908	F	hydrogen arc	blue
546.1	1.52501	c	mercury are	green
587.6	1.52288	d	helium arc	yellow
589.0	1.52280	D ₂	sodium arc	yellow
643.8	1.52059	C'	cadmium arc	red
656.3	1.52015	С	hydrogen arc	red

OPTICAL CROWN GLASS CONSTANTS

Abbe Factor:

$$v_e = \frac{n_e - 1}{n_{F'} - n_{C'}} = 58.3$$
 $v_d = \frac{n_d - 1}{n_F - n_C} = 58.8$

Dispersion: $(n_F - n_c) = 0.0089$

Glass type designation: B270

Density: 2.55 g cm-3 at 23 °C

Transformation temperature: 521 °C

Softening temperature: 708 °C

Coefficient of linear expansion: (20 to 300 °C) = $93.3 \times 10^{-7} °C^{-1}$

Specific heat: C_p (20 to 100 °C) = 0.184 cal. g⁻¹ °C⁻¹

Diamant

Propustná oblast 0.3 – 100 µm (typ Ia)

Fig. 5. Log-log plot of n(----) and k(-----) versus wavelength in micrometers for cut carbon. Palik, Handbook of Optical Constants of Solids, Elsevier 1998.

Diamant

Propustnost v IR oboru, cca 1mm

http://www.diamond-

 $Safir - Al_2O_3$

SAPPHIRE* CONSTANTS

Density: 3.98 g cm⁻³ at 25 °C Young's Modulus: *3.7 x 10¹⁰ dynes/mm² Poisson's Ratio: *-0.02 Moh hardness: 9 (by definition) Softening Point: 1800 °C Specific Heat at 25 °C: 0.18 cal/g °C Coefficient of linear expansion: (0 °C to 500 °C) ° 7.7 x 10-6 °C

Safír –
$$Al_2O_3$$
, Rubín – Al_2O_3 +Cr

Fig. 1.7 Transmission spectrum of ruby $(Al_2O_3 \text{ with } 0.05 \% \text{ Cr}^{3+})$ compared to sapphire (pure Al_2O_3). The thicknesses of the two crystals were 6.1 mm and 3.0 mm respectively. After [6], reprinted with permission.

Safír, CdSe

Fig. 1.4 (a) Transmission spectrum of a sapphire (Al_2O_3) crystal of thickness 3 mm. (b) Transmission spectrum of a CdSe crystal of thickness 1.67 mm. After [1].

Propustné materiály

Table 1.1 Approximate transparency rang and refractive index n of a number of crys talline insulators. n is measured at 546 nm Values of n are given both for the o-ray an e-ray of birefringent materials. After [1] an [2].

Crystal	Transparency range (µm)	n
Al ₂ O ₃ (sapphire) BaF ₂ Diamond KBr	0.2-6 0.2-12 0.25-> 80 0.3-30	1.771 (o) 1.763 (e) 1.476 2.424 1.564
KCl KI MgF ₂	0.21–25 0.3–40 0.12–8	1.493 1.673 1.379 (o) 1.390 (e)
NaCl NaF SiO ₂ (quartz) TiO ₂ (rutile)	0.21–20 0.19–15 0.2–3 0.45–5	1.55 1.326 1.546 (o) 1.555 (e) 2.652 (o) 2.958 (e)

ZnS

Propustná oblast 0.4 – 12 µm

λ (μm)	n
0.4	2.5452
1	2.2917
5	2.2466
12	2.1710

Palik, Handbook of Optical Constants of Solids, Elsevier 1998.

ZnSe

Propustná oblast 0.5 – 17 μm

λ (μm)n0.72.556812.489252.4295122.3930		
0.7 2.5568 1 2.4892 5 2.4295 12 2.3930	λ (μm)	n
1 2.4892 5 2.4295 12 2.3930	0.7	2.5568
5 2.4295 12 2.3930	1	2.4892
12 2.3930	5	2.4295
	12	2.3930

Halogenidy

	E _g (eV)	n	při λ (μm)
NaCl	8.97	1.3822	20
KCI	8.50	1.3947	20
KBr	7.6	1.2978	40
AgCl	3.0	1.9069	20
CsBr	7.5	1.5587	40
Csl	5.1	1.5797	60
KRS5 54% TII ₃ + 46% TIBr ₃	2.4	2.2105	40

Fig. 6. Log-log plot of n (----) and k (----) versus wavelength in micrometers for lithiu fluoride. Note the incredibly small values of k in the transparent region centered near 1 μ

Palik, Handbook of Optical Constants of Solids, Elsevier 1998.

Halogenidy

	3ν _{LO} (cm ⁻¹)
NaCl	795
KCI	615
KBr	489
AgCl	597
CsBr	342
Csl	270

Laserové poškození

Pulsy 1.06 µm (NdYAG)

10.6 µm (CO₂)

	Pt (J/cm ²)	
BK7	cca 50	
SF6	cca 7	

	P (MW/cm ²)
Ge	600
GaAs	100
ZnSe	800
KCI	100 - 1000

Fluoridová skla

Figure 4 A structural model for fluorozirconate glass

103 bandgap SiO2 glass 102 absorption 10' multiphonon ('"ma absorptio 100 Aftenuation (dB ZBLA 10 SI TYDT 10-2 Rayleigh scattering 10-3 10-111 03 05 1 2 3 4 5 6 7 8 Wavelength (µm) gure 6 Itratransparency region (very low absorption) for oride and SiO, glasses

Figure 7 Extrinsic absorption mechanisms in fluoride glasses: electronic excitation of 3d electrons in 1 e²⁺, Co²⁺, Ni²⁺,

ZBLA: 56% ZrF₄ 34% BaF₂ 6% LaF₃ 4% AlF₃

BIZYbT: 30% Ba 30% In 20% Zn 10% Yb 10% Th

Fluoridová skla

ZBLAN útlum na 1km

ZrF₄-BaF₂-LaF₃-AIF₃-NaF

www.science.nasa.gov

Vodivé průhledné materiály

ITO – indium tin oxide Typicky cca In_2O_3 90%, SnO_2 10%, hmotnostně Gap cca 4eV

Vrstva cca 140nm Materion.com Další materiály:

AZO – aluminium zinc oxide Nevýhoda nižší životnost a odolnost proti vlhkosti ITO také může být leptáno na jemnější strukturu.

GZO (Ga), IZO (In) Vodivé polymery

Grafen, uhlíkové nanotrubky

Použití: Displeje, solární panely, etc.

materiál	minimální odpor
μΩ.cm	
ΙΤΟ	114
In203	100
SnO2	400
ZnO	120
ZnO:Al	1300
CdSnO2	130

Propustnost vzduchu a záření černého tělesa

Propustné oblasti a indexy lomu pro 4 µm

Figure 2.2 The relative transmittance ranges of some halide, oxide, semiconductor and chalcogenide materials.

Propustnost

Index lomu vs. disperze a propustnosti v IR

Figure 4.1 Reciprocal dispersive power $(n_{10} - 1)/(n_8 - n_{12})$ plotted against n_{10} at 10 μ m for a number of optical materials useful in the far (8-12 μ m) infrared.

Figure 4.2 Transmittance of germanium 3 mm thick (A) and gallium arsenide 3 mm thick (B).

A) NaCl 10mm B) Kcl 10mm C) AgCl 1mm D) KRS5 1mm E) Csl 5mm

Figure 5.5 An illustration of the transmittance capability of several halides: A, NaCl 10 mm thick; B, KCl 10 mm thick; C, AgCl 1 mm thick; D, KRS5 1 mm thick; E, CsI 5 mm thick.

Ge 3mm (A), GaAs 3mm (B)

Tepelná roztažnost a tvrdost

Figure 2.5 The relative hardness of some halide, oxide, semiconductor and chalcogenide materials.

Dvojlomné materiály

Table 2.1 Refractive indices of some com	mon uniaxial crystals at 589.3 nm	. After [2].
--	-----------------------------------	--------------

Crystal	Chemical structure	Symmetry class	type	n ₀	n _e
Ice	H ₂ O	trigonal	positive	1.309	1.313
Quartz	SiO ₂	trigonal	positive	1.544	1.553
Beryl	$\operatorname{Be_3Al_2(SiO_3)_6}$	hexagonal	negative	1.581	1.575
Sodium nitrate	NaNO ₃	trigonal	negative	1.584	1.336
Calcite	CaCO ₃	trigonal	negative	1.658	1.486
Tourmaline	complex silicate	trigonal	negative	1.669	1.638
Sapphire	Al_2O_3	trigonal	negative	1.768	1.760
Zircon	ZrSiO ₄	tetragonal	positive	1.923	1.968
Rutile	TiO ₂	tetragonal	positive	2.616	2.903

Rtg oblast

Dielektrická funkce (Drude):

$$\varepsilon(\omega) = 1 - ne^2 / [\varepsilon_0 m \omega(\omega + i/\tau)]$$

Limita vysokých frekvencí

$$\begin{split} \epsilon(\omega) &\simeq 1 \text{-ne}^2 / [\epsilon_0 m_e \omega^2] \\ \epsilon(\omega) &\simeq 1 \text{-NZr}_e \lambda^2 / \pi < 1 \\ r_e &= e^2 / [4\pi\epsilon_0 m_e c^2] = 2.8179 \cdot 10^{-15} \text{ m} \\ n &= 1 \text{-} \delta + i\beta = 1 \text{-} (\delta_0 - i\beta_0) \rho_{\text{rel}} \\ \delta &\simeq - \text{NZr}_e \lambda^2 / \pi \end{split}$$

Electron density = proton density ~ mass density

$$\delta = -N(Z+f_1)r_e \lambda^2/\pi$$

β = Nf_2r_e λ^2/π

Rtg oblast

Rtg oblast

 $\varepsilon = 1 - (r_{el} \lambda^2 / \pi) \Sigma c_j f_j = 1 - (r_{el} \lambda^2 / \pi) \Sigma c_j (Z_j + f_{1j} - if_{2j})$

Dekrement indexu lomu $\delta(E)=1-n(E)$: závislost reálné a imaginární části na energii

Rentgenka – laboratorní zdroj rtg záření

Lorentzův profil spektrálních čar: $I_R(E) = 1 / [1 + (2(E-E_0)/w)^2]$ Cu-Ka1: 8048.06 eV = 1.54051 4.75e-4 Å rel.int. =1.0 Cu-Ka2: 8028.10 eV = 1.54433 5.20e-4 Å rel.int. = 0.497

Polohy charakteristických čar:

CoKa1=1.78896 Å CuKa1=1.54056 CuKa2=1.54439 MoKa1=0.7093 MoKa2=0.71359 AgKa1=0.559408 AgKa2=0.563798 TaKa1=0.215947 Å

CuKa=1.54184 MoKa=0.711445 AgKa=0.561603

CuKb1=1.39222 Å MoKb1=0.632288 Å AgKb2=0.497069 Å

