Absorption methods
Self-absorption

Lenka Dosoudilová
Application of absorption methods in plasma diagnostics

- determination of chemical composition
- determination of density of excited particles, e.g. metastable atoms

Types of absorption methods

- „white light absorption“

\[
\text{light source} \quad I_0 \quad (\text{radiating}) \quad \text{absorbing medium} \quad I_t \quad \text{detector}
\]

- absorption of radiation by discharge itself

\[
\text{radiating} \quad \text{absorbing} \quad \text{medium} \quad I_t \quad \text{detector}
\]
Self-absorption method

- observation in two directions
 1. optically thin (negligible self-absorption)
 2. presence of self-absorption

- ratio of total intensities of two lines

\[r(n) = \frac{\frac{I_1}{I'_1}}{\frac{I_2}{I'_2}} \]

- lines 1,2 ending on the same atomic level
Absorption methods
Self-absorption method
Conclusion

radiation of absorbing medium: \(dI = Jdx - kI_x dx \)

dependence on density in absorption coefficient:

\[
 k(\nu) = P(\nu)k_{\text{tot}} = P(\nu)n_1B_{12}\hbar\nu_0/c
\]

Homogeneous medium

\[
 \frac{I_l}{I'_l} = \frac{1}{k_{\text{tot}}l} \int_{\text{profil}} \left(1 - e^{-k_{\text{tot}}P(\nu)l} \right) d\nu
\]

\[
 r(n) = \frac{I_1}{I'_1} / \frac{I_2}{I'_2} = \frac{k_{\text{tot}2}}{k_{\text{tot}1}} \frac{\int \left(1 - e^{-k_{\text{tot}1}P(\nu)l} \right) d\nu}{\int \left(1 - e^{-k_{\text{tot}2}P(\nu)l} \right) d\nu}
\]
Absorption methods
Self-absorption method
Conclusion

Principle of self-absorption method
Determination of density of absorbing particles
Choice of the spectral lines
Application on microwave discharge
Determined density for homogeneous medium

Neon \((2p^5\, 3p \rightarrow 2p^5\, 3s) \)

<table>
<thead>
<tr>
<th>(\lambda) (nm)</th>
<th>(E_i) (eV)</th>
<th>(E_k) (eV)</th>
<th>(J_i)</th>
<th>(J_k)</th>
<th>(f_{ik}) ((10^{-2}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>1s_3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>616.359</td>
<td>16.72</td>
<td>18.73</td>
<td>0</td>
<td>1</td>
<td>25.0</td>
</tr>
<tr>
<td>626.650</td>
<td>16.72</td>
<td>18.69</td>
<td>0</td>
<td>1</td>
<td>44.0</td>
</tr>
<tr>
<td>653.288</td>
<td>16.72</td>
<td>18.61</td>
<td>0</td>
<td>1</td>
<td>20.7</td>
</tr>
<tr>
<td>743.890</td>
<td>16.72</td>
<td>18.38</td>
<td>0</td>
<td>1</td>
<td>5.75</td>
</tr>
<tr>
<td>1s_5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>588.190</td>
<td>16.62</td>
<td>18.73</td>
<td>2</td>
<td>1</td>
<td>3.58</td>
</tr>
<tr>
<td>594.483</td>
<td>16.62</td>
<td>18.70</td>
<td>2</td>
<td>2</td>
<td>5.99</td>
</tr>
<tr>
<td>597.553</td>
<td>16.62</td>
<td>18.69</td>
<td>2</td>
<td>1</td>
<td>1.13</td>
</tr>
<tr>
<td>614.306</td>
<td>16.62</td>
<td>18.64</td>
<td>2</td>
<td>2</td>
<td>16.0</td>
</tr>
<tr>
<td>621.728</td>
<td>16.62</td>
<td>18.61</td>
<td>2</td>
<td>1</td>
<td>2.22</td>
</tr>
<tr>
<td>633.443</td>
<td>16.62</td>
<td>18.58</td>
<td>2</td>
<td>2</td>
<td>9.69</td>
</tr>
<tr>
<td>640.225</td>
<td>16.62</td>
<td>18.56</td>
<td>2</td>
<td>3</td>
<td>44.2</td>
</tr>
<tr>
<td>703.241</td>
<td>16.62</td>
<td>18.38</td>
<td>2</td>
<td>1</td>
<td>11.3</td>
</tr>
</tbody>
</table>
Absorption methods

Self-absorption method

Conclusion

Principle of self-absorption method

Determination of density of absorbing particles

Choice of the spectral lines

Application on microwave discharge

Determined density for homogeneous medium

Insensitive pair of lines

Sensitive pair of lines

\[\frac{703.2\text{nm}}{633.4\text{nm}}: \frac{f_1}{f_2} = 1.17 \]

\[\frac{633.4\text{nm}}{621.7\text{nm}}: \frac{f_1}{f_2} = 4.36 \]
Absorption methods
Self-absorption method
Conclusion

Principle of self-absorption method
Determination of density of absorbing particles
Choice of the spectral lines
Application on microwave discharge
Determined density for homogeneous medium

Insensitive pair of lines

Sensitive pair of lines
Microwave discharge in neon

► collaboration with University of Sofia
► two coaxial dielectric tubes with metal rod at their axis
► input power 60 W, pressure 320, 503, resp. 702 Pa, flow rate 6.6, 14.3, resp. 27.0 sccm
Absorption methods

Self-absorption method

Conclusion

Principle of self-absorption method

Determination of density of absorbing particles

Choice of the spectral lines

Application on microwave discharge

Determined density for homogeneous medium

![Graph showing intensity vs wavelength and intensity ratio vs axial position]
Absorption methods

Self-absorption method

Conclusion

Principle of self-absorption method

Determination of density of absorbing particles

Choice of the spectral lines

Application on microwave discharge

Determined density for homogeneous medium

Metastable state 1s₃

Metastable state 1s₅

Meaning of error bars:

- intensity measurement error
- obtained from various line pairs

Lenka Dosoudilová

Absorption methods
▶ no external light source
▶ pair of lines with common lower state
▶ two directions of observation
▶ spatial inhomogeneity of medium simply counted
▶ suitable even for weak absorption
▶ determination of density averaged over the whole volume
Thank you for your attention