
Department of Theoretical Physics and Astrophysics

F a c u l t y o f S c i e n c e
M a s a r y k U n i v e r s i t y

Ph.D. Dissertation

Tomáš Henych

Excitation of asteroid
rotations through impacts

Supervisor: Mgr. Petr Pravec, Dr.

Brno 2013





Bibliographic Entry

A u t h o r Tomáš Henych

Dept. of Theoretical Physics and Astrophysics,

Faculty of Science, Masaryk University

T i t l e o f D i s s e r t a t i o n Excitation of asteroid rotations through impacts

D e g r e e P r o g r a m m e Physics

F i e l d o f S t u d y Theoretical Physics and Astrophysics

S u p e r v i s o r Mgr. Petr Pravec, Dr.

Astronomical Institute,

Academy of Sciences of the Czech Republic
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Abstract

Most asteroids are found to be in principal axis rotation states. There is, however,

a group of asteroids, called tumblers, which are in an excited state of rotation, i.e.,

freely precessing. This is indicated by their complex, two-periodic, lightcurves and

also by radar measurements of the first confirmed and also the best described tum-

bler, 4179 Toutatis.

A damping of the excited rotation is rather fast in most asteroids which explains

why we observe most of them in a basic rotation state. A question arises on how were

the asteroids excited. There are two major mechanisms to explain this, collisions and

a torque related to Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect.

In the thesis we describe an analytical model we constructed to verify the plau-

sibility of the collisional mechanism of the excitation of asteroid rotation. The main

features of the model are the scaling laws used for calculation of the impact crater

dimensions and the angular momentum transfer efficiency based on laboratory im-

pact experiments. After the collision, a rotational lightcurve is generated for the sim-

ulated asteroid and we judge if the tumbling is detectable by the standard photomet-

ric analysis.

We found that large subcatastrophic collisions are a plausible mechanism to ex-

cite rotations of small slowly rotating asteroids. The rotational axis misalignment is

used as a measure of tumbling magnitude. Tumbling begins to be detectable for the

misalignment angle larger than ∼15◦ with high accuracy data.

We also found that the result of a collision can be simply described by the ratio of

the orbital angular momentum (mainly carried by the projectile) and the rotational

angular momentum of the target. We derived a relation between this ratio and the

rotational axis misalignment.

In addition, we compared the specific impact energy of the collision to the thresh-

old energy which would already cause a serious damage to the asteroid. We found

that asteroids as small as ∼100 m can have excited rotation by collision without be-

ing damaged. Finally, we discuss our results and describe further work to be done to

understand the processes that excite asteroid rotations.





Abstrakt

Podle fotometrických pozorování rotuje většina planetek kolem své nejkratší hlavní

osy. Několik desítek dnes známých planetek, kterým se říká tumbleři, mají ale exci-

tovanou rotaci. Soudíme tak podle jejich složitých dvouperiodických křivek a také

radarových pozorování planetky 4179 Toutatis, která je prvním potvrzeným a záro-

veň nejlépe popsaným tumblerem.

Disipace energie vede k útlumu excitované rotace a návratu do základního ro-

tačního stavu. Časová škála tohoto procesu je pro většinu planetek poměrně krátká.

Je tedy logické se ptát, jakým způsobem může být rotace planetek excitována. Hlavní

procesy ovlivňující rotaci planetek jsou jejich vzájemné srážky a moment síly spojený

s Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) efektem.

V této dizertaci popíšeme analytický model, kterým ověřujeme, jestli mohou být

srážky zodpovědné za excitaci rotace. Model využívá škálovací zákony pro výpočet

velikosti impaktních kráterů a také účinnost přenosu momentu hybnosti mezi srá-

žejícími se planetkami. Po srážce spočteme světelnou křivku planetky s kráterem

a standardní fotometrickou analýzou posoudíme, jestli planetka viditelně preceduje.

Zjistili jsme, že srážky mohou excitovat rotaci malých, pomalu rotujících plane-

tek. Jako míru excitace rotace jsme zvolili úhlový odklon nejkratší hlavní osy planetky

od vektoru momentu hybnosti. Ve světelné křivce začíná být tumbling patrný pro

úhly větší než asi 15 stupňů při použití přesných fotometrických měření.

Velikost excitace se dá snadno spočítat na základě znalosti poměru orbitálního

momentu hybnosti (který nese hlavně projektil) a rotačního momentu hybnosti cíle.

V této práci jsme také odvodili vztah mezi tímto poměrem a úhlovým odklonem nej-

kratší hlavní osy planetky od vektoru momentu hybnosti.

Dále jsme srovnali specifickou energii každé srážky s mezní energií, která by už

způsobila výraznou změnu struktury nebo tvaru cílové planetky. Excitace rotace bez

významného poškození planetky je možná pro planetky větší než asi 100 m. V závěru

diskutujeme naše výsledky a zamýšlíme se nad další prací, která by vedla k hlubšímu

pochopení procesů excitace rotace planetek.





© Tomáš Henych, Masaryk University, 2013





Acknowledgment

Finally, this journey is at the end and it is very symbolic I am writing this on the au-

tumn equinox. During my PhD studies, I have met many rare people who influenced

me in my work and also in my personal life. I would like to thank them all, since the

people really matter.

In the first place, I thank Petr Pravec for being my thesis supervisor. Discussions

with Petr have inspired me for more than seven years we know each other and he

always gives me opportunities I have been dreaming of.

I thank my colleagues from both departments I have been working at, since they

made the studies very fruitful in both professional and personal level. I also thank the

Department of Theoretical Physics and Astrophysics of Masaryk University to make

my PhD studies possible and the Astronomical Institute of the Academy of Sciences

of the Czech Republic to support my PhD studies.

I want to thank students I worked with because I learned from them a lot when I

was teaching them.

Very special thanks go to my close companions in good and in bad, Lucka and

Terka and also Milka, Honza, Tereza, Klárka, Katka and Adam. You have been show-

ing me the right way and never let me down.

I am grateful to Terka who read the whole manuscript which led to its substantial

improvement.

Merci Míša that you bring music and totally new perspectives to my life everyday.
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I also thank those I haven’t met yet, because they will certainly play an important

role in my life.



This research has made use of NASA’s Astrophysics Data System. My work has

been supported by grant 205/08/H005 of the Czech Science Foundation, Student

Project Grant MUNI/A/0968/2009 of the Masaryk University and by the Astronomi-

cal Institute of the Academy of Sciences of the Czech Republic in Ondřejov.
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1
Introduction

1.1 Tumblers

The very first photometric observations of asteroids showed harmonic variations of

their light. This was explained as the reflection of asteroid’s rotation and irregular

shape or less likely the variation of albedo of its surface. All the observed lightcurves

showed only regular variations which were understood as indicative of principal

axis (PA) rotation state of asteroids.

Kopal (1970) published the note about the axial rotation of asteroids, exepress-

ing the surprise, that no beat phenomena connected with free precession were ob-

served in asteroid lightcurves. It was based on an erroneous assumption of the most

important damping mechanism at work (jovi-solar attraction). The more realistic

model of precession damping was given by Burns and Safronov (1973). The axis

alignment is presumably caused by stress–strain cycling within the body resulting

in internal energy dissipation. From energetic point of view, the precession, or an

excited state of rotation, has higher energy than a basic state of rotation. There-

fore internal energy dissipation in an irregular body causes the gradual decrease of

the rotational energy until the basic state of principal axis rotation is reached. The

1



2 1 Introduction

lowest energetic state of rotation is the one about the axis of maximum moment of

inertia.

The timescale of this process and an average nutation angle of the asteroid’s

rotation caused by random collisions was also estimated by Burns and Safronov

(1973). They concluded that the vast majority of then known asteroids should be

in basic state of rotation, although several asteroids were mentioned as suspect of

being in an excited rotation state.

Twenty years later, the problem of timescales of damping the asteroid rota-

tion was revised by Harris (1994). The impulse to do so were the new lightcurve

data escpecially of slowly rotating asteroids, which, in some cases, exhibited long

sought beats, indicating the wobbling. Harris (1994) also proposed the term tum-

bler to label the bodies being in non principal axis (or NPA) rotation state. The most

prominent was the case of 4179 Toutatis, a small Apollo asteroid, which made a

close approach to Earth in December 1992. Both, photometric and radar data taken

during the observing campaign showed that its lightcurve does not show the tradi-

tional harmonic pattern and Toutatis became the first confirmed tumbling asteroid

(Spencer et al. 1995, Ostro et al. 1995).

The review on tumbling asteroids was published by Pravec et al. (2005). It pre-

sented the known and newly discovered tumblers among the asteroids, desribed

their lightcurves with two dimensional Fourier series and also gave a brief overview

of possible mechanisms causing the excitation of rotation. The tumbling can be ex-

pected for small asteroids with long or extremely long rotation period or for small

asteroids with very short rotation period. The latter are usually observed among the

NEAs, which is caused by observational bias towards closer and therefore brighter

asteroids.

At present time, several tens of asteroids are known to be in NPA rotation state

or are suspect of this based on photometric observations (Pravec, pers. commu-

nication, 2013, see the Fig. 2.4 in Sect. 2.4). Even though there is an increasing ef-

fort of both professional and amateur astronomers to observe those asteroids with

longer rotation periods, the observation remains relatively difficult compared to

that for shorter period ones in PA rotation states. The observer has to link the ob-

servations from individual nights at least in his internal photometric system, which

needs some effort, a lot of experience and also very good atmospheric conditions.

Therefore, only a limited number of well described tumblers are known; a number

of other asteroids remain suspects for NPA rotators.
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1.1.1 What causes tumbling?

Since the first consideration of tumbling asteroids, it was obvious to ask about the

cause of tumbling. The natural tendency of all bodies is to remain in the lowest

energetic possible state, which is the pure spin (rotation about the principal axis

with the largest moment of inertia). There were several proposed processes causing

the excitation of rotation which can be found in a review of Paolicchi et al. (2002).

Here we give a brief overview.

Collisions are one of the most important processes for small bodies. They are

responsible for their size distribution (Donnison and Sugden 1984) as well as for the

rotation rates of the medium sized to large bodies with diameter > 40 km (Pravec

and Harris 2000). Possibly, they could also excite their rotation, which is the main

topic of this work.

Other processes possibly responsible for the change of the asteroid rotation are

connected with the solar radiation. Paddack (1969) described the effect of solar ra-

diation pressure torque. Rubincam (2000) proposed a torque given by absorption of

sun radiation and its re-emission as thermal radiation by irregular asteroid surface

with a thermal inertia (Yarkovsky–O’Keefe–Radzievskii–Paddack, or YORP, effect).

Vokrouhlický et al. (2007) constructed an analytical model to follow the evolu-

tion of the asteroid spin throughout its life. They found that YORP can substantially

slow down the rotation of the asteroid and eventually leads to onset of tumbling.

They note, however, that this process is always limited by collision powerful enough

to seriously change the rotation of the asteroid.

Another process affecting the rotation of planet crossing asteroids can be gravi-

tational torque during close planetary flyby (Richardson et al. 1998, Black et al. 1999,

Scheeres et al. 2000). This process cannot, however, explain the Main Belt tumblers.

Comets, which can also have excited rotation, can be excited by torque caused

by mass ejection (Peale and Lissauer 1989). This process is also important for some

asteroids. The ejecta related to the large subcatastrophic collision preferentially es-

cape in the direction of rotation (Dobrovolskis and Burns 1984) and for the off-axis

collision the torque could cause the excitation of rotation.

Laboratory experiments of Giblin and Farinella (1997) simulating the disruption

of asteroid in the Main Belt showed that only small fraction of fragments produced

in the catastrophic impact experiment were tumbling. This suggests that during

the catastrophic disruptions of the asteroids, only small part of the fragents may be
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tumbling from its birth. For those tumbling fragments it is necessary to take into

account damping timescale to find the probability of their observable tumbling.

1.2 Large craters on asteroids

The most common asteroid surface feature are the impact craters, according to di-

rect observations of asteroids and small planetary satellites with rocky surface. It

is significant that the largest craters on the bodies visited by the space probes are

huge compared to the body size. The relative size of the crater is usually described

by the F = D/Rm ratio, where D is the crater diameter and Rm is the mean body

radius – the radius of a sphere of the same volume (Thomas 1999). Large craters on

such bodies have F ∼ 1 and the largest observed even up to F ∼ 1.3 (Burchell and

Leliwa-Kopystynski 2010). There is also an indirect evidence for even larger crater

on 90 Antiope (Descamps et al. 2009) which could have F ∼ 1.6.

This fact tempts to the the following question: could large collisions that left

such huge impact craters on those bodies lead to the observable excitation of their

rotation? There is a tumbling asteroid that suggests a positive answer. Main Belt

asteroid 253 Mathilde with the mean radius of 26.4 km is a tumbler with very slow

rotation (main period 418 h, Mottola et al. 1995). It was visited by NEAR spacecraft

in June 1997 and about 60% of its surface was imaged (Veverka et al. 1999). It was

found that the surface is covered by several huge impact craters. The largest one

has a diameter of 33 km (Veverka et al. 1997) and the size of the other large crater

(five to six in total on the imaged half of the body) are also comparable to the mean

radius of the whole asteroid. Mathilde was a subject to enormous bombardment

and these collisions had to significantly affect its rotation.

1.3 Subcatastrophic collisions

In this work, we consider the effect of subcatastrophic collisions on the rotation of

the asteroid. Previously, only Gauchez and Souchay (2006) investigated the role of

small collisions on the rotation of the asteoroid in cratering and also in accretion

regime but they did not concentrate on the onset of tumbling. Our work is the first

to address this question.
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The subcatastrophic collisions are those with the specific impact energy (kinetic

energy of the projectile per unit target mass) smaller than some shattering criterion.

This criterion discriminates the regime of collisions that leads to a serious change

of the structure and possibly the shape of the asteroid. It is described in more detail

in Sect. 4.3. We are mainly interested in the excitation of rotation (i.e., the change

from principal axis to non principal axis rotation), but we also deal with the change

of the rate of the spin.

In general, any non-central collision will cause the excitation of rotation, but

only large enough collisions could cause observable excitation. In this work, we

model the collision in an analytical manner, calculate the transfer of the angular

momentum from the projectile to the target body and than calculate its lightcurve.

After that, we simulate the observation of that lightcurve and find the relation be-

tween the observability of tumbling and the input parameters of the collision.

Chapter 2 is devoted to detailed description of tumblers’ rotation state, its damp-

ing in time, the properties of lightcurves of tumbling asteroids derived mainly from

photometric observations and at the end of that chapter we give an account to sev-

eral significant tumblers.

In Chapter 3 we present a thorough description of our subcatastrophic colli-

sion model. We discuss the maximum size of the impact craters observed on the

asteroids, the shattering criterion we use, the method for numerical calculation of

the inertia tensor and the measure of the principal axis deviation after the collision.

Very important is the angular momentum transfer efficiency as measured in labo-

ratory experiments. This has been recently addressed by other investigations and

there is still an ongoing discussion on this problem. Another section gives scaling

laws of impact cratering we use for the calculation of the crater dimensions formed

by the collision. Then we describe the calculation of the lightucrve of the asteroid

and in the last section we concetrate on model limitations.

Chapter 4 gives the overview of the results we have obtained in our work. We de-

cribe the sensitivity of results to several input parameters describing the dynamical

state of the precollision asteroid or the collision circumstances. Then we show that

the excitation of rotation is mainly influenced by the ratio of the projectile orbital

to target rotational angular momentum and also give a simple relation between the

measure of the excitation and this ratio. At the end of the chapter we plot the results

of our simulations in the well known graph of the specific impact energy versus as-

teroid diameter.



6 1 Introduction

In the last two chapters we give the conclusions of the work based on the results

and we discuss further work that can be done to extend our model and test the

hypothesis of the collisional origin of tumbling.



2
Tumblers

In this chapter we describe tumbling asteroids more thoroughly. We will briefly

describe the dynamics of rotation of tumblers and the periods of rotation and

precession, that can usually be observed in their photometric lightcurves. Then

we will focus on the basic analysis of their lightcurves and pitfalls of their

observations. We also describe the damping mechanism that puts tumblers back

to the pure spin and a timescale estimate of the mechanism. Finally, we give a

short characteristics of several significant and well described tumblers.

2.1 Inertia tensor

To describe the general rotation of a rigid body, we need to know its inertia tensor I,

which is a 2nd rank symmetric tensor and therefore has six indepedent components.

For each body it is possible to find such a coordinate system, where the inertia ten-

sor has only three independent components in its diagonal. These are the princi-

pal moments of inertia and they can be found as eigenvalues of the inertia tensor.

We will use the following convention for designation of principal inertia moments

7
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throughout the thesis, I1 ≤ I2 < I3. The diagonal form of the inertia tensor (and the

associated coordinate system) is found by

ID =Q
T
IQ , (2.1)

where ID is the diagonal inertia tensor,Q andQT are orthogonal matrix and trans-

posed orthogonal matrix, respectively. Its rows (and columns, respectively) are the

eigenvectors of I. These eigenvectors of the inertia tensor have also a physical mean-

ing – they are the principal axes of the body. We denote the eigenvectors E i (i =

1, 2, 3) and their magnitude will be unity, since we only need to consider their direc-

tions. The direction of these eigenvectors are chosen so that they form right-handed

orthogonal system.

The coordinate system with the origin at the body center of mass and axes that

coincide with the principal axes of the body is preferable for description of rotation,

since the inertia tensor has its simple (diagonal) form as well as other expressions.

We will use this coordinate system in the following description. Otherwise, we will

explicitly state that we work in the inertial coordinate system with the origin in the

body center of mass.

2.2 Orientation of the body in 3D – Euler angles

For description of the rotation of tumblers we will need to solve the equations of

motion of a general rotation. Before that, we need to know how to desribe the ori-

entation of the body. There are several ways to do that, but it is usually described

by Euler angles ψ,φ,θ . These are angles between the inertial coordinate system

axes and the axes of bodily coordinate system (preferentially principal axes of the

body). The convention used in this work is displayed in Figure 2.1 and it follows the

so called x-convention used for instance in Samarasinha and A’Hearn (1991).

2.3 Rotation state of tumblers

The rotation energy in the body principal axis coordinate system is

Erot =
L2

x

2I1
+

L2
y

2I2
+

L2
z

2I3
, (2.2)
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Figure 2.1 Euler angles are three angles, ψ, φ and θ which describe the orientation of

the bodily coordinate system (shaded) with respect to the inertial coordinate

system (white).

where L i (i = x , y , z ) are Cartezian components of the angular momentum vector L .

This function has its minimum, when the body rotates about its shortest principal

axis with maximum moment of inertia I3 for a given angular momentum magnitude

L = L z . (2.3)

Most of the asteroids with observed lightcurves are in this basic state of rotation (i.e.,

pure spin) about the axis of maximum moment of inertia. Moreover, the rotation

about that axis is a stable rotation state. The angular velocity vector ω is aligned

with the angular momentum vector L and its mutual orientation does not change

in time.

There are processes that can excite the rotation of asteroids. We described them

in Chapter 1 and a review of those processes can be found in Paolicchi et al. (2002)

and Pravec et al. (2005). Then, the rotation state is not basic, the asteroid precesses.

If there are no external torques acting on the body, we call this rotation state a free
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precession. It’s dynamics can be described by the Euler equations

(I1− I2)ω1ω2− I3ω̇3 = 0 ,

(I3− I1)ω3ω1− I2ω̇2 = 0 ,

(I2− I3)ω2ω3− I1ω̇1 = 0 .

(2.4)

where ωi (i = 1, 2, 3) are components of the angular velocity vector. The general

solution of these equations is given by kinematic Euler equations, which give theω

components as a function of Euler angles which in turn are functions of time

ω1 = θ̇ cosψ+ φ̇ sinψsinθ ,

ω2 =−θ̇ sinψ+ φ̇ cosψsinθ ,

ω3 = ψ̇+ φ̇ cosθ .

(2.5)

It is only possible to find the explicit solution of these equations in some special

cases.

2.3.1 Stability of the rotation

In this section, we will discuss the stability of rotations around principal axes be-

cause only then we can understand the processes after large subcatastrophic colli-

sion. We will follow the description of lucid physics lectures of Varnes (2004).

Let us suppose the body rotates purely about its longest principal axis (with

smallest moment of inertia), so the angular velocity vector is

ω=ω1E1 . (2.6)

When we bump the body slightly, the angular velocity vector changes to

ω=ω1E1+λE2+µE3 , (2.7)

where λ and µ are small disturbances. Now, we put this vector to the Euler equa-

tions 2.4 and we get

(I1− I2)λω1− I3µ̇= 0 , (2.8)

(I3− I1)µω1− I2λ̇= 0 , (2.9)

(I2− I3)λµ− I1ω̇1 = 0 . (2.10)
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We only consider terms in λ and µ to first order, so when we neglect the first term in

Eqn. 2.10, we see, thatω1 will not change in time. We solve the other two equations

by taking the time derivative of 2.8 and putting it to the 2.9 to get

λ̈=

�

I3− I1

I2
ω1

��

I1− I2

I3
ω1

�

λ≡−Ω2λ , (2.11)

where we designated the constant in front of λ as −Ω2. Note that we would get

similar equation for µ. It has a general solution

λ= AeiΩt+Be−iΩt , (2.12)

where A and B are constants. There are two possible solutions, which are qualita-

tively different. If Ω is real, then we get oscillatory motion of λ (and µ). It means

that the rotation is stable. If, on the other hand, Ω is imaginary, the second term of

Eqn. 2.12 grows exponentialy with time and the rotation is unstable.

When we know this, we can analyse the Eqn. 2.11 and see, under which condi-

tions is has stable or unstable solution. This will tell us a lot about the behaviour of

rotating bodies.

If I1 is the smallest moment of inertia, then

I1− I3 < 0∧ I1− I2 < 0 , (2.13)

their product is positive and Ω is real, we get a stable rotation about the shortest

principal axis.

If, on the contrary, I1 is the largest moment of inertia, then

I1− I3 > 0∧ I1− I2 > 0 , (2.14)

their product is again positive, Ω is real and we get a stable rotation about the

longest principal axis.

If I1 is the intermediate moment of inertia, then

I1− I3 < 0∧ I1− I2 > 0 , (2.15)

their product is negative, Ω is imaginary and we get an unstable rotation about the

intermediate principal axis.

This is why the body will not rotate about the intermediate axis for a long time

and it will tend to the stable rotation. The two stable rotation states differ by the
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amount of rotational energy – rotation about the axis with smallest moment of in-

ertia has the largest energy, while the rotation about the axis with largest moment

of inertia has the lowest energy. This is presumably the rotation state of majority of

asteroids.

2.3.2 Rotation and precession periods

From the analysis of the precession dynamics, we can derive the expression for the

rotation and precession periods. The period of rotation (inψ) is

Pψ = 4K

r

I1I2I3

(I3− I2)(L2−2E I1)
, (2.16)

where E is the energy of rotation and K is a complete elliptic integral of the first

kind given by

K =

∫
π
2

0

du
p

1−k 2 sin2 u
. (2.17)

The k 2 is a dynamical constant for a body in a specific rotation state

k 2 =
(I2− I1)(2E I3− L2)

(I3− I2)(L2−2E I1)
. (2.18)

This period holds for angles ψ and θ , but not for φ. For that angle, the expression

for period is rather complicated. It consists of two terms, one has the same period

Pψ and the other has different period P ′ which is incomensurable with Pψ. This is

why the precessing body does not at any time return to its original position (Landau

and Lifshitz 1976).

The motion inφ is aperiodic in general case (unless the body has two axis equal

in length) and what is commonly used in practice is a time-averaged period Pφ̄ cal-

culated as (Samarasinha and A’Hearn 1991)

Pφ̄ =
2π
¯̇φ

, (2.19)

where

¯̇φ =
2

Pψ

∫

Pψ

2

0

φ̇dt . (2.20)
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Similar expressions can be found in Kaasalainen (2001), who describes very

comprehensively the nature of tumblers’ lightcurves and also specifics of the in-

version method for those lightcurves.

There is a useful constraint on the ratio of rotation to precession period derived

in Samarasinha and A’Hearn (1991)

Pψ

Pφ̄
≥

r

I2I3

(I2− I1)(I3− I1)
−1 , (2.21)

which holds for the so called Long axis modes (LAMs), when L2 < 2E I2 and

Pψ

Pφ̄
≥

r

I1I2

(I3− I2)(I3− I1)
, (2.22)

which is valid for the Short axis modes (SAMs), when L2 > 2E I2. From this it can be

derived that for SAMs holds
Pψ

Pφ̄
> 1 . (2.23)

2.3.3 Damping of the excited rotation

There are several processes that can excite the rotation of asteroids, yet we observe

most of them in principal axis rotation state or close to it. It is caused by nature of

the excited rotation itself.

When we observe the rotation of the body in the bodily reference frame, the

angular velocity vector is travelling through the body on the surface of a cone which

is axialy symmetric about the fixed angular momentum vector. The body is then

rotating about the instantaneous angular velocity vector. Let us consider a small

volume of the asteroid material. As the body tumbles, this volume will experience

variable centrifugal acceleration, because the actual axis of rotation is constantly

changing. This means that the asteroid experiences time variable stress and strain,

depending on the position in the body caused by variable centrifugal acceleration.

This acceleration is symmetric about the rotation axis which is, however, changing

its direction.

This stress–strain cycling leads to the energy dissipation which causes the con-

stant damping of the excited rotation, finally leading to the principal axis rotation,

as it is the rotation state with the lowest energy (see Section 2.3).
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A particular importance has the estimate of the timescale of the excitation rota-

tion damping. It has been done by several authors for various situations in plane-

tary astronomy, but specifically for the case of asteroids this was published by Burns

and Safronov (1973). They estimated the timescale τ as

τ=
µQ

ρK 2
3 r 2ω3

, (2.24)

where µ is an asteroid rigidity, Q is a quality factor of its material and ρ its density,

r its radius and ω = 2π/P is the angular speed (P being the period of rotation). K 2
3

is a shape factor whose value depends on the asteroid oblatness. The quality factor

describes the energy loss per stress–strain cycle

∆E =
2πE

Q
, (2.25)

E is the part of the total strain energy of the body which oscillates during the wobble

motion.

Burns and Safronov (1973) calculated this timescale for several asteroids of var-

ious sizes and shapes for which the rotation period was known. They concluded

that for a reasonable choice of the physical parameters in Eqn. 2.24, the timescale

is much shorter than the age of the Solar System and so the rotation axis of the as-

teroid is aligned with the angular momentum axis shortly after the excitation event

(e.g., a collision). That is why we usually observe the single periodic lightcurve for

majority of asteroids.

They pointed out, however, several asteroids for which the alignment would

take much longer time. These would be small and slowly rotating asteroids pre-

sumably with irregular figure, which could be easier to observe as precessing.

The problem of damping timescales was reexamined by Harris (1994) as there

were new observations of slowly rotating asteroids, for which the timescale would

be longer than the age of the Solar System. Amongst them, 4179 Toutatis exhibited

a very long rotation period of several days and moreover a very complex lightcurve

shape. This asteroid became the first confirmed tumbler by radar (Ostro et al. 1995)

and photomertric observations (Spencer et al. 1995).

Harris (1994) used the expression of Burns and Safronov (1973) and his own

estimate of the asteroid material properties to give the relation between rotation
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period P in hours, its diameter D in kilometers and the damping timescale τ in

billions of years as

P ≈ 17D2/3τ1/3 , (2.26)

with an uncertainty about a factor of 2.5 in the constant (given the uncertainties in

the asteroid physical properties used).

The previous approaches to the damping timescale estimates were sharply criti-

cized by Efroimsky and Lazarian (2000) and Efroimsky (2001). The latter paper con-

tains a thorough description of the precession motion and the dissipation process

itself and raises several important drawbacks of the present theory.

In their critics of the previous approaches, they stated that substantial features

of physical processes during energy dissipation were overlooked or inappropriately

neglected, which led to several order of magnitude underestimation of the effective-

ness of the dissipation process. Moreover, they stated that the physical parameters

chosen by previous authors were inadequate. They give a much shorter damping

timescale, but the general form is the same as in Eqn. 2.24.

While Efroimsky (2001) calculated the stresses for a cuboid-shaped body, Molina

et al. (2003) and Sharma et al. (2005) used the symmetric ellipsoid of rotation for

their calculations. Sharma et al. (2005) presents his complete solution of damping

for oblate and prolate spheroids but also gives the overview of the previous papers

on the topic including that of Efroimsky and Lazarian (2000), Efroimsky (2001) and

Molina et al. (2003). They concluded that all the previous authors agree on the func-

tional form of the damping timescale

τ=D ′
µQ

ρr 2ω3 , (2.27)

but differ through the constant D ′ (all the quantities have the same meaning as in

2.24 above). In Sharma et al. (2005), D ′ is a constant of the order of few hundreds

and it is a function of the shape of the body D ′(h) given by the aspect ratio h of the

length of the shortest axis to the longest axis.

The damping time in the form of Harris (1994) with the same choice of µ and Q

and with D ′ = 200 which roughly corresponds to oblate or prolate bodies with a/c

either 2 or 1/2 is

τ= 0.24 ·10−3 P3

r 2 or P ≈ 10D2/3τ1/3 , (2.28)
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when using the same notation and units as Harris (1994) – billions of years for τ,

period of rotation P in hours and diameter D in kilometers. Both expressions, 2.28

and 2.26, are in good agreement.

2.4 Lightcurves of tumblers

In most cases, the rotational state of tumblers is deduced from their photometric

lightcurves. Asteroids found in the principal state of rotation exhibit single periodic

lightcurves while tumblers have more complicated two periodic lightcurves.

There is, however, another group of asteroids that have usually two periods in

their lightcurves – binary asteroids. In this case, the most common situation is that

the main period present in the lightcurve reflects the rotation of the primary body

(the larger one), it is slightly modulated by the rotation of the secondary (sometimes

not detected) and for a favorable viewing geometry, there are dips in the lightcurve

caused by mutual eclipses and occultations of the bodies (Pravec and Hahn 1997).

The nature of tumblers’ lightcurves is different. It reflects their complex state

of rotation which is two periodic. One period, Pψ, is the rotation period about the

extremal axis, and Pφ̄ is the precession about the angular momentum vector L . The

third period connected with the third Euler angle, θ , is equal to the rotation period

(Landau and Lifshitz 1976).

Photometric observations of tumbling asteroids are generally more demanding

than observations of singly-periodic asteroids. The rotation period of an asteroid in

principal axis rotation is typically a couple of hours and so it is possible to observe

the whole rotation in one night (depending on the length of the night).

Tumblers, on the other hand, prevail amongst the bodies with long rotation pe-

riods (on the order of tens to hundreds hours) amongst larger asteroids or with ex-

tremely short periods amongst very small asteroids. Both of these extreme light-

curves are rather difficult to observe.

Long period lightcurves do not have to be sampled so frequently as the light-

curves of the common asteroids and so these tumblers can be observed as comple-

mentary targets to other asteroids. Usually only a small part of the lightcurve is ob-

served during one night and so it is critical to link it to the observations from other

nights to cover the complete phasecurve. It is even more beneficial to calibrate the

observations in the standard photometric system. Then, it can be combined with
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Figure 2.2 A long periodic lightcurve of tumbler (54789) 2001 MZ7 phased with one of

the periods of 37.57 h. Together with datapoints, pieces of the best fit full two

dimensional 4th order Fourier series with the periods of 37.57 h and 52.79 h

are plotted as well. Vertical axis is R magnitude for a specific solar phase angle.

Credit: Pravec et al. (2005).

observations by other observers from different observing sites (different longitudes)

and the long period lightcurve can be obtained more effectively. It is necessary to

cover the lightcurve of long period tumblers a few times so that the tumbling is def-

initely confirmed (see Fig. 2.2).

The observational strategy needs to be adapted also for the short period light-

curves. The exposure time should be optimized in order not to smear details of the

lightcurve whose period can be on the order of several minutes (see Fig. 2.3). Then,

for small and faint asteroids, we need to use a large enough telescope so that we can

keep the exposure time at its optimum (Pravec et al. 2000; the case of 2000 WL107

in Pravec et al. 2005).

To analyze the lightcurves of tumblers, Kaasalainen (2001) suggested a two di-

mensional Fourier series technique. It is now commonly used for the analysis of

tumblers lightcurves and it was also used in the review of Pravec et al. (2005). We
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Figure 2.3 A short periodic lightcurve of asteroid 2000 WL107 folded with the period of

0.160916 h. The best fit full two dimensional 4th order Fourier series with the

periods of 0.160916 h and 0.218834 h and residuals of the fitted points are plot-

ted as well. Vertical axis is V magnitude for a specific solar phase angle. Credit:

Pravec et al. (2005).

reproduce it here in the convenient form

F
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+
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t

�

, (2.29)

where C0 is the mean reduced light flux, C j k and S j k are the Fourier coefficients

of the series, Pψ and Pφ̄ are the period of rotation and mean period of precession,

respectively, t is the time. In practice, it is difficult to assign the found periods to ro-

tation and precession, although we could make a learned guess using the Eqn. 2.23

provided we have additional information about the shape of the body, e.g., from

radar data.

The graph of spin rate (or rotational period) vs. asteroid diameter is a very use-

ful tool for investigation of properties of asteroids. It is displayed in Fig. 2.4 with
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highlighted tumblers and well studied PA rotators among slow rotating asteroids.

Tumblers seem to prevail below the 0.45 b.y. line which is a much longer time than

the typical dynamical lifetime of the Near Earth Asteroids (NEAs), but it is shorter

than the lifetime of the Main Belt asteroids. There are exceptions to this rule and

also many slow rotators have not their rotation periods well established. Therefore,

this subject still needs a lot of investigation, collecting photometric data and devel-

oping theory and numerical modeling.

2.5 Significant tumblers

Currently, we know a couple tens of tumblers or asteroids that are seriously suspi-

cious of tumbling. The data allow some preliminary statistical treatment, but first

we want to describe some of the known tumblers and to discern between princi-

pal axis (PA) rotators and non principal axis (NPA) rotators in disputable cases. As

this is not the main objective of this thesis, we will only point out some typical and

interesting tumblers.

2.5.1 4179 Toutatis

The first known tumbler is 4179 Toutatis. It is a small Apollo asteroid discovered in

January 1989 by C. Pollas in Caussols, France (Yeomans 2013b, Marsden 1989) and

designated as 1989 AC. Later precovery observations were found and the asteroid

was identified with 1934 CT. It is named after the Celtic god who was a tribal protec-

tor in ancient Gaul and Britain. His name is well known to every fan of the Asterix

comics.

Toutatis is a Near Earth Asteroid and it makes very close approaches to Earth.

This was due to happen in December 1992, when Toutatis passed by Earth at min-

imum distance of 3.6 million kilometers or less than 10 lunar distances (mean dis-

tance of the Moon from the Earth). This close approach was well employed for the

detailed study of Toutatis characteristics. Spencer et al. (1995) presented the un-

usual lightcurve of Toutatis which was explained by its NPA rotation. This was sup-

ported by radar observations of Ostro et al. (1995) who also presented extremely

irregular shape of Toutatis with heavily cratered surface. More on the NPA rotation

based on radar observations was given by Hudson and Ostro (1995). Moreover, the



Figure 2.4 The graph of spin rate (and period of rotation) as a function of the asteroid

diameter with highlighted slow tumblers (red diamonds) and slow PA rotators

(green squares). The blue straight lines indicate the damping timescale of the

excited rotation in billion years (see Sect. 2.3.3 for details). For the definition

of the PAR codes see Pravec et al. (2005). NEAs are Near Earth Asteroids, MBAs

are Main Belt Asteroids and MCs are Mars Crossers. Note that a part of the

graph which contains small fast asteroids including a few tumblers is outside

the plotted range. Credit: Pravec et al. 2013, pers. communication – CD8

workshop talk.
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3D model was created and dimensions along the principal axes of the figure were

estimated as 1.92, 2.40 and 4.60 km with an uncertainty of 0.1 km.

There were also other observations. Noll et al. (1995) used the planetary camera

of the Hubble Space Telescope to directly image Toutatis. Their size estimate was in

good agreement with other measurements.

The 1996 apparition of Toutatis brought new opportunity to refine the results

of previous measurements. Ostro et al. (1999) gives more accurate surface proper-

ties, rotational state and also presents a shape model. Moreover, the radar observa-

tions substantially improved the asteroid’s orbit in the Solar System. Kryszczyńska

et al. (1999) analyzed the lightcurve of Toutatis and compared it with a synthetic

lightcurve of freely precessing body. They concluded it was in good agreement and

pointed out possible causes of apparent discrepancies between the periods of rota-

tion and precession derived from photometric and radar observations.

The photometric data were later reanalyzed by Mueller et al. (2002) and previous

results were confirmed independently. They obtained mean long axis precession

period Pφ̄ of 7.38 days and rotation period around the long axis Pψ of 5.38 days.

Hudson et al. (2003) presented high resolution model of Toutatis based on 1992 and

1996 radar data which shows fine topographic details down to the resolution limit

of (34 m)2. The model is shown in Fig. 2.5.

On 13 December 2012 Chinese probe Chang’E 2 made a flyby of Toutatis and

took some very high resolution images. The closest flyby distance was only 3.2 km

and the resolution about 10 m/px. One of those high resolution images is in Fig. 2.6.

At the same time, radar observations were made using the 70 m Deep Space Net-

work antenna at Goldstone, California (Benner 2012). Preliminary comparison of

direct images made by Chang’E 2 and the radar model shows a very good corre-

spondence.

As Toutatis makes its close approaches to Earth every four years, it will be cer-

tainly the target of the further research and is already the best examined tumbler.

2.5.2 253 Mathilde

Mathilde is the largest known tumbler with the mean radius of 26.5 km (Thomas

et al. 1999). It was discovered by Johann Palisa in Vienna, Austria, in 1885 (Yeomans

2013c) and it was named after the wife of astronomer Moritz Loewy, the vice director

of the Paris Observatory.



Figure 2.5 The high resolution model of 4179 Toutatis based on radar observations of

Hudson et al. (2003) and Hudson and Ostro (1995) made with Goldstone

and Arecibo radiotelescopes. The areal resolution of (34 m)2 is comparable

to Galileo probe highest resolution images of Dactyl (the moon of 243 Ida)

or NEAR Shoemaker’s first images of Eros after orbit insertion (Hudson et al.

2003).



Figure 2.6 High resolution image of 4179 Toutatis taken by Chang’E 2 space probe during

its close flyby. The image was taken from the distance of 93 km and the res-

olution is about 10 m/px. Very fine structures including many small impact

craters are visible. Credit: Chinese Academy of Sciences/Daniel Macháček

(Macháček 2012).
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It caught attention when it became the flyby target of the NASA’s Near Earth

Asteroid Rendezvous (NEAR) Shoemaker mission (Dunham and McFadden 1994).

It was decided that the probe will observe Mathilde and so thorough observations

were requested before the flyby date. Mottola et al. (1995) made photometric ob-

servations and obtained very unusual result indicating extremely slow rotation –

the main period is 418 h. During the flyby of the NEAR Shoemaker, many observa-

tions were made. Yeomans et al. (1997) measured the mass of Mathilde of (1.033±

0.044) · 1020 g from tracking data of the NEAR Shoemaker. Together with the mea-

sured dimensions of the body (and its volume), this gives a very low bulk density

of 1.3± 0.2 g cm−3. If we assume the density of the material forming Mathilde as

2.8 g cm−3, then we get the porosity higher than 50%.

Veverka et al. (1997) presented images of Mathilde taken by NEAR Shoemaker

during its close flyby on 27 June 1997. The finest resolution of the images was

about 160 m/px at closest approach (1212 km). They showed very dark surface of

this C type asteroid with estimated albedo of 0.035–0.050. The most prominent fea-

tures were huge craters, perhaps relicts of tremendous collisions. The largest crater,

later named Karoo, has the diameter of 33 km and it is probably the youngest of

all imaged impact craters on Mathilde. The images showed, however, at least four

other large craters with diameters exceeding 20 km (see Fig. 2.7).

This provoked the question on how could Mathilde survive such heavy bom-

bardment without being completely dispersed. Moreover, there should be large

amount of ejecta in the older craters from the more recent ones, but this was not

observed. The answer was proposed by Housen et al. (1999), who investigated the

compaction mechanism of crater formation indstead of excavation process. They

carried out laboratory experiments and proved that not only can be craters packed

very near to each other without disturbing the older one but also this mechanism

can explain the observed lack of ejecta.

We presented here only brief overview of measurement results of the NEAR

Shoemaker mission’s flyby of Mathilde. Very thorough and detailed description of

those results and surprising facts can be found in the first quarter of Icarus 140 Vol-

ume, Issue 1 (Elsevier, Philadelphia, USA). The overview of the NEAR Shoemaker

mission flyby of Mathilde is given by Veverka et al. (1999).



Figure 2.7 Overall image of 253 Mathilde as taken by NEAR Shoemaker spacecraft flyby of

this large tumbler on its route to 433 Eros. The largest impact crater is Karoo,

there is a crater Kuznetsk on the ‘northern’ surface and crater Damodar on the

‘southern’ surface. Credit: Veverka et al. (1999).
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Figure 2.8 Lightcurve of 2002 TD60 folded with the period of 2.85119 h (various symbols)

and the best fit full two dimensional 3rd order Fourier series with the periods

of 2.85119 h and 6.7841 h (lines). Vertical axis is R magnitude for a specific solar

phase angle. Credit: Pravec et al. (2005).

2.5.3 2002 TD60

This small Amor asteroid has been thoroughly observed in its apparition in late

2002. Both photometric observations from various observatories (Pravec et al. 2005)

and radar observations from Arecibo were made (Benner et al. 2008). The rota-

tional state was well described by photometric observations, the two periods were

P1 = 2.8513± 0.0001 h and P2 = 6.783± 0.002 h. From those observations it is not

possible to discern the period of rotation and precession, respectively. The sample

lightcurve of TD60 can be found in Fig. 2.8.

The photometric data also allowed the modeling of the asteroid to find the di-

mensions of the triaxial ellipsoid representing the body and orientation of the an-

gular momentum vector. The dimensions of the asteroid were estimated from both

type of observations (photometric and radar) as (310× 200× 110)m. Other results

can be found in Pravec et al. (2005).
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2.5.4 99942 Apophis

This small (D = 0.46± 0.08 km) SQ type (Pravec et al. 2013, pers. communication –

CD8 workshop talk) Near Earth Asteroid is nowadays under a very close inspection

by many observers and theoreticians. It is caused by the predicted very close flyby

of the asteroid in between the Earth and Moon in April 2029 and even more by its

very close flybys in 2036 and 2068 with a non-zero probability of the collision with

the Earth (Farnocchia et al. 2013).

It was discovered at Kitt Peak National Observatory in Arizona, USA in 2004

(Yeomans 2013d). The name is derived from Ancient Egyptian evil god Apep who

was an enemy of Ra, the sun god. Soon it was recognized as an interesting object

due to its close approaches to the Earth in the near future. It was thoroughly ob-

served by optical telescopes as well as radars. The 2029 flyby is now very accurately

determined, but there are still large uncertainties of the future flyby orbits. It is

mainly caused by the Yarkovsky effect. Because of the unknown direction of the

Apophis’ axis of rotation we do not know the magnitude of this effect and whether

the semimajor axis of its orbit is increasing or decreasing (Chesley 2006).

The situation is further complicated by the discovery of Apophis’ tumbling. Al-

though the rotation state has not been very well established yet, the preliminary re-

sults show that there are two dominant frequencies in its lightcurve, f 1 = 1/30.56 h

and f 2 = 1/29.04 h with uncertainties of < 0.1 h (see Fig 2.9). Other possible solu-

tion is f 1 = 1/30.56 h and f 2 = 1/34.4 h, which is a working hypothesis to be tested

by the modeling of the lightcurves (Pravec et al. 2013, pers. communication – CD8

workshop talk).

2.5.5 2008 TC3

This is so far the only known asteroid that can be classified as an extinct tumbler

and also an extinct asteroid – it impacted Earth and burned some 37 km above its

surface. It was discovered on 6 October 2008 by the automated Catalina Sky Survey

telescope at Mount Lemmon, Arizona, USA and 20 hours later it entered the Earth

atmosphere above Sudan (Jenniskens et al. 2009). The 6–7 m (Scheirich et al. 2010)

asteroid exploded in the atmosphere and fragments of total mass of less than 4 kg

were later recovered in the Nubian Desert in northern Sudan. These are now known

as Almahata Sitta meteorites named after the train station number 6 (the translation

of that name).
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Figure 2.9 Lightcurve of 99942 Apophis in 2013 and the best fit two dimensional Fourier

series with the periods of 30.56 h and 29.04 h. Credit: Pravec et al. 2013, pers.

communication – CD8 workshop talk.

The lightcurves of 2008 TC3 taken in the short time between its discovery and

the disappearance in the shadow of the Earth showed that it was a fast tumbling

asteroid in LAM (long axis mode). The modeling of Scheirich et al. (2010) gave two

almost mirror solutions with periods Pψ = (99.19± 0.03)s and Pφ = (96.99± 0.05)s

for the first solution and Pψ = (99.20±0.04)s and Pφ = (97.02±0.05)s for the second

solution. The results also included angular momentum vector orientation, princi-

pal moments of inertia and the shape model (see Fig. 2.10). Part of the lightcurve

used for the modeling is displayed in Fig. 2.11.



Figure 2.10 The 3D model of the 2008 TC3 made by lightcurve inversion method. Two

mirror solutions are displayed in three viewing geometries. Credit: Scheirich

et al. (2010).

Figure 2.11 Lightcurve of 2008 TC3 on 6–7 October 2010 and the best fit two dimensional

4th order Fourier series with the periods of 49.0338 s and 96.987 s. Horizontal

axis is Julian day, vertical axis is relative magnitude. Credit: Pravec et al. 2013,

pers. communication – CD8 workshop talk, Scheirich et al. (2010), data taken

by M. Kozubal and R. Dantowitz.





3
Subcatastrophic collision model

This chapter is devoted to a thorough description of our subcatastrophic colli-

sion model. We will describe the cratering mechanism and scaling laws used

for the calculation of the impact crater dimensions, angular momentum con-

servation and efficiency of its transfer to the impacted asteroid, the calculation

of the post impact body lightcurve and the detection of tumbling and also the

shattering criterion of the asteroids. We will argue on why we think our model is

realistic and we will discuss its drawbacks and possible improvements as well.

3.1 Brief description of the model

We constructed the analytical model of subcatastrophic collision between two bod-

ies to explore its effect on the rotation of the asteroid. We mainly focused on the

possibility to excite its rotation by such collision, although other dynamical char-

acteristics are calculated as well. We only consider cratering events in our model

as we think it is the most probable process of small hypervelocity collision. Larger

collisions that have more complex scenario are not included in our simple model.

31
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Here we give description of our model in a nutshell for lucidity and discuss its

features in detail in the following separate sections. At the beginning, there are two

bodies described by a set of physical, dynamical and shape parameters (size, mass

density, velocity etc.) that experience hypervelocity collision – the target and the

projectile.

The projectile is completely destroyed and an impact crater is created on the

surface of the target. The dimensions of the impact crater are calculated by using

the scaling laws which extrapolate the outcomes of the laboratory impact experi-

ments to asteroid dimensions. They are based on point source approximation of

the impact (Holsapple 1993; Holsapple and Housen 2007).

Then we use momentum and angular momentum conservation laws to calcu-

late the angular momentum transfered to the target. We consider some efficiency of

that transfer obtained in laboratory experiments. Other possibilities are discussed

later in Section 3.2.8.

After that we recalculate the dynamical characteristics of the target (mainly its

inertia tensor), calculate its rotational lightcurve and check if the tumbling of the

target can be detected by distant (ground based) photometric observations. In the

following, we focus on detailed description of our model.

3.2 The model in detail

The input parameters—The target is a homogeneous triaxial ellipsoid in relaxed

rotation state (or pure spin), i.e., rotating around the axis with the largest moment

of inertia. It is described by following parameters: the mean radius of the body Rm,

the semi axes ratios a/c and b/c (a ≥ b ≥ c ), the body’s bulk density ρ, the ma-

terial strength (see Sect. 3.2.9 for more details), initial rotation period and whether

the body is porous or not (see Sect. 3.2.9 for details on this). The projectile is a ho-

mogeneous sphere with diameter a d and the mean density δ. We do not take into

account the rotation of the projectile since its angular momentum is a negligible

contribution to the overall angular momentum budget.

The output—The overall description of the dynamical state of the target aster-

oid is given in an output file. It contains post-collision momentum and angular mo-

mentum vectors, inertia tensor, rotational axis misalignment angle β (as defined in

Sect. 3.2.7) and a number of physical parameters from the calculation progress.
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There is also a physical model of the body with the impact crater on its sur-

face in a separate file. This physical model is then used for calculation of asteroid’s

ligthcurve after the collision. The program used and the process of lightcurve cal-

culation is described more thoroughly in Section 3.2.10.

3.2.1 The coordinate system

We observe the impact in an inertial frame connected with the center of mass of

the two bodies. The frame coordinate axes are identical to the principal axes of the

target at the moment of impact (x in the direction of the target’s longest axis, z in

the direction of the shortest one).

The projectile is moving towards the target at a relative velocity vimp and hits it

at the impact point I with spherical coordinates φ (longitude) and θ (latitude) on

the surface of the target body. The prime meridian is defined as y = 0 and x ≥ 0;

together with the longest target axis it makes a common plane. See Fig. 3.1 for an

illustration.

The impact speed is much greater than the target’s escape velocity so we can

neglect mutual gravity of the bodies and any curvature of the projectile’s trajectory

(Love and Ahrens 1996).

3.2.2 The crater shape

The geometrical representation of the crater is a paraboloid of revolution; this cor-

responds to the observations of simple impact craters on the Moon and other bod-

ies in the Solar System (Chappelow and Sharpton 2002). The axis of the paraboloid

is perpendicular to the local surface. We do not take into account border rim of

the crater (which is usually present in real craters); we only model simple craters

in our simulations. Complex impact structures can only be observed on the largest

asteroids in the Main Belt and may be present on large icy bodies in the outer So-

lar System where the gravity plays a substantial role in crater formation (Leliwa-

Kopystyński et al. 2008).
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Figure 3.1 The coordinate system used in the model with origin at the center of mass

(COM ) of the two body system. It almost coincides with the target center of

mass (O) for projectiles with mp ≪ m t (mass of the projectile and target, re-

spectively). The coordinate axes x , y , z are identical to the principal axes of

the target with smallest, intermediate and largest moment of inertia, respec-

tively. The impact point I has the spherical coordinates φ (longitude) and θ

(latitude), the projectile hits the target with the velocity vimp, relative to the

target.
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3.2.3 Upper limit of the crater size

The diameter of the largest crater that a body of a given size can bear is calculated

according to the relation in Burchell and Leliwa-Kopystynski (2010). They studied

the maximum crater size on small bodies (asteroids, icy satellites, comets), which

were imaged by space probes, and showed that it follows the relation

D =−(0.17±0.10)+ (1.01±0.08)Rm , 0.7 km<Rm < 120 km , (3.1)

D being the crater diameter and Rm the target mean radius, both in kilometers.

The relative diameters of the impact craters F =D/Rm, formed on the target in

our simulations, were usually kept less than 1.26, which is the value for the largest

crater on 253 Mathilde (Leliwa-Kopystyński et al. 2008). In some simulations we

allowed for higher values of up to F = 1.6, since there is indirect evidence of the

large crater on 90 Antiope (Descamps et al. 2009). However, conclusions based on

this higher limit should be made with caution.

3.2.4 Dispersal and shattering criteria

For every collision, we calculated also its specific impact energy (kinetic energy of

the collision per unit mass of the target). We compared it to the dispersal criterion

as described by Stewart and Leinhardt (2012), who derived the dispersal criterion in

gravity regime from their set of numerical simulations of collisions for wide variety

of input parameters describing the colliding bodies. As shattering criterion we take

1/4 of the dispersal value according to Housen (2009). We plot our simulation re-

sults in a graph of specific impact energy vs. mean target radius (Fig 4.7) and discuss

the results in Chapter 5.

3.2.5 Ejecta

The ejecta are assumed to leave the impact point with a cone-shaped velocity field

symmetric around the line perpendicular to the surface at the impact point. We take

this effect into account when calculating the angular momentum transfer efficiency

(see Sect. 3.2.8 for detailed description and definitions).
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Figure 3.2 The formation of tetrahedra for inertia tensor calculation is illustrated. The

surface is divided into triangular facets and together with the origin they form

tetrahedra. The vertices of the facets are formed by iterating over the azimuth

and latitude angles.

3.2.6 Inertia tensor calculation

The inertia tensor of the target before the impact is calculated analytically for the

body being homogeneous triaxial ellipsoid. The inertia tensor after the impact is

calculated numerically since the body is irregular – it is the triaxial ellipsoid with

the crater on its surface.

The body surface is divided into triangular facets and together with the origin

they form the tetrahedron (see Fig. 3.2). Its inertia tensor is calculated analytically

(see, e.g., Tonon 2004) and using the Steiner’s parallel axis theorem it is translated

into the original center of mass coordinate system (target reference frame, origin

O). The inertia tensors of all such tetrahedra are then summed up and the inertia

tensor of whole body is obtained. Then it is translated to the new reference frame

with origin O⋆, since the center of mass has shifted due to the impact (see Eqn. 3.2).

The situation with facets covering the crater is only a bit more complicated.

First, the crater border is calculated. Then all the facets’ vertices of the ellipsoid

surface inside this circular border are replaced with points of the paraboloid de-



3 Subcatastrophic collision model 37

scribing the crater floor. New facets’ vertices are made of these points and the same

procedure of tetrahedra inertia tensor calculation is used afterwards.

3.2.7 Principal axis deviation calculation

We try to find out, whether a subcatastrophic impact can create an observable ex-

citation of rotation of the impacted body. The target’s rotation was relaxed before

the impact. This means it was rotating about the shortest axis, i.e., the axis with the

largest moment of inertia for the homogeneous ellipsoid. We denote this moment

of inertia I3 and it holds that I1 ≤ I2 < I3.

An indication of the excited rotation will be a nonzero angle between the rota-

tional angular momentum vector of the body after the impact L⋆ and its shortest

principal axis with the largest moment of inertia I3
⋆. The procedure of its calcula-

tion is as follows.

First, the inertia tensor of the target after the impact is calculated. Since the

body possesses the impact crater, it lacks symmetry and the inertia tensor is calcu-

lated numerically.

Because the center of mass of the target O⋆ is shifted with respect to the origi-

nal center of mass O after the impact, the resulting inertia tensor has to be shifted

accordingly (the method calculates it with respect to O, hence it is not a central in-

ertia tensor for the impacted body). We want to have the inertia tensor in a body

frame (which is not inertial) with an origin in its center of mass, because then the

components of this inertia tensor do not change with time as the body rotates. The

transformation reads

I
⋆
i k = Ii k +M (a 2δi k −a i a k ) , (3.2)

where M is the total mass of the body, a is the center of mass shift vector (between

O and O⋆), a is its magnitude, a i and a k are its Cartesian components and δi k is

Kronecker delta (see, e.g., Kvasnica 1997).

Now we have to find the principal axes of the target after the impact. We can

calculate them by finding the diagonal form of its inertia tensor, because they are

determined by the eigenvectors of this tensor. The diagonalization is given by

ID =Q
T
I
⋆
Q , (3.3)
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where ID is diagonal inertia tensor,Q andQT are orthogonal matrix and transposed

orthogonal matrix, respectively. Its rows (and columns, respectively) are the eigen-

vectors of I
⋆.

In the next step we calculate the angular momentum vector just after the im-

pact. We use the momentum conservation law

mtvt+mpvimp =m ⋆
v
⋆+Pejecta , (3.4)

and angular momentum conservation law

L t+ L p+ L orb,t+ L orb,p = L
⋆+ L

⋆

orb+ L ejecta , (3.5)

where mp is the mass of the projectile, vimp is the projectile velocity vector, which

for very low mass ratio of the projectile to target approaches the impact velocity, mt

and m ⋆ are the masses, vt and v ⋆ are the velocities of the target before and after

the collision, respectively, and Pejecta is the momentum of the ejecta. L t and L p are

the rotational angular momenta of the target and the projectile before the impact,

respectively, L orb,t and L orb,p are the orbital angular momentum vectors of the tar-

get and the projectile, respectively, with respect to the center of mass of the system,

L⋆ and L
⋆

orb
are the rotational and orbital angular momenta of the target after the

impact, respectively, and L ejecta is the angular momentum of the material ejected

during the impact. Since the projectile was dissintegrated during the impact, all

the quantities on the right sides of Eqns. 3.4 and 3.5 describe the post impact target

body, and so we omit the subscript t .

The orbital angular momenta are calculated as

L orb,p =mp(rp×vimp) ,

L orb,t =mt(rt×vt) ,

L
⋆

orb =m ⋆(r ⋆×v
⋆) ,

(3.6)

where rp, rt and r ⋆ are the radius vectors of the projectile and the target before

and after the impact, respectively, with respect to the system’s center of mass. We

calculate the target velocity before the impact as

vt =−
mp

mt
vimp . (3.7)
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Without an appropriate model of the ejecta, we need to, at least roughly, estimate its

dynamical effect. We decided to use the efficiency of the linear (and angular) mo-

mentum transfer measured in laboratory impact experiments by Yanagisawa et al.

(1996) and Yanagisawa and Hasegawa (2000) and we assumed that this relationship

holds also for large scale impacts. Using the efficiencies η and ζ, the linear momen-

tum transfer efficiency in normal and tangential direction with respect to the local

surface at the impact point, respectively, we calculated the v ⋆ including the effect

of ejecta. For the definition of these efficiencies and more detailed discussion see

Section 3.2.8.

Finally we needed to describe L ejecta. For a small cratering impact, we can cal-

culate the difference L orb,p− L ejecta as

L orb,p− L ejecta =ηmp(rp×vnorm)+ζmp(rp×vtang) , (3.8)

where vnorm and vtang are impact velocities in direction normal to and tangential to

the local surface of the target, respectively.

The rotational angular momenta of the bodies are simply given by

L t = Itωt and L p = Ipωp , (3.9)

where we introduced inertia tensors of the target It and of the projectile Ip and an-

gular velocitiesωt andωp of the target and the projectile, respectively.

When we put the equations 3.6, 3.7, 3.8 and 3.9 to the equation of angular mo-

mentum conservation 3.5, we can calculate the angular momentum vector of the

target after the impact as

L
⋆ = Itωt+ Ipωp+(L orb,p− L ejecta)+ L orb,t− L

⋆

orb . (3.10)

Finally we can calculate the angle between the rotational angular momentum

vector of the target after the impact L⋆ and the axis with the largest moment of iner-

tia I ⋆3 (the axis is represented by unit vector E3, the eigenvector of the inertia tensor

I
⋆). We denote this angle as β ,

β = arccos

�

L⋆E3

|L⋆||E3|

�

. (3.11)

The angle β is not constant, but it varies with changes of the principal vector E3

as the body precesses. We calculate the value ofβ right after the collision and we use
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it as an approximate measure of the magnitude of tumbling displayed in lightcurve,

for which the use of the instantaneous value of the misalignment angle is sufficient.

This was checked by a set of simulations where we calculated the time evolution of

β and we found that it is close to its maximum value just after the collision if it is

not larger than about 65◦.

3.2.8 Angular Momentum Transfer Efficiency

During the collision the projectile angular momentum is transferred to the target.

The target body, however, does not obtain all of the angular momenta carried by the

projectile, as shown by the experiments of small scale impacts (see, e.g., Yanagisawa

et al. (1996), Yanagisawa and Hasegawa (2000) and references therein). A part of the

angular momentum is carried away by high velocity ejecta and spall fragments and

therefore we introduce the momentum transfer efficiency1 defined as

η=
m ⋆v ⋆norm

mpvnorm
and ζ=

m ⋆v ⋆tang

mpvtang
, (3.12)

where v ⋆ is the target speed after the impact, v is the projectile preimpact speed.

The subscripts nor m and t a n g denote the normal and tangential components to

the target’s local surface at the impact point, respectively. In our calculation, we use

the experimentally obtained values of the efficiencies, but the thing is actually a bit

more tricky.

From the impact experiments we see that the efficiencies depend on impact an-

gleσ, which is an angle between the impact velocity vector and the line perpendic-

ular to the surface at the impact point. The experimental results give the following

dependencies

η(σ) = 1+η0 cos2σ and ζ(σ) = ζ0 cos2σ . (3.13)

Yanagisawa and Hasegawa (2000) obtained the values of constants η0 and ζ0 at im-

pact speed of 4 km s−1, which is close to the median impact speed between the Main

Belt bodies (∼ 5 km s−1, Bottke et al., 2005). For basaltic targets they give η0 = 1.52

1The efficiency can be larger than one because backfire ejecta carries away some momentum in

the direction opposite to the projectile course.
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Figure 3.3 For two ellipsoids with different axial ratios a/c the same velocity vector v and

impact point latitude θ result in different incidence angle of the projectile.

Therefore the efficiencies η and ζ which are the functions of the incidence

angle will be different for those two ellipsoids.

and ζ0 = 0.409. For sand target, which could be similar to a regolith-covered aster-

oid, Yanagisawa (2002) gives ζ0 = 0.687. He did not obtain the η0 value and there-

fore he usesη0 = 0 (η= 1) for an asteroid large enough to reaccumulate all the ejecta

by its gravity. We follow this approach.

There is also a relation between the efficiencies and the shape of the target body

as described in Yanagisawa (2002). It is sufficient to consider the equations given

above since the impact angle σ is different for a sphere and an ellipsoid for the

same impact velocity and therefore we get different values of η and ζ for different

target shapes. This is illustrated in Fig. 3.3.

Recently the momentum and angular momentum transfer efficiency has been

studied in laboratory experiments and also by theoreticians. Holsapple and Housen

(2012b) and Housen and Holsapple (2012) presented the results of laboratory mea-

surements of the momentum multiplication factor, in the literature usually denoted

as β (do not confuse it with our angle β ). It is a ratio of target post collision and

projectile pre collision momenta magnitudes (similar to our η and ζ). It can be

larger than one according to experimental results which are consistent with those of

Yanagisawa et al. (1996) and Yanagisawa and Hasegawa (2000). It is mainly caused

by the backfire ejecta momentum, which is added to the projectile momentum. It

is important to say that only ejecta which escape the target after the collision con-

tribute to this budget.

There is also a scaling effect which predicts that for larger asteroids the momen-

tum multiplication factor or momentum enhancement can be much larger than

one. It is indicated by collision experiments of Walker et al. (2012), who carried out
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the collision of 4.45 cm aluminium sphere into two 1 m diameter granite spheres at

2 km s−1. Holsapple and Housen (2012a) gave a theoretical account to the momen-

tum multiplication based on the analysis of dynamics of ejected material in their

earlier paper (Housen and Holsapple 2011). The experimental results on this will be

presented in a companion paper soon to be published.

Therefore, our model could be corrected by adopting the new experimental re-

sults and theoretical scaling of the momentum and angular momentum transfer

efficiency in the collision. This is an opportunity to further develop this model.

This subject is not only important for the evolution of the asteroid rotations but

it has also a practical meaning. One of the asteroid mitigation strategies is based on

the use of kinetic impactor. It is a heavy spacecraft which collides with the aster-

oid and slightly changes its orbit so that it misses the Earth. The concept of such a

mission should be soon verified by several space missions (Caltech JPL’s ISIS, inter-

national project AIDA).

3.2.9 Scaling laws

To find out how large will be the crater formed on the asteroid, we followed the

scaling laws of Holsapple (2003) and Holsapple (1993). The scaling laws, in gen-

eral, predict the outcome of an experiment from another one with different values

of problem parameters. When we study impact processes, we have results of cen-

timeter scale impact experiments from the lab and we try to predict the outcome of

the same experiment on a much larger (kilometer) scale.

The impact cratering scaling laws are based on an assumption that the projec-

tile (which is much smaller than the resultant impact crater) behaves like a point

source of momentum and energy (Holsapple and Schmidt 1987). The projectile

charecteristics, size a , velocity U and density δ only affect the crater in a specific

power law combination C = aUµδν . The exponent µ ranges from 1/3 to 2/3, which

corresponds to momentum and energy scaling, respectively. The exponent ν is typ-

ically equal or close to 1/3.

Then there are two limiting regimes of the cratering, when either gravity or ma-

terial strength dominates. For large lithostatic stress, the crater forms in gravity

regime and the crater size decreases with increasing gravity or impactor size. If the
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lithostatic stressρg h is much smaller than the strength of the target material, grav-

ity becomes unimportant and is neglected – this is a strength regime.2

There is a well established experimental method described, e.g., in Housen and

Holsapple (2003), which is used to simulate the large scale impacts. This method

uses a centrifuge which simulates much higher gravitational acceleration than on

the surface of any asteroid or the Earth. It is based on similarity analysis as de-

scribed in the following.

The dimensions of the crater in nondimensional form are expressed as

g D

g a
= f

�

g a

U 2 ,
Y

δU 2 ,
ρ

δ
, n ,πM

�

, (3.14)

where g is the gravitational acceleration on the surface of the body at the impact

point, D is the crater diameter, a is the projectile radius, δ its mass density, Y is a

strength measure of the target material (depends on the specific impact process), ρ

is the target density, n its porosity, U is the perpendicular impact velocity compo-

nent and πM is a set of other target material properties that affect the crater forma-

tion (except any size or time dependent properties).

Two impact events are similar, when all of the nondimensional ratios on the

right side of the Eqn. 3.14 are the same for both events. It means that both events

have the same target and projectile materials, the collision happens at the same

velocity and the product g a is the same. Then, the value of g D is the same for

two similar impacts. This is also true for other linear dimensions of the crater, such

as depth or rim height. Therefore, the laboratory impact crater is similar to the

large scale crater in its shape, the size and velocity distribution of ejecta etc. The

scale of those two craters is equal to the ratio of the gravitational acceleration in

the laboratory centrifuge experiment g C (from normal gravity to several hundred

G’s, G is the gravitational acceleration on the surface of the Earth) to gravitational

acceleration at the asteroid surface g A.

For instance, the gravity at the surface of 253 Mathilde is g A ∼ 10−3 G and the

centrifuge experiment can be carried out at g C ∼ 500 G, so the scale factor is g C/g A =

5 · 105. The largest crater on Mathilde called Karoo has a diameter of 33 km and its

formation is simulated by ∼ 7 cm crater in centrifuge experiment at 500 G. If one

wants to simulate smaller impact crater on that asteroid, he uses smaller acceler-

2Last two paragraphs are based on lucid explanation of the scaling laws in Housen and Holsapple

(2003).
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ation in the centrifuge. A 1 km crater on Mathilde would be simulated by ∼ 10 cm

crater at 10 G.

Based on shapes of simple craters on the Moon and other Solar System bodies,

we decided to model the impact crater as paraboloid of revolution. We assume that

the aftermath of the crater formation (e.g., a collapse of the crater walls) does not

have a substantial dynamical effect (the mass redistribution is small).

The radius and depth of the crater are given by the following formulae

Rc = KrV 1/3
c and Dc = KdV 1/3

c , (3.15)

where Kr and Kd are the shape constants specific for a material of the asteroid (Hol-

sapple, 2003) and Vc is the volume of the crater given by

Vc =
4πd 3

3

δ

ρ
πV , (3.16)

d being the impactor diameter, δ its density,ρ is the target’s density and πV is given

by

πV = K1

(

π2

�

ρ

δ

�(6ν−2−µ)/3µ

+K2

�

π3

�

ρ

δ

�(6ν−2)/3µ
�(2+µ)/2
)−3µ/(2+µ)

π2 =
g d

U 2 , π3 =
Ȳ

ρU 2 . (3.17)

Parameters K1 and K2 and exponents µ and ν come from laboratory impact experi-

ments (Holsapple 1993), g is the gravitational acceleration at the impact point, U is

the impact velocity component perpendicular to local surface and Ȳ is the target’s

material strength.

In the model, we assume effective strength for the excavation, because the shock

wave fractures the body during the early phase of the impact. As the body becomes

porous, this effective strength can actually increase as the impact energy transfer is

hindered (Binzel et al. 2003). The effective strength is related to the most important

cratering process at work for a specific impact (say, to the very porous material ver-

sus solid rock). It can be tensile, shear or other material strength that can be mea-

sured in laboratory but also some more complicated combination of those mea-

sures; for details see Richardson (2009), Nolan et al. (1996) and Holsapple (2007).
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Table 3.1 Scaling and material constants for non-porous and porous body materials.

Material K1 K2 µ ν Ȳ (MPa) ρ (g cm−3) Kr Kd

Rock 0.095 0.257 0.55 0.33 10 2.0 1.1 0.6

Lunar regolith 0.132 0.26 0.41 0.33 0.01 1.5 1.4 0.35

Table 3.2 Physical parameters of the sample target bodies.

Figure target mean initial rotation β [deg]

diameter [km] period [h]

3.4 144.2 32 4.2

3.5 36.1 32 11.5

3.6 1.4 2 15.5

3.7 7.2 12 18.8

3.8 7.2 22 34.3

Speaking of porosity, in our simulations we consider two cases: a rocky material

corresponding to macroscopically non porous bodies and lunar regolith for porous

asteroids. For the values of scaling and material constants we use, see Table 3.1.

Note that even rocky material may include some level of microporosity.

3.2.10 Synthetic lightcurves

We generated rotational lightcurves for the resulted model bodies. We used the

program written by Mikko Kaasalainen (Kaasalainen 2001) and modified by Josef

Ďurech (2011, pers. communication), which generates the rotational lightcurve for

an arbitrarily shaped body with given dynamical parameters. The shape is given by

a set of oriented triangles building up the body surface mesh, the light scattering

law was that of Hapke (Bowell et al. 1989). The input also includes the orientation

of axis of rotation at some instant of time as well as the Euler angles for that instant

that determine the body’s orientation in space.

The Euler equations of motion are then solved and the integral light flux is cal-

culated for given observational geometry with a chosen time increment. We sim-

ulated real observations with varying time sampling rates to avoid alias effects in

generated lightcurves and we also added a Gaussian noise.
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Figure 3.4 A lightcurve of a body impacted by a small projectile, β = 4.2◦. The horizontal

axis is the rotational phase, the vertical axis is a light flux normalised to unity.

It is undistinguishable from a lightcurve of principal axis rotator even in lowest

noise case.

A blind test lightcurve analysis was done for a set of cases with increasing β to

find out if the tumbling is detectable in the synthetic lightcurve. In Figs. 3.4–3.8 we

present five sample lightcurves with three levels of noise – 1%, 5% and 10% of the

mean flux value. The axial ratios of the target were a/c = 2.0 and b/c = 1.5. The

diameter of a projectile was about 5% of the mean diameter of the target body in all

these simulation runs. Other parameters describing the target body are in Table 3.2.

The values of rotation axis misalignment for which the tumbling is clearly de-

tected start at β ∼ 15◦, although for less accurate data β has to be higher by 5–15

degrees depending on the noise level of the lightcurves. If the best period solution

does not fit the data ‘nicely’ and the residua are higher than expected from the in-

herent accuracy of the data, lower noise data are needed to check if the asteroid is

tumbling or not. The detectability of tumbling in distant or in situ photometry for

different excitation magnitude, the mode of free precession (SAM versus LAM) and

the accuracy of the data is an interesting problem and it will be subject of our future

research.
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Figure 3.5 A lightcurve with apparent minor deviations from single periodicity, β = 11.5◦,

only marginally distinguishable by photometric observation with most accu-

rate measurements. Otherwise, the deviations are washed down by the noise.
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Figure 3.6 A moderate tumbling signal is apparent in this lightcurve for the lowest noise

level, β = 15.5◦.
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Figure 3.7 In this lightcurve the tumbling is evident even for moderately noisy data, β =

18.8◦.
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Figure 3.8 Obvious tumbling for this slowly rotating body, β = 34.3◦. It should be de-

tected even in low quality datasets.
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3.3 Model limitations and adopted

approximations

Here we discuss our model limitations and describe also more deeply the approxi-

mations we use to simulate the impact crater formation on asteroid surface and its

dynamical effects.

For the calculation of the impact crater dimensions we use the scaling laws for

impact cratering, which connect small scale laboratory experiments and large scale

collisions we are interested in. These scaling laws, however, only hold under cer-

tain assumptions. They were derived for a halfspace target with the projectile small

enough, so that point source (of energy and momentum) approximation holds. It

seems to be true for small to moderate incidence angles, but it is not usable for very

oblique impacts. Therefore, we limit all our simulation runs to maximum incidence

angle of 50◦. For incidence angles larger than 0◦ the impact velocity component

perpendicular to the surface at the impact point is used. We also limit the impact

speed to values higher than 1 km s−1 as for lower speeds the scaling laws do not ap-

ply (Holsapple 1994).

As an input for the scaling laws we use two sets of material constants. These

include density and strength of the target body material. We use the sets of those

constants for rocky material and lunar regolith (see Table 3.1). These may be closest

analogues of the asteroid material for which we have its material constants mea-

sured but we cannot be sure it is true. In 2010, probe Hayabusa of Japan Aerospace

Exploration Agency succesfully returned asteroid dust to Earth. There are several

more sample return missions planned to visit an asteroid, e.g., Hayabusa 2 and

NASA’s OSIRIS-REx. These missions can give us more constraints on the material

properties.

The description of the porosity, which is an important mechanical property of

the asteroids, is very limited in our model. Basically we only change the constants

in scaling laws which yields different dimensions of the impact crater. Housen

and Holsapple (2003) showed that porosity has substantial effect on the amount

of ejecta and this will obviously display in the momentum and angular momentum

exchange between the projectile and the target. The porosity can also have some

influence on the crater shape and its depth to diameter ratio as shown by recent

impact experiments into pumice targets (Flynn et al. 2013, pers. communication –
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CD8 workshop talk). More work needs to be done to include porosity description

more thoroughly into our model.

There is also another regime of impact cratering which is valid for highly porous

materials and therefore it can be valid for many real asteroids. It is a compaction

mechanism described by Housen et al. (1999). They showed that this mechanism

is able to explain the lack of ejecta around the huge impact craters and also close

packing of those craters3 on the surface of 253 Mathilde, large C type slowly rotating

tumbler with a porosity of some 50% (Veverka et al. 1999). This mechanism has a

different effect on the dynamics of the asteroid at least from two points of view:

first, it changes the density of the material underneath the crater (the material is

pushed into the pores during the collision) and second, it dramatically changes the

dynamics of the ejected material (see the previous paragraph) and therefore the

momentum imparted to the target. Also this mechanism will be the subject of our

future research.

Shapes of real asteroids are very diverse as they are influenced by collisions, tidal

effects and rotational fission potentially causing landslides and also other changes

of their surface and overall structure. We only modeled the target bodies as triaxial

ellipsoids which is usually the first approximation of asteroid shapes. In the future,

we would like to use also irregularly shaped bodies in our model to see its effect on

the results. However, we remind the reader that cratering into irregularly curved

surface is still beyond the capability of the present scaling laws.

We use triaxial ellipsoids as targets in our model and so we assume the scaling

laws are usable even for the curved surface. It is probably true for small craters, for

which the curvature is not large, but is is questionable for larger craters compara-

ble to the size of the target. Some observational constraints on this can be found

in Leliwa-Kopystyński et al. (2008). The only experimental results of this effect are

those of Fujiwara et al. (1993) who describe that craters formed on a curved surface

are larger than those on flat surface and when the curvature of the impacted sur-

face is comparable to the crater radius (on the flat surface), the crater size sharply

increases and becomes convex rather than concave (after Housen and Holsapple

2003).

Our model is analytic, it is not a numerical simulation of the collision. We do

not model any processes that occur during the collision or afterwards. The impact

3Some of them basically overlap and yet the older one is not damaged by the newer one.
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crater is formed on the surface of the target and we only calculate its dimensions by

scaling laws. The calculation of dynamical effect of the ejected material is based on

the laboratory experiments of hypervelocity collisions mentioned in Section 3.2.8.

Although we considered the rotation of the target body in the angular momen-

tum conservation law, there are probably other parts of the model that could be

affected by the rotation.

First, rotation seems to change the amount of ejected material. Faster rotation

increases the mass of ejecta (Richardson et al. 2013, pers. communication – CD8

workshop talk). Moreover, for larger asteroids the collsional ejecta escapes pref-

erentially in the direction of rotation which can reduce their spin – this is called

angular momentum drain (Dobrovolskis and Burns 1984).

Second, the laboratory impact experiments suggest that rotating asteroid might

fragment more easily for near catastrophic collisions (Morris et al. 2013, pers. com-

munication – CD8 workshop talk). Also the experiments of Housen (2004) show a

strong dependence of the dispersal criterion Q⋆ on the rotation rate in the strength

regime of collision. This dependence is not understood yet and also it is not clear

if the similar relationship exists in gravity regime. On the contrary, N-body simu-

lations of Takeda and Ohtsuki (2009) showed no evidence that asteroid’s intial spin

would change the energy needed to disrupt the body.

Third, we speculate that in gravity regime of collisions, the target rotation should

be included in the calculation at least for fast rotators. The effective acceleration

(gravitational plus centrifugal) should be used in scaling laws for calculating the

impact crater dimensions. To our knowledge, there has been no paper on this sub-

ject.

In our model, the bodies moved in a line before the collision. The impact speeds

were much higher than their escape velocities, therefore we did not take into ac-

count neither gravitational focusing nor tidal effects (Love and Ahrens 1996).

The next chapter resumes the main results of our present research. We show the

sensitivity of the excitation of rotation to various input parameters describing the

colliding bodies. In Section 4.2 we then show that the value of β is closely related

to L orb/L t ratio independent of other parameters describing the two bodies. This

result gives us a tool to quantitively judge the dynamical outcome of a subcatas-

trophic collision with regard to the rotation of the target asteroid.





4
Results

In this chapter we present the results of our simulations. In individual runs,

we varied one or two input parameters (e.g., body size or its rotation period)

while keeping other constant. Then we plotted graphs showing the relationship

between the varied parameters and the misalignment angle β of the angular

momentum vector after the collision (see Section 3.2.7). Presented graphs do not

show results of all our simulations, but rather a representative sample.

4.1 Rotation axis misalignment

The following sections give the graph displaying the dependency of rotational axis

misalignment β on a specific physical parameter of the target or projectile and its

detailed description. Then we interpret the dependencies usually by the dimen-

sional analysis. The constant parameters describing the body in these runs were

a/c = 2.0, b/c = 1.5, Ȳ = 10 MPa, bulk densities of the target and the projectile were

2 g cm−3. The projectile collided with the body at vx = −5 km s−1 and the impact

point coordinates were φ = 15◦ and θ = 15◦. The incidence angle for such geome-

53
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try is approximately 35◦, which is ten degrees less than the statistical average for a

spherical target body (Love and Ahrens 1996).

4.1.1 Target’s rotation period

Figure 4.1 shows the misalignment of the angular momentum (AM) vector for var-

ious values of the initial rotation period and four body sizes. As expected, β in-

creases with increasing rotation period. The slower rotation of the target implies it

has a lower angular momentum L t and therefore the projectile with a given orbital

angular momentum L orb will excite the body more.

We can clearly see that even for the largest body the tumbling could be detected

for periods longer than about 42 h. To understand qualitatively this graph, we can

use dimensional analysis. For the rotational angular momentum of the target and

for the orbital angular momentum of the projectile, respectively, we have

L t ∼ I tωt ∼mtr
2
t ωt ∼ r 5

t

2π
Pt

,

L orb ∼ rtmpvimp , (4.1)

where rt is the mean target radius and Pt is the target’s period of rotation. The ratio

of these two is
L orb

L t
∼

Pt

r 4
t

. (4.2)

It means that the smaller the target and the longer the period of rotation, the higher

the ratio of the angular momenta and therefore higher β .

4.1.2 Projectile size

In another run, the sampled parameter was the projectile size. The results are plot-

ted for small body both porous and non-porous (Fig. 4.2). As the relative projectile

size increases,β also increases. A larger projectile makes a larger crater on the target

body and hence a larger change of the inertia tensor.

The parameters describing the impact were the same as above, the mean body

diameter was 1.4 km and its intial rotation period was 32 h. For a porous target,

there is a different set of the scaling and crater shape parameters as described in
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Figure 4.1 A relationship between the AM vector misalignment and the initial rotation

period of the body, for four different sizes. The projectile size was adjusted

so that it excavated a crater of maximum size (see Section 3.2.3). Details in

Sect. 4.1.1

Section 3.2.9 and a different cratering efficiency (see Section 3.2.8). There are only

subtle differences of at most two degrees in β between porous and non-porous tar-

gets. Note that this difference does not have to be realistic as the physics of the im-

pact into a porous material is probably more complicated and not well understood

yet. In future, some numerical simulation will be useful to describe this process

more thoroughly and more realistic.

4.1.3 Target strength

In Fig. 4.3, we plot the strength–misalignment relationship for a small and a moder-

ate size body. For increasing target strength there is an increasing threshold crater

size (see Section 3.2.3 for details). We kept the actual crater size near the thresh-

old, so for larger target strength we had larger projectile with larger L orb (L t being

constant).

Other parameters than the strength and the body sizes (144 m and 7.2 km, re-

spectively) were the same as in previous experiment, the initial rotation period was

32 h.



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  0.01  0.02  0.03  0.04  0.05  0.06  0.07  0.08  0.09

β 
[d

eg
]

relative projectile size (wrt. to target)

β = 15 deg
1.4 km non-porous body

1.4 km porous body

Figure 4.2 A relationship between the AM vector misalignment and the projectile size

for small target with 32 h rotation period. The simulation for non-porous and

porous body. Details in 4.1.2.
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Figure 4.3 A relationship between the AM vector misalignment and strength of the small

and moderate size target. Details in Sect. 4.1.3.
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Figure 4.4 A relationship between the AM vector misalignment and target size. Details

in 4.1.4.

4.1.4 Target size

The last run shows a dependence of the misalignment on the target size, see Fig. 4.4.

It is clearly seen that with decreasing target sizeβ increases. As before, it was caused

by increasing L orb/L t ratio, which can be, again, explained by dimensional analysis

(see Eqn. 4.2).

4.2 Angular momenta ratio

Here we show, that the results of all our simulations can be described by a ratio of

the projectile orbital to target rotational angular momentum L orb/L t. The relation-

ship can be approximately described by the formula

cosβ =±

�

1+
sin2ψ

(L t/L orb+ cosψ)2

�−1/2

, (4.3)

where the + sign is for L t ≥ −L orb cosψ and − sign is for L t < −L orb cosψ, ψ is

the angle between the two angular mometum vectors just before the collision. For

derivation of this formula see Appendix A.
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Figure 4.5 The results of all presented simulations included in one graph as a function of

L orb/L t (points, see the key for their description). The black solid curve is β as

a function of L orb/L t. The angle between those AM vectorsψwas constant for

all the simulations and the curve converges to its value of 105.8◦.

We plotted all the simulation results in Fig. 4.5 together with the curve given by

Eqn. 4.3.

There is another obvious feature in the above mentioned graph – the values of β

converge to the value ofψ. This is to be expected when the ratio of the magnitudes

of these two vectors becomes much greater than one

L orb

L t
≫ 1 cosβ =

�

1+
sin2ψ

(L t/L orb+ cosψ)2

�−1/2

=

�

1+
sin2ψ

cos2ψ

�−1/2

= cosψ .

(4.4)
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Figure 4.6 Test of β convergence toψ for various impact geometries (the angle between

L t and L orb vectors). See text for details.

If, on the contrary, the L orb is negligible when compared to L t, we obtain the

obvious result

L orb

L t
≪ 1 cosβ =

�

1+
sin2ψ

(L t/L orb+ cosψ)2

�−1/2

= 1 β = 0 . (4.5)

We have checked this convergence of β toψ also for other angles (other impact

geometries) and the results are presented in Fig. 4.6. The target was 50 m body with

other parameters as in previous simulations and the projectile collided with it at

vx = −5 km s−1. The impact point coordinates are described in Fig. 4.6 by φ and θ

(see Section 3.2.1 and Figure 3.1).

4.3 Dispersal and shattering criteria

It is important to compare the specific energy of every collision with some energy

threshold criterion so that the collision is subcatastrophic (cratering regime) and

does not cause substantial damage to the target. Dispersal criterion is the specific

energy required to disperse half the total mass of the target and the projectile. Usu-

ally it is denoted Q∗D. The shattering criterion, Q∗S, is the kinetic energy of the projec-
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tile per unit target mass such that half the target mass remains intact (Stewart and

Leinhardt 2009). For the strength regime, these two criteria are esentially the same

but in gravity regime they can differ substantially.

Now, we compare the energy of our collisions with even lower energy threshold

as described by Housen (2009). This is the minimum energy per unit target mass

to produce large scale damage in a target body, Q∗LD. In the calculation of the crite-

rion, we followed Stewart and Leinhardt (2012). They simulated collisions in gravity

regime with wide variety of input parameters describing the colliding bodies. As

the large damage threshold we take 1/4 of the previous value according to Housen

(2009).

In Fig. 4.7, we plotted specific impact energy as a function of the mean target

radius and calculate the Q∗LD criterion for most collisions we simulated. Since the

diversity of dispersal or shattering criteria in literature is rather high, we plot other

such functions in that figure for comparison to our choice. For review on these

criteria see for instance Holsapple et al. (2002) and Benz and Asphaug (1999). The

thorough description of the dispersal criterion in gravity regime based on large set

of numerical simulations can be found in Leinhardt and Stewart (2012).

We considered targets with various dimensions but constant a/c = 2.0, b/c =

1.5, with a rotation period of 36 h, mean density 2 g cm−3 and strength 1 MPa. The

projectiles were of various sizes, their density was 2 g cm−3 and the impact speed

was vx = −5 km s−1. The impact point coordinates were φ = 21◦ and θ = 21◦, the

incidence angle for such geometry is approximately 44◦.

We also plot the limiting value of the specific energy for which the tumbling af-

ter the collision becomes detectable in the lightcurve as described in Section 3.2.10.

For its derivation see Appendix B. The bodies, for which the specific impact en-

ergy of the collision was less than this limiting value, are labeled ‘not tumbling’ for

simplicity but this label implies that the tumbling would not be detected in their

lightcurves. If the collision energy exceeds the Q∗LD criterion, we label the resulting

body ‘tumbling but shattered’ and we mark it with different symbol (×) in the graph.

We plotted an upper limit of the specific impact energy with dashed line in the

graph. It corresponds to the ratio of the diameter of the largest crater to the mean

target radius D/Rm = 1.26 (the largest known crater on 253 Mathilde). This line

gives us the idea on what are the largest craters observed on the surfaces of small

bodies in the Solar System.
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Figure 4.7 The specific energy of collision as a function of the mean target radius. Small

red circles denote bodies for which the tumbling was not apparent in the

lightcurve. Large green circles are tumbling bodies which did not exceed the

Q∗LD criterion. Green cross symbols are for bodies that were seriously dam-

aged, shattered or even had a half of its mass dispersed by the collision. The

dispersal criterion is according to Stewart and Leinhardt (2012). Other disper-

sal or shattering criteria are also displayed. The thick black line is the limiting

specific impact energy as derived in Appendix B. See text for details.





5
Conclusions

In the present research we focused on the plausibility of the collisional origin of

the excited rotation of asteroids. We constructed an analytical model, described in

Chapter 3, to investigate this process and we obtained the following main results.

We found that large subcatastrophic collision is physically plausible process to

excite the asteroid rotations. We measure the strength of the excitation by the ro-

tational axis misalignment defined as an angle between the shortest principal axis

of the asteroid and its rotational angular momentum vector and we denote this an-

gle as β . The excited rotation (or tumbling) is detectable by distant photometry for

β ¦ 15◦ with photometric data with accuracy of 1% and for β ¦ 30◦ with data of 10%

accuracy.

We tested the sensitivity of the excitation of rotation to several parameters de-

scribing the target, the projectile or the collision circumstances. We found that

the result can be described simply by the ratio of the orbital angular momentum

( mainly carried by the projectile) and the rotational angular momentum of the tar-

get. We derived a simple relation between this ratio and the angle β , see Eqn. 4.3

in Sect. 4.2. This relation can be used for evaluation of the rotation excitation in a

subcatastrophic collision.
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We also compared the specific impact energy in every simulation run to the

threshold energy which would cause a serious damage of the target asteroid. We

found that asteroids as small as ∼ 100 m can have excited rotations by collisions

without being damaged. This limit depends upon a choice of the threshold energy

for large damage of the asteroid; details on this are in Sect. 4.3.

To investigate a relevancy of the collisional mechanism in rotational dynam-

ics of asteroids, it is necessary to construct a more complex model. We have only

proven that collision can be responsible for tumbling but it is not sufficient to say

that collisions are the mechanism causing tumbling. Vokrouhlický et al. (2007)

showed that YORP can slow down the rotation of the asteroid to a very slow spin

but not to complete halt. Eventually, this leads to onset of chaotic tumbling which,

after some time, ends up in rotation state with a regular motion of the spin axis in

the body frame (free precession). This evolution is, however, limited by collisions

powerfull enough to change the asteroid spin state. Therefore, the updated model

should follow the similar procedure described in Vokrouhlický et al. (2007), but it

should include collisional excitation.

The evolution of spins of small Main Belt asteroids was modeled by Marzari

et al. (2011) who included both, YORP and collisions, and obtained a better match

with the observed population when compared to models which included only YORP.

It would be useful to carry out similar simulation specifically focused on tumbling.



6
Further work

In our further work, we will improve our model in order to remove its limitations

and find better approximations. These were described in Sect. 3.3 and we will only

briefly repeat it here. Furthermore, we will concentrate on more general plans that

will include our model.

We will work on improving the description of porosity in our model as it is a

very important characteristics of many asteroids and it plays a substantial role in

collisions. Housen and Holsapple (2003) showed that porosity affects the amount of

ejecta and this also propagates to the efficiency of angular momentum transfer from

the projectile to the target. The porosity can also change the shape of the impact

crater and its depth to diameter ratio (Flynn et al. 2013, pers. communication –

CD8 workshop talk) which affects the inertia tensor and therefore the strength of

the excitation of rotation.

We will add the compaction mechanism of cratering described by Housen et al.

(1999)) because it is a preferable cratering regime for highly porous asteroids such

as 253 Mathilde (Veverka et al. 1999). This will require a more extensive change of

the present model and it can bring substantially different results. It could give us

more realistic constraints on the efficiency of the collisional excitation of rotation

for very porous asteroids.
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Triaxial ellipsoids are widely used as the first approximation of asteroid shapes

in various theoretical models. We also used this shape but we plan to extend the

model for irregular bodies. There are several tens asteroids for which we have 3D

shape model mostly based on radar observations. It may be interesting to test the

dependancy of our model outcomes on the shape of the body used in the model.

Note, however, that the effect of the curved surface on the formation of the impact

crater is not well known yet. It is one of the problems that should be addressed by a

future research of the impact processes.

In the present research, we described the outcomes of the subcatastrophic col-

lisions depending on various input parameters of the colliding bodies and the colli-

sion itself. It would be useful to run randomized simulations for a specific asteroid

population to find average rotational axis misalignment caused by collisions. This

could be incorporated into models tracking the evolution of the asteroid rotations

as the zeroth approximation.

Stepping further, the evolution of asteroid rotations could be simulated in a

more complex way to also include the collisional excitation as follows. The model

should include the most important dynamical processes that affect rotation of as-

teroids, i.e., collisions and Yarkovsky–O’Keefe–Radzievskii–Paddack (YORP) effect.

While the collisions cause an instantaneous change of the rotation, YORP works on

long timescales. Large collisions can be either catastrophic, leading to asteroid dis-

persal, and collisional fragments may be in a state of excited rotation as suggested

by experiments of Giblin and Farinella (1997). Or they can be subcatastrophic that

can spin up or spin down the target and also lead to excited rotation, sometimes

large enough to be observed in the asteroid’s lightcurve.

The effects of subcatastrophic impacts are an important part of the dynamical

evolution of asteroid rotations. They affect the rotation of asteroids directly but also

indirectly by, e.g., changing some of the surface properties with respect to sunlight

re-emission and therefore influencing the magnitude and possibly the sign of the

YORP torque (Statler 2009).

When considering collisions, we have to calculate or at least estimate the prob-

ability of collisions for a specific asteroid. The collisional excitation of rotation is

more effective for smaller asteroids with slower rotation. Therefore, a sufficient col-

lision can be caused by a rather small projectile (say, a few per cent of the target

diameter). The problem is that the number of such bodies in the Main Belt or other

group of asteroids is only estimated by extrapolation of the observed population.
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For small asteroid counts we suppose the power law relation with lower exponent

than for the moderate size (Ivezić et al. 2001).

Moreover, it is necessary to consider the damping of the excited rotation to find

out how long can be observed the excited rotation from the last large collision. Also

observational biases need to be estimated for observational methods (e.g., optical

photometry) to estimate the population of tumbling asteroids. Only then we can

compare the output of the simulated population of tumbling asteroids to the ob-

served sample.

To learn more about the origin of tumblers and processes causing the excitation

of their rotation, we can follow this procedure. Consider the population of aster-

oids, say, in the Main Belt of several tens of thousand bodies. We let this popula-

tion evolve in time by the means of monte carlo numerical method. We include all

the above mentioned processes into our simulation. The results of such simulation

will serve as a base for estimating of the probability to observe an excited asteroid,

which can be compared to the actual observations.

Since our model is analytical and includes several approximations, it would be

very useful to investigate the effect of subcatastrophic collisions on the asteroid ro-

tations also by another method. The most obvious choice would be the smooth

particle hydrodynamics model (SPH; Benz and Asphaug 1994) or a hybrid SPH and

N-body simulation (Leinhardt and Stewart 2009). This could validate the results of

our modeling and provide clues on further improving the model.





A
Misalignment angle–angular momenta

ratio dependence

Equation 3.11 defines the rotational axis misalignment angle after the collision. As

we showed, it is closely related to the ratio of L orb/L t. Here we derive an approxi-

mate relation between these two quantities.

We assume that the shortest principal axis (represented by vector E3) of the tar-

get remains unchanged during the collision (the small deviation is caused by the

crater formed on the body). We only consider the target rotational angular momen-

tum L t and the projectile orbital angular momentum L orb,p (further only L orb for

simplicity) and neglect all other angular momenta in Eqn. 3.5, so the resulting L ⋆ is

L
⋆ = L orb+ L t . (A.1)

Hence we have

cosβ =
L⋆E3

|L⋆||E3|
=
(L orb+ L t)z

|L orb+ L t|
, (A.2)

where the subscript z denotes the z component of the vector. This can be further
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written as

cosβ =
(L orb cosψ+ L t)

[(L orb cosψ+ L t)
2+ L2

orb sin2ψ]1/2
, (A.3)

whereψ is the angle between L orb and L t vectors. After some algebra we have

cosβ =±

�

1+
sin2ψ

(L t/L orb+ cosψ)2

�−1/2

, (A.4)

where the + sign is for L t ≥−L orb cosψ and − sign is for L t <−L orb cosψ.



B
Limiting specific impact energy

Here we derive the limiting value of the specific impact energy Q tumb as a function

of physical parameters of the colliding bodies and the ratio of their angular mo-

menta (orbital angular momentum of the projectile L orb and the rotational angular

momentum of the target before the collision L t).

The ratio of the angular momenta is given by

L t

L orb
=

2π(a 2+b 2)ab cρ

5r 3
p vimpδPtrt

, (B.1)

where vimp is the impact speed, δ and ρ are the projectile and target density, re-

spectively, rt and rp are their mean radii, respectively, a , b and c are the target’s semi

axes and Pt is the target’s period of rotation. The specific energy of the collision in

the system’s centre of mass for mp≪mt is

Q =
mpv 2

imp

2mt
=

r 3
p v 2

impδ

ab cρ
, (B.2)

mt and mp being the target and the projectile mass, respectively.
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We solve Eqn. A.4 for L t/L orb ratio, Eqn. B.1 for rp and insert both of them into

Eqn. B.2. We then obtain the specific energy for which the tumbling starts to be

apparent in the lightcurve

Q tumb =
π(a 2+b 2)vimp

5rtPt

�

sin2ψ

cos−2β −1
− cos2ψ

�−1

. (B.3)

In Fig. 4.7 we use the derived value of β = 15◦.



C
elwrater documentation

The program used for the subcatastrophic collisions modeling is called elwrater

(ellipsoid with a crater). Here we describe its usage, input parameters, some hard-

coded input limits and the produced outputs.

To run the program with default input, simply run the bash script in.sh which

compiles the program with all necessary modules to the binary and runs it. The pro-

gram calculates the circumstances of the collision and then generates the input for

do_ls_free program (by Josef Ďurech, see Appendix D). This program calculates

the lightcurves and then some postprocessing is done.

C.1 Program input

The input parameters of the larger body (the target) are in set the body.r file in

the following way:

R[m] a/c b/c rho[kg m−3] Y_bar[MPa] rot_period[h] kmax porosity
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R is the mean radius of the body in meters, a/c and b/c are the semi-axis ratios

(a>=b, c=1), rho is the body’s mean density in kg m−3, Y_bar its material strength in

MPa, rot_period is its initial rotation period in hours, kmax is the number of vertical

segments of the body (the higher the better precision of the algorithm – set to couple

hundreds to thousands depending on the machine you use to run the program),

porosity (0 or 1) decides whether to consider the porosity of the body or not.

The impactor and crater parameters are set in the rater.r file:

d[m] v_x v_y v_z[m s−1] phi theta[deg] delta[kg m−3] k1 k2 mju nu

d is the impactor diameter in meters, v_x, v_y and v_z are the x, y, z impact velocity

components in m s−1, respectively, phi and theta are longitude and latitude of the

impact point in degrees, respectively, delta is the impactor density in kg m−3, k1 and

k2 are experiment-based coefficients and mju and nu are the scaling parameters

(see Holsapple (2003); Holsapple (1993) and Holsapple and Housen 2007).

Spans of the input parameters

There are some limits of the input parameters caused either by physical reason-

ing, the usability of the scaling laws for impact crater dimensions calculation or by

numerical constraints. Here we give those that are checked on the input by the pro-

gram.

mean target radius: 1 m to REarth

a/c and b/c: < 4.2

rho: 800–6000 kg m−3

delta: 800–8000 kg m−3

impact speed: 1–72 km s−1

phi: 0–359 degrees

theta: -85–85 degrees (depending on the crater size, the crater cannot cross the

pole)

impact angle: 0–50 degrees (the angle between the impact velocity vector and the

line perpendicular to the surface at the impact point)
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C.2 Program output

All the output files are saved to the ./vystupy/ID$id/ directory where $id is the

unique number of the calculation run. The main output of the program is in the file

elwrater.log. It contains input parameters, various intermediate results, inertia

tensor of the impacted body and β – the angle between the shortest principal axis

and the angular momentum vector of the target after the collision. If the program

finishes successfuly, the file contains flag=0, otherwise it is set to 1.

In the Appendix D, we present the documentation of do_ls_free program we

used for calculation of a lightcurve of the target body after the collision.





D
do_ls_free documentation

Lightcurves of the post collision targets are generated by do_ls_free program

originally written by Mikko Kaasalainen (Kaasalainen 2001) and modified by Josef

Ďurech (2011, pers. communication). The program calculates the total light flux

scattered and reflected from the visible part of the asteroid model made by triangu-

lar facets. The initial orientation of rotational axis as well as the Euler angles that

determine the body’s orientation in space are given on the input. The Euler equa-

tions of motion are then solved and the integral light flux is calculated for given

observational geometry with a chosen time increment.

D.1 Program input

There are two input files for a subroutine of elwrater program which prepares

the input for do_ls_free. These are lpar.r and geoml.r. The former sets

the parameters of the generated lightcurves and has the following structure:
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number of lightcurves to be generated

the initial Julian day (the crater formation was just finished)

number of datapoints

time sampling in minutes of each lightcurve

sigma

The user is advised to let the sampling vary, so that accidental aliases with rota-

tion/precession periods are overriden. One should not use too small sampling for

many lightcurves (less than 1.5 minutes; it causes unknown numerical problems)

and too much lightcurves (no more than nine). Sigma is a standard deviation of

gaussian noise added to each lightcurve point (in percent of the mean flux).

The latter file contains orbit geometry parameters from JPL HORIZONS system

(Yeomans 2013a; one can also use another ephemeris system) for five time instants.

The program interpolates between them to generate all datapoints of the input

lightcurve for do_ls_free. Since the target body is hypothetical, the orbital ge-

ometry is, in fact, arbitrary. The structure of that input file is as follows:

Julian_day r hEcl-Lon hEcl-Lat delta ObsEcLon ObsEcLat

where Julian day (UT) gives the time instant, r is the heliocentric range of the aster-

oid (in AU), hEcl-Lon and hEcl-Lat are the heliocentric longitude and latitude of the

asteroid, respectively, delta is the topocentric range (in AU), ObsEcLon and ObsE-

cLat are the topocentric longitude and latitude of the asteroid, respectively (all the

angles are in degrees). We take those quantities from JPL HORIZONS system where

they are given by ‘Table Settings’ 18–20, 29 and 31 and the date/time format is set to

Julian day.

Body shape

The shape of the asteroid is given by the set of oriented triangles building up the

body surface mesh. They are in the *.tri file in the following format:

n_ver n_fac

x y z

ver1 ver2 ver3
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n_ver is the number of vertices and n_fac is the number of facets of the model, x,

y and z are the cartezian coordinates of the vertices in the COM coordinate system

and ver1, ver2 and ver3 is the ordering of the vertices making up the facet so that it

is a triangle oriented by the outer normal vector (by right hand rule). The vertices

and orderings are not interlaced in the file but all vertices are given first and then all

orderings are given.

Dynamical parameters

The dynamical characteristics of the asteroid and the initial orientation in the eclip-

tic coordinate system are given in the input file as follows:

lambda beta

fi0 theta0 psi0

i1 i2 l

P_phi P_psi

jd0

where lambda and beta are the ecliptic longitude and latitude of the rotational axis,

respectively, fi0, theta0 and psi0 are the Euler angles giving the initial orientation of

the body in the space (all the angles are in degrees), i1 and i2 are the inertia mo-

ments normalized so that i3 = 1, l is normalized angular momentum (for unit vol-

ume of the body), P_phi and P_psi are the precession and rotation periods in hours

(can be set to, say, one as an initial guess) and jd0 is the initial Julian day.

Scattering laws

The file input_do_ls gives the scattering law parameters. There are two options,

Hapke or Lommel–Seeliger + Lambert scattering. The first choice is given by five

parameters, the second is given by two paraterers.

Input lightcurves

The input lightcurves contain ligtcurve data and orbital geometry of the asteroid

in specific times. First, the number of lightcurves is given and then the lightcurves

follow one after another. The first line of each lightcurve contains the number of
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datapoints and the code discerning relative (0) and calibrated (1) lightcurve. After-

wards, each line of the lightcurve consists of the ligh time corrected Julian day, light

flux (reduced to unit distances from the Earth and the Sun when calibrated), the

ecliptic asteroid centric cartesian coordinates of the Sun and of the Earth in AU.

D.2 Program output

The main output is the lightcurve of the body just after the impact. The lightcurve

file ID$id.l contains the geocentric Julian day, relative brightness of the body in

magnitudes, its uncertainty and the calculated light flux without the noise. There

is also a phasecurve generated with rotation period (ID$id.ph) which contains the

phase and the normalized light flux. Theoretical rotation and precession periods

are also calculated from dynamical characteristics of the body, see periods.log.

Besides, there is a do_ls_free.log file and some scripts generating lightcurve

in fluxes rather than magnitudes and fitting trigonometric polynomial to the data

(flux.sh, per.sh).
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