Collision model and scaling laws

Tomáš Henych

Department of Theoretical Physics and Astrophysics, FSc MU, Brno

supervisor Petr Pravec, Astronomical Institute AS CR, Ondřejov

16 November 2010

tumblers and rotational excitation

- asteroids in excited state of rotation are called tumblers
- rotation about the extremal axis and precession about angular momentum vector (Kaasalainen, 2001)

what caused their excited rotation?

• one of the possible mechanisms are sub-catastrophic collisions

tumblers and rotational excitation

- asteroids in excited state of rotation are called tumblers
- rotation a angular n
 what caused t
 one of th collisions

© University of Virginia

system of two colliding bodies

- the larger one (target) is triaxial ellipsoid, the smaller one is a sphere (impactor, projectile), both are homogeneous
- before the impact the target is rotating in a basic state
- it's diagonal inertia tensor defines the principal axes
- hypervelocity impact gives birth to impact crater on the larger one, the smaller one evaporates completely

a simple model

angular momentum exchange during the impact occurs calculate inertia tensor of the ellipsoidal body with the crater

- check if it is diagonal in the same reference frame or not
- inspect its sensitivity to various parameters of the bodies (mass ratio, velocity, impact angle, shape of the bodies)
- test various regimes of crater formation (strength, gravity)

approximations used

- homogeneous bodies with the same density
- impact process only results in simple crater formation, possible ejecta escape in radial direction to infinity, no other processes are taken into account
- projectile trajectory is a straight line (should be hyperbola)
- the shape of the crater is circular paraboloid without any rim

scaling laws

how to calculate the diameter of the crater?

- we only know the properties of the impactor (size, density, velocity)
- scaling laws give us the answer tell us how to extrapolate small scale impact experiments to much larger scales
- when using point-source approximation of the impact, scaling law has the special form of power law (Holsapple, 1993)

 $D_{
m c}\sim a U^\mu \delta^
u$

253 Mathilde

crater formation mechanism

- craters on 253 Mathilde (tumbler) are very large, close to each other and lack larger ejecta
- Housen *et al.* (1999) proposed the compaction mechanism of cratering on Mathilde
- this explains the problems mentioned better than the classical excavation mechanism
- maybe no need to worry about the ejecta and it's dynamical influence

finishing the code and testing its correctness start to prepare simulations

- plausible ranges of the parameters describing the system
- catch up weak approximations
- think of the illustrative outcome of the simulations

references

- Kaasalainen, M., 2001. *Interpretation of lightcurves of precessing asteroids* Astronomy and Astrophysics **376**, 302–309.
- Holsapple, K. A., Housen, K. R., 1993. The scaling of impact processes in planetary sciences In: Annual review of earth and planetary sciences 21, 333–373.
- Holsapple, K. A. et al., 2007. A crater and its ejecta: An interpretation of Deep Impact Icarus **187**, 345–356.
- Housen, K. R., 1999. Compaction as the origin of the unusual craters on the asteroid Mathilde Nature, Volume 402, Issue 6758, 155–157.