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introduction

• mutual collisions between asteroids affect their size

distribution, spins and surface morphology

• asteroid families formed mostly by catastrophic collisions

• catastrophic disruption threshold – the largest fragment is half

the original asteroid mass

• subcatastrophic collisions – form an impact crater on the

surface of an asteroid (even though the crater may be huge)
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introduction

• subcatastrophic collisions are thought not to play very

important role – we investigate this more thoroughly

• they act upon asteroids almost permanently (power-law

distribution of projectile sizes with an exponent

p < −2) – cumulative effects may be important

• motivation – the origin of tumbling asteroids (freely precessing

or in non-principal axis rotation state)

• subcatastrophic collisions may be responsible for excitation of

asteroid rotations (Henych & Pravec 2013)
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tumblers

slowly rotating asteroids (Pravec et al. 2014)



subcatastrophic collision model

• a projectile collides with a target asteroid (triaxial ellipsoid rotating

in a basic state) forming an impact crater on its surface

• crater dimensions are calculated acc. to scaling laws

(Holsapple 1993, 2003)

• linear and angular momentum (AM) exchange occurs between the

two bodies during the collision

• part of the momentum and AM carried away by ejecta (AM transfer

efficiency acc. to Yanagisawa et al. 1996 and Yanagisawa &

Hasegawa 2000)

• we calculate the inertia tensor of the target asteroid and then its

lightcurve

• we compare the specific impact energy to the catastrophic collision

threshold energy



excitation of rotation
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main questions of the present research

Q how probable is to observe tumbling asteroid with rotation

excited by collisions?

Q are collisions able to explain observed characteristics of

tumblers?

Q are collisions alone sufficient to explain tumbling?



how to do it?

• target asteroid subject to consecutive collisions by a

population of projectiles

• larger projectiles may excite its rotation

• its rotation gradually damps to a basic state

• we observe it at random time (including observation biases)

• finally build a synthetic population and compare it

qualitatively with observed sample of slow rotators



model input characteristics

• targets and projectiles sizes – power-law incremental

distribution (Bottke et al. 2005)

• targets sizes 0.4–18 km

• isotropic geometry of collisions – orbit inclinations span some

35◦ and rotational axes may be randomly oriented

• impact speed of 5 km/s (median encounter speed in the inner

Main Asteroid Belt)

• random initial spin of targets based on observed spins of small

asteroids



model input characteristics

initial spins of targets according to Pravec et al. (2008), updated

2014-04-20



model features – erosion

• increasing elongation of nonspherical asteroids caused by

consecutive collisions (basically erosion)

• explanation: craters erode all dimensions of the ellipsoidal

target by the same amount on the average, smaller dimensions

decrease relatively quicker than larger, hence axial ratio is

growing (Harris 1990)

• estimated timescale: much longer than collisional lifetime

(catastrophic disruption occurs)

• not very important effect



model features – erosion
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model features – rotation changes

• 1-km target asteroid changes of rotation, several hundred runs

with random initial conditions

• larger projectiles (decimeters to meters only) – incresing spin

rate on the average, observable excitation of rotation

• smaller projectiles (milimeters or centimeters to

meters) – decreasing spin rate in about 60% of runs

• consistent with Harris (1979) theoretical model



model features – rotation changes
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model features – rotation changes
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model features – rotation changes



problems & further work

• include damping of the excited rotation – three models

(Breiter et al. 2012, Sharma et al. 2005, Efroimsky 2001)

• unknown quality factor for asteroids (damping)

• approximation of collisions with small projectiles

(computationally expensive)

• calculate collision probabilities

• run simulations to build a synthetic population of asteroids

• simulate photometric observation biases
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