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Locations

Conference
– Fri 25/6/2021 – Sat 26/6/2021

– Brno Observatory and Planetarium, Kraví hora 522/2, Brno

– main building

Conference lunch
– Fri 25/6/2021, 14:00

– Brno Observatory and Planetarium, Kraví hora 522/2, Brno

– main building

Conference banquet
– Fri 25/6/2021, 19:00

– Brno Observatory and Planetarium, Kraví hora 522/2, Brno

– main building

Website
https://www.physics.muni.cz/~godel/kgd2021/
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Sponsors
Brno Observatory and Planetarium

Czech Society for Cybernetics and Informatics

Kurt Gödel Society in Brno

Masaryk University
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Call for papers
This community event aims at bringing together researchers in logic and re-
lated areas. The event is open to all researchers interested in logic, while
contributions related to Gödel’s work are especially welcome. Promoting the
heritage of Kurt Gödel, the Kurt Gödel Prize will be awarded during the
meeting by the Kurt Gödel Society in Brno and the recipient will deliver
a lecture.

We cordially invite researchers working in a field relevant to the confer-
ence to submit a short plain text abstract of approximately 200 words, and
an extended abstract of at most 1.000 words (references included) through
EasyChair at https://easychair.org/conferences/?conf=kgd2021cgl2021.

Accepted papers (contributing talks) will be presented in 30 minute slots
including discussion. Abstracts must be written in Czech/English; uploaded
extended abstract must be in pdf format, using the EasyChair LaTeX style
of submissions, https://easychair.org/publications/for_authors.

Deadline for paper submission: Monday 24 May 2021 (extended). No-
tification of acceptance: Monday 7 June 2021 (extended). Conference fee
(includes booklet of abstracts, coffee breaks and conference dinner): CZK
1.000 (for students: CZK 200) (please contact Helena Durnová (hdurnova [at]
ped.muni.cz). Registration of attendees is required because of Covid restric-
tions, please contact Helena Durnová (hdurnova [at] ped.muni.cz).
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Programme and
organising committees

Programme committee
Marta Bílková (Czech Academy of Sciences, Prague) (chair)
Carles Noguera (Czech Academy of Sciences, Prague)
Jan Novotný (Masaryk University, Brno)
Jiří Raclavský (Masaryk University, Brno)

Organising committee
Helena Durnová
Jiří Dušek
Zuzana Haniková
Jan Paseka
Jiří Raclavský
Blažena Švandová

Organisation
Brno Observatory and Planetarium
Kurt Gödel Society in Brno
Masaryk University
Institute of Computer Science, Academy of Sciences
Union of Czech Mathematicians and Physicists, Brno branch
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Programme

Friday 25 June 2021

10:00 registration

10:30 opening

Prof Jan Paseka (Kurt Gödel Society in Brno)
Dr Jiří Dušek (Brno Observatory and Planetarium)
Prof Jan Novotný (Kurt Gödel Society in Brno)

10:45 KG prize ceremony

invited talk chair : Jan Paseka

11:00 Matthias Baaz Kurt Gödel and Alfred Tarski:
The Extremes of Logic

12:00 coffee break

contributed talks chair : Zuzana Haniková

12:30 Marie Duží From Gödel to Henkin; Completeness vs In-
completeness

13:00 Kentarô Yamamoto The Automorphism Group of the Fraïssé
Limit of Finite Heyting Algebras

13:30 Adam Přenosil Universal Horn Properties of Upsets of Dis-
tributive Lattices

14:00 lunch
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invited talk chair : Jiří Raclavský

15:00 Petr Cintula Completeness and Incompleteness in Logics
with Non-classical Proposition Core

contributed talks

16:00 Igor Sedlár Reasoning About Graded While Programs

16:30 coffee break

16:45 Helena Durnová Popularising Modern Logic in 1950s
Czechoslovakia

17:15 Azza Gaysin H-coloring Dichotomy in Proof Complexity

17:45 coffee break

chair : Helena Durnová

18:00 Marta Bílková,
Sabine Frittella,
Ondrej Majer,
Sajad Nazari

Probabilistic Reasoning Based on Incom-
plete and Inconsistent Information

18:30 Marta Bílková,
Sabine Frittella,
Daniil Kozhemi-
achenko

Two-dimensional Logics of Comparative Un-
certainty

19:00 banquet
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Saturday 26 June 2021

invited talk chair : Zdeněk Pospíšil

09:00 Vítězslav Švejdar From Arithmetization to Interpretability
Principles

contributed talk

10:00 Jamie Wannen-
burg

Beth Definability in Relevance Logics with
the Gödel-Dummett axiom

10:30 coffee break

invited talk chair : Jan Pavlík

11:00 Pavol Zlatoš Hilbert’s Program and Gödel’s Incomplete-
ness Theorems

contributed talks

12:00 Stéphane Le Roux,
Érik Martin-
Dorel, Jan-Georg
Šmaus

Existence of Nash Equilibria in Preference
Priority Games Proven in Isabelle

12:30 coffee break chair : Jiří Raclavský

13:00 Libor Běhounek Do These Degrees Really Go to Eleven?

13:30 Kadir Emir, David
Kruml, Jan
Paseka, Thomas
Vetterlein

Why are Models of Quantum Logic Infinite

14:00 end of the conference
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Matthias Baaz

Kurt Gödel and Alfred Tarski: The Extremes of Logic

Institute of Discrete Mathematics and Geometry, Technische Universität Wien, Vienna

Executive Vice President of the Kurt Gödel Society, Vienna

baaz@logic.at

In this lecture we will compare the eminent founders of modern logic con-
nected by a strange coincidence by the date of January, 14: Kurt Gödel and
Alfred Tarski.

Kurt Gödel has been driven by the the possibility that the individual
thinking might transgress its own limits. The solutions of mathematical prob-
lems are the models, not the aims of his thinking. He strongly believed in
the simplicity of all solutions maybe beyond language. Therefore he chose
very carefully the next generation scientists with whom he communicated
(basically Georg Kreisel, Gaisi Takeuti and Hao Wang).

Alfred Tarski on the other hand grew up in the logical traditions of Poland.
He considered logic as a mathematical subject based on a mathematical lan-
guage, which is very able to contribute to mathematics as algebra, topology
etc. do. He emphasized the formal semantical relations as entailment, satis-
faction and truth. He educated many students and influenced not only logic
and mathematics but also formal linguistics by his thorough mathematical
rigor.

In a more general sense, this lecture tries to discuss (but not to answer)
the question: “In which sense does Mathematics matter to Logics?” where
Kurt Gödel and Alfred Tarski had complementary views.
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Petr Cintula

Completeness and Incompleteness in Logics with Non-
classical Proposition Core

Institute of Computer Science, Czech Academy of Sciences, Prague

cintula@cs.cas.cz

Kurt Gödel is celebrated for many famous results. In this talk we focus on
two fundamental logical results he proved first: the completeness theorem [2]
and the first incompleteness theorem [3] and explore how we can generalize
them to predicate logics whose propositional core is other than the classical
logic.

In the first part of the talk (based on paper [4]) we survey the history
of generalizing the completeness theorem and present a very general frame-
work which allows us to prove it for a rather extensive family of non-classical
logics which included the most of the prominent logics studied in the litera-
ture. Thus we demonstrate that a very little of propositional logic is needed
to obtain a reasonable first-order logic with a meaningful syntax–semantics
connection.

In the second part (based on paper [1]) we do analogous analysis of the first
incompleteness theorem in its guise of essential undecidability of (Peano’s)
arithmetics [5, 6]. Here we show non-only that a very little of propositional
logic is needed to obtain the result; we also show that a very weak arithmetics
suffices (a variant of Robinson’s R with non-total relations instead of addition
and multiplication).
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[1] G. Badia, P. Cintula, P. Hájek, A. Tedder. How Much Propositional Logic
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Vítězslav Švejdar

From Arithmetization to Interpretability Principles

Department of Logic, Charles University, Prague

vitezslav.svejdar@cuni.cz

The notion of interpretability, defined in [4], can be used to prove the rela-
tive consistency of axiomatic theories. One of many examples is the following.
If the Zermelo-Fraenkel set theory ZF is extended by adding the continuum
hypothesis CH as an additional axiom, then the resulting theory (ZF + CH)
is interpretable in ZF. In symbols, ZF B (ZF + CH). This fact shows that
(ZF + CH) is consistent provided that ZF is consistent. Interpretability of
axiomatic theories can also serve as a tool for comparing the strength of ax-
iomatic theories: if T is interpretable in S but not vice versa, then one can
conclude that S is considerably stronger than T . In this sense, (ZF + CH) is
stronger but not considerably stronger than ZF.

Feferman in [1] linked interpretability to Gödel’s second incompleteness
theorem. For example, if a theory T is sufficiently strong, a formula τ(z)
describes its axioms and Con(τ) is the formalized consistency statement cre-
ated from τ , then (T + ¬Con(τ)) is interpretable in T , but (T + Con(τ)) is
not. Feferman also listed some general properties of the interpretability rela-
tion like the transitivity. This way, interpretability became not only a tool,
but also a field of study. Further relevant results were obtained by Petr Há-
jek who added some principles to those listed by Feferman. He also noticed
that the two popular set theories, the Zermelo-Fraenkel set theory ZF and
the Gödel-Bernays set theory GB, while being identical as to the provabil-
ity of set sentences, differ in interpretability. In particular, the conditions
GB B (GB + ϕ) and ZF B (ZF + ϕ), for a set sentence ϕ, are not equivalent.
Hájek’s work directly inspired other researchers (Solovay, Lindström, Pudlák,
Visser, . . . ) and gave rise to interpretability logic, a modal propositional logic
with two modalities, a unary symbol � for provability and a binary symbol B
for interpretability.
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The talk is meant as a contribution to studying the early history of inter-
pretability and its principles.

References

[1] S. Feferman. Arithmetization of metamathematics in a general setting.
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Pavol Zlatoš

Hilbert’s Program and Gödel’s Incompleteness Theo-
rems

Faculty of Mathematics, Physics and Informatics, Comenius University, Bratislava

zlatos@fmph.uniba.sk

Gödel’s Incompleteness Theorems belong to the most remarkable achieve-
ments of the 20th century mathematics, shedding light on the limitations of
formal methods in mathematics and still raising philosophical questions about
the nature of human thought, its relations to our brains and to computers,
etc.

Kurt Gödel’s achievement in modern logic is singular and mon-
umental— indeed, it is more than a monument, it is a landmark
which will remain visible far in space and time. [ . . . ] The subject
of logic has certainly completely changed its nature and possibili-
ties with Gödel’s achievement.

(John von Neumann)

We will explain the meaning, impact and importance of Gödel’s Incom-
pleteness Theorems viewed through the prism of Hilbert’s Program. At the
same time we will present some myths and oversimplified interpretations of
both Hilbert’s Program and Gödel’s Incompleteness Theorems, and try to
set measures to them. To this end we will briefly survey the development of
mathematics and the circumstances which finally led to its crisis at the turn
of the 19th and the 20th century, as well as the reactions to and proposed ways
out of it. From this point of view Hilbert’s Program appears not just as one of
the proposals how to overcome the crisis but also as a serious attempt to face
the challenge raised by Brouwer’s intuitionistic revolt, the most radical one
from among of these reactions. Then Gödel’s Theorems—albeit they show
the impossibility to carry out Hilbert’s Program in its original form— fall
fully within the guidelines set up by Hilbert.
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Hilbert’s Program was an ambitious and wide-ranging project in
the philosophy and foundations of mathematics. In order to “dis-
pose of the foundational questions in mathematics once and for
all”, Hilbert proposed a two-pronged approach in 1921: first, clas-
sical mathematics should be formalized in axiomatic systems; sec-
ond, using only restricted, “finitary” means, one should give proofs
of the consistency of these axiomatic systems. Although Gödel’s
Incompleteness Theorems show that the program, as originally
conceived, cannot be carried out, it had many partial successes,
and generated important advances in logical theory and meta-theory,
both at the time and since.

(Richard Zach,
Hilbert’s Program Then and Now, arXiv:math/0508572)
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Do These Degrees Really Go to Eleven?

Libor Běhounek

University of Ostrava, IRAFM–CE IT4Innovation, Ostrava, Czechia
libor.behounek@osu.cz

Abstract

The contribution describes and compares two recently proposed models of determinate
truth under the degree-theoretic semantics of vagueness. Although both models admit
the graded nature of determinate truth and represent it by an upper set of truth degrees,
they differ significantly regarding the logical properties of the proposed semantics. Besides
comparing the advantages and drawbacks of both models, their combination is discussed
and dismissed as a remedy to their respective weaknesses.

Two different ways of representing determinate truth in the degree-theoretic semantics of vague-
ness have recently been proposed [2, 4]. Both proposals subscribe to fuzzy plurivaluationism,
which answers the most common objections to degree theories of vagueness by considering a
class of admissible fuzzy models for vague predicates rather than a single fuzzy model [8]. Both
proposals employ (a suitable) fuzzy logic [5] to govern vague propositions, as a means to re-
solve the sorites paradox [6] and to logically ground the fuzzy plurivaluationistic semantics [1].
Moreover, both proposals represent the notion of determinate truth by an upper set of truth
values, conforming to the intuition that the intensity of a vague property F can be different
even among determinately-F individuals (as, e.g., determinately tall people can still be ordered
by tallness). However, the two proposals differ in several important respects regarding the
inferential behaviour of determinately true vague propositions. In this contribution (titled in
reference to [4]), I point out the differences between the two approaches and compare their rela-
tive advantages and drawbacks. I will also discuss the possibility of combining both approaches
and the drawbacks that cannot be eliminated by the combination.

The approach of [4] represents determinate truth by a crisp closed upper set of designated
truth degrees. The truth degrees can either be taken from the interval [0, 1], in which case the
designated set is [e, 1] for some e ∈ (0, 1); or isomorphically, from the whole extended real line
[−∞,+∞], where the designated set is [1,+∞]. In the former case, the propositional connectives
are those of (a suitable) uninorm fuzzy logic [7], while for the latter case, an extension of the
 Lukasiewicz [0, 1]-valued connectives to [−∞,+∞] is proposed. Uninorm fuzzy logics define the
consequence relation in the standard way as the preservation of designated truth values.

In [2], on the other hand, determinate truth is represented by a fuzzy upper subset of [0, 1];
in particular, by a fuzzy set of degrees so close to 1 as to be indistinguishable from 1 by any small
number of inferential steps in a suitable t-norm fuzzy logic (e.g., the well known  Lukasiewicz
logic). Consequently, in all reasonably short arguments, such degrees consistently behave as if
they actually equalled the full truth 1, and only artificially long arguments such as the sorites
paradox reveal, by way of arriving at a contradiction, their actual deficiency in truth. The
fuzzy semantics of the vague predicate small number (of inferential steps; cf. [6]) determines
the degree to which α ≤ 1 belongs to the fuzzy set of degrees representing determinate truth
in a given model.

In this brief abstract, let me just hint at some of the advantages and drawbacks of the
respective approaches; more details will be given in the talk. Based on the underlying fuzzy
logics, let us call the approach of [4] the uninorm semantics and that of [2] the t-norm semantics.

An advantage of the t-norm semantics is that by regarding determinate truth as a graded
indistinguishability-based notion, it naturally accommodates second-order vagueness, while the
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Do These Degrees Really Go to Eleven? Běhounek

representation of determinate truth by a crisp set of degrees makes the uninorm semantics sus-
ceptible to the sorites paradox for the (crisp) predicate determinately-F . Although the restored
paradox can be avoided by excluding the operator 4 (indicating the designated values) from
the propositional language, the uninorm semantics does not seem to offer an explanation why
exactly this connective should be banned (whereas in the t-norm semantics, 4 is clearly illegit-
imate since it disregards the indistinguishability of degrees). Additionally, uninorm connectives
exhibit a less classical behaviour than the t-norm ones (mainly by invalidating the inference
rule of weakening); thus, for example, the conjunctive meaning of the fusion connective (which
in the t-norm based semantics of vagueness helps explain the natural-language ambiguity be-
tween lattice conjunction and fusion) is partly lost in the uninorm semantics, as the fusion of a
determinately true and a determinately false proposition can still be determinately true. Some
language constructions (such as relativized quantification) can also be more straightforwardly
formalized by means of t-norm connectives than by the uninorm ones.

On the other hand, certain arguments are more straightforwardly formalizable by means
of the uninorm semantics—e.g., the ‘positive’ inductive step in the sorites reasoning (i.e., that
adding a grain to a determinate heap increases its heapness). Moreover, the preservation of
determinate truth in the sense of [4] is directly represented by the standard Tarski consequence
relation of the uninorm fuzzy logic, while representing it in the t-norm semantics requires using
a non-Tarskian consequence relation of the kind that has only recently been introduced in [3].

The fact that both semantics have some advantages over one another suggests that neither
is a completely satisfactory degree-theoretic model of determinate truth. A tempting option
might be to combine both approaches, i.e., to fuzzify the uninorm semantics by the graded
relation of inferential indistinguishability. Nevertheless, while this would indeed combine some
strengths of both approaches, it would also inevitably combine their drawbacks (resulting in
the non-Tarskian consequence relation being further complicated by the failure of weakening).
Thus, in spite of being a possibly interesting area for future research, the combination can
hardly solve the imperfections of both semantics. Therefore, until a better model is found,
we have to regard both variants just as two competing imperfect approximations to a fully
satisfactory degree-theoretic account of determinate truth.
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Two-dimensional logics of comparative uncertainty

Marta Bı́lková1, Sabine Frittella2, and Daniil Kozhemiachenko2

1 The Czech Academy of Sciences, Institute of Computer Science, Prague
bilkova@cs.cas.cz

2 INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022, France
sabine.frittella@insa-cvl.fr, daniil.kozhemiachenko@insa-cvl.fr

Abstract

We introduce two-dimensional logics based Gödel logics to formalize paraconsitent fuzzy reason-
ing. The logics are interpreted on matrices, where the common underlying structure is the bi-lattice
(twisted) product of the [0,1] interval. The first (resp. second) coordinate encodes the positive (resp.
negative) information one has about a statement. We propose constraint tableaux that provide a mod-
ular framework to address their completeness and complexity. We also discuss the compactness of
entailment and duality between algebraic and frame semantics.

General project. This work is a part of the project introduced in [2]. We are developing a mod-
ular logical framework for reasoning based on uncertain, incomplete or inconsistent information. In
this framework, an agent is constructing their belief using probabilistic incomplete and/or conflicting
information aggregated from multiple sources. We formalize such probabilistic reasoning using the
framework of two-layer modal logics first introduced in [5, 7] and then developed by [4] and [1]. Two-
layer modal logics to formalise such probabilistic reasoning in a potentially paraconsistent context were
proposed in [2]. These logics work roughly as follows. First, the information given by the agent’s
sources is given on the lower layer. It is then lifted up to the upper layer by belief modalities. Finally
the reasoning with the agent’s belief is encoded there.

Two-dimensional treatment of uncertainty. For the purpose of our talk, we consider agents who
although not being always able to give an exact level of their certainty in some proposition, can compare
their certainty in one proposition to the certainty in the other. Thus, we are interested in the expansions
of Gödel logic which can be treated as the logic of comparative truth (or comparative certainty).

Two-dimensionality comes from the definition of the logics using expansions of the product bilattice
[0,1]� [0,1]. While ∧ and ∨ are defined in a standard way, there are several ways to define implication.
We consider two possibilities: → dualizes implication by co-implication, and _ understands negative
support of an implication as a conjunction of the positive support of the antecedent with the negative
support of the consequent. Furthemore, in each of these interpretations, we consider different possible
entailments. Thus we have two families of logics. The first of them which we call G2(→) connects to
one of Wansing’s logic of [10], namely I4C4, and goes back to bi-intuitionistic logic [6, 9], the second
option G2(_) connects to Nelson’s logic N4 [8].

Definition 1 (G2 logics). For all a,b ∈ [0,1], we set a∧b := min(a,b), a∨b := max(a,b) as well as

a→G b :=
{

1, if a≤ b
b else b�G a :=

{
0, if b≤ a
b else

Negation and 1 are defined as ∼Ga := a→G 0, and 1 :=∼G 0, respectively.
Now fix a countable set Prop of propositional letters and consider the following language:

φ := 0 | 1 | p | ¬φ | (φ ∧φ) | (φ ∨φ) | (φ → φ) | (φ �φ) | (φ _ φ)
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Two-dimensional logics of comparative uncertainty Bı́lková, Frittella and Kozhemiachenko

where p ∈ Prop. We define ∼φ := φ → 0, and ∼wφ := φ _ 0.
Let v : Prop→ [0,1]× [0,1], and denote v1 and v2 its left and right coordinates, respectively. We

extend v as follows.

v(0) = (0,1) v(φ1∧φ2) = (v1(φ1)∧ v1(φ2),v2(φ1)∨ v2(φ2))
v(1) = (1,0) v(φ1∨φ2) = (v1(φ1)∨ v1(φ2),v2(φ1)∧ v2(φ2))

v(¬φ) = (v2(φ),v1(φ)) v(φ1→ φ2) = (v1(φ1)→G v1(φ2),v2(φ2)�G v2(φ1))
v(φ1 _ φ2) = (v1(φ1)→G v1(φ2),v1(φ1)∧ v2(φ2))

Definition 2 ((x,y)↑-validity and entailment). Let (x,y)↑ = {(z,z′) : z,z′ ∈ [0,1],z ≥ x,z′ ≤ y}. φ is
(x,y)↑-valid iff v(φ) ∈ (x,y)↑ for any v. Γ (x,y)↑-entails ψ (Γ �G2

(x,y)
ψ) iff for any v s.t. v(φ) ∈ (x,y)↑

for all φ ∈ Γ, we have v(ψ) ∈ (x,y)↑.

Results. We establish connections between G2
(x,1)(_)’s and N4⊥ by [8] as well as between G2

(x,y)(→)’s
and I4C4 from [10]. In particular, we show that the set of valid formulas of any G2

(x,y)(→) coincides with

that of I4C4
⊥+(φ →ψ)∨ (ψ→ φ) while the set of valid formulas of any G2

(x,1)(_) coincides with that

of N4⊥+ (φ → ψ)∨ (ψ → φ). Thus, just as G is a prelinear extension of the intuitionistic logic, G2’s
are prelinear extensions of its expansions with strong negation.

Furthermore, we present a unified sound and complete tableau system for all G2’s introduced in [3].
We also show the expected duality between algebraic semantics on the one hand, and prelinear frames
for N4⊥ and I4C4

⊥ on the other hand. We use this duality to prove that any �G2
(x,y)

(→) is compact as long

as (x,y)↑ extends (x,1)↑ or (0,y)↑ or does not contain any (z,z), and that �G2
(x,1)

(_)’s are compact as

well.
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Abstract
This work is part of a wider project aiming at developing a modular logical framework to formal-

ize probabilistic reasoning based on incomplete and/or inconsistent information [3]. Non-standard
probabilities were introduced in [5] to generalize the notion of probabilities to paraconsistent rea-
soning based on First Degree Entailment (FDE) [1]. Here we study the meaning of probabilities,
conditional update, belief functions and their aggregation in the framework of FDE.

Motivation. We often have access to a multitude of information coming from different sources. This
information is often incomplete, conflicting and uncertain. Here we aim at formalizing how a rational
agent forms beliefs based on such information.

Scenarios we have in mind can be illustrated by the following toy example. An investigator needs
to know if one of the suspects was present at the crime scene. She collects information from various
sources (CCTV camera recordings, ATM logs, witnesses’ statements etc.). The sources of evidence
confirming investigator’s hypothesis (the suspect was present at the place of crime) are different from,
and in general independent of, those rejecting it (there is a CCTV camera closed to the crime scene vs.
ATM in a supermarket in a different city). A lack of evidence supporting the hypothesis is not a reason
to reject it. In the end the investigator has to aggregate the available information and form some beliefs
about what likely happened.

Probabilistic reasoning based on incomplete and inconsistent information. We take First Degree
Entailment FDE [1] as our base logic and study the meaning of probabilities, conditional update, be-
lief functions and their aggregation in that framework. We base our work on non-standard proba-
bilities [5] to account for potentially contradictory information about events. A probabilistic model
is a tuple M = 〈Σ,µ,v+,v−〉 where Σ is a finite set of states, v+,v− : Σ× Prop→ {0,1} are valua-
tions representing respectively the positive and negative information and µ is a probability measure
on the powerset algebra P(Σ). Let |ϕ|+M = {s ∈ Σ : v+(ϕ) = 1} and |ϕ|−M = {s ∈ Σ : v−(ϕ) = 1}.
The non-standard probability function based on M is the couple of maps (p+

µ , p−µ ) where p+
µ (ϕ) :=

µ(|ϕ|+M ) (resp. p−µ (ϕ) = µ(|ϕ|−M )) represents the positive (resp. negative) probabilistic evidence for
ϕ . Non-standard probabilities satisfy the following axioms: (i) if A `FDE B then p+(A) ≤ p+(B), (ii)
p+(A∧B) + p+(A∨B) = p+(A) + p+(B), and (iii) p+(¬A) = p−(A). Notice that one can no longer
prove that p+(ϕ)+ p+(¬ϕ) = 1. Indeed the two values are independent here.

Belief functions interpreted over FDE. To handle cases where available information does not allow to
define the probability of some formulas (i.e. some subsets of Σ are non-measurable), we define partial
probabilistic models M = 〈Σ,X ,µ,v+,v−〉, where X is a σ -algebra of measurable subsets of Σ. No-
tice that p+

µ and p−µ are partial functions on the measurable formulas. We use inner and outer measures
to reason about non-measurable elements as follows

(p+
µ )∗(ϕ) = sup{p+

µ (ψ) : |ψ|+ ⊆ |ϕ|+ and |ψ|+ ∈X }.
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Another way of reasoning with non-standard probabilities covering the non-measurable elements is to
use belief functions instead of probability measures. The above method is a special case of the latter
case, based on the fact that inner (resp. outer) measures are belief (resp. plausibility) functions.

Conditional update for non-standard probabilities. [5] already propose several kinds of condition-
ing over non-standard probabilities. We propose two new definitions in order to be able to talk about
conditioning on partial probabilistic models.

The classical standard conditioning is not able to talk about non-measurable elements. We gen-
eralise the standard conditioning to non-Boolean structures containing non-measurable elements as
follows. The positive and negative probability structures associated to a partial probabilistic model
are 〈L ,L,η+〉 and 〈L op,Lop,η−〉 where L is the Lindenbaum algebra, L and Lop are respectively
the sublattices {[ϕ] : [ϕ] ∈ L , |ϕ|+M ∈X }, {[ϕ] : [ϕ] ∈ L , |ϕ|−M ∈X } and η+([ϕ]) = p+

µ (ϕ) and
η−([ϕ]) = p−µ (ϕ). Let M = 〈L ,L,η〉 be a probability structure, a ∈ L and η(a) 6= 0. Conditioning
on a gives rise to the probability structure Ma = 〈La,La,ηa〉 where La is the congruence lattice based
on a, La = {[c] : c ∈ L and c∧ a ∈ L} is a sublattice of La, and ηa is defined over La as follows:
ηa([c]) = η(c∧a)

η(a) . For every c ∈L :

(ηa)∗([c]) =
η∗(a∧ c)

η(a)
and (ηa)∗([c]) =

η∗(a∧ c)

η(a)
.

We also propose a second way of conditioning following [4] which is based on the fact that belief func-
tions are the lower envelopes of the the probability measures consistent with the given belief function.

Future directions and context. We develop the duality between probabilistic models and non-standard
probabilities over de Morgan algebras and to adapt standard definitions and tools of (imprecise) proba-
bility theory to non-classical reasoning. In addition we still need to fully understand the philosophical
meaning of non-standard probabilities, their associated belief functions and conditional updating.

This work is part of a wider project aiming at developing a modular logical framework to formalize
probabilistic reasoning based on incomplete and/or inconsistent information [3]. We propose a two-
layer modal logical framework [2]. The bottom layer is to be that of events or facts, represented by
probabilistic information provided by sources available to an agent with a certain degree of reliability.
The modalities connecting bottom layer to the top layer, are that of belief of the agent (e.g. about an
event taking place) based on the information from the sources in terms of (various kinds of) aggregation.
The top layer is to be the logic of thus formed beliefs. This work focuses on the semantics of the
modalities that connect the bottom and the upper layer.
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Popularising modern logic in 1950s Czechoslovakia

Abstract
Otakar Zich jr. (1908-1984), a leading logician in postwar Czechoslovakia, was the 
main figure also behind the publication of a book popularising modern logic in 
Czechoslovakia. This was not his first popular book on logic, nor was it the only 
publication on logic by a mathematician. Zich himself published "An Introduction to 
the Philosophy of Mathematics" a decade earlier and another eminent 
mathematician, Miroslav Katětov (1918-1995), published a book on the foundations
of mathematics in logic. From today's perspective, these books may well be early 
steps in convincing a majority of mathematicians and especially mathematics 
teachers that logic is only a part of mathematics. In my talk, I will try to show how 
the actual wording of the popular books on logic from the early postwar decade 
could have contributed to the view (held by mathematicians) that logic is a 
subdiscipline of mathematics, rather than philosophy.
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In 1958, the Czechoslovak Society for the Spreading of Political and Scientific 
Knowledge1 published the content of popular lectures on logic held in the 
previous year in the book Modern Logic (Zich et al. 1958). The group of Czech 
logicians was led by Otakar Zich jr. (1908-1984),2 the head of the department of 
logic in Prague under its various institutional incarnations.

Already a decade before that, Zich wrote a popular book Introduction to the 
philosophy of mathematics (Zich 1947), most of which was (content-wise) also 
devoted to logic. Similarly, the slim volume by Katětov (1946), What is the logical 
construction of mathematics? was devoted to explaining basic notions of logic and 
their use in mathematics. All three books have something in common, although 
they have different audience: Katětov's (1946) book was written for young 
mathematicians, and so was Zich's (1947) Introduction to Philosophy of 
Mathematics (they were both published within the series directed towards young 
mathematicians), while  the book  (Zich et al. 1958) was explicitly not written for 
mathematicians,  nor people with solid mathematical background. Furthermore, 
even if they start from philosophy of mathematics (Zich 1947), all three books 
soon embark upon the explication of the technicalities of (modern) logic and 
advocate its usefulness for mathematics. In this respect, the three books are 
reminiscent of one of three major strands of philosophy of mathematics, namely 
logicism (the other two being formalism and intuitionism), and especially 
Bertrand Russell's Introduction to Mathematical Philosophy (1919). 

The three books invite us to pose questions about the relationship between 
mathematics and logic. How was this relationship shaped by popular books on 
mathematics and logic? Was it more convenient (within the context of postwar 
Czechoslovakia) to present logic in an apolitical way through giving it a 

1 Cf. Olšáková (2014).
2 The other authors of the booklet were Karel Berka, Miroslav Jauris, Pavel Materna, Miroslav Mleziva and Ota 

Weinberger. 
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mathematical appearance, or was it a matter of taste, or even fashion? Finally, 
could (or can) such popularising efforts have impact on how a disciplines (in this 
case mathematics and logic) are perceived not just by the general public, but also
by the practitioners of the respective fields of research?
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Church’s typed lambda calculus with its standard semantics is sufficiently rich to encode arithmetic. 
Hence, by Gödel’s incompleteness theorems, it is incomplete. Yet, Leon Henkin is best known for his 
proof of completeness in the theory of types. How is it possible, isn’t it a contradiction? No, it is not, of 
course. What Henkin proved is completeness with respect to general models. If he tried to enrich the 
calculus, it would be of no way since Gödel’s incompleteness theorems ensure that no deductive 
calculus can achieve completeness with respect to the standard models. Hence, Henkin voted for 
changing the semantics. Instead of having in each level of the typed hierarchy the set of all the 
functions belonging to the corresponding type, he admitted only some subsets of them, namely those 
that are lambda definable.      

As a starting point, I first discuss the difference between completeness of a logic, completeness of a 
calculus and completeness of a theory. Though all the three notions have much in common, namely, 
they express some sufficiency, there are also significant differences between them. For instance, the 
first-order theory of Peano arithmetic is an incomplete theory defined within a complete logic. In 
contrast, the second-order Peano arithmetic is a complete theory defined within an incomplete logic.   

A logic can be semantically defined as the set of logical truth of the language L. A logic is complete iff 
there exists an algorithm that recursively enumerates the truths (validities) of that logic.  

Gödel was probably the first to conceive the ‘completeness of a logic’ as a way to analyse 
computational complexity of the class of logically valid formulas. He also realised that there is a big 
difference between semantic notions and proof-theoretic ones, as the following citation illustrates: 

‘[…] “valid” refers to the nondenumerable totality of functions, while “provable” presupposes 
only the denumerable totality of formal proofs.’ (Goedel 1930, p. 117) 

In principle, it is not necessary to define a deductive calculus for the logic; any recursive procedure able 
to generate logical truths would do. From a computational point of view, decidability implies 
completeness (but not vice versa). Gödel addressed the issue of FOL completeness in the absence of a 
previous result on decidability for logical truths; a negative solution to the decision problem 
(Entscheidungsproblem) was given six years later by Church in 1935-6 and independently by Turing in 
1936-7. Thus, Gödel faced a dilemma:  

 Either semantics is decidable, in which case the completeness of the logic is trivial or, 
 completeness is a critical property that cannot be obtained as a corollary of a previous 

decidability result. 

Gödel rightly concentrated on the second issue. He had solved the problem for first-order logic 
positively, and negatively for any -consistent recursively axiomatised logical theory in which 
arithmetic could be embedded. Thus, the first-order predicate logic (FOL) is complete; the set of its 
logical truths is recursively enumerable. Yet, it is not recursive, as FOL is not decidable.  
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Henkin’s primary goal was to prove that Church’s typed lambda calculus (1940) is applicable, as it is 
complete with respect to some well-defined structures. Church made a clear distinction between the 
value of a function at a given argument, F(x), and the function itself, x F(x). The latter makes the 
naming of functions in the language possible. Definability was then a hot topic, but recall that Church’s 
thesis, identifying effectively computable functions with -definable ones had already been 
formulated, and Henkin was one of Church’s students. He showed that if the terms of the calculus 
were interpreted in a less rigid way, accepting hierarchies of types that did not necessarily have to 
contain all the functions but did contain the named functions, i.e. -definable ones, one could easily 
show that all consequences of a set of hypotheses were provable in the calculus. By relaxing the 
conditions on the structures in which the language is interpreted, there are more general models in 
which the formulas must be true, and therefore the set of valid formulas is reduced to the recursive 
set. In other words, the formulas true in all general models coincide with the formulas generated by 
the rules of calculus.  

When Henkin was developing the hierarchy of objects with a proper name, he realised that by utilising 
the -conversion rules, equivalence classes of provably equivalent terms could be defined; these 
classes form a model isomorphic to the new hierarchy of types formed by the named elements. It 
remained to ensure that the objects named by the propositions were just the truth values. To this end, 
Henkin expanded the set of axioms to form a maximally consistent set. Then he proved that every 
consistent set of formulas T has a general model that satisfies exactly the formulas of T; the elements 
of such model are the equivalence classes of the terms themselves. In this way, he would have managed 
to give proof of the completeness of the deductive calculus. 
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Abstract

The H-coloring problem for undirected simple graphs is a computational problem from
a huge class of the constraint satisfaction problems (CSP): an H-coloring of a graph G
is a homomorphism from G to H and the problem is to decide for fixed H, given G, if a
homomorphism exists or not.

The dichotomy theorem for the H-coloring problem was proved by Hell and Nešetřil
(1990, J. Comb. Theory Ser. B, 48, 92–110) and it says that for each H the problem is
either p-time decidable or NP -complete. Since negations of unsatisfiable instances of CSP
can be expressed as propositional tautologies, it seems to be natural to investigate the
proof complexity of CSP.

We show that the decision algorithm in the p-time case of the H-coloring problem can
be formalized in a relatively weak theory and that the tautologies expressing the negative
instances for such H have polynomial proofs in propositional proof system R∗(log). To
establish this, we use a well-known connection between theories of bounded arithmetic and
propositional proof systems.

We complement this result by a lower bound that holds for many weak proof systems
for a special example of NP -complete case of the H-coloring problem.
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1 Introduction

This work is about formalising game-theoretic results using proof assistants [EJ91, LeR09,
Nip09]. In previous work [LMS17], we have formalised [LeR14, Lemma 2.4] both in Coq and
Isabelle. The result is as follows: starting from a two-player game with finitely many outcomes,
one may derive a game by rewriting each of these outcomes with either the basic outcome
“Player 1 wins” or “Player 2 wins”. If all ways of deriving such a win/lose (w/l) game lead to a
game where one player has a winning strategy, then the original game has a Nash equilibrium
(NE).

Here, we present an application of this work to parity games and priority games using
Isabelle. Dittmann has proven in Isabelle that parity games are positionally determined. First,
we generalise this result to priority games, where parity is replaced by an arbitrary winning set
W . Secondly, we consider preference priority games, i.e., sequential games where players have
preferences over outcomes. We show that such games have an NE.

2 Positional Determinacy of Priority Games

We consider sequential games: there is a graph partitioned so that each vertex is owned by
one of the two players, and a play is a path through this graph. The path starts in the initial
vertex, and in each vertex, the owner decides where to go next according to some strategy.

Definition 1. An arena is a tuple (V1, V2, v0, E) where V1 ∩ V2 = ∅, and v0 ∈ V := V1 ∪ V2,
and E ⊆ V 2 is such that for all v ∈ V , the set vE := {u ∈ V | (v, u) ∈ E} is non-empty.

A positional strategy of Player 1 in an arena (V1, V2, v0, E) is a function s : V1 → V such
that (v, s(v)) ∈ E for all v ∈ V1 (“positional” because the history is ignored; in the sequel, we
only consider positional strategies).

In a straightforward way, a strategy pair induces a unique infinite path denoted by 〈s1, s2〉.
Definition 2. A priority game form is an arena together with a priority function π : V → N.

For an infinite path with bounded π, the least priority occurring infinitely often as a label
of a visited vertex is called induced priority.

Definition 3. A w/l priority game consists of a priority game form and a subset W ⊆ N. A
run ρ is winning for Player 1 iff the induced priority of ρ is in W .

If W := 2N, the w/l priority game is called a parity game.

Definition 4. Given a w/l priority game (V1, V2, v0, E, π,W ), a Player 1 winning strategy s1
is such that for all Player 2 strategy s2, the induced priority of 〈s1, s2〉 is in W . A w/l priority
game such that one player has a winning strategy is said to be weakly positionally determined.
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The term “weakly” indicates that a winning (positional) strategy runs against a strategy
of the opponent that is itself also positional. Usually, positional determinacy means that a
positional strategy wins even against more general (non-positional) strategies.

Dittmann [Dit16] has shown in Isabelle that parity games are (not just weakly!) positionally
determined [EJ91]. Based on a transformation from priority games to parity games, we can
extend the statement to the priority games:

Lemma 5. W/l priority games with bounded π are positionally determined.

We have also shown the result in Isabelle but only weak determinacy. Note that Lemma 5
could be proved by applying [GZ05, Thm. 2, Cor. 7], but the proof that we formalize is more
direct when assuming positional determinacy of parity games.

The Isabelle formalisation of this lemma with all the preliminaries comprises approximately
1350 lines of proof script, about as much as our entire Isabelle development of [LMS17]. The
difficulty is that infinite paths are defined coinductively, and thus statements relating different
priority and parity games must be proven by coinduction.

3 Nash Equilibria for Preference Priority Games

We now consider simultaneous or one-shot games, as opposed to sequential games.

Definition 6. A game form is a tuple 〈S1, S2, O, v〉 where S1 and S2 are the strategies of
Players 1 and 2, resp.; O is a nonempty set (of possible outcomes); v : S1 × S2 → O is the
outcome function. A game form endowed with two binary relations ≺1,≺2 over O for each
player (modeling her preference) is called a game.

A w/l game is a game where O = {True,False} and the preferences are False ≺1 True and
True ≺2 False. If one player has a winning strategy the game is said to be determined.

Definition 7. Let 〈S1, S2, O, v,≺1,≺2〉 be a game. A strategy profile (s1, s2) in S1 × S2 is a
Nash equilibrium (NE) if it makes both players stable:

(∀s′1 ∈ S1, v(s1, s2) 6≺1 v(s′1, s2)) ∧ (∀s′2 ∈ S2, v(s1, s2) 6≺2 v(s1, s
′
2))

Given a game form and a set W ⊆ O, one can derive a w/l game in a straightforward way:
all outcomes in W are mapped to True (Player 1 wins). If a game form is such that for every
W , the derived w/l game is determined, we call the game form itself determined. Fig. 1 shows
an example with S1 = {1t, 1b}, S2 = {2l, 2r}, and O = {♥,♣,♦}.

In [LMS17], we have formalised in Isabelle and Coq a theorem [LeR14] stating that a game
g whose game form is determined has an NE. Fig. 1 shows the main theorem in Isabelle code.

We now link sequential games to simultaneous games by putting a black box around the
process of constructing an infinite sequence using strategies and then extracting a number from
it. The black box is a (simultaneous) game form: it takes two strategies and returns a number.

At the same time, we can define preference-priority games, which are sequential games where
rather than having a winning set W , we have preferences of the players on the outcomes in
N. By linking preference-priority games to the simultaneous setting, we can apply the main
theorem above to show that preference-priority games also have an NE:
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theorem equilibrium_transfer_finite :

assumes finiteO : "finite (range (form g))"

and trans1 : "trans (pref1 g)"

and irref1 : "irrefl (pref1 g)"

and trans2 : "trans (pref2 g)"

and irref2 : "irrefl (pref2 g)"

and det : "determinedForm (form g) R1 R2"

shows "∃ s1∈R1. ∃ s2∈R2. isNash g s1 s2"

2l 2r
1t ♥ ♣
1b ♦ ♦

• ♦ 7→ True : 1b wins

• ♦,♥ 7→ False : 2l wins

• . . .

Figure 1: The main theorem of [LMS17], and a game whose game form is determined

lemma equilibriumTransferPreferencePriority :

assumes "snd (fst PPG) ∈ Vfst (fst PPG)"

and "ParityGame (fst (fst PPG))"

and "deadendFree (fst (fst PPG))"

and acyclic1 : "acyclic ((fst ◦ snd) PPG)"

and acyclic2 : "acyclic ((snd ◦ snd) PPG)"

shows "∃ s1. ∃ s2. isNashPPG PPG s1 s2"

We have proven this result on paper and using Isabelle. The Isabelle formalisation of this
lemma with all the preliminaries comprises approximately 450 lines of proof script.

As a future work, we would like to lift the restriction of weak positional determinacy.
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[LMS17] Stéphane Le Roux, Érik Martin-Dorel, and Jan-Georg Smaus. An existence theorem of Nash
equilibrium in Coq and Isabelle. In Proceedings Eighth International Symposium on Games,
Automata, Logics and Formal Verification, GandALF 2017, Roma, Italy, 20-22 September
2017., pages 46–60, 2017.

[Nip09] Tobias Nipkow. Social choice theory in HOL. Journal of Automated Reasoning, 43(3):289–304,
2009.

331



Why are models of quantum logic infinite

Kadir Emir1, David Kruml1, Jan Paseka1, and Thomas Vetterlein2

1 Department of Mathematics and Statistics, Faculty of Science, Masaryk University
Brno, Czech Republic

emir,kruml,paseka@math.muni.cz
2 Department of Knowledge-Based Mathematical Systems, Johannes Kepler University Linz

Linz, Austria
Thomas.Vetterlein@jku.at

To grasp the essential properties of the basic model used in quantum physics, David Foulis
and his collaborators coined in the 1970s the notion of an orthogonality space [1, 7]. The idea
was to reduce the involved structure of a complex Hilbert space to the minimum of what is
really needed. An orthogonality space is a set endowed with a binary relation about which
not more than symmetry and irreflexivity is assumed. The canonical example is the projective
Hilbert space together with the orthogonality relation. The approach can be seen as an attempt
to increase the level of abstraction in quantum logic to its limits: From the quantum-physical
perspective, solely the aspect of distinguishability of measurement results is taken into account;
from the logical perspective, solely the aspect of mutual exclusiveness is exploited.

Orthogonality spaces were recently rediscovered and they have proven as a basis of quantum
logic in an amazingly effective way [3, 4, 5, 6]. In fact, each orthogonality space gives rise to a test
space; see [7]. Test spaces can in turn be understood as an abstract way to model quantum-
mechanical propositions. The latter are, in the standard approach, modelled by subspaces
of Hilbert spaces. It has turned out that the transition from orthogonality spaces to inner-
product spaces is possible on the basis of a remarkably simple condition, to which we refer to
as linearity. The rank of an orthogonality space is, loosely speaking, the maximal number of
mutually orthogonal elements. In case that the rank is at least 4, linearity is sufficient to lead
from the simple relational structure of an orthogonality space to a Hermitian space.

Accordingly, the focus of investigations of orthogonality spaces has up to now mostly been
on the case that the rank is 4 or higher. In contrast, this lecture is focussed on the case that
the orthogonality space is finite and of rank 2 or 3, where there is no general representation
theory. Often adopting the point of view of graph theory, we establish for such spaces a number
of interesting combinatorial properties.

We can summarize our results which are related to the results of Eckmann and Zabey [2]
as follows.

Theorem 1. Let (X,⊥) be a linear orthogonality space of finite rank m. Then

(i) If m = 2 then X is either finite with even cardinality or infinite.

(ii) If m ≥ 3 then X is infinite.
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Given a class of partially ordered structures, such as distributive lattices or Boolean algebras,
we may ask: which kinds of upward closed sets are there in this class of algebras? More precisely,
which properties of upsets can we express using some limited syntactic means?

Such properties may for example be expressed by first-order formulas in a signature whose
algebraic part contains all the connectives of distributive lattices and whose relational part only
contains a single unary predicate, to be interpreted by our upset. We shall in fact be interested
in properties expressible more specifically by means of so-called universal Horn formulas. These
are universally quantified implications between a finite set of atomic premises and a single atomic
conclusion. An atomic formula in this context is a unary predicate applied to a term in the
relevant algebraic signature. For example, an upset U of a distributive lattice L is a lattice
filter if and only if the universal Horn sentence x ∈ U & y ∈ U =⇒ x∧ y ∈ U is satisfied in A.

We show that the only properties of upsets of distributive lattices and unital meet semi-
lattices expressible by a universal Horn sentence are the properties of being a lattice n-filter:

y1 ∈ U & . . . & yn+1 ∈ U =⇒ x1 ∧ · · · ∧ xn+1 ∈ U, where yi :=
∧

j 6=i

xj .

For example, 2-filters are defined by the following universal Horn property:

x1 ∧ x2 ∈ U & x2 ∧ x3 ∈ U & x3 ∧ x1 ∈ U =⇒ x1 ∧ x2 ∧ x3 ∈ U.

The proof hinges on two facts. Firstly, the n-filters on a distributive lattice are precisely the
intersections of prime n-filters (prime in the sense that x ∨ y ∈ U implies x ∈ U or y ∈ U).
Secondly, the prime n-filters on a distributive lattice are precisely the homomorphic preimages
of the n-filter of non-zero elements of the finite Boolean algebra with n atoms. The most
important properties of filters on distributive lattices therefore extend to n-filters.

In Boolean algebras, the situation is more complicated, since we can express more properties
using the richer algebraic signature of Boolean algebras. Nevertheless, the above properties still
play a privileged role among all the universal Horn properties of upsets of Boolean algebras.
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A while program is a program containing instructions of the form while ϕ do α (while loops),
where ϕ, the condition, is a statement and α is an instruction that is executed repeatedly while
the condition is true. Interesting properties of while programs, related to program verification,
include termination (does the program halt?) and correctness (does the program halt in a
state satisfying some specific postcondition whenever it is run in a state satisfying a specific
precondition?). Various formalisms were proposed to formalize (and automate) reasoning about
these properties and their variants. One such formalism dynamic logic [3, 4], a version of modal
logic with modal operators indexed by instructions, that interprets instructions semantically as
binary input-output relations on a set of states.

Following the work of Zadeh on fuzzy algorithms [6], graded while programs can be defined as
abstractions of while programs where the condition ϕ in while loops is a statement admitting
degrees of truth strictly between the Boolean truth values 0 (falsity) and 1 (truth). Such
abstractions may be useful when it is impossible or impractical to give a precise statement
of the condition. (Graded while programs are related to systems of if-then rules in fuzzy
controllers; the latter, however, do not contain explicit loops.)

In this talk we present a version of propositional dynamic logic based on finite  Lukasiewicz
chains that allows to reason about termination and (partial) correctness of graded while pro-
grams. Unlike previously published versions of dynamic logic based on finite  Lukasiewicz chains
[2, 5], our version allows to interpret instructions, not only statements, as graded. We will
focus on motivations and expressivity, but we will also outline our technical results which in-
clude a sound and weakly complete axiomatization and a proof that the validity problem in
finitely-valued  Lukasiewicz dynamic logics is EXPTIME-complete. (Technical results were not
established in previous “exploratory” papers such as [1].)
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We provide some sufficient conditions for a relevance logic L to posses the (infinite) Beth
(definability) property, i.e., whenever a set of variables is defined implicitly in terms of other
variables by means of some formulas over L, then it can also be defined explicitly. The relevance
logics in question are the axiomatic extensions of Anderson and Belnap’s principle relevance
logic Rt (see [1]) with the Gödel-Dummett axiom

(p→ q) ∨ (q → p), (1)

as well as the axiomatic extensions of Rt
+M with (1), where Rt

+M is the negation-less fragment
of Rt with mingle p→ (p→ p). One can obtain the negation-free (positive) fragment of Gödel
logic by extending Rt

+M with (1) and weakening p→ (q → p).
Famously, Urquhart showed that Rt does not have the Beth property [10]. We use the

tools of abstract algebraic logic to investigate which of its extensions do. On the other hand,
Maksimova proved that a strong version of the Beth property holds for Gödel logic [5], as well
as for its positive fragment [6]. It was later established in [2] that all the axiomatic extensions
of the afore mentioned logics have the Beth property. Our results concerning the negation-less
fragment of Rt generalizes these results.

A Dunn monoid A = 〈A;∧,∨, ·,→, e〉 comprises a distributive lattice 〈A;∧,∨〉, a commuta-
tive monoid 〈A; ·, e〉 that is square-increasing (x 6 x · x), and a binary operation → satisfying
the law of residuation

x · y 6 z iff y 6 x→ z.

We may enrich the language of Dunn monoids with an involution ¬ that satisfies x = ¬¬x and
x→ ¬y = y → ¬x, thus obtaining De Morgan monoids.

A Dunn monoid is idempotent if it satisfies x · x = x and a Dunn (or De Morgan) monoid
is said to be semilinear if it embeds into a direct product of totally ordered algebras.

Our interest in these algebras stem from the fact that the subvarieties of De Morgan monoids
[resp. idempotent Dunn monoids] algebraize the extensions of Rt [resp. Rt

+M]. In particular,
extending these logics with (1) amounts to imposing semilinearity on the respective varieties.
If, in addition, one imposes integrality (i.e., x ≤ e) on Dunn monoids, one obtains relative Stone
algebras—the algebraic counterpart of positive Gödel logic.

Let us then introduce the algebraic property that corresponds to the Beth property. A
homomorphism f : A → B between algebras in a variety K is an epimorphism provided it is
right-cancellative, i.e., for every pair of homomorphisms g, h : B→ C with C ∈ K,

if g ◦ f = h ◦ f , then g = h.

Clearly any surjective homomorphism is an epimorphism. The converse need not hold. Indeed,
rings and distributive lattices each form varieties in which non-surjective epimorphisms arise.

∗The author is funded by project no. CZ.02.2.69/0.0/0.0/18 053/0017594, Supporting the internationalization
of the Institute of Computer Science of the Czech Academy of Sciences, which is co-funded by the EU.
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As it happens, this reflects the absence of unary terms defining multiplicative inverses in rings,
and complements in distributive lattices, despite the uniqueness of those entities when they
exist. Such constructs are said to be implicitly (and not explicitly) definable. We say that
a variety K has the epimorphism surjectivity (ES) property, if it precludes phenomena of this
kind, i.e., if epimorphisms in K are surjective.

When a variety K algebraizes a logic `, then K has the ES property if and only if ` has
the Beth property [3]. We are therefore looking for varieties of Dunn and De Morgan monoids
that have the ES property, and we can state the first result to this effect.

Theorem 1. The variety of semilinear idempotent Dunn monoids has the ES property.

This result uses a characterization of homomorphisms between totally ordered idempotent
Dunn monoids, that is stated by means of a representation of these algebras from [4].

An element a of a Dunn/De Morgan monoid A is said to be negative if a 6 e in A, and A
is said to be negatively generated if A is generated by its negative elements. It turns out that
negatively generated semilinear Dunn monoids are idempotent, and they are called generalized
Sugihara monoids (cf. [9]). We show that the classes of negatively generated semilinear Dun-
n/De Morgan monoids are varieties (and thus correspond to axiomatic extensions of the logics
above). Note that every relative Stone algebra is obviously negatively generated, because e is
its greatest element, so the following theorem applies to all varieties of relative Stone algebras
(a result that was established in [2]).

Theorem 2. Every variety of negatively generated semilinear Dunn/De Morgan monoids has
surjective epimorphisms.

Apart from the representations mentioned after Theorem 1, this result also uses a represen-
tation theorem for De Morgan monoids in [7, 8]. Note that in general the ES property is not
inherited by subvarieties, so Theorem 2 is labour saving.
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Consider a countable class of isomorphism types of finitely generated structures with the
amalgamation property, the joint embedding property, and the hereditary property. By the
Fräıssé limit of such a class K, we mean the unique countable structure M whose age, i.e., the
class of finitely generated substructures of M , is K up to isomorphism.

One pervasively studied aspect of ultrahomogenous structures—the Fräıssé limit of some
classes of structures—is their automorphism groups (see, e.g., Macpherson [3]). Many stud-
ies on the automorphism groups of concrete ultrahomogeneous structures involved uniformly
locally finite ones, which are necessarily ω-categorical. (For instance, the normality of the au-
tomorphism group of the countable atomless Boolean algebra, which is ultrahomogeneous and
uniformly locally finite, was established by Anderson [1].) In the present work, we offer a case
study on the automorphism group of a natural non-uniformly locally ultrahomogeneous struc-
ture: the Fräıssé limit L of finite Heyting algebras, whose existence follows from Maksimova’s
result [4] on the Craig interpolation theorem for intuitionistic logic.

First of all, we would like to know if Aut(L) is indeed different from that of, say, the
countable atomless Boolean algebra. Recall that a permutation group G on a countable set X
is oligormorphic if the induced action of G on Xn has only finitely many orbits for all n < ω.
We take a theorem of Tsankov [6] as the definition of Roelcke precompactness: a topological
group G is Roelcke precompact if G is the inverse limit of some inverse system of oligomorphic
permutation groups.

Theorem. The topological group Aut(L) is not Roelcke precompact. A fortiori, it is not
realized as the automorphism group of of any countable ω-categorical structure.

Every uniformly locally finite ultrahomogeneous structure has a non-locally compact auto-
morphism group [3]. This is true of our structure as well:

Proposition. The topological group Aut(L) is not locally compact.

The extreme amenability of the automorphism group of an ultrahomogeneous structure
characterizes the Ramsey property of its age [2]. We are unable to prove or disprove the
existence of an ultrahomogeneous expansion of L whose automorphism group is extremely
amenable at this point. However:

Theorem. Aut(L) is not amenable.

Finally, we focus on the abstract group structure of Aut(L). Our methodology is applicable
to other Fräıssé classes of lattices with the superamalgamation property, which is related to
interpolation theorems of nonclassical logics (see, e.g., [4]).

Theorem. Let M be a countable ultrahomogeneous structure with the age of M having the
superamalgamation property. Moreover, assume that the amalgamation property of the age
is witnessed canonically and functorially in the sense of Tent and Ziegler [5, Example 2.2.1].
Then, the abstract group Aut(M) is simple.

Corollary. Aut(L) is simple.
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