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sentences stronger than consistency statements

ProvPA(x) – a formalization of “sentence x is provable in PA”2

Con(PA) – a formalization of “PA is consistent”

Con(PA) ≡ ¬ProvPA(d0 = 1e)

2I will talk about PA (Peano Arithmetic), but everything holds true also for
other theories.

[3]
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1. Iterated consistency statements

the consistency of PA + Con(PA), formally

Con(PA + Con(PA))

Proposition

Con(PA + Con(PA)) is strictly stronger than Con(PA).

Proof.
Suppose it is not. Then

PA ` Con(PA)→ Con(PA + Con(PA))

This is equivalent to

PA + Con(PA) ` Con(PA + Con(PA))

which contradicts to the 2. incompleteness theorem for
PA + Con(PA).
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We can go on and get stronger and stronger sentences

Con(PA + Con(PA + Con(PA)))

Con(PA + Con(PA + Con(PA + Con(PA))))

etc.

Lemma
Con(PA + Con(PA)) ≡ ¬ProvPA(d¬Con(PA)e)
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2. Reflection principles

reflection principle for sentence φ: if φ is provable, then φ is true;
formally

ProvPA(dφe)→ φ

Proposition

I For φ equal to 0 = 1, the reflection principle is equivalent to
Con(PA).

I For some φ, the reflection principle does not follow from
consistency.

[6]
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Proof.
Take φ := ¬Con(PA). Then the reflection principle for φ is

ProvPA(d¬Con(PA)e)→ ¬Con(PA)

Equivalently,
Con(PA)→ ¬ProvPA(d¬Con(PA)e)

By Lemma, this is equivalent to

Con(PA)→ Con(PA + Con(PA))

Argunig by contradiction, suppose that the reflection principle is provable
from Con(PA). Formally,

PA ` Con(PA)→ (Con(PA)→ Con(PA + Con(PA))),

which is equivalent to

PA + Con(PA) ` Con(PA + Con(PA))).

But this contradicts to the 2. incompleteness theorem for PA + Con(PA).

[7]
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Uniform reflection principles

The uniform Σk reflection principle:

For every Σk sentence φ, if φ is provable in PA, then φ is true.

Formally it is an arithmetical sentence

∀x ∈ Σk(ProvPA(x)→ TrueΣk
(x)).

Note: We cannot define True(x) for all arithmetical sentences.

Proposition

Already the Σ1-uniform reflection principle implies all iterated
consistency statements.

Proof.
- easy exercise.

[8]
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Essentially all independent combinatorial sentences that we know
are equivalent to Σ1-reflection principles.

In particular, the Paris-Harrington Theorem is equivalent to the
Σ1-reflection principle for PA.

[9]



Soundness

In metatheory we can state soundness of PA. Formally it is the

sentence

∀x ∈ ArithSent (ProvPA(x)→ TrueArithSent(x)),

where ArithSent is the set of arithmetical sentences. This is not an
arithmetical sentence.

Proposition

ZFC proves the soundness of PA.

Proof.
ZFC proves that N is a model of PA.

[10]
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The Lucas-Penrose falacy

J. R. Lucas:

“. . . given any machine which is consistent and capable of doing
simple arithmetic, there is a formula which it is incapable of
producing as being true . . . which we can see to be true. It follows
. . . that minds are essentially different from machines.”3

A serious scientist should ask himself (herself):

Why “we can see to be true”?

If you asked them they would probably answer: because we are
different from machines.

3Minds, machines and Gödel, Philosophy, 1961.
[11]
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3Minds, machines and Gödel, Philosophy, 1961.
[11]



The Lucas-Penrose falacy

J. R. Lucas:

“. . . given any machine which is consistent and capable of doing
simple arithmetic, there is a formula which it is incapable of
producing as being true . . . which we can see to be true. It follows
. . . that minds are essentially different from machines.”3

A serious scientist should ask himself (herself):

Why “we can see to be true”?

If you asked them they would probably answer: because we are
different from machines.

3Minds, machines and Gödel, Philosophy, 1961.
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What is wrong in these arguments?

The 2nd incompleteness theorem does apply to human mind. All
mathematical assumptions a typical mathematician uses can be
encapsulated into

ZFC + ∃ inaccessible cardinal

Because this theory proves the arithmetical soundness of ZFC .

Answer: Simple logical errors such as starting with an
assumption and then using a different one, introducing another
assumption in the course of the proof, etc.

[12]
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Most frequent error: failure to distinguish between consistency
and soundness.

[13]



Example

“Even if we adjoin to a formal system the infinite set of axioms
consisting of Gödelian formulae, the resulting system is still
incomplete, and conatins a formula which cannot be
proved-in-he-system, although a rational being can, standing
outside the system, see that it is true.”4

Let S be the system, S extended with Gödelian formulae is

T := S+Con(S)+Con(S+Con(S))+Con(S+Con(S+Con(S)))+. . .

The “rational being” not only assumes that S is consistent, but in
fact that S is sound. We know that already a weak form of
soundness (Σ1-reflection principle for S) implies the consistency
of T .

4Lucas, the same article.
[14]
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What about Gödel?

I Gödel thought that it is possible (maybe even believed) that
human mind is superior to machines,

I but also he was aware of the fact that the 2nd incompleteness
theorem cannot be used to prove it.

“Either. . . the human mind . . . infinitely surpasses the powers of
any finite machine, or else there exist absolutely unsolvable
diophantine problems.”5

How can Lucas and Penrose believe that Gödel overlooked their
simple arguments that, as they think, eliminate the second
possibility?

More about this in my book Logical Foundations of Mathematics and

Computational Complexity, Chapter 7.

5K. Gödel, Some basic theorems on the foundations of mathematics and
their implications.
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I Gödel thought that it is possible (maybe even believed) that
human mind is superior to machines,

I but also he was aware of the fact that the 2nd incompleteness
theorem cannot be used to prove it.

“Either. . . the human mind . . . infinitely surpasses the powers of
any finite machine, or else there exist absolutely unsolvable
diophantine problems.”5

How can Lucas and Penrose believe that Gödel overlooked their
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Proofs without selfreference
A proof of the 1st incompleteness theorem based on
Kolmogorov’s complexity6

Let U be a universal Turing machine, such that

1. For every binary string x , U(x) is a binary string, or undefined
if the machine does not stop.

2. For every other machine M of this kind, there exists a binary
string p such that for all x , U(px) = M(x).

Definition
The Kolmogorov complexity of a binary string y , denoted by C (x),
is the least n such that there exists a string x , |x | = n such that
U(x) = y .

Lemma
For every n there exists y with |y | = n and C (y) ≥ n.

Proof - simple countig.
6Probably due to G. J. Chaitin

[16]



Theorem
For every consistent recursively axiomatized consistent theory T ,
there exists a constant kT such that T does not prove C (a) > kT
for any concrete string a.

Proof.
Let k be sufficeintly larger than the length of the description of T .
Suppose T proves K (a) > k for some string a. Let a be such a
string with the shortest T -proof of K (a) > k . Then a can
produced by an algorith as follows:

systematically generate all T-proofs;

stop and output a if a proof of K (a) > k is found.

The Kolmogorov complexity of this algorithm is essentially the
length of the desription of T plus log k .

Berry’s Paradox

[17]
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If T ⊆ S , then kT ≤ kS .

kT ≤ K (T )+constant, but it may be much smaller.

[18]



A proof of the 2nd incompleteness theorem based on
Kolmogorov’s complexity7

Definition
A string a of length such that K (a) ≥ n is called Kolmogorov
random. Denote by Rn be the number of Kolmogorov random
strings of length n.

Lemma
Let T be consistent recursively axiomatized, T ⊇ Q and let
n > kT . If T proves

∃ at least M Kolmogorov random strings,

then M < Rn.

7S.Kritchman, R.Raz, The Surprise Examination Paradox and the Second
Incompleteness Theorem (2010)

[19]



Proof.

1. For every a K. nonrandom, T can prove that it is
K. nonrandom. Hence T proves that there are at least
2n − Rn nonrandom strings. Hence M ≤ Rn.

2. Suppose M = Rn. Since T proves for 2n − Rn strings that
they are K. nonrandom and proves that there are at least M
(which is = Rn) K. random, it proves that x is K.-nonrandom
for every K. nonrandom string x . This contradicts n > kT .

[20]



Proof of the 2nd Incompleteness Theorem.

By formalizing the lemma in T , we can show that T proves

I If Con(T ), then there are more K. random strings than T can
prove.

So if T proved Con(T ), it would be inconsistent.

Theorem
Let T be consistent and n > kT . Then the sentence

∃ exactly Rn Kolmogorov random strings

is not provable in T .

[21]
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How many Kolmogorov random srtings of length n are there?

I By the counting argument, at least one.

I There are at least 2.

Proof.
Suppose there is only one. Run in paralele U(x) on all strings x , |x | < n.
After you get all |y | ≤ n as y = U(x) except for one, print the remining
one. This is a program shorter than n.

I Similarly, there are at least 3.

I etc.

Proposition

The number Rn of Kolmogorov random strings of length n satisfies

K (Rn) ≈ n.

[22]
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A finite version of the 2nd incompleteness theorem

Definitions and notation

ConT ≡df there is no proof of contradiction in T

ConT (n) ≡df there is no proof of contradiction in T of length ≤ n
(where n is represented by a term of length O(log n).)

||φ||T is the length of the shortest proof of φ in T .

I ConT (n) ≡ ||0 = 1||T > n.

I ConT ≡ ∀n ConT (n).

[23]
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Theorem (Friedman 1979, Pudlák 1984)

Let T be a consistent and sufficiently strong finitely axiomatized
theory. Then for some ε > 0,

||ConT (n)||T > nε.

Remark

I If T ` ∀xφ(x), then ||φ(n)||T = O(log n). Hence
T 6` ∀x ConT (x) which is just ConT .

I Not only it is consistent with T that there exists a proof of
contradiction, but one can show that it can be “small”.

[24]
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Proof-idea

First recall Gödel’s proof of the 2nd incompleteness theorem.

1. define γ ≡ ¬ ProvT (dγe),

2. prove that if T is consistent, then T does not prove γ,

3. formalize 2. in T and get

T ` ConT → ¬ ProvT (dγe)

4. by definition of γ this implies

T ` ConT → γ

and since γ is not provable, also ConT is not provable.

[25]



1. define δ(n) ≡ “δ(n) does not have a proof of length ≤ n”;
formally

δ(n) ≡ ||δ(n)||T > n,

2. prove that if T is consistent, then ||δ(n)||T > n,

3. formalize this proof in T and show that

ConT (nO(1))→ ||δ(n)||T > n

has a short T -proof,

4. which is
ConT (nO(1))→ δ(n),

5. since δ(n) does not have a short T -proof, also ConT (nO(1))
cannot have a short proof.

[26]



Conjecture (Friedman, FALSE!)

||ConT (n)||T grows exponentially.

Conjecture (Mycielski)

||ConT+ConT (n)||T grows exponentially.

Conjecture

||ConS(n)||T grows exponentially for every S that is sufficiently
stronger than T .8

Conjecture implies P 6= NP (in fact even NEXP 6= coNEXP).

8P. Hrubeš constructed a Π1 sentence φ such that T 6` φ, yet
||ConT+φ(n)||T is polynomially bounded.

[27]
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Thank you!
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