On the Second Incompleteness Theorem

Pavel Pudlák

Mathematical Institute, Czech Academy of Sciences, Prague ${ }^{1}$

Tribute to Kurt Gäel 2020, Brno
${ }^{1}$ supported by EPAC, grant 19-27871X of the Czech Grant Agency

Overview

1. Overview
2. True sentences stronger than consistency statements
3. The Lucas-Penrose falacy
4. Proofs without self-reference
5. The finite incompleteness theorem

sentences stronger than consistency statements

$\operatorname{Prov}_{P A}(x)$ - a formalization of "sentence x is provable in $P A$ " 2

[^0]
sentences stronger than consistency statements

$\operatorname{Prov}_{P A}(x)$ - a formalization of "sentence x is provable in $P A$ " ${ }^{2}$
Con $(P A)$ - a formalization of "PA is consistent"

$$
\operatorname{Con}(P A) \equiv \neg \operatorname{Prov}_{P A}(\lceil 0=1\rceil)
$$

[^1]
1. Iterated consistency statements

the consistency of $P A+\operatorname{Con}(P A)$, formally

$$
\operatorname{Con}(P A+\operatorname{Con}(P A))
$$

Proposition
$\operatorname{Con}(P A+\operatorname{Con}(P A))$ is strictly stronger than $\operatorname{Con}(P A)$.
Proof.
Suppose it is not. Then

$$
P A \vdash \operatorname{Con}(P A) \rightarrow \operatorname{Con}(P A+\operatorname{Con}(P A))
$$

This is equivalent to

$$
P A+\operatorname{Con}(P A) \vdash \operatorname{Con}(P A+\operatorname{Con}(P A))
$$

which contradicts to the 2 . incompleteness theorem for $P A+\operatorname{Con}(P A)$.

We can go on and get stronger and stronger sentences
$\operatorname{Con}(P A+\operatorname{Con}(P A+\operatorname{Con}(P A)))$
$\operatorname{Con}(P A+\operatorname{Con}(P A+\operatorname{Con}(P A+\operatorname{Con}(P A))))$ etc.

We can go on and get stronger and stronger sentences
$\operatorname{Con}(P A+\operatorname{Con}(P A+\operatorname{Con}(P A)))$
$\operatorname{Con}(P A+\operatorname{Con}(P A+\operatorname{Con}(P A+\operatorname{Con}(P A))))$ etc.

Lemma
$\operatorname{Con}(P A+\operatorname{Con}(P A)) \equiv \neg \operatorname{Prov}_{P A}(\lceil\neg \operatorname{Con}(P A)\rceil)$

2. Reflection principles

reflection principle for sentence ϕ : if ϕ is provable, then ϕ is true; formally

$$
\operatorname{Prov}_{P A}(\lceil\phi\rceil) \rightarrow \phi
$$

2. Reflection principles

reflection principle for sentence ϕ : if ϕ is provable, then ϕ is true; formally

$$
\operatorname{Prov}_{P A}(\lceil\phi\rceil) \rightarrow \phi
$$

Proposition

- For ϕ equal to $0=1$, the reflection principle is equivalent to Con(PA).
- For some ϕ, the reflection principle does not follow from consistency.

Proof.

Take $\phi:=\neg \operatorname{Con}(P A)$. Then the reflection principle for ϕ is

$$
\operatorname{Prov}_{P A}(\lceil\neg \operatorname{Con}(P A)\rceil) \rightarrow \neg \operatorname{Con}(P A)
$$

Equivalently,

$$
\operatorname{Con}(P A) \rightarrow \neg \operatorname{Prov}_{P A}(\lceil\neg \operatorname{Con}(P A)\rceil)
$$

By Lemma, this is equivalent to

$$
\operatorname{Con}(P A) \rightarrow \operatorname{Con}(P A+\operatorname{Con}(P A))
$$

Proof.

Take $\phi:=\neg \operatorname{Con}(P A)$. Then the reflection principle for ϕ is

$$
\operatorname{Prov}_{P A}(\lceil\neg \operatorname{Con}(P A)\rceil) \rightarrow \neg \operatorname{Con}(P A)
$$

Equivalently,

$$
\operatorname{Con}(P A) \rightarrow \neg \operatorname{Prov}_{P A}(\lceil\neg \operatorname{Con}(P A)\rceil)
$$

By Lemma, this is equivalent to

$$
\operatorname{Con}(P A) \rightarrow \operatorname{Con}(P A+\operatorname{Con}(P A))
$$

Argunig by contradiction, suppose that the reflection principle is provable from $\operatorname{Con}(P A)$. Formally,

$$
P A \vdash \operatorname{Con}(P A) \rightarrow(\operatorname{Con}(P A) \rightarrow \operatorname{Con}(P A+\operatorname{Con}(P A))),
$$

which is equivalent to

$$
P A+\operatorname{Con}(P A) \vdash \operatorname{Con}(P A+\operatorname{Con}(P A))) .
$$

But this contradicts to the 2 . incompleteness theorem for $P A+\operatorname{Con}(P A)$.

Uniform reflection principles

The uniform Σ_{k} reflection principle:
For every Σ_{k} sentence ϕ, if ϕ is provable in PA, then ϕ is true.
Formally it is an arithmetical sentence

$$
\forall x \in \Sigma_{k}\left(\operatorname{Prov}_{P A}(x) \rightarrow \operatorname{True}_{\Sigma_{k}}(x)\right)
$$

Uniform reflection principles
The uniform Σ_{k} reflection principle:
For every Σ_{k} sentence ϕ, if ϕ is provable in PA, then ϕ is true.
Formally it is an arithmetical sentence

$$
\forall x \in \Sigma_{k}\left(\operatorname{Prov}_{P A}(x) \rightarrow \operatorname{True}_{\Sigma_{k}}(x)\right)
$$

Note: We cannot define $\operatorname{True}(x)$ for all arithmetical sentences.

Uniform reflection principles

The uniform Σ_{k} reflection principle:
For every Σ_{k} sentence ϕ, if ϕ is provable in PA, then ϕ is true.
Formally it is an arithmetical sentence

$$
\forall x \in \Sigma_{k}\left(\operatorname{Prov}_{P A}(x) \rightarrow \operatorname{True}_{\Sigma_{k}}(x)\right) .
$$

Note: We cannot define $\operatorname{True}(x)$ for all arithmetical sentences.

Proposition

Already the Σ_{1}-uniform reflection principle implies all iterated consistency statements.

Proof.

- easy exercise.

Essentially all independent combinatorial sentences that we know are equivalent to Σ_{1}-reflection principles.

In particular, the Paris-Harrington Theorem is equivalent to the Σ_{1}-reflection principle for PA.

Soundness

In metatheory we can state soundness of PA. Formally it is the sentence

$$
\forall x \in \operatorname{ArithSent}\left(\operatorname{Prov}_{P A}(x) \rightarrow \operatorname{True}_{\text {ArithSent }}(x)\right)
$$

where ArithSent is the set of arithmetical sentences. This is not an arithmetical sentence.

Soundness

In metatheory we can state soundness of PA. Formally it is the sentence

$$
\forall x \in \operatorname{ArithSent}\left(\operatorname{Prov}_{P A}(x) \rightarrow \operatorname{True}_{\text {ArithSent }}(x)\right)
$$

where ArithSent is the set of arithmetical sentences. This is not an arithmetical sentence.

Proposition

ZFC proves the soundness of PA.
Proof.
ZFC proves that \mathbb{N} is a model of PA.

The Lucas-Penrose falacy

J. R. Lucas:
". .. given any machine which is consistent and capable of doing simple arithmetic, there is a formula which it is incapable of producing as being true ... which we can see to be true. It follows
...that minds are essentially different from machines."3
${ }^{3}$ Minds, machines and Gödel, Philosophy, 1961.

The Lucas-Penrose falacy

J. R. Lucas:
". . . given any machine which is consistent and capable of doing simple arithmetic, there is a formula which it is incapable of producing as being true ... which we can see to be true. It follows
... that minds are essentially different from machines."3
A serious scientist should ask himself (herself):
Why "we can see to be true"?
${ }^{3}$ Minds, machines and Gödel, Philosophy, 1961.

The Lucas-Penrose falacy

J. R. Lucas:
". . . given any machine which is consistent and capable of doing simple arithmetic, there is a formula which it is incapable of producing as being true ... which we can see to be true. It follows
...that minds are essentially different from machines."3
A serious scientist should ask himself (herself):
Why "we can see to be true"?
If you asked them they would probably answer: because we are different from machines.
${ }^{3}$ Minds, machines and Gödel, Philosophy, 1961.

What is wrong in these arguments?

What is wrong in these arguments?

The 2nd incompleteness theorem does apply to human mind. All mathematical assumptions a typical mathematician uses can be encapsulated into

$$
Z F C+\exists \text { inaccessible cardinal }
$$

Because this theory proves the arithmetical soundness of ZFC.

What is wrong in these arguments?

The 2nd incompleteness theorem does apply to human mind. All mathematical assumptions a typical mathematician uses can be encapsulated into

$$
Z F C+\exists \text { inaccessible cardinal }
$$

Because this theory proves the arithmetical soundness of ZFC.
Answer: Simple logical errors such as starting with an assumption and then using a different one, introducing another assumption in the course of the proof, etc.

Most frequent error: failure to distinguish between consistency and soundness.

Example

"Even if we adjoin to a formal system the infinite set of axioms consisting of Gödelian formulae, the resulting system is still incomplete, and conatins a formula which cannot be proved-in-he-system, although a rational being can, standing outside the system, see that it is true."4
${ }^{4}$ Lucas, the same article.

Example

"Even if we adjoin to a formal system the infinite set of axioms consisting of Gödelian formulae, the resulting system is still incomplete, and conatins a formula which cannot be proved-in-he-system, although a rational being can, standing outside the system, see that it is true."4

Let S be the system, S extended with Gödelian formulae is

$$
T:=S+\operatorname{Con}(S)+\operatorname{Con}(S+\operatorname{Con}(S))+\operatorname{Con}(S+\operatorname{Con}(S+\operatorname{Con}(S)))+\ldots
$$

The "rational being" not only assumes that S is consistent, but in fact that S is sound. We know that already a weak form of soundness (Σ_{1}-reflection principle for S) implies the consistency of T.

[^2]
What about Gödel?

${ }^{5} \mathrm{~K}$. Gödel, Some basic theorems on the foundations of mathematics and their implications.

What about Gödel?

- Gödel thought that it is possible (maybe even believed) that human mind is superior to machines,
- but also he was aware of the fact that the 2nd incompleteness theorem cannot be used to prove it.
${ }^{5} \mathrm{~K}$. Gödel, Some basic theorems on the foundations of mathematics and their implications.

What about Gödel?

- Gödel thought that it is possible (maybe even believed) that human mind is superior to machines,
- but also he was aware of the fact that the 2nd incompleteness theorem cannot be used to prove it.
"Either. . . the human mind . . . infinitely surpasses the powers of any finite machine, or else there exist absolutely unsolvable diophantine problems." ${ }^{5}$

[^3]
What about Gödel?

- Gödel thought that it is possible (maybe even believed) that human mind is superior to machines,
- but also he was aware of the fact that the 2nd incompleteness theorem cannot be used to prove it.
"Either. . . the human mind . . . infinitely surpasses the powers of any finite machine, or else there exist absolutely unsolvable diophantine problems." ${ }^{5}$

How can Lucas and Penrose believe that Gödel overlooked their simple arguments that, as they think, eliminate the second possibility?

[^4]
What about Gödel?

- Gödel thought that it is possible (maybe even believed) that human mind is superior to machines,
- but also he was aware of the fact that the 2nd incompleteness theorem cannot be used to prove it.
"Either. . . the human mind . . . infinitely surpasses the powers of any finite machine, or else there exist absolutely unsolvable diophantine problems." ${ }^{5}$

How can Lucas and Penrose believe that Gödel overlooked their simple arguments that, as they think, eliminate the second possibility?

More about this in my book Logical Foundations of Mathematics and Computational Complexity, Chapter 7.

[^5]
Proofs without selfreference

A proof of the 1st incompleteness theorem based on Kolmogorov's complexity ${ }^{6}$

Let U be a universal Turing machine, such that

1. For every binary string $x, U(x)$ is a binary string, or undefined if the machine does not stop.
2. For every other machine M of this kind, there exists a binary string p such that for all $x, U(p x)=M(x)$.

Definition

The Kolmogorov complexity of a binary string y, denoted by $C(x)$, is the least n such that there exists a string $x,|x|=n$ such that $U(x)=y$.

Lemma

For every n there exists y with $|y|=n$ and $C(y) \geq n$.
Proof-simple countig.
${ }^{6}$ Probably due to G. J. Chaitin

Theorem
For every consistent recursively axiomatized consistent theory T, there exists a constant k_{T} such that T does not prove $C(a)>k_{T}$ for any concrete string a.

Theorem

For every consistent recursively axiomatized consistent theory T, there exists a constant k_{T} such that T does not prove $C(a)>k_{T}$ for any concrete string a.

Proof.
Let k be sufficeintly larger than the length of the description of T. Suppose T proves $K(a)>k$ for some string a. Let a be such a string with the shortest T-proof of $K(a)>k$. Then a can produced by an algorith as follows:
systematically generate all T-proofs;
stop and output a if a proof of $K(a)>k$ is found.
The Kolmogorov complexity of this algorithm is essentially the length of the desription of T plus $\log k$.

Theorem

For every consistent recursively axiomatized consistent theory T, there exists a constant k_{T} such that T does not prove $C(a)>k_{T}$ for any concrete string a.

Proof.
Let k be sufficeintly larger than the length of the description of T.
Suppose T proves $K(a)>k$ for some string a. Let a be such a string with the shortest T-proof of $K(a)>k$. Then a can produced by an algorith as follows:
systematically generate all T-proofs;
stop and output a if a proof of $K(a)>k$ is found.
The Kolmogorov complexity of this algorithm is essentially the length of the desription of T plus $\log k$.

Berry's Paradox

If $T \subseteq S$, then $k_{T} \leq k_{S}$.
$k_{T} \leq K(T)+$ constant, but it may be much smaller.

A proof of the 2nd incompleteness theorem based on Kolmogorov's complexity ${ }^{7}$

Definition

A string a of length such that $K(a) \geq n$ is called Kolmogorov random. Denote by R_{n} be the number of Kolmogorov random strings of length n.

Lemma
Let T be consistent recursively axiomatized, $T \supseteq Q$ and let $n>k_{T}$. If T proves
\exists at least M Kolmogorov random strings,
then $M<R_{n}$.

[^6]
Proof.

1. For every a K. nonrandom, T can prove that it is K . nonrandom. Hence T proves that there are at least $2^{n}-R_{n}$ nonrandom strings. Hence $M \leq R_{n}$.
2. Suppose $M=R_{n}$. Since T proves for $2^{n}-R_{n}$ strings that they are K . nonrandom and proves that there are at least M (which is $=R_{n}$) K. random, it proves that x is K .-nonrandom for every K. nonrandom string x. This contradicts $n>k_{T}$.

Proof of the 2nd Incompleteness Theorem.
By formalizing the lemma in T, we can show that T proves

- If $\operatorname{Con}(T)$, then there are more K . random strings than T can prove.

So if T proved $\operatorname{Con}(T)$, it would be inconsistent.

Proof of the 2nd Incompleteness Theorem.

By formalizing the lemma in T, we can show that T proves

- If $\operatorname{Con}(T)$, then there are more K . random strings than T can prove.

So if T proved $\operatorname{Con}(T)$, it would be inconsistent.

Theorem
Let T be consistent and $n>k_{T}$. Then the sentence
\exists exactly R_{n} Kolmogorov random strings
is not provable in T.

How many Kolmogorov random srtings of length n are there?

How many Kolmogorov random srtings of length n are there?

- By the counting argument, at least one.

How many Kolmogorov random srtings of length n are there?

- By the counting argument, at least one.
- There are at least 2.

Proof.

Suppose there is only one. Run in paralele $U(x)$ on all strings $x,|x|<n$. After you get all $|y| \leq n$ as $y=U(x)$ except for one, print the remining one. This is a program shorter than n.

How many Kolmogorov random srtings of length n are there?

- By the counting argument, at least one.
- There are at least 2.

Proof.

Suppose there is only one. Run in paralele $U(x)$ on all strings $x,|x|<n$. After you get all $|y| \leq n$ as $y=U(x)$ except for one, print the remining one. This is a program shorter than n.

- Similarly, there are at least 3.
- etc.

Proposition

The number R_{n} of Kolmogorov random strings of length n satisfies

$$
K\left(R_{n}\right) \approx n
$$

A finite version of the 2 nd incompleteness theorem

Definitions and notation

$\operatorname{Con}_{T} \equiv_{d f}$ there is no proof of contradiction in T
$\operatorname{Con}_{T}(n) \equiv{ }_{d f}$ there is no proof of contradiction in T of length $\leq n$ (where n is represented by a term of length $O(\log n)$.)

A finite version of the 2 nd incompleteness theorem

Definitions and notation

$\operatorname{Con}_{T} \equiv_{d f}$ there is no proof of contradiction in T
$\operatorname{Con}_{T}(n) \equiv{ }_{d f}$ there is no proof of contradiction in T of length $\leq n$ (where n is represented by a term of length $O(\log n)$.)
$\|\phi\|_{T}$ is the length of the shortest proof of ϕ in T.

- $\operatorname{Con}_{T}(n) \equiv\|0=1\|_{T}>n$.
- $\operatorname{Con}_{T} \equiv \forall n \operatorname{Con}_{T}(n)$.

Theorem (Friedman 1979, Pudlák 1984)
Let T be a consistent and sufficiently strong finitely axiomatized theory. Then for some $\epsilon>0$,

$$
\left\|\operatorname{Con}_{T}(n)\right\|_{T}>n^{\epsilon}
$$

Theorem (Friedman 1979, Pudlák 1984)

Let T be a consistent and sufficiently strong finitely axiomatized theory. Then for some $\epsilon>0$,

$$
\left\|\operatorname{Con}_{T}(n)\right\|_{T}>n^{\epsilon}
$$

Remark

- If $T \vdash \forall x \phi(x)$, then $\|\phi(n)\|_{T}=O(\log n)$. Hence $T \forall \forall x \operatorname{Con}_{T}(x)$ which is just Con_{T}.
- Not only it is consistent with T that there exists a proof of contradiction, but one can show that it can be "small".

Proof-idea

First recall Gödel's proof of the 2nd incompleteness theorem.

1. define $\gamma \equiv \neg \operatorname{Prov}_{T}(\lceil\gamma\rceil)$,
2. prove that if T is consistent, then T does not prove γ,
3. formalize 2. in T and get

$$
T \vdash \operatorname{Con}_{T} \rightarrow \neg \operatorname{Prov}_{T}(\lceil\gamma\rceil)
$$

4. by definition of γ this implies

$$
T \vdash \operatorname{Con}_{T} \rightarrow \gamma
$$

and since γ is not provable, also Con_{T} is not provable.

1. define $\delta(n) \equiv$ " $\delta(n)$ does not have a proof of length $\leq n$ "; formally

$$
\delta(n) \equiv\|\delta(n)\|_{T}>n,
$$

2. prove that if T is consistent, then $\|\delta(n)\|_{T}>n$,
3. formalize this proof in T and show that

$$
\mathrm{Con}_{T}\left(n^{O(1)}\right) \rightarrow\|\delta(n)\|_{T}>n
$$

has a short T-proof,
4. which is

$$
\operatorname{Con}_{T}\left(n^{O(1)}\right) \rightarrow \delta(n),
$$

5. since $\delta(n)$ does not have a short T-proof, also $\operatorname{Con}_{T}\left(n^{O(1)}\right)$ cannot have a short proof.

Conjecture (Friedman, FALSE!)
$\left\|\operatorname{Con}_{T}(n)\right\|_{T}$ grows exponentially.
${ }^{8} \mathrm{P}$. Hrubeš constructed a Π_{1} sentence ϕ such that $T \nvdash \phi$, yet
$\left\|\operatorname{Con}_{T+\phi}(n)\right\|_{T}$ is polynomially bounded.

Conjecture (Friedman, FALSE!)

$\left\|\operatorname{Con}_{T}(n)\right\|_{T}$ grows exponentially.

Conjecture (Mycielski)
$\left\|\operatorname{Con}_{T+\text { ConT }_{T}}(n)\right\|_{T}$ grows exponentially.

[^7]
Conjecture (Friedman, FALSE!)

$\left\|^{\operatorname{Con}}{ }_{T}(n)\right\| T$ grows exponentially.

Conjecture (Mycielski)
$\left\|\operatorname{Con}_{T+C_{0}}(n)\right\|_{T}$ grows exponentially.

Conjecture
$\left\|\operatorname{Con}_{S}(n)\right\|_{T}$ grows exponentially for every S that is sufficiently stronger than T. ${ }^{8}$

Conjecture implies $\mathbf{P} \neq \mathbf{N P}$ (in fact even NEXP \neq coNEXP).

[^8]Thank you!

[^0]: ${ }^{2}$ I will talk about PA (Peano Arithmetic), but everything holds true also for other theories.

[^1]: ${ }^{2}$ I will talk about PA (Peano Arithmetic), but everything holds true also for other theories.

[^2]: ${ }^{4}$ Lucas, the same article.

[^3]: ${ }^{5} \mathrm{~K}$. Gödel, Some basic theorems on the foundations of mathematics and their implications.

[^4]: ${ }^{5} \mathrm{~K}$. Gödel, Some basic theorems on the foundations of mathematics and their implications.

[^5]: ${ }^{5} \mathrm{~K}$. Gödel, Some basic theorems on the foundations of mathematics and their implications.

[^6]: ${ }^{7}$ S.Kritchman, R.Raz, The Surprise Examination Paradox and the Second Incompleteness Theorem (2010)

[^7]: ${ }^{8} \mathrm{P}$. Hrubeš constructed a Π_{1} sentence ϕ such that $T \nvdash \phi$, yet
 $\left\|\operatorname{Con}_{T+\phi}(n)\right\|_{T}$ is polynomially bounded.

[^8]: ${ }^{8} \mathrm{P}$. Hrubeš constructed a Π_{1} sentence ϕ such that $T \nvdash \phi$, yet
 $\left\|\operatorname{Con}_{T+\phi}(n)\right\|_{T}$ is polynomially bounded.

