Common Gnoseological Meaning of Goedel and Caratheodory Theorems

Bohdan Hejna

January 13, 2020

Contents

1.	Introduction	3	
2.	Autoreference and Caratheodory	9	
3.	Information Transfer Channel	11	
4.	Carnot Machine	13	
5.	Carnot Cycle and Noiseless Information Transfer	15	
6.	Turing Machine	19	
7.	Inference as Informatiom Transfer	21	
8.	Carnot Cycle, Automata and Information Transfer	23	
9.	Resultativity, Adiabaticity, Consistency	25	
10	Autoreference, Information Transfer, Thermodynamics	27	
11	.Autoreference and Gödel	31	
12	Appendix 1 - Gödel Theorems.	35	
13	13.Appendix 2		
Re	References		

Common Gnoseological Meaning of Goedel and Caratheodory Theorems

1. Introduction

Vienna Circle *logical positivism - physicalism* Rudolph Carnap Otto von Neurath : 1931 - 1935

"Any scientifically meaningful statement is expressible in physical terms about a movement in the observable space and time -_ or, if the statement is not expressible this way it is meaningful scientifically when it is convertible to a statement about a language, otherwise it is of no scientific meaning." mutual relation among structures/languages of: Thermodynamics – Energy Transformation Information Theory – Message/Information Transfer Computing Theory – Computing/Inference Adiabatic Theory

COMPUTING THEORY	TURING MACHINE TM FINITE-STATE CONTROL UNIT	COMPUTING/INFERENCE PROCESS STATE/CONFIGURATION TRANSFORMATIONS
INFORMATION THEORY	SHANNON TRANSFER CHAIN $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$ TRANSFER CHANNEL	MESSAGE/INFORMATION TRANSFER PROCESS
THERMODYNAMICS	CARNOT MACHINE <i>CM</i> CARNOT CYCLE	HEAT ENERGY TRANSFORMATION PROCESS
THERMODYNAMIC ADIABATIC THEORY	THERMODYNAMIC ADIABATIC SYSTEM £	STATES' DEVELOPING PROCESS

Processes in all these structures run in the finite physical world and follow its laws.

We model them by the states' $\theta_{[\cdot]}^{\mathfrak{L}}$ trajectories $l_{\mathfrak{Q}_{\mathfrak{L}}}$ within the heat isolated - $[d]\mathbf{Q}_{\mathbf{Ext}}=0$ -<u>adiabatic</u> system $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}$ where is valid: Caratheodory common formulation of the II. P.T. :

In the arbitrary vicinity of every state of the state space $\mathfrak{Q}_{\mathfrak{L}}$ of the <u>adiabatic</u> system \mathfrak{L} exist states <u>not</u> reachable from the starting state <u>adiabatically</u> ([d]Q_{Ext}=0) (or the states not reachable by the system at all).

> For the **consistency** of the **Peano arithmetic theory** $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ **the analog** is expressed by:

Gödel incompletness theorems:²

<u>For</u> the theory $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ exists the true ("1") CLAIM that either this CLAIM and its NEGATION is <u>NOT</u> PROVABLE within the system $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$.

3

4

1

- CLAIM about the $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ consistency especially -

The CLAIM saying that theory $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ is <u>consistent</u> is not PROVABLE by its means (\mathcal{P}) - by itself.

¹Along the given the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ with the given starting point, reversibly or irreversibly. Or such states which are the part of the $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}$'s outer construction and thus of the whole $l_{\mathfrak{Q}_{\mathfrak{L}}}$'s definition.

²Rosser-Gödel theorem.

³Far from (!) "In...." Attempts to prove/*TO PROVE/INFER* it within the system $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ leads to the inconsistency of the consistent (!) system \mathcal{P}_{κ} (in fact we are entering into the inconsistent metasystem \mathcal{P}^{\star} - the real sense of the Proposition V).

⁴It is the *META-CLAIM* not writable within the $\mathcal{T}_{\mathcal{PA}}$ language.

The adiabatic trajectories $l_{\mathfrak{Q}_{\mathfrak{L}}}$ - within the $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}^5$

 l_{2b} isothermic irreversible expansion $l_{2b'}$ adiabatic irreversible expansion l_{2d} izobaric irreversible expansion l_{2e} izentropic reversible expansion l_{3} izochoric irreversible change

 l_4 not possible

⁵Which is the part of the wider meta-language with the vocabulary $\{\mathbf{p}, \mathbf{V}, \mathbf{T}\}$ in which we construct/define this adiabatic state space $\mathfrak{Q}_{\mathfrak{L}}$ /system \mathfrak{L} by its complement $\{\mathbf{p}, \mathbf{V}, \mathbf{T}\} - \mathfrak{Q}_{\mathfrak{L}}$ and the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ by its complement $\mathfrak{Q}_{\mathfrak{L}} - l_{\mathfrak{Q}_{\mathfrak{L}}}$ [$\{\mathbf{p}, \mathbf{V}, \mathbf{T}\} - (\mathfrak{Q}_{\mathfrak{L}} - l_{\mathfrak{Q}_{\mathfrak{L}}})$] but, including its initial state from $\mathfrak{Q}_{\mathfrak{L}}$ - from outside.

"1" - arithmeticity of the \mathcal{P} \cong adiabaticity of the $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}$.

Consistent $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ inference within \mathcal{P}

\cong

moving along trajectories $l_{\mathfrak{Q}_{\mathfrak{L}}}$ within the $\mathfrak{Q}_{\mathfrak{L}}/\mathfrak{L}$.

The states on the adiabatic trajectories

(also irreversible)

then model the consistently

inferred/inferrable *PA-FORMULAS*.

2. Autoreference and Caratheodory

Any adiabatic trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ is defined by its complement $\mathfrak{Q}_{\mathfrak{L}} - l_{\mathfrak{Q}_{\mathfrak{L}}}$,

within its definition space $\mathfrak{Q}_{\mathfrak{L}}$ /system \mathfrak{L} and,

the $\mathfrak{Q}_{\mathfrak{L}} - \mathfrak{l}_{\mathfrak{Q}_{\mathfrak{L}}}$ is not reachable within $\mathfrak{l}_{\mathfrak{Q}_{\mathfrak{L}}}$ itself.

For the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ could 'prove' - by itself its own adiabatic property $[d]\mathbf{Q}_{Ext}=0$ it should have to contain its own definition

as its own status!

The $l_{\mathfrak{Q}_{\mathfrak{L}}}$ would be autoreferential/autoconstructive: as the adiabatic one to construct, not adiabatically, $\underline{dQ_{Ext}\neq 0}$, the adiabatic, $[d]Q_{Ext}=0$, spaces $\mathfrak{Q}_{\mathfrak{L}}/\mathfrak{Q}_{\mathfrak{L}}-l_{\mathfrak{Q}_{\mathfrak{L}}}$ and define, by this way, itself - as its own status. It is the **Klein bottle** building from the **original's** inside.

The original's <u>outer surface</u> defines its <u>inner surface</u>, which is now the model of the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ and its <u>outer surface</u> is the model of the $\mathfrak{Q}_{\mathfrak{L}} - l_{\mathfrak{Q}_{\mathfrak{L}}}$.

Within the inner surface we want to prove its internality by reaching its outer surface with an <u>inner? curve</u>.

Within the Klein bottle, constructible only by the outer manipulation with the original one, <u>one curve</u> is possible but, it is <u>crossing</u>, <u>contradictorily against the original bottle</u>, its inner and outer space simultaneously.⁶

Only we, as the outer constructers of the original bottle know its all properties.

The adiabatic trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ does not conatin itself as the object of its own

- it does not know its own properties -

and it itself, by its means, does not reveal them.

Only we, as the outer constructers of the $\mathfrak{Q}_{\mathfrak{L}}/\mathfrak{L}//\mathcal{P}$ know their adiabaticity//consistency.

 $^{^{6}}$ The original bottle should be the autoconstructive/autoreferential. The bottle should construct itself by stepping out from itself and form itself from its material as the two surfaces again and, by not with their own means.

3. Information Transfer Channel

 $\mathbf{X} \stackrel{\text{Def}}{=} [\mathbf{A}, \ \mathbf{p}_{\mathbf{X}}(\cdot)] \text{ - the } transmitter \text{ of } input \text{ messages} \\ \mathbf{x} \in \mathbf{A}^+$

 $\mathbf{Y} \stackrel{\text{Def}}{=} [\mathbf{B}, \ \mathbf{p}_{\mathbf{Y}}(\cdot)]$ - the *receiver* of *output* messages $\mathbf{y} \in \mathbf{B}^+, \mathbf{p}_{\mathbf{Y}}(\cdot)$ ε - the *maximal probability* of $\mathbf{y} = \mathbf{b}$ errorneous for $\mathbf{x} = \mathbf{a}$, $\mathbf{p}_{\mathbf{X}}(\cdot), \ \mathbf{p}_{\mathbf{Y}}(\cdot)$ - the *probability distribution* on \mathbf{A} and \mathbf{B} , $\mathbf{A} = \mathbf{B} = \mathbf{T}$

 $\mathbf{H}(\mathbf{X}), \ \mathbf{H}(\mathbf{Y})$ - the input/output information entropies⁸

$$\begin{aligned} \mathbf{H}(\mathbf{X}) &\stackrel{\text{Def}}{=} -\sum_{\mathbf{A}} \mathbf{p}_{\mathbf{X}}(\cdot) \ln \mathbf{p}_{\mathbf{X}}(\cdot) \\ \mathbf{H}(\mathbf{Y}) &\stackrel{\text{Def}}{=} -\sum_{B} p_{Y}(\cdot) \ln p_{Y}(\cdot) \end{aligned}$$

$$i(\cdot) = -\ln(\cdot), \quad i(\cdot|\cdot) = -\ln(\cdot|\cdot)$$

⁷A, B - a finite *alphabets* of elements x of X and y of Y.

⁸Shannon entropies - average amounts of information in any $\mathbf{x} \in \mathbf{A}$ and $\mathbf{y} \in \mathbf{B}$.

 $\mathbf{H}(\mathbf{X}|\mathbf{Y}), \ H(Y|X)$ - the loss/noise entropy

$$\begin{split} \mathbf{H}(\mathbf{X}|\mathbf{Y}) &\stackrel{\text{Def}}{=} -\sum_{\mathbf{A}} \sum_{\mathbf{B}} \mathbf{p}_{\mathbf{X},\mathbf{Y}}(\cdot,\cdot) \, \ln \mathbf{p}_{\mathbf{X}|\mathbf{Y}}\left(\cdot|\cdot\right) \\ H(Y|X) &\stackrel{\text{Def}}{=} -\sum_{A} \sum_{B} p_{X,Y}(\cdot,\cdot) \ln p_{Y|X}(\cdot|\cdot) \end{split}$$

For the *transinformation* T(X; Y), $T(Y; X)^9$

$$\begin{aligned} \mathbf{T}(\mathbf{X};\mathbf{Y}) &\stackrel{\text{Def}}{=} & \mathbf{H}(\mathbf{X}) - \mathbf{H}(\mathbf{X}|\mathbf{Y}) \\ T(Y;X) &\stackrel{\text{Def}}{=} & H(Y) - H(Y|X) \end{aligned}$$

the **channel equation** is valid

$$\mathbf{H}(\mathbf{X}) - \mathbf{H}(\mathbf{X}|\mathbf{Y}) = H(Y) - H(Y|X)$$

 $(\mathbf{X},~\mathcal{K},~\mathbf{Y})$ - Shannon Transfer Chain

⁹Also it is valid for the information i with the probability $\mathbf{p}_{\cdot}(\cdot)$, $\mathbf{i}_{\mathbf{X}} + \mathbf{i}_{\mathbf{Y}|\mathbf{X}} = \mathbf{i}_{\mathbf{Y}} + \mathbf{i}_{\mathbf{X}|\mathbf{Y}}$, $\mathbf{i}_{\cdot} = -\ln \mathbf{p}_{\cdot}(\cdot)$.

4. Carnot Machine

 l_0 - l_1 : *izothermal exp.* <u>transfers</u> the heat $\Delta \mathbf{Q}_{\mathbf{W}}$ from \mathcal{A} to \mathcal{L} , the work $\Delta \mathbf{A}_{0,1} = \Delta \mathbf{Q}_{\mathbf{W}}$ is given at $\mathbf{T}_{\mathbf{W}}$

 l_1 - l_2 : *adiabatic exp.* <u>cools</u> \mathcal{L} from $\mathbf{T}_{\mathbf{W}}$ to \mathbf{T}_0 , the work $\Delta \mathbf{A}_{1,2} = -\Delta \mathbf{U}$ is **given** from the internal energy \mathbf{U} of \mathcal{L}

 l_2 - l_3 : *izothermal comp.* <u>transfers</u> the heat $\Delta Q_0 < \Delta Q_W^{10}$ from \mathcal{L} to \mathcal{B} at T_0 , consumes the work $-\Delta A_{2,3} < \Delta A_{0,1}$

 $\begin{array}{ll} \textit{l_{3}-l_{0}: adiabatic comp. } \underline{\text{heats}} \ \mathcal{L} \ \text{from } \mathbf{T_{0}} \ \text{to } \mathbf{T_{W}}, \ \Delta \mathbf{U} > \mathbf{0}, \\ \text{and consumes the work } -\Delta \mathbf{A_{3,4}} = \Delta \mathbf{A_{1,2}} \end{array}$

¹⁰In the reversible Carnot Cycle is $\Delta Q_{0x} = 0$, no production of (positive) noise heat, $\Delta Q_{0x} > 0$, arises.

The resulting output work for a reversible Carnot Cycle \mathcal{O} is

$$\Delta \mathbf{A} = \Delta \mathbf{Q}_{\mathbf{W}} - |\Delta \mathbf{Q}_{\mathbf{0}}|$$

$$\Delta \mathbf{A} = \Delta A_{l_0 - l_1} + \Delta A_{l_1 - l_2} + \Delta A_{l_2 - l_3} + \Delta A_{l_3 - l_0}$$

Kelvin's form of the II. P. T. for a reversible case is

$$\sum_{\mathbf{i} \in [\mathbf{W}, \mathbf{0}]} \frac{\Delta \mathbf{Q}_{\mathbf{i}}}{\mathbf{T}_{\mathbf{i}}} \stackrel{\triangle}{=} \oint_{\mathcal{O}} \frac{\delta \mathbf{Q}(\boldsymbol{\Theta})}{\boldsymbol{\Theta}} = \mathbf{0}$$

Thomson-Planck's formulation of the II. P. T. says:

It is impossible to construct a heat cycle transforming all heat delivered to the medium \mathcal{L} (going through this cycle) into the equivalent amount of the mechanical work ΔA .

The *I*. **P.T.** is valid \Leftrightarrow the *tansformation efficiency* η_{max} :

$$\eta_{\max} \stackrel{\text{Def}}{=} \frac{\Delta A}{\Delta Q_{W}} = \frac{\Delta Q_{W} - |\Delta Q_{0}|}{\Delta Q_{W}} = \frac{T_{W} - T_{0}}{T_{W}} < 1$$

$$X \xrightarrow{\mathcal{A}}_{x = \Delta Q_{W}} \xrightarrow{\mathcal{Q}}_{\eta \cong H(X/Y)} \xrightarrow{y = \Delta A} Y$$

$$\eta \cong H(X/Y) \xrightarrow{\Psi}_{\eta \cong T_{0}} CM$$

5. Carnot Cycle and Noiseless Information Transfer

 $Recording/transmitting/computing an information \Delta I$ at the temperature Θ requires the energy ΔW

$$\Delta \mathbf{W} \ge \mathbf{k} \cdot \boldsymbol{\Theta} \cdot \Delta \mathbf{I}, \quad \text{now} \quad \Delta W \stackrel{\Delta}{=} \Delta \mathbf{Q}_{\mathbf{W}}$$

The changes of the entropies of the medium \mathcal{L} with \mathcal{O} are now considered informationally on a \mathcal{K}

$$\begin{aligned} \mathbf{H}(\mathbf{X}) &\stackrel{\text{Def}}{=} \frac{\Delta \mathbf{Q}_{\mathbf{W}}}{\mathbf{k} \mathbf{T}_{\mathbf{W}}}, & \mathbf{H}(\mathbf{Y}|\mathbf{X}) \stackrel{\text{Def}}{=} \mathbf{0} \\ \mathbf{H}(\mathbf{Y}) &\stackrel{\text{Def}}{=} \frac{\Delta \mathbf{A}}{\mathbf{k} \mathbf{T}_{\mathbf{W}}} = \frac{\Delta \mathbf{Q}_{\mathbf{W}} - \Delta \mathbf{Q}_{\mathbf{0}}}{\mathbf{k} \mathbf{T}_{\mathbf{W}}} \\ &= \frac{\Delta \mathbf{Q}_{\mathbf{W}}}{\mathbf{k} \mathbf{T}_{\mathbf{W}}} \cdot \eta_{\text{max}} = \mathbf{H}(\mathbf{X}) \cdot \eta_{\text{max}} \stackrel{\triangle}{=} \Delta \mathbf{I} \end{aligned}$$
¹¹

With our thermodynamic substitutions we gain:

 $^{{}^{11}}H(X) \ge H(Y) = T(X;Y) = \Delta I \ge 0$; the *information* form of the II. P.T. is implied for the reversible case; Brillouin, Landauer, Gershenfeld, Bennet.

$$\frac{\Delta \mathbf{Q}_{\mathbf{W}}}{\mathbf{k}\mathbf{T}_{\mathbf{W}}} \cdot \eta_{\max} - \mathbf{0} \ = \ \frac{\Delta \mathbf{Q}_{\mathbf{W}}}{\mathbf{k}\mathbf{T}_{\mathbf{W}}} - \mathbf{H}(\mathbf{X}|\mathbf{Y})$$

$$\mathbf{H}(\mathbf{X}|\mathbf{Y}) = \frac{\mathbf{\Delta}\mathbf{Q}_{\mathbf{W}}}{\mathbf{k}\mathbf{T}_{\mathbf{W}}} \cdot (\mathbf{1} - \eta_{\max}) = \frac{\mathbf{\Delta}\mathbf{Q}_{\mathbf{0}}}{\mathbf{k}\mathbf{T}_{\mathbf{W}}}$$

The change $\Delta S_{\mathcal{AB}}$ within the change $\Delta S_{\mathcal{C}}$

of the global CM's heat entropy $\mathbf{S}_{\mathcal{C}}$

within its subsystem \mathcal{AB} is

$$\mathbf{\Delta S}_{\mathcal{AB}} = -rac{\mathbf{\Delta Q}_0}{\mathbf{T_W}} + rac{\mathbf{\Delta Q}_0}{\mathbf{T_0}} = rac{\mathbf{\Delta Q}_0}{\mathbf{T_0}} \cdot \eta_{\max} = rac{\mathbf{\Delta Q}_W}{\mathbf{T_W}} \cdot \eta_{\max}$$

The change $\Delta S_{\mathcal{L}}$ of the heat entropy $S_{\mathcal{L}}$ within

the change $\Delta S_{\mathcal{C}}$ of the whole heat entropy $S_{\mathcal{C}}$ of the CM^{12} is

$$\Delta \mathbf{S}_{\mathcal{L}} = \oint_{\mathcal{O}} rac{\delta \mathbf{Q}}{\mathbf{T}} = rac{\Delta \mathbf{Q}_{\mathbf{W}}}{\mathbf{T}_{\mathbf{W}}} - rac{\Delta \mathbf{Q}_{\mathbf{0}}}{\mathbf{T}_{\mathbf{0}}} = \mathbf{0}$$

The *resultant* change $\Delta S_{\mathcal{C}}$ of *CM* and the output ΔI is

$$\Delta \mathbf{S}_{\mathcal{C}} = \Delta \mathbf{S}_{\mathcal{L}} + \Delta \mathbf{S}_{\mathcal{AB}} = \frac{\Delta \mathbf{Q}_{\mathbf{W}}}{\mathbf{T}_{\mathbf{W}}} \cdot \eta_{\max} = \mathbf{k} \cdot \Delta \mathbf{I} = \mathbf{k} \cdot \mathbf{H}(\mathbf{Y})$$

The Brillouin's *extended* form of the *II*. P.T. is valid¹³

$$\mathrm{d}(\mathbf{S}_{\mathcal{C}} - \mathbf{k} {\boldsymbol{\cdot}} \mathbf{I}) \geq \mathbf{0}$$

$$\Delta S_{\mathcal{C}} - k \cdot T(X;Y) = k \cdot H(X) \cdot (\eta_{max} - \eta_{max})$$

$$\Delta S_{\mathcal{C}} - k \cdot \Delta I = 0 \qquad \Delta (S_{\mathcal{C}} - k \cdot I) = 0$$

¹²Or of the whole system in which the CM is running.

¹³The *information* member I does not exist in the traditional (differential) formulation of this theorem; it is $dS \ge 0$ only.

- \star The *reversible* Carnot Cycle \mathcal{O}
- **u** the **medium** \mathcal{L} going through the \mathcal{O}
- the whole *CM*

work as *thermodynamic* models of

- \star the information transfer process \mathcal{T} without noise,¹⁴
- the channel \mathcal{K} with its transfer process \mathcal{T}
- the Shannon Transfer Chain $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$

 \cong

6. Turing Machine

Turing Machine TM - driven by the program $\overrightarrow{\eta}$ $\overrightarrow{\eta} = (\eta_p)_{p=1}^{p \in \mathbb{N}} = [(\mathbf{s_i}, \mathbf{x_k}, \mathbf{s_j}, \mathbf{y_l}, \mathbf{D})_p]_{p=1}^{\mathbf{p} \in \mathbb{N}}, |\overrightarrow{\eta}| \in \mathbb{N}$ $\eta_{[\cdot]} = (\mathbf{s_{i[\cdot]}}, \mathbf{x_{k[\cdot]}}, \mathbf{s_{j\cdot[+1]}}, \mathbf{y_{l[\cdot]}}, \mathbf{D})$

- $\mathbf{s_i}$ the *status* of the $\mathbf{CU}_{\scriptscriptstyle TM}$ in the actual $\mathbf{step} \ \mathbf{p} \in \mathbb{N}$
- $\mathbf{x_k}$ the *input symbol* on the *input-output tape* in the **p**
- $\mathbf{y}_{\mathbf{l}}$ the *output symbol* overwriting $\mathbf{x}_{\mathbf{k}}$ in the step \mathbf{p}
- $\mathbf{s}_{\mathbf{j}}$ the *defined* \mathbf{CU}_{TM} 's status for the step $\mathbf{p} + \mathbf{1}$
- **D** the \mathbf{CU}_{TM} read-write head moving Left/Rightafter \mathbf{y}_{l} has been written instead of \mathbf{x}_{k} in the step p $[\mathbf{y}_{l}, \ \mathbf{x}_{k} \in \mathbf{T} = \mathbf{A} = \mathbf{B}]$

 $(\overrightarrow{\sigma}, \mathbf{s_i}, \overrightarrow{\varrho})/(\mathbf{x_k}, \mathbf{s_i}, \mathbf{y_l})$ - the $TM's/CU_{TM}'s$ configurations

With the I/O transformations $\mathbf{x}_{\mathbf{k}} \longrightarrow \mathbf{y}_{\mathbf{l}}$, the \mathbf{CU}_{TM} 's states' transitions are performed,

$$\mathbf{s_{i_p}} \overset{(\mathbf{x_{kp}}, \ \mathbf{y_{lp}}, \ \mathbf{D_p})}{\longrightarrow} \mathbf{s_{j_{p[+1]}}}$$

defining the regular grammar and the language $L_{CU_{TM}}$

$$\begin{split} \mathbf{s_{i_p}} &\longrightarrow (\mathbf{x_{k_p}}, \mathbf{y_{l_p}}, \mathbf{D_p}) \mathbf{s_{j_{p[+1]}}} \\ \mathbf{L_{CU}}_{\mathit{TM}} &= \{(\mathbf{x_{k_p}}, \mathbf{y_{l_p}}, \mathbf{D_p})\}_{p=1}^{p=last} \end{split}$$

and the regular language L_{TM} of the configurations which the TM has gone through so far¹⁵

$$\begin{split} \mathbf{S}_{\mathbf{i}_{\mathbf{p}}} &\longrightarrow (\overrightarrow{\sigma}_{\mathbf{p}}, \mathbf{s}_{\mathbf{i}\mathbf{p}}, \overrightarrow{\rho}_{\mathbf{p}}) \mathbf{S}_{\mathbf{j}_{\mathbf{p}[+1]}} \\ \mathbf{L}_{TM} &= \{(\overrightarrow{\sigma}_{\mathbf{p}}, \mathbf{s}_{\mathbf{i}\mathbf{p}}, \overrightarrow{\rho}_{\mathbf{p}})\}_{\mathbf{p}=1}^{\mathbf{p}=\mathbf{p}_{\text{last}}} \end{split}$$

¹⁵Terminal symbols $\mathbf{T} = \{I, B\}$ • the instruction (s_i, x_k, s_j, y_l, D) • the configuration $(\overrightarrow{\sigma}, s_{[\cdot]}, \overrightarrow{\rho})$ • the configuration type $(\varepsilon [\sigma, s_{[\cdot]}, \rho] \varepsilon)$ • $\mathbf{X} = (\overrightarrow{\sigma}, s_{[\cdot]}, \overrightarrow{\rho}) \stackrel{\triangle}{=} (\mathbf{B}\sigma, s_{[\cdot]}, \rho\mathbf{B})$ the general configuration type, e.g. $\mathbf{B}\overrightarrow{\mathbf{IB}}s_{[\cdot]}\overrightarrow{\mathbf{BIB}}$. Also $\mathbf{S}_{\mathbf{i_p}} \longrightarrow (\mathbf{s}_{\mathbf{i_p}}, \mathbf{x}_{\mathbf{k_p}}, \mathbf{s}_{\mathbf{j_{p[+1]}}}, \mathbf{y}_{\mathbf{l_p}}, \mathbf{D}_{\mathbf{p}})\mathbf{S}_{\mathbf{j_{p[+1]}}}, \mathbf{L}' TM = \{(\mathbf{s}_{\mathbf{i_p}}, \mathbf{x}_{\mathbf{k_p}}, \mathbf{s}_{\mathbf{j_{p[+1]}}}, \mathbf{y}_{\mathbf{l_p}}, \mathbf{D}_{[\cdot]})\}_{\mathbf{p=1}}^{\mathbf{p=Plast}}$, instructions have been performed yet, [14, 19, 18].

7. Inference as Informatiom Transfer

The right TM's program $\overrightarrow{\eta}^{16}$ generates the resultative TM's configuration sequence and

similar is valid for the information transfer acts and the (X, \mathcal{K} , Y)'s configurations.

Now, the inferred *CLAIM* \mathbf{a}_i is the last member of the input *FORMULAE* chain $\overrightarrow{\mathbf{x}}^{17}$

and the $\mathbf{a_i}$'s $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ inference by *Modus Ponens* is realized as the y's information transfer \mathcal{T} in \mathcal{K} .

$$\begin{bmatrix} \overrightarrow{\mathbf{x}} | \overrightarrow{\mathbf{y}} \end{bmatrix} = \begin{bmatrix} \mathbf{a_0}, \ \mathbf{a_1}, \ \mathbf{a_2}, \ \dots \ \mathbf{a_{i-1}} \end{bmatrix} \sqsubset \begin{bmatrix} \overrightarrow{\mathbf{x}} \end{bmatrix}$$
$$\begin{bmatrix} \overrightarrow{\mathbf{x}} \end{bmatrix} = \begin{bmatrix} \mathbf{a_0}, \ \mathbf{a_1}, \ \mathbf{a_2}, \ \dots \ \mathbf{a_{i-1}}; \ \mathbf{a_i} \end{bmatrix}$$
$$\begin{bmatrix} \mathbf{y} \end{bmatrix} = \mathbf{a_i} \sqsubset \begin{bmatrix} \overrightarrow{\mathbf{x}} \end{bmatrix}$$

Entropies for this \mathbf{a}_i 's $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ inference from $\overrightarrow{\mathbf{x}}$ realized by the $\mathbf{y} = \mathbf{a}_i$ transfer from $\overrightarrow{\mathbf{x}}$ through a \mathcal{K} in its status $[\overrightarrow{\mathbf{x}}|\overrightarrow{\mathbf{y}}]$ are:

$$\begin{split} \mathbf{H}(\mathbf{X}|\mathbf{Y}) &\cong \mathbf{H}(\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}) = \mathbf{H}(\overrightarrow{\mathbf{x}|\mathbf{y}}), \ \mathbf{H}(\mathbf{Y}) = \mathbf{H}(\mathbf{y}) \\ \mathbf{H}(\mathbf{X}) &\cong \mathbf{H}(\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}; \mathbf{a}_i) = \mathbf{H}(\overrightarrow{\mathbf{x}}) \\ \mathbf{H}(\mathbf{Y}) &\cong \mathbf{H}(\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}; \mathbf{a}_i) - \mathbf{H}(\mathbf{a}_0, \mathbf{a}_1, \dots, \mathbf{a}_{i-1}) \end{split}$$

¹⁶In our thermodynamic analogy following the Caratheodory II. P.T.

 $^{^{17}}$ With the Gödel number $\mathbf{x},$

8. Carnot Cycle, Automata and Information Transfer Any CM, now with \mathcal{O} , is describable as an automaton¹⁸

with the resulting regular grammar and language L,

$$\begin{cases} \boldsymbol{\theta}_{l_0}^{i} \rightarrow (\boldsymbol{\Delta}\mathbf{A}^{i})\boldsymbol{\theta}_{l_0}^{i} \}, \quad \mathbf{L} = \{\boldsymbol{\Delta}\mathbf{A}^{i}\} & \text{and, as} \end{cases}$$
for \mathcal{K}

$$\begin{aligned} \mathbf{H}^{i}(\mathbf{X}) &= \frac{\boldsymbol{\Delta}\mathbf{A}_{l_0-l_1}^{i}}{\mathbf{k}\mathbf{T}_{\mathbf{W}}^{i}}, \quad \mathbf{H}^{i}(\mathbf{X}|\mathbf{Y}) = \frac{|\boldsymbol{\Delta}\mathbf{A}_{l_2-l_3}^{i}|}{\mathbf{k}\mathbf{T}_{\mathbf{W}}^{i}} \\ \mathbf{H}^{i}(\mathbf{Y}) &= H^{i}(X) - H^{i}(X|Y) = \frac{\boldsymbol{\Delta}\mathbf{A}^{i}}{\mathbf{k}\mathbf{T}_{\mathbf{W}}^{i}} > \mathbf{0} \\ \\ \mathbf{\Delta}\mathbf{A}^{i} &= \boldsymbol{\Delta}A_{l_0-l_1}^{i} + \boldsymbol{\Delta}A_{l_1-l_2}^{i} + \boldsymbol{\Delta}A_{l_2-l_3}^{i} + \boldsymbol{\Delta}A_{l_3-l_0}^{i} \end{aligned}$$

¹⁸Now the Moore's but not only. Information transmission (not cyclical or cyclical) or the heat energy transformation (not cyclical or cyclical) is also describable by the terminology of *regular grammars* and *finite automata*.

 $\begin{array}{l} \mathbf{CU}_{TM} \text{'s step } \mathbf{p} \cong \mathcal{K} \text{'s transfer act } \mathbf{i} \cong \mathcal{L} \text{'s cycle } \mathcal{O} \text{ run } \mathbf{i} \\ \mathcal{T}_{\mathcal{P}\mathcal{A}} \text{ Inference } \cong \text{ Message Transfer } \cong \text{ Heat Transformation} \\ \text{states:} \quad \mathbf{CU}_{TM} \cong \mathcal{K} \cong \mathcal{L} \\ \text{config:} \quad (\overrightarrow{\sigma}, \mathbf{s}_{\mathbf{i}}, \overrightarrow{\rho}) \cong [(\mathbf{X})^{\mathbf{i}}, \mathbf{X}^{\mathbf{i}} | \mathbf{Y}^{\mathbf{i}}, (\mathbf{X})^{\mathbf{i+1}}] \cong [\sum \mathbf{Q}_{\mathbf{W}}^{\mathbf{i}}, (\mathbf{p}^{\mathbf{i}}, \mathbf{V}^{\mathbf{i}}, \mathbf{T}^{\mathbf{i}})_{\mathcal{L}}, \mathbf{Q}_{\mathbf{W}} - \sum \mathbf{Q}_{\mathbf{W}}^{\mathbf{i}}] \end{array}$

$$TM \cong (\mathbf{X}, \mathcal{K}, \mathbf{Y}) \cong CM$$

 \cong

 \simeq

The TM's, (X, \mathcal{K}, Y) 's, CM's runs are considered in isolated systems for X, Y and X|Y energies.

9. Resultativity, Adiabaticity, Consistency

The states' $\theta_{[\cdot]}^{\mathfrak{L}}$ changes in the adiabatic system $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}$, along the trajectories $l_{\mathfrak{Q}_{\mathfrak{L}}}$ are expressible regularly:

The thermodynamic modelfor the consistent $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ inference- from its axioms/formulas having been inferred so far -is created by the CM's activity, which

is modeling both the TM and the $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$

and which runs in the adiabatic system $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}$.

The TM's, $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$'s, configurations

are then modeled by the states $\theta_i^{\mathfrak{L}} \in \mathfrak{Q}_{\mathfrak{L}}$ of the adiabatic $\mathfrak{L}/\mathfrak{Q}_{\mathfrak{L}}$ with this modeling *CM* inside the configuration of which, in fact, are creating these states.

II. P. T.

The \mathfrak{L} 's initial imbalance starts the $\theta_{[\cdot]}^{\mathfrak{L}}$ s states' sequence on a trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ (irreversible) and is given by the modeled

temperature difference $T_W - T_0 > 0$ on CM, existence of the input message on \mathcal{K} , input chain's existence on the TM's input-output tape

These adiabatic trajectories $\mathfrak{l}_{\mathfrak{Q}_{\mathfrak{L}}}$

now represent the norm of the consistency (and resultativity) of the $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ -inference/computing process expressible also in terms of the information transfer/heat energy transformation.

10. Autoreference, Information Transfer, Thermodynamics

On the *interrupted* channel \mathcal{K} is valid

The input H(X) is now

the <u>measure</u> of the \mathcal{K} 's internal state - $\underline{\mathbf{H}}(\mathbf{X}|\mathbf{Y})$ the output $\mathbf{H}(\mathbf{Y})$ is without any relation to $\overline{\mathbf{H}}(\mathbf{X})$. With insisting (?!?) on the information transfer through this interrupted channel \mathcal{K} , then, contradictorily, we want build the $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$

with a reversible direct Carnot Machine CM, where

$$\Delta \mathbf{Q}_{\mathbf{W}} = \Delta \mathbf{Q}_{\mathbf{0}} \stackrel{ riangle}{=} \Delta \mathbf{Q} \quad \& \ \mathbf{T}_{\mathbf{W}} > \mathbf{T}_{\mathbf{0}}, \ \eta_{\max} = rac{\mathbf{T}_{\mathbf{W}} - \mathbf{T}_{\mathbf{0}}}{\mathbf{T}_{\mathbf{W}}} > \mathbf{0}$$

In fact we 'measure'
$$\Delta \mathbf{Q}$$
 against $\Delta \mathbf{Q}$, $\mathbf{T}_{\mathbf{W}} = \mathbf{T}_{\mathbf{0}}$,¹⁹
 $\mathbf{H}(\mathbf{X}) = \mathbf{H}(\mathbf{X}|\mathbf{Y}) = \frac{\Delta Q}{\mathbf{k}T_W}$, $\underline{\mathbf{H}(\mathbf{Y}) = \mathbf{0}} [= H(Y|X)]$

¹⁹The measuring with the zero 'distance' between the measuring and measured - the <u>Gibbs Paradox</u>.

Our <u>'wish'</u> to have the information transfer H(Y) > 0through such interrupted channel \mathcal{K} formulates the contradiction/paradox²⁰

- the II. P.T.'s violation -

$$\begin{split} \Delta \mathbf{S}_{\mathcal{L}} &= \oint_{\mathcal{O}} \frac{\delta \mathbf{Q}}{\mathbf{T}} = \frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{W}}} - \frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{0}}} = -\frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{0}}} \cdot \eta_{\max} < \mathbf{0} \quad (!) \\ \Delta \mathbf{S}_{\mathcal{A}\mathcal{B}} &= \frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{W}}} \cdot \eta_{\max} \\ \Delta \mathbf{S}_{\mathcal{C}} &= \Delta \mathbf{S}_{\mathcal{L}} + \Delta \mathbf{S}_{\mathcal{A}\mathcal{B}} < \mathbf{0} \quad (!) \quad [\text{in fact 0 is everywhere}] \end{split}$$

Our 'measuring' is now with the 0 'distance' between the measuring object \mathcal{K}/\mathcal{L} and the measured object \mathbf{X}/\mathcal{A} and we see that the equality $\mathbf{H}(\mathbf{X}) = \mathbf{H}(\mathbf{X}|\mathbf{Y})$ says that

any \mathcal{K} <u>can't</u> transfer its own states²¹ or observe/copy/measure itself.

²⁰It is against the Caratheodory theorems. The existence of the <u>Perpetuum Mobile</u> II. and I. is required. It also requires the time arrow change $\frac{S_{\mathcal{C}}}{t} > 0$. 'Solving' this 'problem' represents the belief in the Maxwell demon's functionality. The need of distinguishing between the measured and the measuring - to avoid the HALTING PROBLEM - leads to the formulation of the Gödel theorems and their physical form as the Caratheodory theorems and vice versa.

²¹Used as input messages. There's a need for a 'step-aside' outside the measured to gain a not zero and positive result T(X;Y) = H(X) - H(X|Y) = H(Y) > 0

The last *CLAIM* \mathbf{a}^* in the input $\mathbf{\vec{x}} = a_0, a_1, \ldots, a_{i-1}; a^*$ is not inferrable and, as such, interrupts the channel \mathcal{K} ,

which violates/contradicts - $\Delta S_{\mathcal{C}} < 0$ - the *II*. P.T. while we have

²²The same H(Y) = H(Y|X), H(X|Y) and the whole configuration (type) are repeated infinitely.

Now let **x** be the **SEQUENCE OF FORMULAE** valid ("1") in the theory $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ and y is a *CLAIM*²³ with a general syntax of $\mathcal{P}^{\bigstar} - \mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}, \ \mathcal{P}^{\bigstar} \supset \mathcal{P} \supset \mathcal{T}_{\mathcal{P}\mathcal{A}}.^{24}$ We define the valid ("1") relation Q(x, Y) saying: " $\mathbf{x} \in \mathbb{X}$ is not in the $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ -INFERENCE relation to the values y of Y", $[\mathbf{y}|\mathbf{Y} \equiv \mathcal{T}_{\mathcal{P}\mathcal{A}}$ -property] $\mathbf{Y}: \mathbb{Y} \cong \{\{\mathcal{Q}_{\mathfrak{L}^*}\}^{\bigstar} - \{\mathbf{l}_{\mathcal{Q}_{\mathfrak{L}^*}}\}\} \ni \mathbf{y}, \quad \mathbf{X}: \mathbb{X} \stackrel{\triangle}{=} \mathcal{T}_{\mathcal{P}\mathcal{A}} \cong \{\mathbf{l}_{\mathcal{Q}_{\mathfrak{C}}}\} \ni \mathbf{x}$ $\mathbf{Q}(\mathbf{x}, \mathbf{Y}) = \mathbf{1}^n$, from the construction and, supposedly, $\mathbf{Q}(\mathbf{x}, \mathbf{y}) = \mathbf{1}^{"} \equiv \mathbf{Proof}_{\mathcal{P}}[\mathbf{Q}(\mathbf{x}, \mathbf{y})]$ for \mathbf{x} and any $\mathbf{y} \in \mathbf{Y}$ But, when we set $\underline{\mathbf{y}} = \mathbf{Q}(\mathbf{x}, \mathbf{Y}) = \mathbf{y}(\mathbf{Y}) \ [\cong \mathbf{y} | \mathbf{Y} \equiv \mathcal{T}_{\mathcal{P}\mathcal{A}}\text{-property}]$ $\mathbf{Q}(\mathbf{x}, \mathbf{y}) = \mathbf{y}[\mathbf{Q}(\mathbf{x}, \mathbf{Y})] = \mathbf{y}(\mathbf{y}) = \mathbf{Q}[\mathbf{x}, \mathbf{Q}(\mathbf{x}, \mathbf{Y})]$ the $\mathbf{Y} := \mathbf{y}$ in $\mathbf{y}(\mathbf{Y})$ generates the *autoreference*, $\mathbf{Q}(\mathbf{x}, \mathbf{y}); \quad \mathbf{Q}[\mathbf{x}, [\mathbf{Q}(\mathbf{x}, \mathbf{Y})]], \quad \mathbf{Q}[\mathbf{x}, [\mathbf{Q}(\mathbf{x}, [\mathbf{Q}(\mathbf{x}, \mathbf{Y})])]], \ldots$

neither constructible in \mathcal{P} and nor provable by $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ but its *validity follows* from the *II*. P.T. *validity*.²⁵

$$\overline{\operatorname{Proof}_{\mathcal{P}}}[\mathbf{Q}(\mathbf{x},\mathbf{y})] = "\mathbf{1}"$$

$$II.\mathbf{P.T.} \cong [\operatorname{Proof}_{\mathcal{P}}[\mathbf{Q}(\mathbf{x},\mathbf{y})] = "\mathbf{0}"] = "\mathbf{1}"$$

$$[[\operatorname{Proof}_{\mathfrak{L}}([d]\mathbf{Q}_{\operatorname{Ext},\mathfrak{l}_{\mathfrak{Q}_{\mathfrak{L}}}}=\mathbf{0}) = "\mathbf{0}"] = "\mathbf{1}"] \equiv II. \mathbf{P.T.}$$

²³The x and y are the Gödel numbers.

²⁴ $\mathcal{P}^{\bigstar} \cong {\{\mathfrak{Q}_{\mathfrak{L}^{\ast}}\}}^{\bigstar}, \mathcal{P} \cong {\{\mathfrak{Q}_{\mathfrak{L}}\}}, \mathcal{T}_{\mathcal{P}\mathcal{A}} \cong {\{l_{\mathfrak{Q}_{\mathfrak{L}}}\}}, x \cong l_{\mathfrak{Q}_{\mathfrak{L}}}.$

²⁵And within the PM - Principia Mathematica: B. Russel, L. Whitehead.

Now we set

 $\underline{\mathbf{p}} = [\forall_{\mathbf{x} \in \mathbb{X}} | \mathbf{Q}(\mathbf{x}, \mathbf{Y})] \stackrel{\triangle}{=} \mathbf{Q}(\mathbb{X}, \mathbf{Y}) = \mathbf{p}(\mathbf{Y})$

"no $\mathbf{x} \in \mathbb{X}$ is in the $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ -*INFERENCE* relation to the variable \mathbf{Y} " - to its space $\mathbb{Y}\cong\{\{\mathfrak{Q}_{\mathfrak{L}^*}\}^{\bigstar} - \{\mathfrak{l}_{\mathfrak{Q}_{\mathfrak{L}}}\}\}$

With the substitution $\mathbf{Y} := \mathbf{p}$ the resulting $\mathbf{Q}(\mathbf{X}, \mathbf{p}) = \mathbf{p}(\mathbf{p}) \quad [\cong \mathbf{p} | \mathbf{Y} \equiv \mathcal{T}_{\mathcal{P}\mathcal{A}}\text{-property}]$ contains the *autoreference*

- the totality $\mathbb{X}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ 'defines' (?!?) its property Y -

$$\begin{split} [\forall_{\mathbf{x}\in\mathbb{X}}|[\mathbf{Q}[\mathbf{x},[\forall_{\mathbf{x}\in\mathbb{X}}|\mathbf{Q}(\mathbf{x},\mathbf{Y})]]]]_{\mathbf{Y}:=\mathbf{p}} &= \mathbf{Q}[\mathbb{X},[\mathbf{Q}(\mathbb{X},\mathbf{Y})]]_{\mathbf{Y}:=\mathbf{p}} \\ \underline{\mathbf{Q}(\mathbb{X},\mathbf{p})}; \quad \mathbf{Q}[\mathbb{X},[\mathbf{Q}(\mathbb{X},\mathbf{Y})]], \ \mathbf{Q}[\mathbb{X},[\mathbf{Q}(\mathbb{X},[\mathbf{Q}(\mathbb{X},\mathbf{Y})])]], \ \dots \end{split}$$

As before, by the *II*. P.T.'s validity, we know:

 $\overline{\operatorname{Proof}_{\mathcal{P}}}[\mathbf{Q}(\mathbb{X},\mathbf{p})] = "\mathbf{1}"$ $II.\mathbf{P.T.} \cong [\operatorname{Proof}_{\mathcal{P}}[\mathbf{Q}(\mathbb{X},\mathbf{p})] = "\mathbf{0}"] = "\mathbf{1}"$ $[[\operatorname{Proof}_{\mathfrak{L}}([d]\mathbf{Q}_{\operatorname{Ext},\{l_{\mathfrak{Q}_{\mathfrak{L}}}\}}=\mathbf{0}) = "\mathbf{0}"] = "\mathbf{1}"] \equiv II. \mathbf{P.T.}$

$$\begin{split} \mathbf{y}, \mathbf{p}, \mathbf{Q}(\mathbf{x}, \mathbf{y}), \mathbf{Q}(\mathbb{X}, \mathbf{p}) &\in \{\mathcal{P}^{\bigstar} - \mathcal{P}\} \cong \{\{\mathfrak{Q}_{\mathfrak{L}^*}\}^{\bigstar} - \mathfrak{Q}_{\mathfrak{L}}\}, \\ \{\mathbf{l}_{\mathfrak{Q}_{\mathfrak{L}}}\} \cong \mathcal{T}_{\mathcal{P}\mathcal{A}} \stackrel{\Delta}{=} \mathbb{X}, \ \underline{\mathbf{Q}}(\mathcal{T}_{\mathcal{P}\mathcal{A}}, \mathbf{p}) = \mathbf{Q}(\mathbb{X}, \mathbf{p}) \stackrel{\Delta}{=} \mathbf{17 Gen r} \cong \mathbf{Y}, \\ \mathbf{r} \stackrel{\Delta}{=} \mathbf{r}(\mathbf{X}) = \mathbf{Q}(\mathbf{X}, \mathbf{p}), \ \mathbf{17 Gen r} \stackrel{\Delta}{=} \forall_{\mathbf{x} \in \mathbb{X}} | \mathbf{r}(\mathbf{X}), \ \text{card } \mathbf{Y} = \aleph_1 \end{split}$$

The consistent theory $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ is constructed by ourselves, from its outside, it does not contain the axiom of its consistency as its own object/formula/status The attempt to prove the $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ consistency by it itself - imbuilding is property (Y) to itself as its own object defines the autoreference/HALTING PROBLEM, not resultative but, as such, *identifiable*;

The CLAIM Q(X, p)/17Gen r is constructed purely syntactically as for $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$, in $\{\mathcal{P}^{\bigstar} - \mathcal{P}\}$, but is the descriptory CLAIM of the $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ [X] consistent inference in \mathcal{P} .²⁶

²⁶Also the Rao-Cramer inequality from the Mathematical Statistics documents it.

For the channel \mathcal{K} , associated to the inferring TM, is being interrupted infinitely,²⁷ in any transfer act, the TM and the \mathcal{K} realize the Klein bottle run.

We formulate the methodological error for $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ but *identifiable by the II*. *P.T.'s violation*, $\Delta S_{\mathcal{C}} < 0$,

$$\begin{split} \underline{\mathbf{H}(\mathbf{X}) = \mathbf{H}[\mathbf{Q}(\mathbb{X},\mathbf{Y})] = \mathbf{0}, \ \mathbf{H}(\mathbf{X}|\mathbf{Y}) \ \cong \ \mathbf{H}(\mathbb{X}/\mathcal{T}_{\mathcal{PA}}) > \mathbf{0} \\ \\ \mathbf{H}_{\mathcal{C}} \ = \ \mathbf{H}(\mathbf{X}) - \mathbf{H}(\mathbf{X}|\mathbf{Y}) \ = \ \underline{\mathbf{0}} - \mathbf{H}(\mathbb{X}/\mathcal{T}_{\mathcal{PA}}) < \mathbf{0} \\ \\ \\ \\ \\ \mathbf{The another form of the } II. \ P.T. \ is \ formulated: \\ \mathbf{Q}(\mathbb{X},\mathbf{p})/\underline{\mathbf{17Gen r} = "\mathbf{1}"}^{28} \end{split}$$

²⁷It is the reason for the non expressibility of the consistency of the theory $\mathcal{T}_{\mathcal{PA}}$ CLAIM - of the axiom of its consistency expressing its general property - in it itself. The theory $\mathcal{T}_{\mathcal{PA}}$ does not contain this axiom as its own formula.

²⁸The same methodolgical error represent the Epimenides liar and the Richard paradox - the property of a certain totality is not formulable within it as its own object part.

12. Appendix 1 - Gödel Theorems

I. Gödel theorem (corrected semantically by [19] and [23]):²⁹

For every recursive and consistent $CLASS \ OF \ FORMULAE \ \kappa,^{30}$ and <u>outside</u> this set³¹, exists the true ("1") $CLAIM \ r$ $[\mathbf{r} \notin \kappa, \ \mathbf{r} \notin \mathbf{Flg}(\kappa), \ \mathbf{r} \in \mathbf{Y}, \ card \ \mathbf{Y} = \aleph_1]$

with a free VARIABLE v that <u>neither</u> the CLAIM <u>vGen r</u> <u>nor</u> the CLAIM <u>Neg(vGen r)</u> <u>belongs</u> to the set $Flg(\kappa)$

 $[\mathbf{vGen} \ \mathbf{r} \notin \mathbf{Flg}(\kappa)] \& [\mathbf{Neg}(\mathbf{vGen} \ \mathbf{r}) \notin \mathbf{Flg}(\kappa)],$ $\mathbf{r} \stackrel{\triangle}{=} \mathbf{r}(\mathbf{X}) = \mathbf{Q}[\mathbf{X}, \forall_{\mathbf{x} \in \mathbb{X}} | \mathbf{Q}(\mathbf{x}, \mathbf{Y})], \ \mathbf{17Gen} \ \mathbf{r} \stackrel{\triangle}{=} \forall_{\mathbf{x} \in \mathbb{X}} | \mathbf{r}(\mathbf{X})$

CLAIMS <u>vGen r</u> and <u>Neg(vGen r)</u>

are not κ -**PROVABLE**

the CLAIM vGen r is not κ -DECIDABLE.

[They are elements of the formulating/syntactic meta-system κ^{\star} , inconsistent against κ .]

²⁹Gödel-Rosser theorem.

³⁰Recursively axiomatizable and with the given set of the inference rules (Peano/Robinson arithmetics). $\kappa = \mathcal{P}$ is from the **PM** - *Principia Mathematica: B. Russel, L. Whitehead.* 1910, 1912, 1913, 1927. , containing the Peano arithmetics $\mathcal{T}_{\mathcal{PA}}$. On the $\mathcal{T}_{\mathcal{PA}}$ the real and complex number arithmetics is based. The **PM** is the textitformalsyntax-logic-semantic base for the physical teories/hypotheses.

³¹Far from "...[PA-]arithmetic and sentencial/SENTENCIAL" and far from (!) "In"

II. Gödel theorem (corrected semantically by [19] and [23]):³²

If κ is an arbitrary *recursive* and *consistent*

CLASS OF FORMULAE,

then any *CLAIM* $\mathbf{y} \ [\mathbf{y} \in \mathbf{Y}, \text{ card } \mathbf{Y} = \aleph_1]$

saying that *CLASS* κ is consistent

must be constructed <u>outside</u> this set³³

and for this fact, it is not κ -**PROVABLE**³⁴

The <u>consistency</u> of the *CLASS OF FORMULAE* κ is **tested** by the *relation* $Wid(\kappa)^{35}$

 $Wid(\kappa) \sim (Ex)[CLAIM(y) \& Proof_{\kappa}(y)]$

The FORMULAE class κ is consistent

 \Rightarrow

at least one κ -UNPROVABLE CLAIM y exists.

Now $\mathbf{y} = \mathbf{17Gen r} \notin \mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}, \ \kappa = \mathcal{T}_{\mathcal{P}\mathcal{A}} \subset \mathcal{P} \subset \mathcal{P}^{\bigstar}$

 $\begin{bmatrix} \operatorname{Proof}_{\mathcal{P}}(\underline{\mathbf{17Gen r}}) = "\mathbf{0}" \end{bmatrix} = "\mathbf{1}" \end{bmatrix} \equiv \operatorname{Wid}(\mathcal{T}_{\mathcal{P}\mathcal{A}})$ \cong $\begin{bmatrix} \operatorname{Proof}_{\mathfrak{L}}([d]\mathbf{Q}_{\operatorname{Ext},\mathfrak{Q}_{\mathfrak{L}}} = \mathbf{0}) = "\mathbf{0}" \end{bmatrix} = "\mathbf{1}" \end{bmatrix} \equiv II. \mathbf{P}.\mathbf{T}.$

³²Gödel-Rosser theorem.

³³Far from "...[PA-]arithmetic and sentencial/SENTENCIAL" and far from (!) "In"

³⁴Any attempt to prove/*PROVE/INFER* it in the system \mathcal{P}/κ leads to the requirement for inconsistency of the consistent (!) system \mathcal{P}/κ (in fact we are entering into the inconsistent meta-system \mathcal{P}^{\star} - see the real sense of the Proposition V.).

³⁵Die Widerspruchsfreiheit - the Consistency.

13. Appendix 2

Under the adiabaticity, $[d]Q_{Ext}=0$, of the system \mathfrak{L} it is not possible to derive such a CLAIM that is stating this adiabatic supposition.

This *CLAIM* is constructible not adiabaticaly, *outside* the adiabatic \mathfrak{L} only.

Autoreference/HALTING PROBLEM Self-Observation

- the CLAIM about adiabaticity of $\mathfrak L$ within $\mathfrak L$ -

- the *CLAIM* about consistency of $\mathcal{T}_{\mathcal{P}\mathcal{A}}$ within \mathcal{P} - is excluded.

This is the nature law expressed

by the Caratheodory formulation of the *II*. P.T.

and by the Gödel theorems' sense.

The eye can not look at and into itself.

Any mixing of the various observation/expressing/approach levels leads to the paradoxes and is to be excluded.

Under the consistency of the system \mathcal{P} it is not possible to derive such a CLAIM that is stating this consistency supposition. This CLAIM is constructible purely syntactically, outside the consistent \mathcal{P} only (in $\mathcal{P}^{\bigstar} - \mathcal{P}$).³⁶

³⁶The Great Fermat's theorem is not inferrable within $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ either - it is not of the $\mathcal{P}/\mathcal{T}_{\mathcal{P}\mathcal{A}}$ type, although is arithmetical. In fact it is not a part of the \mathcal{P} but of the $\mathcal{P}^{\bigstar} - \mathcal{P}, \mathcal{P}^{\bigstar} \cong \{\mathbf{p}, \mathbf{V}, \mathbf{T}\} = \mathbb{R}^{3}$.

That's me or it is the picture of me - P1.

This is the mirror picture of me - P2.

Here I have 'ordered' the mirror picture P2 to step out from the mirror a stand, e.g., in front of me/P1having the right hands overlapped.

CHAOS, EQUILIBRIUM, INFINITE CYCLE, PARADOX by mixing of various observation levels.

References

- [1] Hejna, B. Generování tabulek přechodů konečných automatů. Ing. Diplomová práce, Praha, FEL ČVUT, Praha, 1973.
- Hejna, B.; Vajda, I. Information transmission in stationary stochastic systems. AIP Conf. Proc. 1999, 465 (1), 405-418. DOI: 10.1063/1.58272.
- [3] Hejna, B. Informační kapacita stacionárních fyzikálních systémů. Ph.D. Dissertation, ÚTIA AV ČR, Praha, FJFI ČVUT, Praha, 2000.
- [4] Hejna, B. Generalized Formula of Physical Channel Capacities. International Journal of Control, Automation, and Systems 2003, 15.
- [5] Hejna, B. Tepelný cyklus a přenos informace. Matematika na vysokých školách: Determinismus a chaos; JCMF, ČVUT: Praha, 2005; pp 83-87.
- [6] Hejna, B. Thermodynamic Model of Noise Information Transfer. In AIP Conference Proceedings, Computing Anticipatory Systems: CASYS'07 – Eighth International Conference; Dubois, D., Ed.; American Institute of Physics: Melville, New York, 2008; pp 67–75. ISBN 978-0-7354-0579-0. ISSN 0094-243X.
- [7] Hejna, B. Informační význam Gibbsova paradoxu. In Matematika na vysokých školách: Variační principy; JČMF: Praha, 2007; pp 25–31.
- [8] Hejna, B. Proposed Correction to Capacity Formula for a Wide-Band Photonic Transfer Channel. In Proceedings of International Conference Automatics and Informatics'08, VII-1-VIII-4; Atanasoff, J., Ed.; Society of Automatics and Informatics: Sofia, Bulgaria, 2008.
- [9] Hejna, B. Gibbs Paradox as Property of Observation, Proof of *II.Principle of Thermodynamics*. In AIP Conf. Proc., Computing Anticipatory Systems: CASYS'09: Ninth International Conference on Computing, Anticipatory Systems, 3–8 August 2009; Dubois, D., Ed.; American Institute of Physics: Melville, New York, 2010; pp 131–140. ISBN 978-0-7354-0858-6. ISSN 0094-243X.
- [10] Hejna, B. Informační termodynamika I.: Rovnovážná termodynamika přenosu informace; VŠCHT Praha: Praha, 2010. ISBN 978-80-7080-747-7.
- [11] Hejna, B. Thermodynamics, Information and Telomera. In Proceedings of International Conference Automatics and Informatics'10; Atanasoff, J., Ed.; Society of Automatics and Informatics: Sofia, Bulgaria, 2010; pp I-59–I-64.
- [12] Hejna, B. Informační termodynamika II.: Fyzikální systémy přenosu informace; VŠCHT Praha: Praha, 2011. ISBN 978-80-7080-774-3.
- [13] Hejna, B. Unification and Convergence of Quantum Information Channel Capacities. In Proceedings of International Conference Automatics and Informatics'12; Atanasoff, J., Ed.; Society of Automatics and Informatics: Sofia, Bulgaria, , ISSN 1313-1869, 2012.
- [14] Hejna, B. Recognizing the Infinite Cycle: A Way of Looking at the HALTING PROBLEM. Lecture on CASYS'11 Conference, August 8-13, 2011, Liege, Belgium, Proceedings of the Tenth International Conference CASYS'11 on Computing Anticipatory Systems, Lie'ge, Belgium, August 8-13, 2011, D. M. Dubois (Ed.), Publ. by CHAOS, 2012. ISSN 1373-5411.
- [15] Hejna, B. Information Thermodynamics and Cell Telomere. AIP Conf. Proc., Computing Anticipatory Systems: CASYS'011: Tenth International Conference on Computing, Anticipatory Systems, August 20011; Dubois, D., Ed.; IJCAS, International Journal of Computing Anticipatory Systems vol. 15, ISSN 1373-5411, ISBN 2-930396-18-0, abstract in ISBN 2-930396-14-8, Liege, Belgium, 2011.
- [16] Hejna, B. Information Capacity of Quantum Transfer Channels and Thermodynamic Analogies, Thermodynamics - Fundamentals and its Application in Science, Ricardo Morales-Rodriguez (Ed.), ISBN: 978-953-51-0779-8, InTech, 2012. Available from: http://www.intechopen.com/articles/show/title/information-capacity-of-quantumtransfer-channels-and-thermodynamic-analogies
- [17] Hejna, B. Information Thermodynamics, Thermodynamics Physical Chemistry of Aqueous Systems, Juan Carlos Moreno-Piraján (Ed.), ISBN: 978-953-307-979-0, InTech, 2011 Available from: http://www.intechopen.com/articles/show/title/information-thermodynamics
- [18] Hejna, B. Informační termodynamika III.: Automaty, termodynamika, přenos informace, výpočet a problé, zastavení; VŠCHT Praha: Praha, 2013. ISBN 978-80-7080-851-1.

- [19] Hejna, B. Information Thermodynamics and Halting Problem, Recent Advances in Thermo and Fluid Dynamics, Mofid Gorji Bandpy (Ed.), ISBN: 978-953-51-2239-5, InTech, 2015. Available from: http://www.intechopen.com/books/recent-advances-in-thermo-and-fluid-dynamics
- [20] Hejna, B. Gödel Proof, Information Transfer and Thermodynamics; Lecture on IIAS Conference, August 3-8, 2015, Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetics, Vol. 15, No. 2
- [21] Hejna, B. Cancer and Structure; Lecture on IIAS Conference, August 2016, Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetics, Researcy Spotlight in Modeling and Simulation of Physical and Biological Systems Depending on Space, Time, Retardation, Anticipation - Vol. 1, ISBN 978-1-897546-39-0
 - and in The Pharmaceutical and Chemical Journal, Vol. 5, ISSN 2349-7092, 2018.
- [22] Hejna, B. Information Transfer and Thermodynamics Point of View on Goedel Proof, the chapter in Ontology in Information Science, InTech, 2018, Ciza Thomas (Ed.), College of Engineeirng Trivandrum, India, ISBN 978-953-51-3887-7, ISBN 978-953-51-3888-4,
- [23] Hejna, B. Informační termodynamika IV.: Gödelovy věty, přenos informace, termodynamika a Caratheodoryho věty; VŠCHT Praha: Praha, 2017: ISBN 978-80-7080-985-3
- [24] Hejna, B. Goedel and Caratheodory Theorems; Lecture on IIAS Conference, August 2017, Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetics, Rversible Time, Retardation and Anticipation in Quantum Physics, Biology and Cybernetics - Vol. 1, ISBN 978-1897456-42-0
- [25] Hejna, B. Basic Ideas of Information Thermodynamics (2019), Journal of Basic and Applied Sciences, Vol. 15, ISSN 1814-8085/E-ISSN 1927-5129/19.
- [26] Hejna, B. Gödel Proof, Information and Physics; Lecture on IIAS Conference, August 2019 Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetic, Cognitive Thinking Analogies and Insights in General and Quantum Physics, Modelling and Simulation of Dynamic System and Processes Vol. 1., ISBN 978-1-897546-81-9.
- [27] Hejna, B. (Ed.); Lasker E. (Ed.) Journal IIAS-Transactions on Systems Research and Cybernetic, Cognitive Thinking Analogies and Insights in General and Quantum Physics, Modelling and Simulation of Dynamic System and Processes Vol. 1 (2019), ISBN 978-1-897546-81-9.
- [28] Common Gnoseological Meaning of Gödel and Caratheodory Theorems, the chapter in Ontology in Information Science, InTech, 2019, ISBN 978-1-78985-548-7, DOI: 10.5772/intechopen.87975.
 Available from: https://www.intechopen.com/online-first/common-gnoseological-meaning-of-g-del-and-caratheodory-theorems1