Common Gnoseological Meaning of Goedel and Caratheodory Theorems

Bohdan Hejna

January 13, 2020

Contents

1. Introduction 3
2. Autoreference and Caratheodory 9
3. Information Transfer Channel 11
4. Carnot Machine 13
5. Carnot Cycle and Noiseless Information Transfer 15
6. Turing Machine 19
7. Inference as Informatiom Transfer 21
8. Carnot Cycle, Automata and Information Transfer 23
9. Resultativity, Adiabaticity, Consistency 25
10.Autoreference, Information Transfer, Thermodynamics 27
11.Autoreference and Gödel 31
12.Appendix 1 - Gödel Theorems 35
13.Appendix 2 37
References 41

Common Gnoseological Meaning of Goedel and Caratheodory Theorems

1. Introduction

Vienna Circle

logical positivism - physicalism
Rudolph Carnap Otto von Neurath :
1931-1935
"Any scientifically meaningful statement is expressible in physical terms

- about a movement in the observable space and time or, if the statement is not expressible this way it is meaningful scientifically
when it is convertible to a statement about a language, otherwise it is of no scientific meaning."

$$
\Rightarrow
$$

mutual relation among structures/languages of:

Thermodynamics - Energy Transformation

Information Theory - Message/Information Transfer

Computing Theory - Computing/Inference

Adiabatic Theory

COMPUTING THEORY	TURING MACHINE $T M$ FINITE-STATE CONTROL UNIT	COMPUTING/INFERENCE PROCESS STATE/CONFIGURATION TRANSFORMATIONS
INFORMATION THEORY	SHANNON TRANSFER CHAIN $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$ TRANSFER CHANNEL	MESSAGE/INFORMATION TRANSFER PROCESS
THERMODYNAMICS	CARNOT MACHINE $C M$ CARNOT CYCLE	HEAT ENERGY TRANSFORMATION PROCESS
THERMODYNAMIC ADIABATIC THEORY	THERMODYNAMIC ADIABATIC SYSTEM \mathfrak{L}	STATES' DEVELOPING PROCESS

Processes in all these structures run in the finite physical world and follow its laws.

We model them by the states' $\theta_{月 \cdot \mathfrak{R}}^{\mathfrak{R}}$ trajectories $\mathcal{l}_{\mathfrak{Q}_{\mathfrak{N}}}$ within the heat isolated d] $\mathbf{Q}_{\text {Ext }}=0$ adiabatic system $\mathfrak{L} / \mathfrak{Q}_{\mathfrak{L}}$ where is valid:

Caratheodory common formulation of the II. P.T. :

In the arbitrary vicinity of every state of the state space $\mathfrak{Q}_{\mathfrak{L}}$ of the adiabatic system \mathfrak{L}

 exist states not reachable from the starting state adiabatically ([d] $\left.Q_{E x t}=0\right)$ (or the states not reachable by the system at all).For the consistency of the Beano arithmetic theory $\mathcal{T}_{\mathcal{P A}}$ the analog is expressed by: Gödel incompletness theorems: ${ }^{2}$

For the theory $\mathcal{T}_{\mathcal{P}_{\mathcal{A}}}$ exists the true (" 1 ") CLAIM that either this CLAIM and its NEGATION is NOT PROVABLE within the system $\mathcal{P} / \mathcal{T}_{\mathcal{P A}}$.

- CLAIM about the $\mathcal{T}_{\mathcal{P A}}$ consistency especially

The CLAIM saying that theory $\mathcal{T}_{\mathcal{P A}}$ is consistent is not PROVABLE by its means (\mathcal{P}) - by itself.

[^0]The adiabatic trajectories $\mathbb{1}_{\mathfrak{Q}_{\mathcal{L}}}$ - within the $\mathfrak{L} / \mathfrak{Q}_{\mathfrak{L}}{ }^{5}$
$l_{2 b}$ isothermic irreversible expansion $l_{2 b^{\prime}}$ adiabatic irreversible expansion $l_{2 d}$ izobaric irreversible expansion $l_{2 e}$ izentropic reversible expansion l_{3} izochoric irreversible change

l_{4} not possible

[^1]\[

$$
\begin{array}{ll}
& \text { Peano Axioms/Inference system } \mathcal{P} / \text { Theory } \mathcal{T}_{\mathcal{P} \mathcal{A}} \\
\mathbf{1} / \mathcal{P} & \mathbb{N}_{\mathbf{0}}=\mathbb{N} \cup\{\mathbf{0}\} ; \\
2 & \forall_{\mathbf{x} \in \mathbb{N}_{\mathbf{0}}} \mid\left[\exists_{\mathbf{y} \in \mathbb{N}} \mid[\mathbf{y}=\mathbf{f}(\mathbf{x})]\right] ; \\
\mathbf{3} / \mathcal{P} & \forall_{\mathbf{x} \in \mathbb{N}_{\mathbf{0}}} \mid[\mathbf{0} \neq \mathbf{f}(\mathbf{x})] ; \\
4 & \forall_{\mathbf{x} \in \mathbb{N}_{\mathbf{0}}} \mid[[\mathbf{f}(\mathbf{x}) \neq \mathbf{f}(\mathbf{y})] \Rightarrow(\mathbf{x} \neq \mathbf{y})] ; \\
\mathbf{5} / \mathcal{P} & \text { axiom } / \text { axiomatic schema of the } \text { mathematical induction: } \\
& {\left[\left[\varphi(\mathbf{0}) \wedge \forall_{\mathbf{x} \in \mathbb{N}_{\mathbf{0}}} \mid \varphi(\mathbf{x}) \Rightarrow \varphi[\mathbf{f}(\mathbf{x})]\right] \Rightarrow \forall_{\mathbf{x} \in \mathbb{N}_{\mathbf{0}}} \mid \varphi(\mathbf{x})\right]} \\
& \underline{\text { Inference rule Modus Ponens }}{ }^{a} \\
& \frac{\vdash \mathrm{~b}, \vdash(\mathbf{b} \Rightarrow \mathbf{c})}{\vdash \mathbf{c}}, \mathrm{c}-\text { immediate consequence of } \mathrm{b}
\end{array}
$$
\]

${ }^{a}$ Besides the Generalization. The Substitution function from the Principia Mathematica is used for the evaluation of the variables be their values or their quantification.

"1" - arithmeticity of the \mathcal{P} \cong

adiabaticity of the $\mathfrak{L} / \mathfrak{Q}_{\mathfrak{L}}$.

Consistent $\mathcal{T}_{\mathcal{P A}}$ inference within \mathcal{P}
\cong
moving along trajectories $\mathfrak{l}_{\mathfrak{Q}_{\mathfrak{L}}}$ within the $\mathfrak{Q}_{\mathfrak{L}} / \mathfrak{L}$.
The states on the adiabatic trajectories
(also irreversible) then model the consistently inferred/inferrable $P A-F O R M U L A S$.

2. Autoreference and Caratheodory

Any adiabatic trajectory $l_{\mathfrak{Q}_{\mathfrak{R}}}$ is defined

 by its complement $\mathfrak{Q}_{\mathfrak{L}}-1_{\mathfrak{Q}_{\mathfrak{R}}}$,within its definition space $\mathfrak{Q}_{\mathfrak{L}} /$ system \mathfrak{L} and, the $\mathfrak{Q}_{\mathfrak{L}}-l_{\mathfrak{Q}_{\mathfrak{L}}}$ is not reachable within $\mathbb{1}_{\mathfrak{Q}_{\mathfrak{L}}}$ itself.

For the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ could 'prove' - by itself its own adiabatic property [d] $\mathrm{Q}_{\text {Ext }}=0$
it should have to contain its own definition as its own status!
The $l_{\mathfrak{Q}_{\mathfrak{L}}}$ would be autoreferential/autoconstructive: as the adiabatic one to construct, not adiabatically, $\mathrm{d}_{\mathrm{Ext}} \neq 0$, the adiabatic, $[\mathrm{d}] \mathrm{Q}_{\text {Ext }}=0$, spaces $\mathfrak{Q}_{\mathfrak{L}} / \mathfrak{Q}_{\mathfrak{L}}-1_{\mathfrak{Q}_{\mathfrak{L}}}$ and define, by this way, itself - as its own status.

It is the Klein bottle building from the original's inside.
The original's outer surface defines its inner surface, which is now the model of the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ and its outer surface is the model of the $\mathfrak{Q}_{\mathfrak{L}}-l_{\mathfrak{Q}_{\mathfrak{L}}}$.

Within the inner surface we want to prove its internality by reaching its outer surface with an inner? curve.

Within the Klein bottle, constructible only by the outer manipulation with the original one, one curve is possible but, it is crossing, contradictorily against the original bottle, its inner and outer space simultaneously. ${ }^{6}$

Only we, as the outer constructers of the original bottle know its all properties.

The adiabatic trajectory $l_{\mathfrak{Q}_{\mathfrak{R}}}$ does not conatin itself as the object of its own

- it does not know its own properties and it itself, by its means, does not reveal them.

Only we, as the outer constructers of the $\mathfrak{Q}_{\mathfrak{L}} / \mathfrak{L} / / \mathcal{P}$ know their adiabaticity//consistency.

[^2]3. Information Transfer Channel
$$
\mathcal{K} \stackrel{\text { Def }}{=}[\mathbf{X}, \varepsilon, \mathbf{Y}]
$$

$\mathbf{X} \stackrel{\text { Def }}{=}\left[\mathbf{A}, \mathbf{p}_{\mathbf{X}}(\cdot)\right]$ - the transmitter of input messages
$$
\mathbf{x} \in \mathbf{A}^{+}
$$
$\mathbf{Y} \stackrel{\text { Def }}{=}\left[\mathbf{B}, \mathbf{p}_{\mathbf{Y}}(\cdot)\right]$ - the receiver of output messages $\mathbf{y} \in \mathbf{B}^{+}, 7$
ε - the maximal probability of $\mathbf{y}=\mathbf{b}$ erroneous for $\mathbf{x}=\mathbf{a}$,
$\mathrm{p}_{\mathrm{X}}(\cdot), \mathrm{p}_{\mathrm{Y}}(\cdot)$ - the probability distribution on A and B ,
$$
\mathbf{A}=\mathbf{B}=\mathbf{T}
$$
$\mathbf{H}(\mathbf{X}), \mathbf{H}(\mathbf{Y})$ - the input/ output information entropies ${ }^{8}$
\[

$$
\begin{aligned}
& \mathbf{H}(\mathbf{X}) \stackrel{\text { Def }}{=}-\sum_{\mathbf{A}} \mathbf{p}_{\mathbf{X}}(\cdot) \ln \mathbf{p}_{\mathbf{X}}(\cdot) \\
& \mathbf{H}(\mathbf{Y}) \stackrel{\text { Def }}{=}-\sum_{B} p_{Y}(\cdot) \ln p_{Y}(\cdot) \\
& i(\cdot)=-\ln (\cdot), \quad i(\cdot \mid \cdot)=-\ln (\cdot \mid \cdot)
\end{aligned}
$$
\]

[^3]$\mathbf{H}(\mathbf{X} \mid \mathbf{Y}), H(Y \mid X)$ - the loss / noise entropy
\[

$$
\begin{aligned}
& \mathbf{H}(\mathbf{X} \mid \mathbf{Y}) \stackrel{\text { Def }}{=}-\sum_{\mathbf{A}} \sum_{\mathbf{B}} \mathbf{p}_{\mathbf{X}, \mathbf{Y}}(\cdot, \cdot) \ln \mathbf{p}_{\mathbf{X} \mid \mathbf{Y}}(\cdot \mid \cdot) \\
& H(Y \mid X) \stackrel{\text { Def }}{=}-\sum_{A} \sum_{B} p_{X, Y}(\cdot, \cdot) \ln p_{Y \mid X}(\cdot \mid \cdot)
\end{aligned}
$$
\]

For the transinformation $\mathbf{T}(\mathbf{X} ; \mathbf{Y}), T(Y ; X)^{9}$

$$
\begin{aligned}
& \mathbf{T}(\mathbf{X} ; \mathbf{Y}) \stackrel{\text { Def }}{=} \mathbf{H}(\mathbf{X})-\mathbf{H}(\mathbf{X} \mid \mathbf{Y}) \\
& T(Y ; X) \stackrel{\text { Def }}{=} H(Y)-H(Y \mid X)
\end{aligned}
$$

the channel equation is valid

$$
\mathbf{H}(\mathbf{X})-\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=H(Y)-H(Y \mid X)
$$

(X, K, Y) - Shannon Transfer Chain

[^4]
$l_{0}-l_{1}:$ izothermal exp. transfers the heat $\Delta \mathrm{Q}_{\mathrm{W}}$ from \mathcal{A} to \mathcal{L}, the work $\Delta \mathrm{A}_{0,1}=\Delta \mathrm{Q}_{\mathrm{W}}$ is given at $\mathbf{T}_{\mathbf{W}}$
$l_{1}-l_{2}$: adiabatic exp. cools \mathcal{L} from $\mathbf{T}_{\mathbf{W}}$ to $\mathbf{T}_{\mathbf{0}}$, the work $\boldsymbol{\Delta} \mathbf{A}_{1,2}=-\boldsymbol{\Delta} \mathbf{U}$ is given from the internal energy \mathbf{U} of \mathcal{L}
$l_{2} l_{3}:$ izothermal comp. transfers the heat $\Delta \mathrm{Q}_{0}<\Delta \mathrm{Q}_{\mathrm{W}}{ }^{10}$ from \mathcal{L} to \mathcal{B} at $\mathbf{T}_{\mathbf{0}}$, consumes the work $-\Delta \mathbf{A}_{\mathbf{2}, \mathbf{3}}<\Delta \mathbf{A}_{0,1}$
$l_{3}-l_{0}$: adiabatic comp. heats \mathcal{L} from $\mathbf{T}_{\mathbf{0}}$ to $\mathbf{T}_{\mathbf{W}}, \boldsymbol{\Delta} \mathbf{U}>\mathbf{0}$, and consumes the work $-\Delta \mathrm{A}_{3,4}=\Delta \mathrm{A}_{1,2}$

[^5]The resulting output work for a reversible Carnot Cycle \mathcal{O} is

$$
\begin{gathered}
\Delta \mathbf{A}=\Delta \mathbf{Q}_{\mathrm{W}}-\left|\Delta \mathbf{Q}_{0}\right| \\
\Delta \mathbf{A}=\Delta A_{l_{0}-l_{1}}+\Delta A_{l_{1}-l_{2}}+\Delta A_{l_{2}-l_{3}}+\Delta A_{l_{3}-l_{0}}
\end{gathered}
$$

Kelvin's form of the $I I$. P. T. for a reversible case is

$$
\sum_{\mathbf{i} \in[\mathrm{W}, 0]} \frac{\Delta \mathrm{Q}_{\mathbf{i}}}{\mathbf{T}_{\mathrm{i}}} \triangleq \oint_{\mathcal{O}} \frac{\delta \mathbf{Q}(\Theta)}{\Theta}=\mathbf{0}
$$

Thomson-Planck's formulation of the $I I$. P. T. says:
It is impossible to construct a heat cycle transforming all heat delivered to the medium \mathcal{L}
(going through this cycle)
into the equivalent amount of the mechanical work $\Delta \mathrm{A}$.
The I. P.T. is valid \Leftrightarrow the tansformation efficiency $\eta_{\text {max }}$:

$$
\eta_{\max } \stackrel{\text { Def }}{=} \frac{\Delta \mathrm{A}}{\Delta \mathrm{Q}_{\mathrm{W}}}=\frac{\Delta \mathrm{Q}_{\mathrm{W}}-\left|\Delta \mathrm{Q}_{0}\right|}{\Delta \mathrm{Q}_{\mathrm{W}}}=\frac{\mathrm{T}_{\mathrm{W}}-\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{W}}}<1
$$

5. Carnot Cycle and Noiseless Information Transfer

Recording/transmitting/computing an information $\Delta \mathrm{I}$ at the temperature Θ requires the energy $\Delta \mathbf{W}$

$$
\Delta \mathbf{W} \geq \mathbf{k} \cdot \Theta \cdot \Delta \mathbf{I}, \quad \text { now } \quad \Delta W \triangleq \Delta \mathrm{Q}_{\mathrm{W}}
$$

The changes of the entropies of the medium \mathcal{L} with \mathcal{O} are now considered informationally on a \mathcal{K}

$$
\begin{aligned}
\mathbf{H}(\mathbf{X}) & \stackrel{\text { Def }}{=} \frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{kT}_{\mathrm{W}}}, \quad \mathbf{H}(\mathbf{Y} \mid \mathbf{X}) \stackrel{\text { Def }}{=} \mathbf{0} \\
\mathbf{H}(\mathbf{Y}) & \stackrel{\text { Def }}{=} \frac{\Delta \mathbf{A}}{\mathrm{k} \mathrm{~T}_{\mathrm{W}}}=\frac{\Delta \mathrm{Q}_{\mathrm{W}}-\Delta \mathrm{Q}_{0}}{\mathrm{kT}_{\mathrm{W}}} \\
& =\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{k} \mathbf{T}_{\mathrm{W}}} \cdot \eta_{\max }=\mathrm{H}(\mathbf{X}) \cdot \eta_{\max } \triangleq \Delta \mathrm{I}
\end{aligned}
$$

$$
\mathbf{H}(\mathbf{Y})-\mathbf{H}(\mathbf{Y} \mid \mathbf{X})=\mathbf{H}(\mathbf{X})-\mathbf{H}(\mathbf{X} \mid \mathbf{Y})
$$

With our thermodynamic substitutions we gain:

[^6]$$
\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{kT}_{\mathrm{W}}} \cdot \eta_{\max }-0=\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{k} \mathrm{~T}_{\mathrm{W}}}-\mathrm{H}(\mathrm{X} \mid \mathrm{Y})
$$
$$
\mathrm{H}(\mathrm{X} \mid \mathrm{Y})=\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{kT}} \cdot\left(1-\eta_{\mathrm{W}} \mathrm{max}\right)=\frac{\Delta \mathrm{Q}_{0}}{\mathrm{kT}_{\mathrm{W}}}
$$

The change $\Delta \mathrm{S}_{\mathcal{A} \mathcal{B}}$ within the change $\Delta \mathrm{S}_{\mathcal{C}}$
of the global $C M$'s heat entropy $\mathrm{S}_{\mathcal{C}}$ within its subsystem $\mathcal{A B}$ is
$\Delta \mathrm{S}_{\mathcal{A B}}=-\frac{\Delta \mathrm{Q}_{0}}{\mathrm{~T}_{\mathrm{W}}}+\frac{\Delta \mathrm{Q}_{0}}{\mathrm{~T}_{0}}=\frac{\Delta \mathrm{Q}_{0}}{\mathrm{~T}_{0}} \cdot \eta_{\max }=\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{T}_{\mathrm{W}}} \cdot \eta_{\max }$

The change $\Delta S_{\mathcal{L}}$ of the heat entropy $S_{\mathcal{L}}$ within
the change $\Delta \mathrm{S}_{\mathcal{C}}$ of the whole heat entropy $\mathrm{S}_{\mathcal{C}}$ of the $C M^{12}$ is

$$
\Delta \mathrm{S}_{\mathcal{L}}=\oint_{\mathcal{O}} \frac{\delta \mathrm{Q}}{\mathrm{~T}}=\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{W}}}-\frac{\Delta \mathrm{Q}_{0}}{\mathrm{~T}_{0}}=0
$$

The resultant change $\Delta \mathrm{S}_{\mathcal{C}}$ of $C M$ and the output $\Delta \mathrm{I}$ is

$$
\Delta \mathrm{S}_{\mathcal{C}}=\Delta \mathrm{S}_{\mathcal{L}}+\Delta \mathrm{S}_{\mathcal{A B}}=\frac{\Delta \mathrm{Q}_{\mathrm{W}}}{\mathrm{~T}_{\mathrm{W}}} \cdot \eta_{\max }=\mathrm{k} \cdot \Delta \mathrm{I}=\mathrm{k} \cdot \mathrm{H}(\mathrm{Y})
$$

The Brillouin's extended form of the II. P.T. is valid ${ }^{13}$

$$
\begin{aligned}
\Delta S_{\mathcal{C}}-k \cdot T(X ; Y)= & k \cdot H(X) \cdot\left(\eta_{\max }-\eta_{\max }\right) \\
\Delta S_{\mathcal{C}}-k \cdot \Delta I=0 & \Delta\left(S_{\mathcal{C}}-k \cdot I\right)=0
\end{aligned}
$$

[^7]\star The reversible Carnot Cycle \mathcal{O}
the medium \mathcal{L} going through the \mathcal{O}

- the whole $\boldsymbol{C M}$
work as thermodynamic models of
\star the information transfer process \mathcal{T} without noise, ${ }^{14}$ the channel \mathcal{K} with its transfer process \mathcal{T}
- the Shannon Transfer Chain (X, K, Y)

${ }^{14} \mathbf{H}(\mathbf{Y} \mid \mathbf{X})=\mathbf{0}$

6. Turing Machine

Turing Machine TM -driven by the program $\vec{\eta}$

$$
\begin{gathered}
\vec{\eta}=\left(\eta_{p}\right)_{p=1}^{p \in \mathbb{N}}=\left[\left(\mathbf{s}_{\mathbf{i}}, \mathbf{x}_{\mathbf{k}}, \mathbf{s}_{\mathbf{j}}, \mathbf{y}_{\mathbf{l}}, \mathbf{D}\right)_{\mathbf{p}}\right]_{\mathbf{p}=\mathbf{1}}^{\mathbf{p} \in \mathbb{N}},|\vec{\eta}| \in \mathbb{N} \\
\eta_{[\cdot]}=\left(\mathbf{s}_{\mathbf{i}[\cdot]}, \mathbf{x}_{\mathbf{k}[\cdot]}, \mathbf{s}_{\mathbf{j} \cdot[+1]}, \mathbf{y}_{\mathbf{l}[\cdot]}, \mathbf{D}\right)
\end{gathered}
$$

TM
S_{i} - the status of the $\mathbf{C U} \mathbf{U}_{T M}$ in the actual step $\mathbf{p} \in \mathbb{N}$ x_{k} - the input symbol on the input-output tape in the \mathbf{p} y_{1} - the output symbol overwriting x_{k} in the step \mathbf{p}
s_{j} - the defined $\mathbf{C U}_{\text {TM }}$'s status for the step $\mathbf{p}+\mathbf{1}$
D - the $\mathrm{CU}_{T M}$ read-write head moving Left/Right after y_{1} has been written instead of x_{k} in the step p

$$
\left[\mathbf{y}_{\mathbf{1}}, \quad \mathbf{x}_{\mathbf{k}} \in \mathbf{T}=\mathbf{A}=\mathbf{B}\right]
$$

$\underline{\left(\vec{\sigma}, \mathrm{s}_{\mathbf{i}}, \vec{\varrho}\right)} /\left(\mathrm{x}_{\mathrm{k}}, \mathrm{s}_{\mathrm{i}}, \mathrm{y}_{\mathrm{l}}\right)$ - the $T M^{\prime} \mathrm{s} / \mathrm{CU}_{T M}$'s configurations

With the I / O transformations $\mathrm{x}_{\mathrm{k}} \longrightarrow \mathrm{y}_{1}$, the $\mathrm{CU}_{T M}$'s states' transitions are performed,

$$
\mathrm{s}_{\mathrm{i}_{\mathrm{p}}} \xrightarrow{\left(\mathrm{x}_{\mathrm{k}_{\mathrm{p}}}, \mathrm{y}_{\mathrm{l}_{\mathrm{p}}}, \mathrm{D}_{\mathrm{p}}\right)} \mathrm{S}_{\mathrm{j}_{\mathrm{p}[+1]}}
$$

defining the regular grammar and the language $\mathrm{L}_{\mathrm{CU}_{T M}}$

$$
\begin{aligned}
\mathbf{s}_{\mathbf{i}_{\mathbf{p}}} & \longrightarrow\left(\mathbf{x}_{\mathbf{k}_{\mathbf{p}}}, \mathbf{y}_{\mathrm{l}_{\mathrm{p}}}, \mathbf{D}_{\mathbf{p}}\right) \mathbf{s}_{\mathrm{j}_{\mathrm{p} \mid+1]}} \\
\mathrm{L}_{\mathrm{CU}}{ }_{T M} & =\left\{\left(\mathrm{x}_{\mathrm{k}_{\mathrm{p}}}, \mathrm{y}_{\mathrm{l}_{\mathrm{p}}}, \mathrm{D}_{\mathrm{p}}\right)\right\}_{\mathrm{p}=1}^{\mathrm{p}=\text { last }}
\end{aligned}
$$

and the regular language $\mathrm{L}_{T M}$ of the configurations which the $T M$ has gone through so far ${ }^{15}$

$$
\begin{aligned}
\mathbf{S}_{\mathbf{i}_{\mathbf{p}}} & \longrightarrow\left(\vec{\sigma}_{\mathrm{p}}, \mathbf{s}_{\mathrm{i}}, \vec{\rho}_{\mathrm{p}}\right) \mathbf{S}_{\mathbf{j}_{\mathrm{p}[+1]}} \\
\mathrm{L}_{T M} & =\left\{\left(\vec{\sigma}_{\mathrm{p}}, \mathrm{~s}_{\mathrm{ip}}, \vec{\rho}_{\mathrm{p}}\right)\right\}_{\mathrm{p}=1}^{\mathrm{p}=\mathrm{p}_{\text {last }}}
\end{aligned}
$$

[^8]7. Inference as Informatiom Transfer

The right $T M^{\prime}$'s program $\vec{\eta}^{16}$ generates the resultative $T M$'s configuration sequence and
similar is valid for the information transfer acts and the ($\mathbf{X}, \mathcal{K}, \mathbf{Y}$)'s configurations.
Now, the inferred $C L A I M \mathrm{a}_{\mathrm{i}}$ is the last member of the input $F O R M U L A E$ chain $\overrightarrow{\mathrm{x}}^{17}$ and the a_{i} 's $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$ inference by Modus Ponens is realized as the y's information transfer \mathcal{T} in \mathcal{K}.

$$
\begin{aligned}
{[\overrightarrow{\mathrm{x} \mid \mathrm{y}}] } & =\left[\mathbf{a}_{0}, \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{\mathbf{i}-1}\right] \sqsubset[\overrightarrow{\mathrm{x}}] \\
{[\overrightarrow{\mathrm{x}}] } & =\left[\mathbf{a}_{\mathbf{0}}, \mathbf{a}_{1}, \mathbf{a}_{2}, \ldots \mathbf{a}_{\mathbf{i}-\mathbf{1}} ; \mathbf{a}_{\mathbf{i}}\right] \\
{[\mathrm{y}] } & =\mathrm{a}_{\mathrm{i}} \sqsubset[\overrightarrow{\mathbf{x}}]
\end{aligned}
$$

Entropies for this a_{i} 's $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$ inference from $\overrightarrow{\mathrm{x}}$ realized by the $\mathrm{y}=\mathrm{a}_{\mathrm{i}}$ transfer from $\overrightarrow{\mathrm{x}}$ through a \mathcal{K} in its status $[\overrightarrow{\mathrm{x} \mid \mathrm{y}}]$ are:

$$
\mathbf{H}(X \mid Y) \cong \mathbf{H}\left(\mathbf{a}_{\mathbf{0}}, \mathbf{a}_{\mathbf{1}}, \ldots, \mathbf{a}_{\mathbf{i}-\mathbf{1}}\right)=\mathbf{H}(\overrightarrow{\mathrm{x} \mid \mathrm{y}}), \mathbf{H}(\mathbf{Y})=\mathbf{H}(\mathrm{y})
$$

$$
\mathbf{H}(\mathbf{X}) \cong \mathbf{H}\left(\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}-\mathbf{1}} ; \mathbf{a}_{\mathbf{i}}\right)=\mathbf{H}(\overrightarrow{\mathrm{x}})
$$

$$
\mathbf{H}(Y) \cong \mathbf{H}\left(\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}-1} ; \mathbf{a}_{\mathrm{i}}\right)-\mathbf{H}\left(\mathbf{a}_{0}, \mathbf{a}_{1}, \ldots, \mathbf{a}_{\mathbf{i}-1}\right)
$$

[^9]
8. Carnot Cycle, Automata and Information Transfer

Any $C M$, now with \mathcal{O}, is describable as an automaton ${ }^{18}$

with the resulting regular grammar and language L,

$$
\left\{\theta_{\mathrm{l}_{0}}^{\mathrm{i}} \rightarrow\left(\Delta \mathrm{~A}^{\mathrm{i}}\right) \theta_{\mathrm{l}_{0}}^{\mathrm{i}}\right\}, \quad \mathrm{L}=\left\{\Delta \mathrm{A}^{\mathrm{i}}\right\} \quad \text { and }, \text { as }
$$

$$
\text { for } \mathcal{K} \quad \begin{array}{r}
\mathrm{H}^{\mathrm{i}}(\mathbf{X})=\frac{\Delta \mathrm{A}_{\mathrm{l}_{0}-\mathrm{l}_{1}}^{\mathrm{i}}}{\mathrm{kT}_{\mathrm{W}}^{\mathrm{i}}}, \quad \mathrm{H}^{\mathrm{i}}(\mathbf{X} \mid \mathbf{Y})=\frac{\left|\Delta \mathrm{A}_{\mathrm{l}_{2}-1_{3}}^{\mathrm{i}}\right|}{\mathrm{kT}_{\mathrm{W}}^{\mathrm{i}}} \\
\mathrm{H}^{\mathrm{i}}(\mathbf{Y})=H^{i}(X)-H^{i}(X \mid Y)=\frac{\Delta \mathrm{A}^{\mathrm{i}}}{\mathrm{kT}_{\mathrm{W}}^{\mathrm{i}}}>0
\end{array}
$$

$$
\Delta \mathrm{A}^{\mathrm{i}}=\Delta A_{l_{0}-l_{1}}^{i}+\Delta A_{l_{1}-l_{2}}^{i}+\Delta A_{l_{2}-l_{3}}^{i}+\Delta A_{l_{3}-l_{0}}^{i}
$$

[^10]$\mathrm{CU}_{T M}$'s step $\mathbf{p} \cong \mathcal{K}$'s transfer act $\mathbf{i} \cong \mathcal{L}$'s cycle \mathcal{O} run \mathbf{i} $\mathcal{T}_{\mathcal{P A}}$ Inference \cong Message Transfer \cong Heat Transformation states: $\quad \mathrm{CU}_{T M} \cong \mathcal{K} \cong \mathcal{L}$ config: $\quad\left(\vec{\sigma}, \mathrm{s}_{\mathrm{i}}, \vec{p}\right) \cong\left[(\mathrm{X})^{i}, \mathrm{X}^{\mathrm{i}} \mid \mathrm{Y}^{\mathrm{i}},(\mathrm{X})^{i+1}\right] \cong\left[\sum \mathrm{Q}_{\mathrm{W}}^{\mathrm{i}},\left(\mathrm{p}^{\mathrm{i}}, \mathrm{V}^{\mathrm{i}}, \mathrm{T}^{\mathrm{i}}\right)_{\mathcal{C}}, \mathrm{Qw}_{\mathrm{W}}-\sum \mathrm{Q}_{\mathrm{W}}^{\mathrm{i}}\right]$
$$
T M \cong(\mathrm{X}, \mathcal{K}, \mathrm{Y}) \cong C M
$$

The TM's, (X, $\mathcal{K}, Y)$'s, $C M$'s runs are considered in isolated systems for \mathbf{X}, \mathbf{Y} and $\mathbf{X} \mid \mathbf{Y}$ energies.
9. Resultativity, Adiabaticity, Consistency

The states' $\theta_{\Gamma \cdot 1}^{\mathfrak{R}}$ changes in the adiabatic system $\mathfrak{L} / \mathfrak{Q}_{\mathfrak{L}}$, along the trajectories $1_{\mathfrak{Q}_{\mathcal{L}}}$ are expressible regularly:
$l_{2 b}$ isothermic irreversible, $\quad \theta_{1}^{\mathfrak{L}} \rightarrow \Delta A_{1,2 e} \theta_{2 e}^{\mathfrak{L}}$ $l_{2 b^{\prime}}$ adiabatic irreversible, $\quad \theta_{1}^{\mathfrak{L}} \rightarrow \Delta A_{1,3} \theta_{3}^{\mathfrak{R}}$ $l_{2 d}$ izobaric irreversible, $\quad \theta_{1}^{\mathfrak{R}} \rightarrow \Delta A_{1,2 b} \theta_{2 b}^{\mathfrak{R}}$ $l_{2 e}$ isentropic,
l_{3} izochoric irreversible,
$\theta_{1}^{\mathfrak{R}} \rightarrow \Delta A_{1,2 b^{\prime}} \theta_{2 b^{\prime}}^{\mathfrak{R}}$
$\theta_{1}^{\mathfrak{R}} \rightarrow \Delta A_{1,2 d} \theta_{2 d}^{\mathfrak{L}}$

$$
\boldsymbol{\theta}_{1}^{\mathfrak{L}} \rightarrow \lambda \boldsymbol{\theta}_{1}^{\mathfrak{L}}
$$

The thermodynamic model

for the consistent $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$ inference

- from its axioms/formulas having been inferred so far -

is created by the $C M$'s activity, which

is modeling both the $T M$ and the $(\mathbf{X}, \mathcal{K}, \mathbf{Y})$
and which runs in the adiabatic system $\mathfrak{L} / \mathcal{Q}_{\mathcal{L}}$.
The TM's, (X, K, \mathbf{Y})'s, configurations
are then modeled by the states $\theta_{i}^{\mathcal{L}} \in \mathfrak{Q}_{\mathcal{L}}$
of the adiabatic $\mathfrak{L} / \mathfrak{Q}_{\mathfrak{L}}$ with this modeling $C M$ inside the configuration of which, in fact, are creating these states.

The \mathfrak{L} 's initial imbalance starts the $\boldsymbol{\theta}_{[.}^{\mathfrak{L}}$ s states' sequence on a trajectory $1_{\mathfrak{Q}_{\mathfrak{D}}}$ (irreversible)
and is given by the modeled
temperature difference $\mathrm{T}_{\mathrm{W}}-\mathrm{T}_{0}>0$ on $C M$, existence of the input message on \mathcal{K}, input chain's existence on the $T M$'s input-output tape

\Rightarrow

These adiabatic trajectories $\mathfrak{l}_{\mathfrak{N}}$
now represent the norm
of the consistency (and resultativity) of the $\mathcal{P} / \mathcal{T}_{\mathcal{P}}$-inference/computing process expressible also in terms
of the information transfer / heat energy transformation.
10. Autoreference, Information Transfer, Thermodynamics

On the interrupted channel \mathcal{K} is valid

$$
\begin{aligned}
\mathbf{H}(\mathbf{X}) & =\mathbf{H}(\mathbf{X} \mid \mathbf{Y}) \\
\mathbf{T}(\mathbf{X} ; \mathbf{Y}) & =\mathbf{H}(\mathbf{X})-\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=0
\end{aligned}
$$

The input $\mathbf{H}(\mathbf{X})$ is now
the measure of the \mathcal{K} 's internal state - $\underline{H(X \mid Y)-~}$ the output $\mathbf{H}(\mathbf{Y})$ is without any relation to $\mathbf{H}(\mathbf{X})$.

With insisting (?!?) on the information transfer
through this interrupted channel \mathcal{K},
then, contradictorily, we want build the $(\mathrm{X}, \mathcal{K}, \mathrm{Y})$ with a reversible direct Carnot Machine $C M$, where
$\Delta \mathrm{Q}_{\mathrm{W}}=\Delta \mathrm{Q}_{0} \triangleq \Delta \mathrm{Q} \quad \& \mathrm{~T}_{\mathrm{W}}>\mathrm{T}_{0}, \eta_{\max }=\frac{\mathrm{T}_{\mathrm{W}}-\mathrm{T}_{0}}{\mathrm{~T}_{\mathrm{W}}}>0$
In fact we 'measure' $\Delta \mathbf{Q}$ against $\Delta \mathbf{Q}, \quad \mathbf{T}_{\mathrm{W}}=\mathbf{T}_{\mathbf{0}},{ }^{19}$ $\mathbf{H}(\mathbf{X})=\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=\frac{\Delta Q}{\mathrm{k} T_{W}}, \quad \underline{\mathbf{H}(\mathbf{Y})=0} \quad[=H(Y \mid X)]$

[^11]
Our 'wish' to have the information transfer $\mathbf{H}(\mathbf{Y})>0$ through such interrupted channel \mathcal{K} formulates the contradiction/paradox ${ }^{20}$

- the II. P.T.'s violation -

$$
\begin{aligned}
& \Delta \mathbf{S}_{\mathcal{L}}=\oint_{\mathcal{O}} \frac{\delta \mathbf{Q}}{\mathbf{T}}=\frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{W}}}-\frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{0}}}=-\frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{0}}} \cdot \eta_{\max }<0 \quad(!) \\
& \Delta \mathbf{S}_{\mathcal{A B}}=\frac{\Delta \mathbf{Q}}{\mathbf{T}_{\mathbf{W}}} \cdot \eta_{\max } \\
& \Delta \mathbf{S}_{\mathcal{C}}=\Delta \mathbf{S}_{\mathcal{L}}+\Delta \mathbf{S}_{\mathcal{A B}}<0 \quad \text { (!) } \quad[\text { in fact } 0 \text { is everywhere }]
\end{aligned}
$$

Our 'measuring' is now with the 0 'distance' between the measuring object $\mathcal{K} / \mathcal{L}$ and the measured object X / \mathcal{A} and we see that the equality $H(X)=H(X \mid Y)$ says that

any \mathcal{K} can't transfer its own states ${ }^{21}$

 or observe/copy/measure itself.[^12]The last $C L A I M \mathbf{a}^{*}$ in the input $\overrightarrow{\mathrm{x}}=\overrightarrow{a_{0}, a_{1}, \ldots, a_{i-1} ; a^{*}}$ is not inferrable and, as such, interrupts the channel \mathcal{K},

$\mathbf{H}(\mathbf{X})$ expresses the \mathcal{K} 's/ $\boldsymbol{T M}$'s structure $\mathbf{H}(\mathbf{X} \mid \mathbf{Y})$,

$\mathbf{H}(\mathbf{Y})$ does not relate to $\mathbf{H}(\mathbf{X})$

Repeating this autoreference attempt
causes the infinite cycle, ${ }^{22}$

$\mathbf{H}(\mathbf{X})=\mathbf{H}(\mathbf{X} \mid \mathbf{Y})$ is the $\boldsymbol{H A L T I N G}$ PROBLEM core.
Our bad awaitng
of a not zero and positive output, $\mathbf{H}(\mathbf{Y})>0$, formulates the methodological error, but, identifiable by the II. P.T. by this possible consideration,

$$
\mathrm{H}(\mathbf{X} \mid \mathbf{Y}) \cong \mathrm{H}\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}-1}\right)>0, \quad \underline{H(X)=0}
$$

$$
\mathbf{H}_{\mathcal{C}}=\underline{\mathbf{H}(\mathbf{X})}-\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=\underline{0}-\mathbf{H}\left(\mathrm{a}_{0}, \mathrm{a}_{1}, \ldots, \mathrm{a}_{\mathrm{i}-1}\right)<0
$$

which violates/contradicts - $\Delta \mathrm{S}_{\mathcal{C}}<0$ - the II. P.T.

[^13]
11. Autoreference and Gödel

Now let x be the $\boldsymbol{S E Q U E N C E}$ OF FORMULAE valid ("1") in the theory $\mathcal{T}_{\mathcal{P} \mathcal{A}}$ and \mathbf{y} is a $\boldsymbol{C L A I M}{ }^{23}$ with a general syntax of $\mathcal{P}^{\star}-\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}, \quad \mathcal{P} \star \supset \mathcal{P} \supset \mathcal{T}_{\mathcal{P} \mathcal{A}}{ }^{24}$

We define the valid (" $\mathbf{1}$ ") relation $\mathrm{Q}(\mathrm{x}, \mathrm{Y})$ saying:
" $\mathrm{x} \in \mathbb{X}$ is not in the $\mathcal{P} / \mathcal{T}_{\mathcal{P}}-$ INFERENCE relation to the values \mathbf{y} of $\mathbf{Y}^{\prime \prime}, \quad\left[\mathbf{y} \mid \mathbf{Y} \equiv \mathcal{T}_{\mathcal{P} \mathcal{A}}\right.$-property $]$ $\mathrm{Y}: \mathbb{Y} \cong\left\{\left\{\mathfrak{Q}_{\mathbb{R}^{*}}\right\}^{\star}-\left\{\mathbb{1}_{\mathfrak{Q}_{\mathbb{L}}}\right\}\right\} \ni \mathrm{y}, \quad \mathrm{X}: \mathbb{X} \triangleq \mathcal{T}_{\mathcal{P} \mathcal{A}} \cong\left\{1_{\mathfrak{Q}_{\mathcal{L}}}\right\} \ni \mathrm{x}$
$\mathrm{Q}(\mathrm{x}, \mathrm{Y})=" 1$ ", from the construction and, supposedly, $\mathbf{Q}(\mathbf{x}, \mathbf{y})=" 1 " \equiv \operatorname{Proof}_{\mathcal{P}}[\mathbf{Q}(\mathbf{x}, \mathbf{y})]$ for \mathbf{x} and any $\mathbf{y} \in \mathbf{Y}$ But, when we set

$$
\begin{aligned}
\underline{\mathbf{y}}=\mathbf{Q}(\mathbf{x}, \mathbf{Y}) & =\mathbf{y}(\mathbf{Y}) \quad\left[\cong \mathbf{y} \mid \mathbf{Y} \equiv \mathcal{T}_{\mathcal{P} \mathcal{A}} \text {-property }\right] \\
\mathrm{Q}(\mathbf{x}, \mathbf{y})=\mathbf{y}[\mathbf{Q}(\mathbf{x}, \mathbf{Y})] & =\mathbf{y}(\mathbf{y})=\mathbf{Q}[\mathbf{x}, \mathbf{Q}(\mathbf{x}, \mathbf{Y})]
\end{aligned}
$$

the $\mathbf{Y}:=\mathbf{y}$ in $\mathbf{y}(\mathbf{Y})$ generates the autoreference,

$$
\mathbf{Q}(\mathbf{x}, \mathbf{y}) ; \quad \mathbf{Q}[\mathrm{x},[\mathbf{Q}(\mathrm{x}, \mathbf{Y})]], \quad \mathbf{Q}[\mathrm{x},[\mathbf{Q}(\mathrm{x},[\mathbf{Q}(\mathrm{x}, \mathbf{Y})])]], \ldots
$$

neither constructible in \mathcal{P} and nor provable by $\mathcal{T}_{\mathcal{P} \mathcal{A}}$ but its validity follows from the II. P.T. validity. ${ }^{25}$

$$
\begin{gathered}
\overline{\operatorname{Proof}_{\mathcal{P}}}[\mathbf{Q}(\mathbf{x}, \mathbf{y})]=" 1 " \\
I I . \mathbf{P} . \mathbf{T} . \cong\left[\operatorname{Proof}_{\mathcal{P}}[\mathbf{Q}(\mathbf{x}, \mathbf{y})]=" \mathbf{0} "\right]=" 1 " \\
{\left[\left[\operatorname{Proof}_{\mathcal{L}}\left([\mathrm{d}] \mathrm{Q}_{\mathrm{Ext}, \mathfrak{L}_{\mathcal{L}}}=0\right)=" 0 "\right]=" 1 "\right] \equiv I I . \mathrm{P} . \mathrm{T} .}
\end{gathered}
$$

[^14]Now we set
$\underline{\mathbf{p}}=\left[\forall_{\mathbf{x} \in \mathbb{X}} \mid \mathbf{Q}(\mathbf{x}, \mathbf{Y})\right] \triangleq \mathbf{Q}(\mathbb{X}, \mathbf{Y})=\mathbf{p}(\mathbf{Y})$
"no $\mathrm{x} \in \mathbb{X}$ is in the $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$-INFERENCE relation to the variable $Y^{\prime \prime}$ - to its space $\mathbb{Y} \cong\left\{\left\{\mathfrak{Q}_{\mathbb{R}^{*}}\right\}^{\star}-\left\{\mathbb{1}_{\mathfrak{Q}_{\mathbb{R}}}\right\}\right\}$

With the substitution $Y:=p$
the resulting $\mathbf{Q}(\mathbb{X}, \mathbf{p})=\mathbf{p}(\mathbf{p})\left[\cong \mathbf{p} \mid \mathbf{Y} \equiv \mathcal{T}_{\mathcal{P} \mathcal{A}}\right.$-property $]$
contains the autoreference

- the totality $\mathbb{X} / \mathcal{T}_{\mathcal{P A}}$ 'defines' (?!?) its property Y -

$$
\begin{aligned}
& {\left[\forall_{\mathbf{x} \in \mathbb{X}} \mid\left[\mathbf{Q}\left[\mathbf{x},\left[\forall_{\mathbf{x} \in \mathbb{X}} \mid \mathbf{Q}(\mathbf{x}, \mathbf{Y})\right]\right]\right]\right]_{\mathbf{Y}:=\mathbf{p}}=\mathbf{Q}[\mathbb{X},[\mathbf{Q}(\mathbb{X}, \mathbf{Y})]]_{\mathbf{Y}:=\mathbf{p}}} \\
& \underline{\mathbf{Q}(\mathbb{X}, \mathbf{p}) ;} \mathbf{\mathbf { Q } [\mathbb { X } , [\mathbf { Q } (\mathbb { X } , \mathbf { Y })]] , \mathbf { Q } [\mathbb { X } , [\mathbf { Q } (\mathbb { X } , [\mathbf { Q } (\mathbb { X } , \mathbf { Y })])]] , \ldots}
\end{aligned}
$$

As before, by the $I I$. P.T.'s validity, we know:

$$
\begin{gathered}
\overline{\operatorname{Proof}_{\mathcal{P}}}[\mathbf{Q}(\mathbb{X}, \mathbf{p})]=" 1 " \\
\text { II.P.T. } \cong\left[\operatorname{Proof}_{\mathcal{P}}[\mathbf{Q}(\mathbb{X}, \mathbf{p})]=" 0 "\right]=" 1 "
\end{gathered}
$$

$\left[\left[\operatorname{Proof}_{\mathfrak{L}}\left([\mathrm{d}] \mathrm{Q}_{\operatorname{Ext},\left\{1_{\left.\mathfrak{D}_{\mathfrak{L}}\right\}}\right\}}=0\right)=" 0 "\right]=" 1 "\right] \equiv I I . \mathrm{P} . \mathrm{T}$.

$$
\begin{aligned}
& \mathbf{y}, \mathbf{p}, \mathbf{Q}(\mathbf{x}, \mathbf{y}), \mathbf{Q}(\mathbb{X}, \mathbf{p}) \in\left\{\mathcal{P}^{\star}-\mathcal{P}\right\} \cong\left\{\left\{\mathfrak{Q}_{\mathfrak{L}^{*}}\right\}^{\star}-\mathfrak{Q}_{\mathcal{L}}\right\} \\
& \left\{\mathbf{1}_{\mathfrak{Q}_{\mathcal{L}}}\right\} \cong \mathcal{T}_{\mathcal{P} \mathcal{A}} \triangleq \mathbb{X}, \underline{\mathbf{Q}\left(\mathcal{T}_{\mathcal{P} \mathcal{A}}, \mathbf{p}\right)=\mathbf{Q}(\mathbb{X}, \mathbf{p}) \triangleq \mathbf{1 7 G e n} \mathbf{r} \cong \mathbf{Y}}
\end{aligned}
$$

$$
\mathbf{r} \triangleq \mathbf{r}(\mathbf{X})=\mathbf{Q}(\mathbf{X}, \mathbf{p}), \quad \mathbf{1 7 G e n} \mathbf{r} \triangleq \forall_{\mathbf{x} \in \mathbb{X}} \mid \mathbf{r}(\mathbf{X}), \quad \operatorname{card} \mathbf{Y}=\aleph_{1}
$$

The consistent theory $\mathcal{T}_{\mathcal{P A}}$ is constructed by ourselves, from its outside, it does not contain the axiom of its consistency as its own object/formula/status
The attempt to prove the $\mathcal{T}_{\mathcal{P A}}$ consistency by it itself - imbuilding is property (\mathbf{Y}) to itself as its own object defines the autoreference/HALTING PROBLEM, not resultative but, as such, identifiable;

The CLAIM $\mathbf{Q}(\mathbb{X}, \mathbf{p}) / 17 \mathrm{Gen} \mathrm{r}$ is constructed purely syntactically as for $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$, in $\left\{\mathcal{P}^{\star}-\mathcal{P}\right\}$,
but is the descriptory CLAIM of the $\mathcal{T}_{\mathcal{P A}}[\mathbb{X}]$ consistent inference in \mathcal{P}^{26}

[^15]For the channel \mathcal{K}, associated to the inferring $T M$, is being interrupted infinitely, ${ }^{27}$ in any transfer act, the $T M$ and the \mathcal{K} realize the Klein bottle run.

But, in fact we have

We formulate the methodological error for $\mathcal{T}_{\mathcal{P} \mathcal{A}}$ but identifiable by the II. P.T.'s violation, $\Delta \mathrm{S}_{\mathcal{C}}<0$,

$$
\underline{\mathbf{H}}(\mathbf{X})=\mathbf{H}[\mathbf{Q}(\mathbb{X}, \mathbf{Y})]=\mathbf{0}, \quad \mathbf{H}(\mathbf{X} \mid \mathbf{Y}) \cong \mathbf{H}\left(\mathbb{X} / \mathcal{T}_{\mathcal{P} \mathcal{A}}\right)>\mathbf{0}
$$

$$
\mathbf{H}_{\mathcal{C}}=\mathbf{H}(\mathbf{X})-\mathbf{H}(\mathbf{X} \mid \mathbf{Y})=\underline{0}-\mathbf{H}\left(\mathbb{X} / \mathcal{T}_{\mathcal{P} \mathcal{A}}\right)<0
$$

The another form of the II. P.T. is formulated:

$$
\mathrm{Q}(\mathbb{X}, \mathrm{p}) / 17 \mathrm{Gen} \mathrm{r}=" 1^{28}
$$

[^16]12. Appendix 1 - Gödel Theorems

For every recursive and consistent

CLASS OF FORMULAE $\kappa,{ }^{30}$

 and outside this set ${ }^{31}$,exists the true ("1") CLAIM r
$\left[\mathbf{r} \notin \kappa, \mathbf{r} \notin \mathbf{F} \lg (\kappa), \mathbf{r} \in \mathbf{Y}\right.$, card $\left.\mathbf{Y}=\aleph_{1}\right]$
with a free $V A R I A B L E v$ that
neither the $C L A I M$ vGen \mathbf{r}
nor the $C L A I M \operatorname{Neg}(v G e n r)$ belongs to the set $\mathrm{Flg}(\kappa)$

$$
\begin{gathered}
{[\text { vGen } \mathbf{r} \notin \mathbf{F l g}(\kappa)] \&[\operatorname{Neg}(\text { vGen } \mathbf{r}) \notin \mathbf{F l g}(\kappa)],} \\
\mathbf{r} \triangleq \mathbf{r}(\mathbf{X})=\mathbf{Q}\left[\mathbf{X}, \forall_{\mathbf{x} \in \mathbb{X}} \mid \mathbf{Q}(\mathbf{x}, \mathbf{Y})\right], \quad 17 \mathrm{Gen} \mathbf{r} \triangleq \forall_{\mathbf{x} \in \mathbb{X}} \mid \mathbf{r}(\mathbf{X})
\end{gathered}
$$

$C L A I M S$ vGen r and $\underline{N e g(v G e n ~ r)}$

 are not κ-PROVABLE the $C L A I M$ vGen r is not κ-DECIDABLE.[They are elements of the formulating/syntactic meta-system κ^{\star}, inconsistent against κ.]

[^17]II. Gödel theorem (corrected semantically by [19] and [23]): ${ }^{32}$

If κ is an arbitrary recursive and consistent

CLASS OF FORMULAE,

then any $\boldsymbol{C L A I M}$ y $\left[\mathbf{y} \in \mathrm{Y}, \operatorname{card} \mathbf{Y}=\aleph_{1}\right]$ saying that $C L A S S \kappa$ is consistent must be constructed outside this set ${ }^{33}$ and for this fact, it is not κ - $\boldsymbol{P R} \boldsymbol{O} \boldsymbol{V} \boldsymbol{A} \boldsymbol{B L} \boldsymbol{E}^{34}$

The consistency of the $\boldsymbol{C L A S S}$ OF FORMULAE κ is tested by the relation $\underline{\mathbf{W i d}(\kappa)^{35}}$

$$
\operatorname{Wid}(\kappa) \sim(\mathbf{E x})\left[C L A I M(\mathbf{y}) \& \overline{\operatorname{Proof}_{\kappa}(\mathbf{y})}\right]
$$

The $\boldsymbol{F O R M U L A E}$ class κ is consistent \Leftrightarrow
at least one κ-UNPROVABLE CLAIM y exists.
Now $\mathrm{y}=\underline{17 \mathrm{Gen} \mathrm{r}} \notin \mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}, \quad \kappa=\mathcal{T}_{\mathcal{P} \mathcal{A}} \subset \mathcal{P} \subset \mathcal{P}^{\star}$

$$
\begin{gathered}
{\left[\left[\operatorname{Proof}_{\mathcal{P}}(\underline{17 \mathrm{Gen} \mathrm{r}})=" 0 "\right]=" 1 "\right] \equiv \operatorname{Wid}\left(\mathcal{T}_{\mathcal{P} \mathcal{A}}\right)} \\
\cong \\
{\left[\left[\operatorname { P r o o f } _ { \mathcal { L } } \left([\mathrm{d}]{\left.\left.\left.\mathrm{QExt}, \mathcal{Q}_{\mathcal{L}}=0\right)=" 0 "\right]=" 1 "\right] \equiv \text { II. } \mathbb{P} . T . T .}^{" 0} .\right.\right.\right.}
\end{gathered}
$$

[^18]
13. Appendix 2

Under the adiabaticity, $[\mathrm{d}] \mathrm{Q}_{\text {Ext }}=0$, of the system \mathfrak{L} it is not possible to derive such a CLAIM that is stating this adiabatic supposition.
This $\boldsymbol{C L A I M}$ is constructible not adiabaticaly, outside the adiabatic \mathfrak{L} only.

Autoreference/HALTING PROBLEM Self-Observation

- the CLAIM about adiabaticity of \mathfrak{L} within \mathfrak{L} -- the $C L A I M$ about consistency of $\mathcal{T}_{\mathcal{P A}}$ within \mathcal{P} is excluded.

This is the nature law expressed by the Caratheodory formulation of the II. P.T. and by the Gödel theorems' sense.

The eye can not look at and into itself.
Any mixing of the various observation/expressing/approach levels leads to the paradoxes and is to be excluded.

Under the consistency of the system \mathcal{P} it is not possible to derive such a CLAIM that is stating this consistency supposition.
This CLAIM is constructible purely syntactically, outside the consistent \mathcal{P} only (in $\mathcal{P}^{\star}-\mathcal{P}$). ${ }^{36}$

[^19]

That's me or it is the picture of me - P1.

(2).PDF

This is the mirror picture of me - P2.

(3).PDF

Here I have 'ordered' the mirror picture P2 to step out from the mirror a stand, e.g., in front of me/P1 having the right hands overlapped.

CHAOS, EQUILIBRIUM, INFINITE CYCLE, PARADOX by mixing of various observation levels.

References

[1] Hejna, B. Generování tabulek přechodů konečných automatů. Ing. Diplomová práce, Praha, FEL ČVUT, Praha, 1973.
[2] Hejna, B.; Vajda, I. Information transmission in stationary stochastic systems. AIP Conf. Proc. 1999, 465 (1), 405-418. DOI: 10.1063/1.58272.
[3] Hejna, B. Informační kapacita stacionárních fyzikálních systémů. Ph.D. Dissertation, ÚTIA AV ČR, Praha, FJFI ČVUT, Praha, 2000.
[4] Hejna, B. Generalized Formula of Physical Channel Capacities.International Journal of Control, Automation, and Systems 2003, 15.
[5] Hejna, B. Tepelný cyklus a přenos informace. Matematika na vysokých školách: Determinismus a chaos; JČMF, ČVUT: Praha, 2005; pp 83-87.
[6] Hejna, B. Thermodynamic Model of Noise Information Transfer. In AIP Conference Proceedings, Computing Anticipatory Systems: CASYS'07 - Eighth International Conference; Dubois, D., Ed.; American Institute of Physics: Melville, New York, 2008; pp 67-75. ISBN 978-0-7354-0579-0. ISSN 0094-243X.
[7] Hejna, B. Informační význam Gibbsova paradoxu. In Matematika na vysokých školách: Variační principy; JČMF: Praha, 2007; pp 25-31.
[8] Hejna, B. Proposed Correction to Capacity Formula for a Wide-Band Photonic Transfer Channel. In Proceedings of International Conference Automatics and Informatics'08, VII-1 - VIII-4; Atanasoff, J., Ed.; Society of Automatics and Informatics: Sofia, Bulgaria, 2008.
[9] Hejna, B. Gibbs Paradox as Property of Observation, Proof of II.Principle of Thermodynamics. In AIP Conf. Proc., Computing Anticipatory Systems: CASYS‘09: Ninth International Conference on Computing, Anticipatory Systems, 3-8 August 2009; Dubois, D., Ed.; American Institute of Physics: Melville, New York, 2010; pp 131-140. ISBN 978-0-7354-0858-6. ISSN 0094-243X.
[10] Hejna, B. Informační termodynamika I.: Rovnovážná termodynamika přenosu informace; VŠCHT Praha: Praha, 2010. ISBN 978-80-7080-747-7.
[11] Hejna, B. Thermodynamics, Information and Telomera. In Proceedings of International Conference Automatics and Informatics'10; Atanasoff, J., Ed.; Society of Automatics and Informatics: Sofia, Bulgaria, 2010; pp I-59-I-64.
[12] Hejna, B. Informační termodynamika II.: Fyzikální systémy přenosu informace; VŠCHT Praha: Praha, 2011. ISBN 978-80-7080-774-3.
[13] Hejna, B. Unification and Convergence of Quantum Information Channel Capacities. In Proceedings of International Conference Automatics and Informatics'12; Atanasoff, J., Ed.; Society of Automatics and Informatics: Sofia, Bulgaria, , ISSN 1313-1869, 2012.
[14] Hejna, B. Recognizing the Infinite Cycle: A Way of Looking at the HALTING PROBLEM. Lecture on CASYS'11 Conference, August 8-13, 2011, Liege, Belgium, Proceedings of the Tenth International Conference CASYS'11 on Computing Anticipatory Systems, Lie‘ge, Belgium, August 8-13, 2011, D. M. Dubois (Ed.), Publ. by CHAOS, 2012. ISSN 1373-5411.
[15] Hejna, B. Information Thermodynamics and Cell Telomere. AIP Conf. Proc., Computing Anticipatory Systems: CASYS‘011: Tenth International Conference on Computing, Anticipatory Systems, August 20011; Dubois, D., Ed.; IJCAS, International Journal of Computing Anticipatory Systems vol. 15, ISSN 1373-5411, ISBN 2-930396-18-0, abstract in ISBN 2-930396-14-8, Liege, Belgium, 2011.
[16] Hejna, B. Information Capacity of Quantum Transfer Channels and Thermodynamic Analogies , Thermodynamics - Fundamentals and its Application in Science, Ricardo Morales-Rodriguez (Ed.), ISBN: 978-953-51-0779-8, InTech, 2012. Available from: http://www.intechopen.com/articles/show/title/information-capacity-of-quantum-transfer-channels-and-thermodynamic-analogies
[17] Hejna, B. Information Thermodynamics, Thermodynamics - Physical Chemistry of Aqueous Systems, Juan Carlos Moreno-Piraján (Ed.), ISBN: 978-953-307-979-0, InTech, 2011 Available from: http://www.intechopen.com/articles/show/title/information-thermodynamics
[18] Hejna, B. Informační termodynamika III.: Automaty, termodynamika, přenos informace, výpočet a problé, zastavení; VŠCHT Praha: Praha, 2013. ISBN 978-80-7080-851-1.
[19] Hejna, B. Information Thermodynamics and Halting Problem, Recent Advances in Thermo and Fluid Dynamics, Mofid Gorji Bandpy (Ed.), ISBN: 978-953-51-2239-5, InTech, 2015. Available from:
http://www.intechopen.com/books/recent-advances-in-thermo-and-fluid-dynamics
[20] Hejna, B. Gödel Proof, Information Transfer and Thermodynamics; Lecture on IIAS Conference, August 3-8, 2015, Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetics, Vol. 15, No. 2
[21] Hejna, B. Cancer and Structure; Lecture on IIAS Conference, August 2016, Baden-Baden, Germany, Journal IIASTransactions on Systems Research and Cybernetics, Researcg Spotlight in Modeling and Simulation of Physical and Biological Systems Depending on Space, Time, Retardation, Anticipation - Vol. 1, ISBN 978-1-897546-39-0 - and in The Pharmaceutical and Chemical Journal, Vol. 5, ISSN 2349-7092, 2018.
[22] Hejna, B. Information Transfer and Thermodynamics Point of View on Goedel Proof, the chapter in Ontology in Information Science, InTech, 2018, Ciza Thomas (Ed.), College of Engineeirng Trivandrum, India, ISBN 978-953-51-3887-7, ISBN 978-953-51-3888-4,
[23] Hejna, B. Informační termodynamika IV.: Gödelovy věty, přenos informace, termodynamika a Caratheodoryho věty; VS̆CHT Praha: Praha, 2017: ISBN 978-80-7080-985-3
[24] Hejna, B. Goedel and Caratheodory Theorems; Lecture on IIAS Conference, August 2017, Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetics, Rversible Time, Retardation and Anticipation in Quantum Physics, Biology and Cybernetics - Vol. 1, ISBN 978-1897456-42-0
[25] Hejna, B. Basic Ideas of Information Thermodynamics (2019), Journal of Basic and Applied Sciences, Vol. 15, ISSN 1814-8085/E-ISSN 1927-5129/19.
[26] Hejna, B. Gödel Proof, Information and Physics; Lecture on IIAS Conference, August 2019 Baden-Baden, Germany, Journal IIAS-Transactions on Systems Research and Cybernetic, Cognitive Thinking Analogies and Insights in General and Quantum Physics, Modelling and Simulation of Dynamic System and Processes Vol. 1., ISBN 978-1-897546-81-9.
[27] Hejna, B. (Ed.); Lasker E. (Ed.) Journal IIAS-Transactions on Systems Research and Cybernetic, Cognitive Thinking Analogies and Insights in General and Quantum Physics, Modelling and Simulation of Dynamic System and Processes Vol. 1 (2019), ISBN 978-1-897546-81-9.
[28] Common Gnoseological Meaning of Gödel and Caratheodory Theorems, the chapter in Ontology in Information Science, InTech, 2019, ISBN 978-1-78985-548-7, DOI: 10.5772/intechopen.87975.
Available from:
https://www.intechopen.com/online-first/common-gnoseological-meaning-of-g-del-and-caratheodory-theorems1

[^0]: ${ }^{1}$ Along the given the trajectory $l_{\mathfrak{Q}_{\mathfrak{E}}}$ with the given starting point, reversibly or irreversibly. Or such states which are the part of the $\mathfrak{L} / \mathfrak{Q}_{\mathfrak{L}}$'s outer construction and thus of the whole $l_{\mathfrak{Q}}$'s definition.
 ${ }^{2}$ Rosser-Gödel theorem.
 ${ }^{3}$ Far from (!) "In...." Attempts to prove/ TO PROVE/INFER it within the system $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$ leads to the inconsistency of the consistent (!) system \mathcal{P}_{κ} (in fact we are entering into the inconsistent metasystem \mathcal{P}^{\star} the real sense of the Proposition V).
 ${ }^{4}$ It is the META-CLAIM not writable within the $\mathcal{T}_{\mathcal{P A}}$ language.

[^1]: ${ }^{5}$ Which is the part of the wider meta-language with the vocabulary $\{p, V, T\}$ in which we construct/define this adiabatic state space $\mathfrak{Q}_{\mathfrak{L}} /$ system \mathfrak{L} by its complement $\{p, V, T\}-\mathfrak{Q}_{\mathfrak{L}}$ and the trajectory $l_{\mathfrak{Q}_{\mathfrak{L}}}$ by its complement $\mathfrak{Q}_{\mathfrak{L}}-l_{\mathfrak{Q}_{\mathfrak{L}}}\left[\{\mathbf{p}, \mathbf{V}, \mathbf{T}\}-\left(\mathfrak{Q}_{\mathfrak{L}}-l_{\mathfrak{Q}_{\mathfrak{L}}}\right)\right]$ but, including its initial state from $\mathfrak{Q}_{\mathfrak{L}}$ - from outside.

[^2]: ${ }^{6}$ The original bottle should be the autoconstructive/autoreferential. The bottle should construct itself by stepping out from itself and form itself from its material as the two surfaces again and, by not with their own means.

[^3]: ${ }^{7}$ A, B - a finite alphabets of elements x of X and y of Y .
 ${ }^{8}$ Shannon entropies - average amounts of information in any $\mathrm{x} \in \mathbf{A}$ and $\mathbf{y} \in \mathbf{B}$.

[^4]: ${ }^{9}$ Also it is valid for the information \mathbf{i} with the probability $\mathbf{p} .(\cdot), \mathrm{i}_{\mathbf{X}}+\mathrm{i}_{\mathbf{Y} \mid \mathrm{X}}=\mathrm{i}_{\mathbf{Y}}+\mathrm{i}_{\mathbf{X} \mid \mathbf{Y}}, \quad \mathbf{i}=-\ln \mathbf{p} .(\cdot)$.

[^5]: ${ }^{10}$ In the reversible Carnot Cycle is $\Delta \mathrm{Q}_{0 \mathrm{x}}=0$, no production of (positive) noise heat, $\Delta \mathrm{Q}_{0 \mathrm{x}}>0$, arises.

[^6]: ${ }^{11} H(X) \geq H(Y)=T(X ; Y)=\Delta I \geq 0 ;$ the information form of the $I I$. P.T. is implied for the reversible case; Brillouin, Landauer, Gershenfeld, Bennet.

[^7]: ${ }^{12} \mathrm{Or}$ of the whole system in which the $\boldsymbol{C M}$ is running.
 ${ }^{13}$ The information member I does not exist in the traditional (differential) formulation of this theorem; it is $\mathrm{d} S \geq 0$ only.

[^8]: ${ }^{15}$ Terminal symbols $\mathbf{T}=\{I, B\} \bullet$ the instruction $\left(s_{i}, x_{k}, s_{j}, y_{l}, D\right) \bullet$ the configuration $\left(\vec{\sigma}, s_{[\cdot]}, \vec{\rho}\right) \bullet$ the configuration type $\left(\varepsilon\left[\boldsymbol{\sigma}, s_{[\cdot]}, \boldsymbol{\rho}\right] \varepsilon\right) \quad \bullet \boldsymbol{X}=\left(\overrightarrow{\boldsymbol{\sigma}}, s_{[\cdot]}, \overrightarrow{\boldsymbol{\rho}}\right) \triangleq\left(\mathbf{B} \boldsymbol{\sigma}, s_{[\cdot]}, \boldsymbol{\rho} \mathbf{B}\right)$ the general configuration type, e.g. B $\overrightarrow{\mathbf{I B}} s_{[\cdot]} \overrightarrow{\mathbf{B I B}}$. Also $\mathrm{S}_{\mathrm{i}_{\mathrm{p}}} \longrightarrow\left(\mathrm{s}_{\mathrm{i}_{\mathrm{p}}}, \mathrm{x}_{\mathrm{k}_{\mathrm{p}}}, \mathrm{s}_{\mathrm{j}_{\mathrm{p}[+1]}}, \mathbf{y}_{\mathrm{l}_{\mathrm{p}}}, \mathrm{D}_{\mathrm{p}}\right) \mathrm{S}_{\mathrm{j}_{\mathrm{p}[+1]}}, \mathbf{L}^{\prime} T M=\left\{\left(\mathrm{s}_{\mathbf{i}_{\mathrm{p}}}, \mathbf{x}_{\mathbf{k}_{\mathrm{p}}}, \mathrm{s}_{\mathbf{j}_{\mathrm{p}[+1]}}, \mathbf{y}_{\mathrm{l}_{\mathrm{p}}}, \mathbf{D}_{[\cdot]}\right)\right\}_{\mathrm{p}=1}^{\mathrm{p}=\mathrm{p}_{\text {last }}}$, instructions have been performed yet, $[14,19,18]$.

[^9]: ${ }^{16}$ In our thermodynamic analogy following the Caratheodory II. P.T.
 ${ }^{17}$ With the Gödel number \mathbf{x},

[^10]: ${ }^{18}$ Now the Moore's but not only. Information transmission (not cyclical or cyclical) or the heat energy transformation (not cyclical or cyclical) is also describable by the terminology of regular grammars and finite automata.

[^11]: ${ }^{19}$ The measuring with the zero 'distance' between the measuring and measured - the Gibbs Paradox.

[^12]: ${ }^{20}$ It is against the Caratheodory theorems. The existence of the Perpetuum Mobile $I I$. and I. is required. It also requires the time arrow change $\frac{S_{\mathcal{C}}}{t}>0$. 'Solving' this 'problem' represents the belief in the Maxwell demon's functionality. The need of distinguishing between the measured and the measuring - to avoid the HALTING PROBLEM - leads to the formulation of the Gödel theorems and their physical form as the Caratheodory theorems and vice versa.
 ${ }^{21}$ Used as input messages. There's a need for a 'step-aside' outside the measured to gain a not zero and positive result $T(X ; Y)=H(X)-H(X \mid Y)=H(Y)>0$

[^13]: ${ }^{22}$ The same $H(Y)=H(Y \mid X), H(X \mid Y)$ and the whole configuration (type) are repeated infinitely.

[^14]: ${ }^{23}$ The x and y are the Gödel numbers.
 ${ }^{24} \mathcal{P}^{\star} \cong\left\{\mathfrak{Q}_{\mathfrak{R}^{\star}}\right\}^{\star}, \mathcal{P} \cong\left\{\mathfrak{Q}_{\mathfrak{L}}\right\}, \mathcal{T}_{\mathcal{P} \mathcal{A}} \cong\left\{l_{\mathfrak{Q}_{\mathfrak{S}}}\right\}, x \cong l_{\mathfrak{Q}_{\mathfrak{s}}}$.
 ${ }^{25}$ And within the PM - Principia Mathematica: B. Russel, L. Whitehead.

[^15]: ${ }^{26}$ Also the Rao-Cramer inequality from the Mathematical Statistics documents it.

[^16]: ${ }^{27}$ It is the reason for the non expressibility of the consistency of the theory $\mathcal{T}_{\mathcal{P} \mathcal{A}} C L A I M$ - of the axiom of its consistency expressing its general property - in it itself. The theory $\mathcal{T}_{\mathcal{P} \mathcal{A}}$ does not contain this axiom as its own formula.
 ${ }^{28}$ The same methodolgical error represent the Epimenides liar and the Richard paradox - the property of a certain totality is not formulable within it as its own object part.

[^17]: ${ }^{29}$ Gödel-Rosser theorem.
 ${ }^{30}$ Recursively axiomatizable and with the given set of the inference rules (Peano/Robinson arithmetics). $\kappa=\mathcal{P}$ is from the PM - Principia Mathematica: B. Russel, L. Whitehead. 1910, 1912, 1913, 1927., containing the Peano arithmetics $\mathcal{T}_{\mathcal{P} \mathcal{A}}$. On the $\mathcal{T}_{\mathcal{P} \mathcal{A}}$ the real and complex number arithmetics is based. The $\mathbf{P M}$ is the textitformal-syntax-logic-semantic base for the physical teories/hypotheses.
 ${ }^{31}$ Far from "...[PA-]arithmetic and sentencial/SENTENCIAL" and far from (!) "In"

[^18]: ${ }^{32}$ Gödel-Rosser theorem.
 ${ }^{33}$ Far from "...[PA-]arithmetic and sentencial/SENTENCIAL" and far from (!) "In"
 ${ }^{34}$ Any attempt to prove/PROVE/INFER it in the system \mathcal{P} / κ leads to the requirement for inconsistency of the consistent (!) system \mathcal{P} / κ (in fact we are entering into the inconsistent meta-system $\mathcal{P} \star$ see the real sense of the Proposition V.).
 ${ }^{35}$ Die Widerspruchsfreiheit - the Consistency.

[^19]: ${ }^{36}$ The Great Fermat's theorem is not inferrable within $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$ either - it is not of the $\mathcal{P} / \mathcal{T}_{\mathcal{P} \mathcal{A}}$ type, although is arithmetical. In fact it is not a part of the \mathcal{P} but of the $\mathcal{P} \star-\mathcal{P}, \mathcal{P} \star \cong\{\mathbf{p}, \mathbf{V}, \mathbf{T}\}=\mathbb{R}^{3}$.

