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Common Gnoseological Meaning of Goedel
and Caratheodory Theorems

1. Introduction

Vienna Circle

logical positivism - physicalism

Rudolph Carnap Otto von Neurath :

1931 - 1935

"Any scienti�cally meaningful statement

is expressible in physical terms

- about a movement in the observable space and time -

or, if the statement is not expressible this way

it is meaningful scienti�cally

when it is convertible to a statement about a language,

otherwise it is of no scienti�c meaning."

⇒
mutual relation among structures/languages of:

Thermodynamics − Energy Transformation

Information Theory − Message/Information Transfer

Computing Theory − Computing/Inference

Adiabatic Theory



COMPUTING TURING COMPUTING/INFERENCE

THEORY MACHINE PROCESS

TM

FINITE-STATE STATE/CONFIGURATION

CONTROL UNIT TRANSFORMATIONS

INFORMATION SHANNON MESSAGE/INFORMATION

THEORY TRANSFER CHAIN TRANSFER

(X,K,Y) PROCESS

TRANSFER

CHANNEL

THERMODYNAMICS CARNOT MACHINE HEAT ENERGY

CM TRANSFORMATION

CARNOT CYCLE PROCESS

THERMODYNAMIC THERMODYNAMIC STATES'

ADIABATIC ADIABATIC DEVELOPING

THEORY SYSTEM PROCESS

L



Processes in all these structures

run in the �nite physical world

and follow its laws.

We model them by the states' θL
[·] trajectories lQL

within the heat isolated

- [d]QExt=0 -

adiabatic system L/QL where is valid:



Caratheodory common formulation of the II. P.T. :

In the arbitrary vicinity of every state

of the state space QL of the adiabatic system L
exist states not reachable

from the starting state adiabatically ([d]QExt=0)

(or the states not reachable by the system at all).

1

For the consistency of
the Peano arithmetic theory TPA

the analog is expressed by:

Gödel incompletness theorems:2

For the theory TPA exists the true (”1”) CLAIM
that either this CLAIM and its NEGATION

is NOT PROVABLE within the system P/TPA.
3

- CLAIM about the TPA consistency especially -

The CLAIM saying that theory TPA is consistent

is not PROVABLE by its means (P) - by itself.
4

1Along the given the trajectory lQL
with the given starting point, reversibly or irreversibly. Or such

states which are the part of the L/QL's outer construction and thus of the whole lQL
's de�nition.

2Rosser-Gödel theorem.
3Far from (!) "In...." Attempts to prove/TO PROVE/INFER it within the system P/TPA leads to the

inconsistency of the consistent (!) system Pκ (in fact we are entering into the inconsistent metasystem PF -
the real sense of the Proposition V ).

4It is the META-CLAIM not writable within the TPA language.



The adiabatic trajectories lQL
- within the L/QL

5

l2b isothermic irreversible expansion

l2b′ adiabatic irreversible expansion

l2d izobaric irreversible expansion

l2e izentropic reversible expansion

l3 izochoric irreversible change

l4 not possible
5Which is the part of the wider meta-language with the vocabulary {p,V,T} in which we con-

struct/de�ne this adiabatic state space QL/system L by its complement {p,V,T}−QL and the trajectory
lQL

by its complement QL−lQL
[{p,V,T}−(QL−lQL

)] but, including its initial state from QL - from outside.



Peano Axioms/Inference system P/Theory TPA

1/P N0 = N ∪ {0};
2 ∀x∈N0|[∃y∈N|[y = f(x)]];

3/P ∀x∈N0|[0 6= f(x)];

4 ∀x∈N0|[[f(x) 6= f(y)]⇒ (x 6= y)];

5/P axiom/axiomatic schema of the mathematical induction:

[[ϕ(0) ∧ ∀x∈N0|ϕ(x)⇒ ϕ[f(x)]]⇒ ∀x∈N0|ϕ(x)]

Inference rule Modus Ponensa

` b, ` (b⇒ c)

` c
, c - immediate consequence of b

aBesides the Generalization. The Substitution function from the Principia Mathematica is used for
the evaluation of the variables be their values or their quanti�cation.

”1” - arithmeticity of the P
∼=

adiabaticity of the L/QL.

Consistent TPA inference within P
∼=

moving along trajectories lQL
within the QL/L.

The states on the adiabatic trajectories

(also irreversible)

then model the consistently

inferred/inferrable PA-FORMULAS .



2. Autoreference and Caratheodory

Any adiabatic trajectory lQL
is de�ned

by its complement QL − lQL
,

within its de�nition space QL/system L and,
the QL − lQL

is not reachable within lQL
itself.

For the trajectory lQL
could 'prove' - by itself -

its own adiabatic property [d]QExt=0
it should have to contain its own de�nition

as its own status!

The lQL
would be autoreferential/autoconstructive:

as the adiabatic one to construct, not adiabatically,
dQExt 6=0, the adiabatic, [d]QExt=0, spaces QL/QL − lQL

and de�ne, by this way, itself - as its own status.



It is the Klein bottle building from the original's inside.

The original's outer surface de�nes its inner surface,
which is now the model of the trajectory lQL

and its outer surface is the model of the QL − lQL
.

Within the inner surface we want to prove its internality
by reaching its outer surface with an inner? curve.

Within the Klein bottle, constructible only
by the outer manipulation with the original one,

one curve is possible but, it is crossing,
contradictorily against the original bottle,
its inner and outer space simultaneously.6

Only we, as the outer constructers of the original
bottle know its all properties.

The adiabatic trajectory lQL
does not conatin itself

as the object of its own
- it does not know its own properties -

and it itself, by its means, does not reveal them.

Only we, as the outer constructers of the QL/L//P
know their adiabaticity//consistency.

6The original bottle should be the autoconstructive/autoreferential. The bottle should construct itself
by stepping out from itself and form itself from its material as the two surfaces again and, by not with
their own means.



3. Information Transfer Channel

KDef
= [X, ε, Y]

X
Def
= [A, pX(·)] - the transmitter of input messages

x ∈ A+

Y
Def
= [B, pY(·)] - the receiver of output messages y ∈ B+,7

ε - the maximal probability of y = b errorneous for x = a,

pX(·), pY(·) - the probability distribution on A and B,
A = B = T

H(X), H(Y) - the input/output information entropies8

H(X)
Def
= −

∑
A

pX(·) ln pX(·)

H(Y)
Def
= −

∑
B

pY (·) ln pY (·)

i(·) = − ln(·), i(·|·) = − ln(·|·)

7A, B - a �nite alphabets of elements x of X and y of Y.
8Shannon entropies - average amounts of information in any x ∈ A and y ∈ B.



H(X|Y), H(Y |X) - the loss/noise entropy

H(X|Y)
Def
= −

∑
A

∑
B

pX,Y(·, ·) ln pX|Y (·|·)

H(Y |X)
Def
= −

∑
A

∑
B

pX,Y (·, ·) ln pY |X(·|·)

For the transinformation T(X; Y), T (Y ;X)9

T(X; Y)
Def
= H(X)−H(X|Y)

T (Y ;X)
Def
= H(Y )−H(Y |X)

the channel equation is valid

H(X)−H(X|Y) = H(Y )−H(Y |X)

(X, K, Y) - Shannon Transfer Chain

9Also it is valid for the information i with the probability p·(·), iX + iY|X = iY + iX|Y, i· = − ln p·(·).



4. Carnot Machine

l0-l1: izothermal exp. transfers the heat ∆QW from A to L,
the work ∆A0,1 = ∆QW is given at TW

l1-l2: adiabatic exp. cools L from TW to T0, the work
∆A1,2 = −∆U is given from the internal energy U of L

l2-l3: izothermal comp. transfers the heat ∆Q0 < ∆QW
10

from L to B at T0, consumes the work −∆A2,3 < ∆A0,1

l3-l0: adiabatic comp. heats L from T0 to TW, ∆U > 0,
and consumes the work −∆A3,4 = ∆A1,2

10In the reversible Carnot Cycle is ∆Q0x = 0, no production of (positive) noise heat, ∆Q0x > 0, arises.



The resulting output work for a reversible Carnot Cycle
O is

∆A = ∆QW − |∆Q0|
∆A = ∆Al0−l1 + ∆Al1−l2 + ∆Al2−l3 + ∆Al3−l0

Kelvin's form of the II. P. T. for a reversible case is∑
i∈[W,0]

∆Qi

Ti

4
=

∮
O

δQ(Θ)

Θ
= 0

Thomson-Planck's formulation of the II. P. T. says:

It is impossible to construct a heat cycle

transforming all heat delivered to the medium L
(going through this cycle)

into the equivalent amount
of the mechanical work ∆A.

The I. P.T. is valid⇔ the tansformation e�ciency ηmax:

ηmax
Def
=

∆A

∆QW
=

∆QW − |∆Q0|
∆QW

=
TW −T0

TW
< 1



5. Carnot Cycle and Noiseless Information Transfer

Recording/transmitting/computing an information ∆I

at the temperature Θ requires the energy ∆W

∆W ≥ k ·Θ ·∆I, now ∆W
4
= ∆QW

The changes of the entropies of the medium L with O
are now considered informationally on a K

H(X)
Def
=

∆QW

kTW
, H(Y|X)

Def
= 0

H(Y)
Def
=

∆A

kTW
=

∆QW −∆Q0

kTW

=
∆QW

kTW
· ηmax = H(X) · ηmax

4
= ∆I

11

H(Y)−H(Y|X) = H(X)−H(X|Y)

With our thermodynamic substitutions we gain:

11H(X) ≥ H(Y ) = T (X;Y ) = ∆I ≥ 0; the information form of the II. P.T. is implied for the reversible
case; Brillouin, Landauer, Gershenfeld, Bennet.



∆QW

kTW
· ηmax − 0 =

∆QW

kTW
−H(X|Y)

H(X|Y) =
∆QW

kTW
· (1− ηmax) =

∆Q0

kTW

The change ∆SAB within the change ∆SC

of the global CM 's heat entropy SC

within its subsystem AB is

∆SAB = −∆Q0

TW
+

∆Q0

T0
=

∆Q0

T0
· ηmax =

∆QW

TW
· ηmax



The change ∆SL of the heat entropy SL within

the change ∆SC of the whole heat entropy SC of the CM
12

is

∆SL =

∮
O

δQ

T
=

∆QW

TW
−∆Q0

T0
= 0

The resultant change ∆SC of CM and the output ∆I is

∆SC = ∆SL + ∆SAB =
∆QW

TW
· ηmax = k·∆I = k·H(Y)

The Brillouin's extended form of the II. P.T.

is valid13

d(SC − k·I) ≥ 0

∆SC − k·T (X ;Y ) = k·H(X) · (ηmax − ηmax)
∆SC − k·∆I = 0 ∆(SC − k·I) = 0

12Or of the whole system in which the CM is running.
13The information member I does not exist in the traditional (di�erential) formulation of this theorem;

it is dS ≥ 0 only.



F The reversible Carnot Cycle O

� the medium L going through the O

• the whole CM

work as thermodynamic models of

F the information transfer process T without noise,14

� the channel K with its transfer process T

• the Shannon Transfer Chain (X, K, Y)

∼=

14H(Y|X) = 0



6. Turing Machine

Turing Machine TM - driven by the program −→η

−→η = (ηp)
p∈N
p=1 = [(si, xk, sj, yl, D)p]p∈Np=1, |−→η | ∈ N

η[·] = (si[·], xk[·], sj·[+1], yl[·], D)

si - the status of the CUTM in the actual step p ∈ N
xk - the input symbol on the input-output tape in the p

yl - the output symbol overwriting xk in the step p

sj - the de�ned CUTM 's status for the step p + 1

D - the CUTM read-write head moving Left|Right
after yl has been written instead of xk in the step p

[yl, xk ∈ T = A = B]

(−→σ , si,
−→% )/(xk, si,yl) - the TM 's/CUTM 's con�gurations



With the I/O transformations xk −→ yl,

the CUTM 's states' transitions are performed,

sip

(xkp, ylp, Dp)
−→ sjp[+1]

de�ning the regular grammar and the language LCUTM

sip −→ (xkp,ylp,Dp)sjp[+1]

LCUTM
= {(xkp,ylp,Dp)}p=last

p=1

and the regular language LTM of the con�gurations
which the TM has gone through so far15

Sip −→ (−→σ p, sip,
−→ρ p)Sjp[+1]

LTM = {(−→σ p, sip,
−→ρ p)}p=plast

p=1

15Terminal symbols T = {I, B} • the instruction (si, xk, sj , yl, D) • the con�guration (−→σ , s[·],−→ρ ) • the con�guration
type (ε

[
σ, s[·],ρ

]
ε) • X = (−→σ , s[·], −→ρ )

4
= (Bσ, s[·],ρB) the general con�guration type, e.g. B

−→
IBs[·]

−→
BIB. Also

Sip −→ (sip ,xkp , sjp[+1]
,ylp ,Dp)Sjp[+1]

, L′TM = {(sip ,xkp , sjp[+1]
,ylp ,D[·])}p=plast

p=1 , instructions have been performed
yet, [14, 19, 18].



7. Inference as Informatiom Transfer

The right TM 's program −→η 16

generates the resultative TM 's con�guration sequence
and

similar is valid for the information transfer acts
and the (X, K, Y)'s con�gurations.

Now, the inferred CLAIM ai is the last member
of the input FORMULAE chain −→x 17

and the ai's P/TPA inference by Modus Ponens

is realized as the y's information transfer T in K.

[
−→
x|y] = [a0, a1, a2, . . . ai−1] @ [−→x ]

[−→x ] = [a0, a1, a2, . . . ai−1; ai]

[y] = ai @ [−→x ]

Entropies for this ai's P/TPA inference
from −→x realized by the y = ai transfer from

−→x
through a K in its status [

−→
x|y] are:

H(X|Y) ∼= H(a0, a1, . . . , ai−1) = H(
−→
x|y), H(Y) = H(y)

H(X) ∼= H(a0, a1, . . . , ai−1; ai) = H(−→x )

H(Y) ∼= H(a0, a1, . . . , ai−1; ai)−H(a0, a1, . . . , ai−1)

16In our thermodynamic analogy following the Caratheodory II. P.T.
17With the Gödel number x,





8. Carnot Cycle, Automata and Information Transfer

Any CM , now with O, is describable as an automaton18

with the resulting regular grammar and language L,

{θi
l0
→ (∆Ai)θi

l0
}, L = {∆Ai} and, as

for K
Hi(X) =

∆Ai
l0−l1

kTi
W

, Hi(X|Y) =
|∆Ai

l2−l3
|

kTi
W

Hi(Y) = H i(X) − H i(X|Y ) =
∆Ai

kTi
W

>0

∆Ai = ∆Ai
l0−l1 + ∆Ai

l1−l2 + ∆Ai
l2−l3 + ∆Ai

l3−l0
18Now the Moore's but not only. Information transmission (not cyclical or cyclical) or the heat energy

transformation (not cyclical or cyclical) is also describable by the terminology of regular grammars and
�nite automata.



CUTM 's step p ∼= K's transfer act i ∼= L's cycle O run i

TPA Inference ∼= Message Transfer ∼= Heat Transformation

states: CUTM
∼= K ∼= L

con�g: (−→σ , si, −→ρ ) ∼= [(X)i,Xi|Yi, (X)i+1] ∼= [
∑

Qi
W, (pi,Vi,Ti)L,QW −

∑
Qi

W]

TM ∼= (X, K, Y) ∼= CM

∼=

∼=

The TM 's, (X, K, Y)'s, CM 's runs are considered
in isolated systems for X, Y and X|Y energies.



9. Resultativity, Adiabaticity, Consistency

The states' θL
[·] changes in the adiabatic system L/QL,

along the trajectories lQL
are expressible regularly:

l2b isothermic irreversible, θL
1→∆A1,2eθ

L
2e

l2b′ adiabatic irreversible, θL
1→∆A1,3θ

L
3

l2d izobaric irreversible, θL
1→∆A1,2bθ

L
2b

l2e izentropic, θL
1→∆A1,2b′θ

L
2b′

l3 izochoric irreversible, θL
1→∆A1,2dθ

L
2d

θL
1 → λθL

1

The thermodynamic model

for the consistent P/TPA inference

- from its axioms/formulas having been inferred so far -

is created by the CM 's activity, which

is modeling both the TM and the (X, K, Y)

and which runs in the adiabatic system L/QL.

The TM 's, (X, K, Y)'s, con�gurations

are then modeled by the states θL
i ∈ QL

of the adiabatic L/QL with this modeling CM inside

the con�guration of which,

in fact, are creating these states.



The L's initial imbalance starts the θL
[·]s states'

sequence on a trajectory lQL
(irreversible)

and is given by the modeled

temperature di�erence TW −T0 > 0 on CM ,

existence of the input message on K,
input chain's existence on the TM 's input-output tape

⇒
These adiabatic trajectories lQL

now represent the norm

of the consistency (and resultativity)

of the P/TPA-inference/computing process
expressible also in terms

of the information transfer/heat energy transformation.



10. Autoreference, Information Transfer, Thermodynamics

On the interrupted channel K is valid

H(X) = H(X|Y)

T(X; Y) = H(X)−H(X|Y) = 0

The input H(X) is now
the measure of the K's internal state - H(X|Y) -
the output H(Y) is without any relation to H(X).

With insisting (?!?) on the information transfer
through this interrupted channel K,

then, contradictorily, we want build the (X, K, Y)
with a reversible direct Carnot Machine CM , where

∆QW = ∆Q0
4
= ∆Q & TW > T0, ηmax =

TW −T0

TW
> 0

In fact we 'measure' ∆Q against ∆Q, TW = T0,
19

H(X) = H(X|Y) =
∆Q

kTW
, H(Y) = 0 [= H(Y |X)]

19The measuring with the zero 'distance' between the measuring and measured - the Gibbs Paradox.



Our 'wish' to have the information transfer H(Y) > 0

through such interrupted channel K formulates

the contradiction/paradox20

- the II. P.T.'s violation -

∆SL =

∮
O

δQ

T
=

∆Q

TW
−∆Q

T0
= −∆Q

T0
· ηmax < 0 (!)

∆SAB =
∆Q

TW
· ηmax

∆SC = ∆SL + ∆SAB < 0 (!) [in fact 0 is everywhere]

Our 'measuring' is now with the 0 'distance' between

the measuring object K/L
and the measured object X/A and

we see that the equality H(X) = H(X|Y) says that

any K can't transfer its own states21

or observe/copy/measure itself .

20It is against the Caratheodory theorems. The existence of the Perpetuum Mobile II. and I. is required.

It also requires the time arrow change
SC
t
> 0. 'Solving' this 'problem' represents the belief in the Maxwell

demon's functionality. The need of distinguishing between the measured and the measuring - to avoid
the HALTING PROBLEM - leads to the formulation of the Gödel theorems and their physical form as
the Caratheodory theorems and vice versa.

21Used as input messages. There's a need for a 'step-aside' outside the measured to gain a not zero and
positive result T (X;Y ) = H(X)−H(X|Y ) = H(Y ) > 0



The last CLAIM a∗ in the input −→x =
−−−−−−−−−−−−→
a0, a1, . . . , ai−1; a

∗

is not inferrable and, as such, interrupts the channel K,

H(X) expresses the K's/TM 's structure H(X|Y),

H(Y) does not relate to H(X)



Repeating this autoreference attempt

causes the in�nite cycle,22

H(X) = H(X|Y) is the HALTING PROBLEM core.

Our bad awaitng
of a not zero and positive output, H(Y) > 0,
formulates the methodological error, but,

identi�able by the II. P.T.

by this possible consideration,

H(X|Y) ∼= H(a0, a1, . . . , ai−1) > 0, H(X) = 0

HC = H(X)−H(X|Y) = 0−H(a0, a1, . . . , ai−1) < 0

which violates/contradicts - ∆SC < 0 - the II. P.T.

while we have

22The same H(Y) = H(Y|X), H(X|Y) and the whole con�guration (type) are repeated in�nitely.



11. Autoreference and Gödel

Now let x be the SEQUENCE OF FORMULAE

valid (”1”) in the theory TPA and y is a CLAIM 23

with a general syntax of PF − P/TPA, PF ⊃ P ⊃ TPA.24

We de�ne the valid (”1”) relation Q(x,Y) saying:

"x ∈ X is not in the P/TPA-INFERENCE relation

to the values y of Y", [y|Y ≡ TPA-property]
Y : Y∼={{QL∗}F − {lQL

}}3y, X : X 4
= TPA∼={lQL

}3x

Q(x,Y) = ”1”, from the construction and, supposedly,

Q(x,y) = ”1” ≡ ProofP [Q(x,y)] for x and any y ∈ Y

But, when we set

y = Q(x,Y) = y(Y) [∼= y|Y ≡ TPA-property]

Q(x,y) = y[Q(x,Y)] = y(y) = Q[x,Q(x,Y)]

the Y := y in y(Y) generates the autoreference ,

Q(x,y); Q[x, [Q(x,Y)]], Q[x, [Q(x, [Q(x,Y)])]], . . .

neither constructible in P and nor provable by TPA
but its validity follows from the II. P.T. validity .25

ProofP [Q(x,y)] = ”1”

II.P.T. ∼= [ProofP [Q(x,y)] = ”0”] = ”1”

[[ProofL([d]QExt,lQL
=0) = ”0”] = ”1”] ≡ II. P.T.

23The x and y are the Gödel numbers.
24 PF ∼= {QL∗}F, P ∼= {QL}, TPA∼={lQL

}, x ∼= lQL
.

25And within the PM - Principia Mathematica: B. Russel, L. Whitehead.



Now we set

p = [∀x∈X|Q(x,Y)]
4
= Q(X,Y) = p(Y)

"no x ∈ X is in the P/TPA-INFERENCE relation

to the variable Y" - to its space Y∼={{QL∗}F − {lQL
}}

With the substitution Y := p

the resulting Q(X,p) = p(p) [∼= p|Y ≡ TPA-property]

contains the autoreference

- the totality X/TPA 'de�nes' (?!?) its property Y -

[∀x∈X|[Q[x, [∀x∈X|Q(x,Y)]]]]Y:=p = Q[X, [Q(X,Y)]]Y:=p

Q(X,p); Q[X, [Q(X,Y)]], Q[X, [Q(X, [Q(X,Y)])]], . . .

As before, by the II. P.T.'s validity, we know:

ProofP [Q(X,p)] = ”1”

II.P.T. ∼= [ProofP [Q(X,p)] = ”0”] = ”1”

[[ProofL([d]QExt,{lQL
}=0) = ”0”] = ”1”] ≡ II. P.T.

y,p,Q(x,y),Q(X,p) ∈ {PF − P} ∼= {{QL∗}F −QL},

{lQL
} ∼= TPA

4
= X, Q(TPA,p) = Q(X,p)

4
=17Gen r ∼= Y,

r
4
= r(X) = Q(X,p), 17Gen r

4
= ∀x∈X|r(X), card Y = ℵ1



The consistent theory TPA is constructed
by ourselves, from its outside,

it does not contain the axiom of its consistency
as its own object/formula/status

The attempt to prove the TPA consistency by it itself
- imbuilding is property (Y) to itself as its own object -
de�nes the autoreference/HALTING PROBLEM ,

not resultative but, as such, identi�able ;

The CLAIM Q(X,p)/17Gen r is constructed
purely syntactically as for P/TPA, in {PF − P},

but is the descriptory CLAIM

of the TPA [X] consistent inference in P .26
26Also the Rao-Cramer inequality from the Mathematical Statistics documents it.



For the channel K, associated to the inferring TM ,
is being interrupted in�nitely,27 in any transfer act,
the TM and the K realize the Klein bottle run.

But, in fact we have

We formulate the methodological error for TPA
but identi�able by the II. P.T.'s violation, ∆SC < 0,

H(X) = H[Q(X,Y)] = 0, H(X|Y) ∼= H(X/TPA) > 0

HC = H(X)−H(X|Y) = 0−H(X/TPA) < 0

The another form of the II. P.T. is formulated:

Q(X,p)/17Gen r = ”1”28

27It is the reason for the non expressibility of the consistency of the theory TPA CLAIM - of the axiom of
its consistency expressing its general property - in it itself. The theory TPA does not contain this axiom as
its own formula.

28The same methodolgical error represent the Epimenides liar and the Richard paradox - the property
of a certain totality is not formulable within it as its own object part.



12. Appendix 1 - Gödel Theorems

I. Gödel theorem (corrected semantically by [19] and [23]):29

For every recursive and consistent

CLASS OF FORMULAE κ,30

and outside this set31,

exists the true (”1”) CLAIM r

[r /∈ κ, r /∈ Flg(κ), r ∈ Y, card Y = ℵ1]

with a free VARIABLE v that

neither the CLAIM vGen r

nor the CLAIM Neg(vGen r)

belongs to the set Flg(κ)

[vGen r /∈ Flg(κ)] & [Neg(vGen r) /∈ Flg(κ)],

r
4
= r(X) = Q[X,∀x∈X|Q(x,Y)], 17Gen r

4
= ∀x∈X|r(X)

CLAIMS vGen r and Neg(vGen r)

are not κ-PROVABLE

the CLAIM vGen r is not κ-DECIDABLE .

[They are elements of the formulating/syntactic
meta-system κF, inconsistent against κ.]

29Gödel-Rosser theorem.
30Recursively axiomatizable and with the given set of the inference rules (Peano/Robinson arithmetics).

κ = P is from the PM - Principia Mathematica: B. Russel, L. Whitehead. 1910, 1912, 1913, 1927. , containing
the Peano arithmetics TPA. On the TPA the real and complex number arithmetics is based. The PM is the textitformal-
syntax-logic-semantic base for the physical teories/hypotheses.

31Far from "...[PA-]arithmetic and sentencial/SENTENCIAL" and far from (!) "In ...."



II. Gödel theorem (corrected semantically by [19] and [23]):32

If κ is an arbitrary recursive and consistent

CLASS OF FORMULAE,

then any CLAIM y [y ∈ Y, card Y = ℵ1]

saying that CLASS κ is consistent

must be constructed outside this set33

and for this fact, it is not κ-PROVABLE 34

The consistency of the CLASS OF FORMULAE κ
is tested by the relation Wid(κ)35

Wid(κ) ∼ (Ex)[CLAIM (y) & Proofκ(y)]

The FORMULAE class κ is consistent

⇔
at least one κ-UNPROVABLE CLAIM y exists.

Now y = 17Gen r /∈ P/TPA, κ = TPA ⊂ P ⊂ PF

[[ProofP(17Gen r) = ”0”] = ”1”] ≡ Wid(TPA)
∼=

[[ProofL([d]QExt,QL
=0) = ”0”] = ”1”] ≡ II. P.T.

32Gödel-Rosser theorem.
33Far from "...[PA-]arithmetic and sentencial/SENTENCIAL" and far from (!) "In ...."
34Any attempt to prove/PROVE/INFER it in the system P/κ leads to the requirement for inconsis-

tency of the consistent (!) system P/κ (in fact we are entering into the inconsistent meta-system PF -
see the real sense of the Proposition V .).

35Die Widerspruchsfreiheit - the Consistency.



13. Appendix 2

Under the adiabaticity, [d]QExt=0, of the system L
it is not possible to derive such a CLAIM
that is stating this adiabatic supposition.

This CLAIM is constructible not adiabaticaly,
outside the adiabatic L only.

Autoreference/HALTING PROBLEM

Self-Observation

- the CLAIM about adiabaticity of L within L -

- the CLAIM about consistency of TPA within P -

is excluded.

This is the nature law expressed

by the Caratheodory formulation of the II. P.T.

and by the Gödel theorems' sense.

The eye can not look at and into itself.

Any mixing of the various
observation/expressing/approach levels

leads to the paradoxes and is to be excluded.

Under the consistency of the system P
it is not possible to derive such a CLAIM
that is stating this consistency supposition.

This CLAIM is constructible purely syntactically ,
outside the consistent P only (in PF − P).36

36The Great Fermat's theorem is not inferrable within P/TPA either - it is not of the P/TPA type,
although is arithmetical. In fact it is not a part of the P but of the PF − P, PF ∼= {p,V,T} = R3.



(1).PDF

That's me or it is the picture of me - P1.



(2).PDF

This is the mirror picture of me - P2.



(3).PDF

Here I have 'ordered' the mirror picture P2 to step
out from the mirror a stand, e.g., in front of me/P1

having the right hands overlapped.

CHAOS, EQUILIBRIUM, INFINITE CYCLE,
PARADOX by mixing of various observation levels.
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