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Cantor's in�nite numbers

N = ℵ0, (N, <) = ω



Cantor's �nite numbers
Laws for �nite numbers

(N,+, ·, 0, 1, <)

x + y = y + x , xy = yx ,
x < y ⇒ x + z < y + z ,
x < y , 0 < z ⇒ xz < yz



Flaws of Cantor's arithmetic of inifnite numbers

1+ ω 6= ω + 1, 2 · ω 6= ω · 2

¬(2 < 3⇒ 2+ ℵ0 < 3+ ℵ0), ¬(2 < 3⇒ 2 · ℵ0 < 3 · ℵ0)



K. Gödel, What is Cantor's continuum problem? 1947

Gödel presents Cantor's cardinal numbers as extending the system

of natural numbers, (N,+, ·, 0, 1, <), and seeks to show that �this

extension can be e�ected in a uniquely determined manner".

To this end, Gödel discusses (1) de�nition of cardinal numbers, (2)

their equality, (3) total order, (4) operations of sum and product.



(Gödel, 1947)

(Ad 1) Gödel claims that �Cantor's de�nition of in�nite numbers

really has this character of uniqueness", since �whatever `number'

as applied to in�nite sets may mean" it has to be based on the

one-to-one correspondence.

(Ad 2, 3) Gödel claims that �there is hardly any choice left but to

accept Cantor's de�nition of equality between numbers, which can

easily be extended to a de�nition of `greater` and 'less' for in�nite

numbers".

(Ad 4) As for the sum and product of ordinal numbers, Gödel writes:

�it becomes possible to extend (again without any arbitrariness) the

arithmetical operations to in�nite numbers (including sums and prod-

ucts with any in�nite number of terms or factors) and to prove prac-

tically all ordinary rules of computation".



Alternatives to Cantor's theory of in�nite numbers

� Hessenberg's normal sums and products; (Ord ,+n, ·n, 0, 1, <)
� Conway numbers; ONAG

� Benci and Di Nasso's numerosities (and Euclidean numbers)



Alternatives to Cantor's theory of in�nite numbers

� Hessenberg's normal sums and products; (Ord ,+n, ·n, 0, 1, <)
� Conway numbers; ONAG

� Benci and Di Nasso's numerosities (and Euclidean numbers)

(Ord ,+n, ·n, 0, 1, <) ⊂ ONAG

numerosities ⊂ ONAG

Euclidean numbers ⊂ ONAG



Alternative 1. Normal sums and products of ordinal numbers
Normal form theorem (Cantor, 1897); α ∈ Ord

α = ωη1 · p1 + . . .+ ωηh · ph,

where η1 > . . . > ηh, ηi ∈ Ord , h, pi ∈ N



(Hessenberg, 1906)

α = ωη1 · p1 + . . .+ ωηh · ph,

β = ωη1 · q1 + . . .+ ωηh · qh

α+n β =df ωη1 · (p1 + q1) + . . .+ ωηh · (ph + qh)

α ·n β =df

∑
1≤i ,j≤h

ωηi+nηj · piqj

α+n β = β +n α, α ·n β = β ·n α

α < β ⇒ α+n γ < β +n γ, α < β ⇒ α ·n γ < β ·n γ

(Ord ,+n, ·n, 0, 1, <)



J. Conway (1976, 2001). On Numbers and Games.
The ordered �eld ONAG

ONAG = {a : a is a surreal number}
(ONAG ,+, ·, 0, 1, <)



Alternative 2. The ordered �eld ONAG

(Ord ,+n, ·n, 0, 1, <) 7→ (ONAG ,+, ·, 0, 1, <)

Ord ⊂ ONAG



Some surreal numbers
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H. Gonshor (1986). An Introduction to the Theory of

Surreal Numbers.

Df A surreal number is a function a from an ordinal α, α ∈ Ord ,
into the set {+,−},

a : α 7→ {+,−}.

α ∼ (+ + ...︸ ︷︷ ︸
α
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J. Conway, On numbers and Games

ONAG = {a : a is a surreal number}
(ONAG ,+, ·, 0, 1, <)

R ⊂ R∗ ⊂ ONAG , Ord ⊂ ONAG , N∗ ⊂ ONAG
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Alternative 3. Numerosities

V. Benci, M. Di Nasso (2019). How to Measure the In�nite: Math-

ematics with In�nite and In�nitesimal Numbers. Singapore.

V. Benci, M. Forti,(2017). The Euclidean numbers. arXiv:1702.04163.



What are numerosities?

(N,+, ·, 0, 1, <) (R,+, ·, 0, 1, <)
N∗ = NN/U R∗ = RN/U
(N∗,+, ·, 0, 1, <) (R∗,+, ·, 0, 1, <)

(rj)≡(sj)⇔ {j ∈ N : rj = sj} ∈ U

[(rj)] +
∗ [(sj)] = [(rj + sj)], [(rj)] ·∗ [(sj)] = [(rj · sj)]

[(rj)] <
∗ [(sj)]⇔ {j ∈ N : rj < sj} ∈ U



Standard numbers in nonstandard framework

r = [(r , r , r , ...)]
2 = [(2, 2, 2, ....)] = [(0, 0, 2, 2, 2, 2...)]

If the sequence (nj) representing a hypereal number is such that

{j ∈ N : nj = 2} = {j ∈ N : n0 < j} = N \ {1, 2, ..., n0},

then [(nj)] = 2.



Number α

α = [(1, 2, 3, ...)] = [(n)].

α2 = [(1, 2, 3, ...)] · [(1, 2, 3, ...)] = [(11, 22, 32, ...)] = [(n2)].
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How to assign numerosity to subset of N

Let A be a subset of N. We de�ne a function ϕA : N 7→ N, by

ϕA(n) = {a ∈ A | a ≤ n}. (1)

The numerosity of the set A is the nonstandard natural number να(A)
represented by the sequence (ϕA(n)), that is

να(A) = [(ϕA(n))]

= [(ϕA(1), ϕA(2), ϕA(3), ...)].



Some examples

1) Let us start with �nite sets, e.g. a two elements set A = {k , l},
with k < l . We have,

ϕA(n) =


0, for n < k ,
1, for k ≤ n < l ,
2, for l ≤ n.

[(ϕA(n))] = [(000011111111111122222222...)] = 2

να(A) = 2

2) When A = {a1, ..., ak}, να(A) = k .



Some examples

να(N) = [(1, 2, 3, 4, ...)] = α

να({2, 4, 6, 8, ...}) = [(0, 1, 1, 2, 2, 3, 3, 4, 4, ...)] =
⌊α
2

⌋
να({1, 4, 9, 16, 25...}) = [(1, 1, 1, 2, 2, 2, ...)] =

⌊√
α
⌋



Some general rules

A  B ⇒ να(A) < να(B). (2)

να(A ∪ B) = να(A) + να(B), whenever A ∩ B = ∅. (3)

να(A ∪ B) = να(A) + να(B)− να(A ∩ B). (4)



Numerosities vs numbers ℵ0 and ω

- In Cantor's theory any subset of N can be either �nite or of car-

dinality ℵ0. Similarly, there are no ordinal numbers in-between �nite

numbers and ω.
- The numerosity of any in�nite subset of N is less than α, and

greater than any �nite number.



√
The End


