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Gödel’s speedup theorem
For a first-order theory T and formula ϕ we write T `k ϕ if ϕ is
provable from axioms of T by a proof that (as binary string)
consists of at most k symbols.

Let PAn be n-th order arithmetic, i.e. first order theory with n
sorts, where the sort 0 is for natural numbers and the sorts i + 1
are for sets of objects of sort i that has scheme of comprehension
for all sorts.

Theorem (Gödel ’36)
For any n > 0 and any computable f : N→ N there is a sequence
of formulas

ϕ1, ϕ2, . . . ∈ LPA s.t. PAn+1 `ki ϕi and PAn 0f (|ki |) ϕi ,
for all i and some ki ’s.

Generally, given proof systems T1 and T2 we say that there is
f : N→ N speedup of T1 over T2 if there are

ϕ1, ϕ2, . . . ∈ LT2 s.t. T1 `ki ϕi and T2 0f (|ki |) ϕi ,
for all i and some ki ’s.



Some other speedup theorems

Theorem (Ehrenfeucht and Mycielski ’71)
If theory T+ ¬ϕ is undecidable then T+ ϕ have arbitrary recursive
speedup over T.
Let exp∗ be the hyperexponentiation function, i.e. exp∗(0) = 0 and
exp∗(x + 1) = 2exp∗(x).

Theorem (Pudlák ’86)
NGB has exp∗(xε) speedup over ZFC, for some ε > 0.
ACA0 has exp∗(xε) speedup over PA, for some ε > 0.

Theorem (Statman ’78)
Sequent calculus for first-order logic with cuts LKcut has exp∗(xε)
speedup over cut-free LKcut-free, for some ε > 0.

Theorem (Haken ’85)
There is 2x

ε
speedup of resolution over Frege.



Some decidable first-order theories

Theorem (Presburger ’29)
The elementary theory Th(N, 0, 1,+) is decidable.

Theorem (Tarski ’31)
The elementary theories Th(R, 0, 1,+,×) and Euclidian plane are
decidable.
Here Euclidian plane R2 is in the Tarski’s signature, i.e. with
betweenness B(x , y , z) and congruence relation xy ≡ zw .



Theory PrA−

The language LPrA is the first order language with constants 0, 1
and binary function +.
We use the following shorthands:

1. x ≤ y
def⇐⇒ ∃z x + z = y ;

2. 0 def
= 0, n + 1 def

= n + 1;

3. x×0 def
= 0, x×(n + 1) def

= x×n + x ;

4. x ≡n y
def⇐⇒ ∃z(z×n + x = y ∨ z×n + y = z).

Theory PrA−:
1. axioms of cancellative Abelian semigroup with neutral element

0 for +;
2. x + 1 6= 0;
3. x 6= 0→ ∃y x = y + 1;
4. x ≤ y ∨ y ≤ x ;



Two alternative axiomatizations of PrA−

Let PrA be PrA− plus the induction scheme:

ϕ(0) ∧ ∀x (ϕ(x)→ ϕ(x + 1))→ ∀x ϕ(x).

Let PrAalt be PrA− plus the axioms:

x ≡n 0 ∨ . . . ∨ x ≡n n − 1, for n ≥ 1.

Since cut-elemination works even over PrAalt, both PrAalt and PrA
prove all true sentnences.

Theorem
There is 22x

ε

speeedup of PrA over PrAalt.

Note that by formalization of Cooper’s cut-elimination procedure
for PrA there is C > 0 such that any true sentence ϕ ∈ LPrA has a

proof in PrAalt of the length ≤ 222|ϕ|
C

.



Idea of proof

It is possible to define formulas Muln(x , y , z) of polynomial in n
sizes that express that y < 22n and xy = z .
Using Muln(x , y , z) we could formulate the formulas Divn(x) that
expresses that number x is divisible with remainder by all y < 22n .

The formulas ∀x Divn(x) have simple proofs by induction on x in
PrA. The lengths of those proofs are polynomial in n.

However, for n ≥ 1, it is possible to show that in order to prove
∀x Divn(x) in PrAalt we need to use at least one instance of
x ≡k 0 ∨ . . . ∨ x ≡k k − 1, for some k ≥ 22n−1.

This yields the 22x
ε

speedup of PrA over PrAalt.



Proof systems for elementary geometry
Let TARSKI be Tarski’s axiomatization of elementary geometry.
Recall that it consists of finitely many axioms plus the scheme of
continuity, i.e. “if a subsets (given by a formula) of a ray has an
upper bound, it has the greatest upper bound”.

RCF theory of real closed fields
1. axioms of fields;
2. axioms of linear order for ≤, where x ≤ y is a shorthand for
∃z y = y + z2;

3. axioms that state that all polynomial of odd degree have roots,
i.e. axioms On:

∀a0, . . . , an−1∃x xn + an−1x
n−1 + . . .+ a0 = 0.

Note that elementary geometry is interpretable in the field of real
numbers and vice versa. Due to this, both TARSKI and RCF could
be considered as proof systems for both the theories of elementary
geometry and the field of reals.



Speedup for elementary geometry

Theorem
There is 22x

ε

speedup of TARSKI over RCF.

Idea of proof:

We define formulas Pown(x , y , z) of the polynomial in n length that
express that y is a natural number < 22n and z = xy .

This allows us to formulate sentences Rn that express that for all
natural y < 22n the equation xy = 2 has a solution. By continuity
axiom we have polynomial in n proofs of Rn in TARSKI.

However, Rn implies axioms Ok , for all odd k < 22n . It is possible
to show that for n ≥ 1 any proof of Rn in RCF need to use some
axiom Ok , for k ≥ 22n−1.



Speedup for stronger theories

Theorem
Suppose T ⊇ EA, U ⊇ PrA− are NP-axiomatizable theories and T
proves consistency of U. Then there is 2x

ε
speedup of T over U in

LPrA.

Theorem
Suppose T ⊇ EA, U ⊇ RCF are NP-axiomatizable theories, ι is an
interpretation of RCF in T , and T proves consistency of U. Here
T is regarded as a proof system for LRCF via interpretation ι. Then
there is 2x

ε
speedup of T over U in LRCF.



Thank you!


