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Turing Machines vs. Gödel Minds

MIND = Turing Machine (TM) ?

Let’s recall some historical context....:

Gödel, in his 1951 Gibbs lecture, delivered an opinion on Minds and
Machines [1]

The human mind is incapable of mechanizing all its mathe-
matical intuitions, i.e. if it has succeeded in formulating some of
them, this very fact yields new knowledge.
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MIND = Turing Machine (TM) ?
Let’s recall some historical context....:
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Turing Machines vs. Gödel Minds

Gödel on Turing’s proof that every mental procedure [....] is
equivalent to a mechanical one, [2] :

Turing gives an argument which is supposed to show
that mental procedures cannot carry any farther than
mechanical procedures. However, this argument is
inconclusive, because it depends on the supposition that a
finite mind is capable of only a finite number of
distinguishable states [...] although at each stage of the
mind’s development the number of possible states is
finite, there is no reason why this number should not
converge to infinity in the course its development.
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Turing Machines vs. Gödel Minds

Hao Wang: Gödel’s notion of “the number of mind’s states converging to
infinity” is a complicated requirement [...] , [3] :

Problem

How can this be made more precise ?
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Bringsjord: A New Gödelian Argument
On Rado’s Uncomputable Sigma Function

There are too many functions f: N→ N for them all to be (Turing)
computable [4].

In 1962, Rado [5] presented the uncomputable function Σ (aka the
Busy Beaver function). Σ(n) is the largest number of 1 s left on the
tape by a halting binary n-state Turing machine when started on an
all 0-tape.

The Σ function is uncomputable, because otherwise it would solve the
Halting problem [4], which is known to be undecidable [4].

It is known [6], [7] that: Σ(1) = 1 Σ(2) = 4 Σ(3) = 6 Σ(4) = 13 and
Σ(5) ≥4098
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Bringsjord: A New Gödelian Argument
A quantified, measurable Gödelian Argument

Let p denote Persons, m Turing Machines and let cpl(m) measure the
complexity of a Turing Machine in terms of states and transitions and
let k be an Integer. According to Bringsjord we may state the thesis
of Computationalism as: [8]

[C]∀p∃m(p = m ∧ cpl(m) ≤ k)

A quantified, measurable New Gödelian Argument was recently
given by Bringsjord et al.,[8] and it is based on the Rado
Σ− Function:

[A] If the human mind is able to
compute Σ(n) it is able to eventually
compute Σ(n + 1).
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A quantified, measurable Gödelian Argument
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Bringsjord: A New Gödelian Argument
A quantified, measurable Gödelian Argument

Bringsjord et al.,[8] have shown, that:

[A] ⇒ ¬[C] i.e. if assumption [A] holds, then Computationalism
cannot hold

This concludes the philosophical context of our work

We now proceed to present new numerical evidence for
Hypercomputing (Gödel) Minds
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Progress Report on Computing Σ(5)
Overview: What is known

To keep notation simple we represent a 5-state binary Turing machine
as a 5-by-2 matrix, the matrix elements are the transitional
instructions that control the operation of the Turing head H on any
given tape T.

A 5-state binary Turing machine M is a 5-by-2 matrix M, such that
M(s, h) = (ws, mv , ns), with s ∈ {1, 2, 3, 4, 5}, h ∈ {0, 1}, ws ∈
{0, 1}, mv ∈ {L, R}, ns ∈ {0, 1, 2, 3, 4, 5}

We call s the current state of M and h the current read symbol in the
tape cell positioned under the Turing head H. The triple (ws, mv , ns)
is called a Turing instruction with ws the write symbol being written
into the tape cell positioned under the Turing head H, mv the move
direction of the Turing head H and ns the next state of M. If ns = 0,
M stops , otherwise it continues executing instructions.

That leaves us with 2410 possible binary 5-state Turing machines.
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Progress Report on Computing Σ(5)
The Marxen-Buntrock Lower Bound


(1, R, 2) (1, L, 3)
(1, R, 3) (1, R, 2)
(1, R, 4) (0, L, 5)
(1, L, 1) (1, L, 4)
(1, R, 0) (0, L, 1)


is a 5-state Turing machine, published by Marxen and Buntrock, [9].
When started on an all-0-tape it halts after 47,176,870 steps and
leaves 4098 1’s on the tape. Hence Σ(5) ≥ 4098
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Progress Report on Computing Σ(5)
Known Reduction Methods

Well-known methods exist, [6],[7] to reduce the search space and
decide large number of TMs

Tree Normalform

Back Tracking

Simple Loop Detection

That leaves 1,676,482 undecided 5-state binary TMs
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Progress Report on Computing Σ(5)
New Approach: Tape Number Method

Tape Numbers [4] are a way to encode the infinite Turing tape as two
integers, the left tape number (ltpn) and the right tape number
(rtpn)

The binary representation of ltpn is given by the infinite portion of
the tape to the left of the scanned cell

The binary representation of rtpn is given by the infinite portion of
the tape including the scanned cell and to its right , written
backwards

(0) 0 1 1 0 1 0 1 1 0 1 0 1 1 1 (0)

ltpn = ‘11010’ = 26 rtpn = ‘11101011’ = 235 hence : T = (26,235)
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Progress Report on Computing Σ(5)
Using TPNs: First Results

Recording TPNs for many steps and applying pattern recognition we
identify TM-specific recurrence relations for TPNs

Using TM-specific recurrence relations allow us to perform automated
Induction proofs to show a TM is a non-HALTER.

This way we decided 1,468,620 (out of 1,676,482, 88%) TMs
to be non-HALTER

We provide an example as follows:
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Progress Report on Computing Σ(5)
Using TPNs: An Example


(1, R, 2) (0, L, 4)
(1, R, 3) (1, R, 5)
(1, L, 1) (1, R, 4)
(1, L, 5) (1, L, 2)
(1, R, 0) (1, R, 3)


this TM shows: in s = 3 tape = (4n+1 - 1,0);
shorthand: <3, 4n+1 - 1, 0>

When started in s = 1 on tape = (0,0) , this TM reaches s =3 with
tape = (41 - 1, 0) = (3,0) after 2 steps:
Step 0 : <1,0,0>
Step 1 : <2,1,0>
Step 2 : <3,3,0>, which establishes the case for n = 0.
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Progress Report on Computing Σ(5)
Using TPNs: Rules for Calculating Tape Numbers

Left Move
l odd : lnew = l−1

2 , rnew = 2r + 1

l even: lnew=
l
2 , rnew=2r

Right Move
r odd : lnew=2l + 1, rnew=

r−1
2

r even: lnew=2l , rnew=
r
2
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Progress Report on Computing Σ(5)
Using TPNs: The Induction Proof (1 of 2)

Induction Hypothesis: after some finite number of steps, TM
has reached <3, 4n - 1 , 0> for n > 0

Induction Proof: we have to show, that after some finite
steps TM reaches <3, 4n+1-1, 0>
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Progress Report on Computing Σ(5)
Using TPNs: The Induction Proof (2 of 2)

< 3, 4n.− 1, 0 >
↓ fixed, 20 Steps

<2,4n-k -1,22k+1 -5>
↓ 10 Steps for k → k + 1.

<2, 0, 22n+1 -5>
↓fixed, 5 Steps

<2, 0, 4n+1 -6>
↓ fixed ,15 Steps

<3, 4k+1-1 -1, 4n-k -1>
↓ fixed ,4 Steps for k → k + 1

<3, 4n+1 -1, 0>
q.e.d.
Note: Length of Proof: 14n + 40 Steps
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Progress Report on Computing Σ(5)
Using TPNs: Double Exponential Growth


(1, R, 2) (1, L, 1)
(0, L, 1) (0, R, 3)
(0, R, 4) (1, R, 0)
(0, R, 5) (0, R, 4)
(1, L, 5) (0, L, 2)



This TM exhibits a double exponential growth in the left TPN

(1, 22
n+1−4 − 1, 2)

Joachim Hertel (H-Star, Inc.) Hypercomputing Minds - TKG2020 01/2020 17 / 20



Progress Report on Computing Σ(5)
Using TPNs: Double Exponential Growth


(1, R, 2) (1, L, 1)
(0, L, 1) (0, R, 3)
(0, R, 4) (1, R, 0)
(0, R, 5) (0, R, 4)
(1, L, 5) (0, L, 2)


This TM exhibits a double exponential growth in the left TPN

(1, 22
n+1−4 − 1, 2)

Joachim Hertel (H-Star, Inc.) Hypercomputing Minds - TKG2020 01/2020 17 / 20



Progress Report on Computing Σ(5)
Using TPNs: “Collatz-Type” Sequences in the Exponent


(1, R, 2) (1, R, 4)
(1, L, 3) (1, R, 2)
(0, L, 4) (0, L, 4)
(1, R, 5) (0, R, 2)
(1, R, 1) (1, R, 0)



This TM exhibits the following recurrence relation for the right TPN:

(5, 1, 2an − 2)

where the exponent follows

an+1 = {
3∗ an2 +4 if an even

3∗ an−12 +2 if an odd
)

with initial value

a0= 2
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Progress Report on Computing Σ(5)
Summary

Summary
Using tapenumbers , we reported progress in calculation of Σ(5) ( =
4098 most likely!)

thus, we provided new numerical evidence and a tiny step towards
validating Bringsjord New Gödelian Argument, [8]

... and hence a bit more evidence for Gödel’s Hypercomputing
Minds.

Thank You!
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... and hence a bit more evidence for Gödel’s Hypercomputing
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