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Fascinated By Robust Algorithms

Reconstructing The Past

Robust Arithmetic
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Gross Error Model
xn € {(1 —€)N(0,1) + eN(1,10)}
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Analytic Tools
A Summary
Data set (a sample)

{JC1,X‘2, cee ,IN}.
A probability density of N'(0,1)

flx) = L e X2

Vo

A distribution function (probability)

F(x) = [;f(u) du N % 1 + erf <\ch2>] = ®(x).

An empirical distribution function

1 n
F, = N;ux,- <n/N}, n=1,...,N.
1=



Distribution Functions
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Hampel’s Theorem?
As A Tool For Robust Method Recognition

Let the observation x; be independent, with common
distribution F, and let Ty = Txn(x4,...xy) be a sequence of
estimates or test statistics with values in RX. This sequence is
called robust at F = Fj if the sequence of maps of
distributions

F — Lr(Tn)

is equicontinous at F, that is, if for every € > 0, there is a
S > 0 and an Np such that, for all F and all N > N,

d«(Fo, F) £ 6 = di«(Lr(Tn), Lr(Tn)) < €.

Huber & Ronchetti: Robust Statistics (2009)



Maximal distance

Hampel's Theorem In Action, € = 1/10
Analysis of d.(Fy, F) < 6 = d.(Lr (Ty), Lr(Ty)) < €
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1/s

da

= max |®(xp;0,1) — ®(xy; X, 0)

’

dg = max |®(xp;0,1) — Fnl,
d, = max |®(x,;0,1) — Plxp; X, 6)].
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Design Of Robust Statistics

According To Hampel’s Theorem, Or An Equivalent
Condition

R-estimates or Rank estimates replaces data itself by its
rank: median, quartile or Wilcoxon test.

L-estimates or Linear combinations of selected statistics.

M-estimates or Maximum likelihood estimates which keeps
a spirit of classical estimates: physical and
technical applications, multidimensional
problems.



M-estimates

Basic Properties

The central point is a robust function ¥(x).
Replaces least squares by some robust function.
Reproduces least-squares near minimum.

A design of robust functions is arbitrary with certain
properties.
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P(x) = — (Inf) = 7 [& x].



_al X < _al
Px)=qx, |x[<a,
a, x>a

An equivalent definition is
Y(x) = max[—a, min(a, x)],
an optimal choice a = 1.345,

least-squares near minimum,
the absolute value otherwise.

It is suitable for a theory,

and sensitive to outliers.

Huber’'s Minimax

P'(x)

5302 414 0 1

2

3



Tukey’'s Biweight

= [\
e / O\
212 /
x[1 = (x/a)?,  |x[ < a, ]
Plx) =
0, lx| > a
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Robust Mean

By Maximum Likelihood
The likelihood

e

N
dlnL izlp(xn— >=O.
-1

Likelihood L (arbitrary units)

. . Tukey
e 1) is some robust function, N(0,1)
e A solution is given by the —
non-linear equation against to . 2 1 0 1 2
Mean &

e s =1 (important!).



Tukey In Action




Descent Function

Convergence Region Of Tukey
An approximation error’ of Newton’s method:
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SRalston & Rabinowitz: A First Course in Numerical Analysis (2012)



Bias Of Huber’s Minimax

Strange Protagonist
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Join Estimation Of Location And Scale
A Dead Way. Seriously.

More complex likelihood:

ot =[] ool (7))

A solution is given by the set of non-linear equations:

N
onL 1 Xp — X
ox =SZ¢< s >:O'
n=1
N
onL 1 Xn —
0Os —SZ¢<

n=1

5c> (oen — &) — ? =0 (non-robust).



Entropy And Noise
A Short Intermezzo
An information by R. Fisher:

dlf ;
NZ n xn

The usuall entropy (AU = TdS, U = F + TS, Q = 1) and the
information are related:

En pyr__U
S = ZTG = _T
n

Full extracted information contents (equality for Normally
distributed data):

2
)J Fani %).
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The statistical entropy:

S = anlnpn.
n



Entropy § (arbitrary units)

)

Robust Entropy

Our Protagonist On The Stage Again
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Join Estimation Of Location And Scale
The Right Way (I sincerely hope)

The join estimation by maximizing of the likelihood and the

entropy together:

S

1 Xp — X Al
Zlb( n > =0 and mngQne"QQ”,
n=1



The Algorithm

Part 1. — Initial Estimate

i) Estimate of the location by median x©

O = median{xy, xo, ..., XN}

ii) Estimate of s by median of absolute deviations (MAD)

(o _ median{xn — £, n=1,..., N}
d-1(34)

iii) Solve the equation (initial estimate £© — &)

N xp — &
> <()> =0,

n=1

for £, by a method without derivation.



The Algorithm

Part II. — Increasing Precision

iv) Solve for scale s by finding of maximum of the
entropy (with initial s© — s®))

maxZQ - exp |—20 -
n=1

v) Increase precision of the mean by Newton iterations

li+1) _ (0 Zn 1¢ 0 ) 5(1)]
Yon i Wl — x0)/s)]

vi) Declare results s = st), ¥ = g1,

,i=1,...



The Algorithm

Part III. — Results

vii) Compute the standard deviation, r, = x, — &:

52 = &2 N Zg=1 ‘Pz(rn/s)_
N =19 @(rs)

viii) Compute the standard error

6—2
Yonoy ¥(rals)
dclxvi) A final estimate gives: the standard deviation &,

parameters of N'(x, ), the robust mean and the
standard error (without Studentising)

200

X + 0.



Dark Side Of Robust Mean

e There is very slow algorithm with rate 1 : 300, O(n)

e The algorithm is complicated (advanced numerical
methods required, complex logic).

e There is no an explicit form.
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Generalizations

Easy:
e Weighted Mean
e Multidimensional functions: lines, planes, ...
e Statistical tests (Student).
Hard:
e Non-Gaussian (uniform, Poisson), ...distributions.
e Very limited data sets.

The Poisson distribution for both expected k, and observed
cp counts, flux A, = rcy,, with calibration r per a time period

Akn
" k!

N
Pk, e, F~ ane“p’*n.
n=1



Revelation Of Memories

The Last Performance Of Our Hero

Robust Arithmetic

1/10 ot + oy .

O okt R + o+ o+ o+

15

tho



Conclusions

Robustness signifies insensitivity to small
deviations from assumptions. — Peter ]J. Huber

Robust estimators gives negligible difference between
the expected and derived distributions functions.

The central moment (mean) can be estimated by the
likelihood method.

Looking for maximum of the entropy is the right
method for estimation of the dispersion.

The implementation can be a little bit tricky, whilst
usage is common and results are quite reproducible.

<« The End ~-



