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On board

The problem:
e Real world data — contamined data,
e contamined data — due outliers or another dataset,
e outliers — estimations fails,
¢ a fail — sinking boat,

e no boat — no live.

The solution:
e Cruel world data — contamined data,
e contamined data — robust estimations,
e robust estimations — unsinkable boat,

e sunny live — true love.



Fascinated by robust algorithms

Reconstructing the past

Robust Arithmetic
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Gross error model
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Analytic tools
A summary
Data set (a sample)

{JC1,X‘2, cee ,IN}.
A probability density of N'(0,1)

flx) = L e X2

Vo

A distribution function (probability)

F(x) = [;f(u) du N % 1 + erf <\ch2>] = ®(x).

An empirical distribution function

1 n
F, = N;ux,- <n/N}, n=1,...,N.
1=



Distribution functions
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Hampel’s theorem?

As a tool for robust method recognition

Let the observation x; be independent, with common
distribution F, and let Ty = Txn(x4,...xy) be a sequence of
estimates or test statistics with values in RX. This sequence is
called robust at F = Fj if the sequence of maps of
distributions

F — Lr(Tn)

is equicontinous at F, that is, if for every € > 0, there is a
S > 0 and an Np such that, for all F and all N > N,

d«(Fo, F) £ 6 = di«(Lr(Tn), Lr(Tn)) < €.

Huber & Ronchetti: Robust Statistics (2009)



Maximal distance

Hampel’s theorem in action, € = 1/10
Analysis of d.(Fy, F) < 6 = d.(Lr (Ty), Lr(Ty)) < €

dy = max |®(x,;0,1) — P(xp; x, 0)
dg = max |P(x,;0,1) — Fp

’

’

d, = max |®(x,;0,1) — Plxp; X, 6)].
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Design of robust statistics

According to Hampel's theorem, or an equivalent condition

R-estimates or Rank estimates replaces data itself by its
rank: median, quartile or Wilcoxon test.

L-estimates or Linear combinations of selected statistics.

M-estimates or Maximum likelihood estimates which keeps
a spirit of classical estimates: physical and
technical applications, multidimensional
problems.



M-estimates

Basic properties

The central point is a robust function ¥(x).
Replaces least squares by some robust function.
Reproduces least-squares near minimum.

A design of robust functions is arbitrary with certain
properties.
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_al X < _al
Px)=qx, |x[<a,
a, x>a

An equivalent definition is
Y(x) = max[—a, min(a, x)],
an optimal choice a = 1.345,

least-squares near minimum,
the absolute value otherwise.

It is suitable for a theory,

and sensitive to outliers.

Huber’'s minimax
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Tukey’s biweight
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Maximum likelihood
The principle
A product of independent probabilities

P(AABA...)=P(A)P(B)...

Lets suppose the density probability f(x,; x) of an every
point of data set: there is a such point for

N
AP = [ | f(xn; %) Ax

n=1

gets the maximum. If the interval Ax is arbitrary, its is
equivalent to find of maximum of the likelihood function$

L(xn; % ]_[ flocn; X

SBrandt: Data Analysis: Statistical and Computational Methods for
Scientists and Engineers (2014)




Robust mean
By maximum likelihood

The likelihood

/\

N
dlnL izlp(xn— >=O.
-1

Likelihood L (arbitrary units)

. . Tukey
e 1) is some robust function, N(0,1)
e A solution is given by the ‘ ‘ ‘ ‘ ‘
non-linear equation against to . -2-10 1 2
Mean &

e s =1 (important!).



Tukey in action
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Descent function

Convergence region of Tukey
An approximation error! of Newton’s method:
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fRalston & Rabinowitz: A First Course in Numerical Analysis (2012)
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Bias of Huber’'s minimax

Another strange protagonist
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Join estimation of location and scale

Scale does matter; seriously.




log L

Maximum of scale

Our protagonist on the stage again

N
InL(s) = —Zg<xns—x> —NInT's
n=1

Scale s



The dispersion

The actor never disappear

52 = 2 N? Zgﬂlpz(’”n/s)

NS Wrals)2

/

1 2

Scale s



The algorithm

Part I. — An initial estimate

i) Estimate of the location by median x©

O = median{xy, xo, ..., XN}

ii) Estimate of s by median of absolute deviations (MAD)

(o _ median{xn — £, n=1,..., N}
d-1(34)

iii) Solve the equation (the initial estimate £ — 1)
N _ )
P <x<f> =0,
n=1

for £, by a method without derivation.



The algorithm

Part II. — Increasing accuracy

iv) Solve for scale s!) by finding of maximum of likelihood
(with initial 5% — s1))

— Z e\l ——m | Ins.
s
n=1
v) Increase precision of the mean by Newton iterations

li+1) _ (0 Zn 1¢ 0 ) 5(1)]
Yon i Wl — x0)/s)]

vi) Declare results s = st), ¥ = g1,

,i=1,...



The algorithm

Part III. — Results

vii) Compute the standard error, r, = x, — X:
o N2 Yy YP(rals)

N =1 [0 ¥/enls)?
viii) Compute the standard deviation

& = VN 6.

dclxvi) A final estimate gives: the standard deviation &,
parameters of N'(X, §), the robust mean and the
standard error (no Studentising applied)
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Dark side of robust mean

e There is very slow algorithm with rate 1 : 300, O(n)

e The algorithm is complicated (advanced numerical
methods required, complex logic).

e There is no an explicit form.
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Generalizations

Easy:
e Weighted Mean
e Multidimensional functions: lines, planes, ...
e Statistical tests (Student).

Hard:
e Non-Gaussian (uniform, Poisson), ...distributions.
e Very limited data sets.

e Data holding some condition(s).



A sky around stars

Revelation of memories




Conclusions

Robustness signifies insensitivity to small
deviations from assumptions. — Peter ]J. Huber

Robust estimators gives negligible difference between
the expected and derived distributions functions.

Results by maximum likelihood (probability).
Scale does matter.

The implementation can be a little bit tricky, whilst
usage is common and results are quite reproducible.

<« The End ~-



