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Abstract:

The aim of the article is to show how can the revised Bloom tazonomy be used to
test the effectiveness of linear algebra teaching in university studies of physics,
i.e. in education of future physicists and physics teachers. Linear algebra is an
integral part of physics as such, and therefore of physics teaching as well. The
revised Bloom’s tazonomy (RBT), thanks to the principle of gradually increa-
sing increasing difficulty and problem-solving requirements, is very suitable for
obtaining information about the extent to which the teaching of linear algebra
(and mathematics in general) and the teaching of physics are directly connec-
ted in terms of the needs of university physics education. Siz levels of the RBT
(remember, understand, apply, analyze, evaluate, create) can be tested in three
basic stages: knowledge, conceptual knowledge and procedural knowledge (the
stage meta-cognition included in general version of RBT is not relevant for our
purposes). For students of physics and students of teaching physics, we have
newly included, as the fourth stage, "physics application”, for testing students
ability to use newly acquired mathematical knowledge in describing and solving
physical problems. Using a sample test connecting the issues of a typical linear
algebra topic, "Eigenvalues, and eigenvectors of linear operators"”, with the phy-
sical issues of "Rigid body rotation", and its evaluation, we demonstrate the
effectiveness of the RBT testing method.

Introduction

Teaching mathematics, especially algebra and geometry, mathematical analysis,
and more advanced disciplines, is of course a natural part of university studies of
physics and teaching physics. However, the problem is often that mathematics
is taught separately without any connection to physics, for which it is essential.
Unfortunately, the need to connect physics and mathematics directly in teaching
is not a priority in general. Nevertheless, studies occasionally appear that deal
with the problems of such connections. For the last decade, see for example
[1]-[6].

In the study of physics and physics teaching, the interconnection is emphasi-
zed especially to linear algebra and geometry as one of fundamental mathema-
tical tools for physics. This can be seen also in recent relevant publications, see
e.g. [7]-[11]. Directly related to physics education is testing students’ mathe-
matical knowledge and skills in connection with their ability to apply them in
solving physics problems. Testing using the revised Bloom’s taxonomy (RBT)
appears to be particularly suitable for its two-dimensional hierarchical principle



of tests formulation and evaluation. Six levels of the RBT (remember, under-
stand, apply, analyze, evaluate, create) can be tested, in general, in four stages
(knowledge, conceptual knowledge, procedural knowledge and meta-cognition).
For students of physics and students of teaching physics, we have newly replace
the stage meta-cognition by the stage "physics application", for testing students
ability to use newly acquired mathematical knowledge in describing and solving
physical problems. Although we assume that interested readers are familiar with
the principles and methods of RBT, we will briefly discuss them in Section 2.
In this contribution we present one of typical sample tests of the fourth
(newly added by us) stage "physics applications" (see Sec. 2) within all six le-
vels of RBT, including correct answers and comments relating the mathematical
background and the physical essence. The topic of the test is "Eigenvalues and
eigenvectors of linear operators" as a mathematical background for solving pro-
blems of rotational motion of solid bodies. We present the results of student
solutions (the group of students after completing five semesters of study) and
their statistical evaluation. We also discuss possible causes of incorrect solutions.

2. The principles of Revised bloom taxonomy

The Bloom taxonomy was first published in 1956 [12]. Bloom and his coauthors
showed a hierarchical organization of cognitive processes. They established six
gradually increasing levels: Knowledge, Comprehension, Application, Analysis,
Synthesis, Evaluation. Today, we use the taxonomy in a revised version [13].
The most important change compared to the original version is the expansion
of Bloom one-dimensional version to the two-dimensional one: in addition to the
six levels of knowledge, each of them is divided into four degrees (stages):

A Factual knowledge (basic concepts and terminology)

B Conceptual knowledge (relationships between concepts)

C Procedural knowledge (methods, procedures, algorithms)

D Metacognitive knowledge (self-knowledge, learning strategies)

The original taxonomy included elements of only the first three levels, without
specifying them. Another change was the use of verbs in the names of the levels
and the order of the highest two levels was reversed. The RBT is schematically
depicted on Fig. 1 (where instead of the stage D our new stage F is introduced).
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Fic. 1. The "barrel"scheme of the Revised Bloom Taxonomy.

In this spatial image the same height of the "knowledge barrels"corresponds to
the same difficulty of the test items belonging to the given cells of the taxonomic
table, starting from white (the easiest tasks of type 1A), to black (the most
difficult tasks of type 6F). On the top of each barrel wee can see a verb in the
imperative, which is supposed to lead to a typical item of this level.

In our work, we did not focus on the last of the four levels (D); the reader
can find more information in [14], [15]. For testing students of physics, we have
newly introduced the physics-application level of knowledge F. The tasks of
the stage F focus on students’ abilities to apply mathematical knowledge as an
indispensable tool in physics. Using mathematics to describe physical situations
and to solve specific problems means a specific knowledge that we require from
students of physics and students of teaching physics. We thus emphasize the
connection between mathematical and physics courses, which has long been
shown to be insufficient in the study of physics.

Let’s characterize the individual items of stage F according to the six levels
of RBT.

Level 1F — Remember: "Introduce" a mathematical concept to physics.
The goal of the tasks is to "recognize" (identify) the appropriate mathema-
tical concepts for physics. It tests the student’s ability to "remember"and



subsequently "recall"relevant information and connections. The ideal type
of questions are closed ones with one or more correct answers, respectively
matching or opened tasks.

Level 2F — Understand: "Interpret" a physical situation from a mathe-
matical point of view. We require a deeper understanding of concepts
and connections, as well as the ability of students to communicate their
meaning. The student’s task is not only to choose the right mathematical
model, but above all to explain its suitability for a given physical situation.
At this level, we usually test with closed questions with multiple correct
answers.

Level 3F — Apply: "Use" mathematical tools to solve a physical problem.
The tasks tests the ability to use mathematical methods and procedures to
solve a known problem, or to implement algorithms for an unknown pro-
blem. Typical tasks are the opened problems of the type "determine" or
"calculate", where the answer is a number (or several numbers or an ex-
pression).

Level 4F — Analyze: "Analyze" mathematical aspects in a given pro-
blem of physics. Students ought to be able to see structures, to divide
the whole into parts and understand the relationships between them and
their relationship to the whole itself, to distinguish, classify, integrate, as-
sign, structure. The most common type of questions are closed ones with
multiple correct answers, or assignment questions.

Level 5F — Evaluate: "Evaluate" a physical situation from a mathema-
tical point of view. The tasks test the student judgement based on general
criteria. This requires critical thinking when assessing claims or arguments.
The ability to evaluate is best demonstrated in oral examinations, or it is
appropriate to test it with closed questions with multiple correct answers,
or matching.

Level 6F — Create: "Discover" new connection between physics and
mathematics. The essence of this level is to present to the student a task
that he has not encountered before. For example, if the same task is pre-
sented to a first-year student, it may correspond to the type 6F, while
a third-year student is tested only at the "apply" level. The tasks require
the ability to reorganize elements into a newly created structure. Typical
tasks are the opened ones.

3. Physics-application knowledge in the context of RBT

In this chapter, we will focus on the specifics of the knowledge stage newly intro-
duced into teaching on all six knowledge levels, the so-called physical-application
knowledge. As mentioned, the basic course of university mathematics for phys-
ics studies should be adapted to the aim to implement mathematical concepts,
statements and methods into physical theories, of course, provided that the



mathematical interpretation is correct. Mathematical courses should not be bu-
ilt "next to" physics courses, but should be in constant parallel connection with
them. However, experience shows that the standard way of teaching mathema-
tics using the definition-theorem-proof method without permanent physical de-
monstrations of the use of mathematical tools does not lead to achieving this
goal. Therefore, we have decided to further develop the connection between
mathematics and physics teaching in basic mathematics courses. This applies
not only to the teaching itself (lecture/exercise), but also, importantly, to tes-
ting, for which we use RBT.

To achieve this goal, we primarily focused on the disciplines "Linear alge-
bra and geometry" and "Linear and multilinear algebra". These disciplines are
included in the physics study program in the first two semesters and are guaran-
teed by the Institute of theoretical physics and astrophysics, Faculty of Science,
Masaryk University (author’s workplace). Tests of the stages 1F-6F are prepa-
red in such a way that they follow the basic topics of both mentioned disciplines
as stated in their syllabus (14+14 topics).

4. The sample test

In the physics studies on Faculty of Science, Masaryk University, the courses
"Linear algebra and geometry" and "Linear and multilinear algebra" are inclu-
ded in the first two semesters of study. The teaching is carried out in a way that
respects the needs of physics courses of the first six semesters (bachelor’s degree
of study completed by the state final examination).

To give an idea of 4€«a€<the concept of 1F to 6F type problems, we present
a sample test on the topic of "Eigenvalues &€ a€<and eigenvectors of linear ope-
rators". Let us note that this mathematical background has a direct connection
to important topics in physics, such as the rotation of a rigid body (relationship
between angular momentum and angular velocity), electricity, magnetism, optics
of generally inhomogeneous media (relationship between electric field intensity
and polarization of the medium), quantum mechanics (values 4€<a€ <of measu-
red quantities versus eigenvalues 4€<a€<of the relevant operators, eigenstates
of a quantum mechanical systems), and others.

Here we present the test concerning the mentioned topic "Eigenvalues 4€<4€<and
eigenvectors of linear operators" in connection with the physical problems con-
cerning rotational motion of rigid bodies, and with relevant comments on its
formulation. First, we would like to make a few notes regarding the specific cho-
ice of those sample problems, which fall primarily into the field of Newtonian
mechanics.

1) The issue "Eigenvectors and eigenvalues a4€<a€<of linear operators" is a
somewhat more advanced area of a€<a€«linear algebra and geometry for
students. Although it has a wider and often more natural use in a number
of other physical disciplines than just classical mechanics, we choose exam-
ples at all levels 1F to 6F of Bloom taxonomy from the field of mechanics,
in order to capture the essence and increasing difficulty of individual levels
of Bloom taxonomy on issues of a similar type.



2) The tasks involve the concept of a tangent vector space ToR? located at
point O of Euclidean space R? (Fig. 2). This concept is clearly explained
to students in both mechanics and linear algebra courses.

a(x) ~ (x; (@' (x), ay(x), a5(x)))
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FiG. 2. Tangent (vector) space ToR? to the Euclidean (topological)
space R3.

3) We often choose the location of the tangent vector space ToR? at the
center of mass of the body SH, i.e. O = SH, so that in tasks of lower
difficulty level students do not get entangled in considerations about the
location of the reference point for calculating the angular momentum.

4) In introductory physics disciplines in the study of physics programs, espe-
cially in mechanics, we are working practically exclusively in Cartesian
coordinate systems of the Euclidean space R?, or in orthonormal bases of
the vector space T,R? at a point z € R3.

5) The inertia of a body is a symmetric Cartesian tensor — it is defined using
components in orthonormal bases (see note 3) above). In mechanics cour-
ses, students already work with it practically as a "converter" between
angular momentum and angular velocity, and the conditionality of the
choice of an orthonormal basis is justified to them. In the teaching of
linear algebra, where transitions between bases are discussed simultane-
ously and with reference to physics, students will become aware of and
practice working with the components of the vector product, which is pre-
cisely the expression of angular momentum. They will be convinced that
the usual notation of the components of the vector product that they used,
specifically for

i~ (a0 0®) b~ (82 5% 57,

axb~ (0?8 —a®B2% a’8t — o' 57, o' B% — 2B,



is correct in right-handed orthonormal bases, but not in general bases.
Therefore, in problems of the type mentioned below, orthonormal bases
right-handed are automatically taken into account.

6) It should also be noted that the assignment of physics problems is usually
more comprehensive than in the case of purely mathematical problems.
It is necessary to clearly specify all simplifying assumptions regarding the
physics problem.

1F Introduce a mathematical concept into physics

Let (€], €, €3) be an orthonormal base of the vector space ToR? located at the
origin O of the Cartesian coordinate system. The linear relationship between the
angular momentum of a rigid body L and its angular velocity & has the form
L; = Jjiwy + Jjpws + Jij3ws, where in matrix notation E ~ (L) = (L1 Lo L3)
and & ~ (w) = (w1 w2 w:;), and j ~ j = (Jij); Jz = in, i = 1, 2, 3, is
the inertia of the body. The matrix relation (L) = (w)J can be understood as
an expression representing the action of the symmetric linear inertia operator
(represented by the matrix J ) on the angular velocity vector, the image of which
is the angular momentum vector.

For the operator J, it makes sense to discuss the problem of its eigenvalues
and eigenvectors. The vector space containing the vectors under consideration
is three-dimensional vector space over R. Of the following statements, exactly
one is true. Choose them.

a) An eigenvector of the operator J is any vector & for which its image Lis
a numerical multiple of it.

b) The problem of eigenvalues a€<4€<and eigenvectors of the operator J
may not have a solution in some situations.

c) The eigenvalues a€<a€<of the operator J depend on the chosen basis
(€1, €3, €3).

d) The operator J has only real characteristic roots, which are also its eige-
nvalues.

e) Because the relation (L) = (w).J is trivially satisfied for the zero vector &
, the zero vector is therefore an eigenvector.

Comments: To solve the problem correctly, the student needs to know and
remember the definitions of the concepts eigenvector, eigenvalue, characteristic
root and also basic information about these concepts related to symmetric linear
operators. The physics of the problem is not complicated, it is a common type of
linear relationship that the student knows from the study discipline Mechanics.

a) Wrong answer, because the given relation is also satisfied by the zero
vector, which is excluded from the definition of an eigenvector.



b) Wrong answer. The problem of eigenvalues 4€<a€<and eigenvectors of a
symmetric linear operator in a vector space over R (and even above C)
always has a solution (the characteristic roots are real and therefore they
are also eigenvalues).

c) Wrong answer. The eigenvalues 4€<4€ <of every linear operator are inva-
riant to the choice of basis.

d) Correct answer. A symmetric linear operator in a vector space over R
(and even over C) has only real characteristic roots, which are also its
eigenvalues.

e) Wrong answer. The zero vector is not an eigenvector. This is done by the
definition.

2F Interpret a physical situation from a mathematical point of view

We work in orthonormal bases. The linear relation between the angular mo-
mentum L of a rigid body (flywheel) and its angular velocity & in the vector
space ToR?, located at the origin O of the Euclidean space R?, is realized by
the symmetric linear operator .J, called the inertia tensor. Let us assume for
simplicity that the origin of the coordinate system lies at the center of mass of
the body (it represents the zero vector). In the general case, when the body has
no symmetry of mass distribution, this operator has three different (positive)
eigenvalues ffiffi.J;, J3, J3. From the following statements, choose exactly all true
ones.

a) If the components of angular momentum L ~ (L1, L, L3) and angular
velocity @ ~ (w1,ws,ws) are expressed in any basis of the space ToRS3,
then L1 = J1W1, L2 = J20J2,L3 = J3CU3.

b) The operator J has (after the addition of the zero vector) just three one-
dimensional vector subspaces of eigenvectors, determining the so-called
principal axes of the inertia.

c) The operator J has exactly three different eigenvectors.

d) It is not clear in advance whether the operator J is diagonalizable, i.e.
whether there is a basis of the space ToR? in which the operator is repre-
sented by a diagonal matrix.

e) Since the operator J has a simple spectrum, any vector in the space ToR?
is its eigenvector and thus represents the so-called free axis of the flywheel.

f) The eigenvectors of the operator J generate the entire vector space ToR3.

g) The operator J has no eigenvectors because it maps vectors of one type of
physical quantity (angular velocity) onto another type of physical quantity
(angular momentum).



h)

The physical problems of the motion of flywheels are not related to the
problem of eigenvalues 4€<4€<and eigenvectors of operators.

Comments: If the teaching of the topic "Eigenvalues 4€<a€<and eigenvectors
of a linear operator" were conducted without any connection to physics and the
test was presented in the discipline "Linear Algebra and Geometry", students
would (hopefully) be able to assess the correctness of the answers in which
the connection to physics is not explicitly mentioned. A frequent occurrence of
answer h) as correct one can also be expected.

a)

Wrong answer. In order to correctly assess the correctness of the statement,
the student must understand the connections between physical quantities
and the concepts of linear algebra and also the fact that the relation
L; = J;w; holds precisely in the basis associated with the eigenvectors of
the operator J.

Correct answer. The student will assess this statement correctly if he/she
knows the connection between the principal axes of the inertia and the
solution of the problem of the eigenvectors of the operator J. He/she
should also know and understand the fact that to each of the three di-
fferent eigenvalues 4€<a€<of the operator in ToR? corresponds just to
unique one-dimensional vector subspace of eigenvectors (after adding a
zero vector).

Wrong answer. The student may perceive the question as purely algebraic.
To make the right decision, he must understand the reasons (based on an
understanding of the problem of solving systems of linear equations) that
an eigenvalue of a linear operator cannot correspond o a single eigenvector,
but always to a vector subspace. (This problem is also connected with the
understanding of the fact that a homogeneous system of linear equations
of reduced rank, which is the system of equations for the components of
the eigenvectors after substituting the determined eigenvalue, always has
infinitely many solutions.)

Wrong answer. To make a decision here, it is sufficient to know the fact that
if the operator in three-dimensional vector space has three different eigen-
values 4€<a€«(a simple spectrum) then it has a diagonal representation.
If the student is aware of the connection of the diagonal representation
of the operator J , corresponding relation between the angular momentum
and angular velocity of the flywheel, and the connection of this relation
with principal axes, then he/she will able to eliminate answer d).

Wrong answer. If the student has understood the basic definitions and sta-
tements regarding the problem of eigenvalues 4€<4€<and eigenvectors of
a linear operator, he/she knows that every vector (except the zero vector)
is an eigenvector of a linear operator if and only if the operator has a sin-
gle threefold eigenvalue. Alternatively, to make the right decision, it may
be enough for him /her to know that the zero vector does not satisfy the



definition of an eigenvector. When connecting with physics, it is enough
to realize that a general flywheel with asymmetric mass distribution, has
exactly three principal axes (each of them is related to a one-dimensional
vector space of eigenvectors).

f) Correct answer. The student only needs to realize the meaning of the term
"to generate a vector space" and understand it (each vector of the given
vector subspace is a linear combination of generators).

g) Wrong answer. It can only be marked as correct by a student who is not
aware of any connection of the relationship between angular momentum
and angular velocity with the issue of eigenvectors and values &€ a€<of
linear operators. (This student not understand that the inertia is the phy-
sical realization of a linear operator).

h) Wrong answer. Marking it as correct has the same interpretation as in the
case of ad g).

3F Use mathematical tools to solve a physics problem

Each component of the angular momentum Lofa rigid body is, in the simplest
physical situation, a linear combination of all components of the angular velocity
vector . This relationship is mediated by the linear operator J of the inertia of
a body. This operator is symmetric which is symmetric. In a certain orthonormal
basis and in agreed units the matrix J = (Jij)s %, 5 =1, 2, 3, representing the
operator j is given, where J11 = J22 = J33 = 2, J12 = J21 = 0, J13 = J31 = 1,

a) Using the solution of the eigenvalue problem and based on the physical
properties of the inertia, decide whether this matrix can represent the
operator J in the chosen basis.

b) Do the eigenvalues 4€<a€<of the linear operator J depend on the choice
of basis?

c) If the given matrix J can represent a linear operator J , calculate its eige-
nvectors.

d) Interpret the solution c¢) from the point of view of physics.

Comments: A relatively simple open task on the direct application of the
problem of eigenvalues 4€<a€<and vectors in a physical situation. (Note that
the same problem can be formulated for other linear relations in physics, e.g.
for vectors of the electric induction D and electric intensity E connected by the
symmetric linear operator & of dielectric permittivity.)

ad a) The student must assess the given matrix according to the eigenvalues
a€<a€<of the inertia operator (from the point of view of physical meaning,
only positive eigenvalues 4€ <a€<are permissible). In the case of the given
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matrix, there are three different eigenvalues 4€<a€<«7 =1, Jo =2, J3 =
3. They are therefore permissible and the given matrix can represent the
operator J in (arbitrary) orthonormal bases.

b) The eigenvalues a€<a€<of the operator are independent of the choice of
basis.

c) The eigenvectors corresponding to the eigenvalue J; = 1 generate the
vector subspace

Ly =1, 0, -1)] = H(% 0 _\}§> H

of eigenvectors, the eigenvalue Jo = 2 corresponds to the vector subspace
Ly = H(O» 1, 0)”7

and the eigenvalue £3 = 3 corresponds to the vector subspace

Ls=1[|(1,0, 1)) = H <\}§ 0 ;i)” '

d) From the point of view of the connection of mathematics and physics, the
answer to d) (together with the answer to a)) is essential: For example, for

any vector Le L3, i.e. L~ (a, 0, @), where « is an arbitrary constant, it
holds

-

(a 0 ) =(Ba 0 3a) = L =3aw.

= O N

0
2
0

N O =

In the case where the angular velocity has the direction of the eigenvector
of the operator J, the angular momentum has the same direction.

4F Analyze mathematical aspects in a physical case

We work in orthonormal bases. The linear relationship between the angular
momentum L of a rigid body (flywheel) and its angular velocity ¢ in the vector
space ToR? is realized by the linear operator J , so-called inertia tensor. Let us
assume that the origin O of the coordinate system lies at the center of mass of the
body (the zero vector is located in it). Suppose that the body has symmetrically
distributed mass with respect to a certain axis o (rotational symmetry, in the
case of a homogeneous body the axis o is the axis of its geometric rotational
symmetry), and that it does not have a higher symmetry. The principal axis
of the moment of inertia is understood as a straight line passing through the
center of mass of the body O = SH such that if the body rotates around it, its
angular momentum has the direction of the angular velocity at each moment.
From the following statements, select exactly all true ones:

a) The operator J has exactly two different eigenvalues ffiffiJ; and Js.

11



h)

All vectors directed along the principal axes of the inertia are eigenvectors
of the operator J.

The eigenvectors of the operator J are exactly all vectors having the di-
rection of the axis of symmetry o.

Every vector having the direction of the axis o is an eigenvector of the
operator J.

The flywheel has infinitely many principal axes.

In an orthonormal basis connected to the principal axes, the matrix re-
presenting the operator J has a diagonal form, specifically, e.g. diag J =
(JlaJQaJ3)7 Jl = J2~

There are special cases when the basis in which the operator J would have
a diagonal form does not exist.

Each eigenvector of the operator J determines the direction of a principal
axis of the inertia.

Comments: The task supposes understanding the connections between phy-
sical concepts and linear algebra concepts, including geometric interpretation.
Understanding the fact that the linearity of the relationship between angular
momentum and angular velocity mediated by the inertia mathematically imple-
mented by a linear operator (symmetric in orthonormal bases) allows, based on
the properties of mathematical objects, to infer (interpret) the properties of the
motion of a physical system. In the given task, however, the problem is rather
the opposite a€” the student must "to convert" the physical definition of the
principal axis of the inertia into the "language" of linear algebra. The gradual
steps of the necessary analysis could be as follows:

1)

2)

If a body rotates about the principal axis o, i.e. & || o, the relation L=J,&
holds for a certain value J,.

The relationship between the components of the angular momentum L and
the angular velocity & in a basis in which the matrix B$.J representing the
operator .J is diagonal, in matrix notation L ~ (L) = (L, Ly L3), & ~
(w1 wy ws), (L) = (w)J, leads to a special expression of the components
of the angular momentum L; = J;w;.

The first two steps are the key to solving the problem, as they lead to the
comparison (L) = (w)J, (L) = Jo(w) = (w)(J — JoE) = (0), where E is
the unit matrix and (0) is the zero matrix. From this comparison it is clear
that each vector w in the direction of the principal axis is an eigenvector
of the operator .J. This transforms the physical problem into the algebraic
one.

12



1)

The problem has an important physical aspect resulting from its symmetry
(symmetry of the mass distribution with respect to the o-axis, or, in the
case of a homogeneous body, geometric symmetry): the o-axis of symmetry
is the principal axis. At the same time, & and L are eigenvectors of the
operator J , the value Jy in the relation L = Jow is the eigenvalue of
the operator. All directions in the plane perpendicular to the o-axis are
equivalent from the point of view of the symmetry of the problem.

Partial conclusion: The vector space ToR? is a direct sum of two vector
subspaces (always after adding a zero vector, which is not an eigenvector
by definition): £; one-dimensional, generated by the direction vector of
the o-axis, Lo two-dimensional, generated by two arbitrary independent
vectors perpendicular to the o-axis.

The previous steps lead to the full connection of the physical problem with the
effective tools of linear algebra. The physical problem has been transformed into
an essentially routine task by the above analysis. Assuming that the analysis
has been carried out in this way, the selection of the correct answers is already
very simple. We provide brief comments:

a)

Correct answer. The operator has two different eigenvalues, a single one J;
(corresponding to the vector subspace of eigenvectors £1) and a twofold
one Jy (corresponding to the vector subspace of eigenvectors Ls).

Correct answer. Its marking as correct is a direct consequence of the ana-
lysis in the five steps above.

Wrong answer. Vectors in the direction of the o-axis are eigenvectors (they
form a one-dimensional vector subspace after adding the zero vector).
However, there are other eigenvectors. The student who marked the answer
as correct may not have realized the importance of the word "exactly".

Correct answer. Perhaps somewhat misleading in connection with the an-
swer to ¢), the student who marked the answer to c) as correct, by means
of the formulation of the answer to d) can realize his mistake and return
to the answer to c) and correct it. Even such a situation indicates after
all, an understanding of the issue.

Correct answer. See step 5) above.

This correct answer is based on an understanding the connection between
the principal axes and eigenvectors of a linear operator J. 5

Trivially wrong answer. Marking it as correct is evidence of a misunder-
standing of the issue of eigenvectors and eigenvalues a€<a€<of a linear
operator as such. However, if the student at least partially understood
the connection of the linear relationship between angular momentum and
angular velocity with the fact that a flywheel always has principal axes,
this may help him/her to eliminate the answer g) and also improve his
level of understanding of the issue.

13



h) Correct answer. It follows quite simply from step 3).

5F Evaluate the physical consequences based on the mathematical
properties of concepts

Studying the rotational motion of a rigid body we work in orthonormal bases.
Let us assume that the origin of the coordinate system O lies at the center
of mass of the body (the zero vector is located in it). The linear relationship
between the angular momentum L of a rigid body (flywheel) and its angular
velocity & in the vector space ToR3 is realized by the linear operator J , the
so-called inertia tensor. In the orthonormal basis (€}, €, €3), the angular mo-
mentum and angular velocity have the components L ~ (L1 Le Ls) and
@ ~ (w1 we ws) in matrix notation. The operator J is represented in the
given basis by the symmetric matrix J o~ J= (Jij), i, j = 1, 2, 3. Therefore,
(L) = (w)J. Suppose that in the given specific case the operator .J has two iden-
tical eigenvalues ffiffiJ; = Js, let us denote them by Jy. We have no information
about the third value. Besides, let’s assume that in the considered vector space
there are non-zero vectors that are not eigenvectors of the operator J. Based
on these facts formulate the physical consequences concerning the motion of the
body, especially the principal axes of its inertia. Based on these considerations,
choose just all true statements from the following. (Speaking about the principal
axes of the inertia, we mean the axes passing through the center of mass of the
body.)

a) The assignment is incomplete. Without knowing the third eigenvalue of
the operator J no conclusions can be made regarding the motion of the
body.

b) The body has (at least) infinitely many principal axes of the inertia, such
that their direction vectors are all eigenvectors corresponding to the eige-
nvalue Jy.

c¢) If the body rotates around an axis whose direction vector is perpendicular
to the vector subspace generated by the eigenvectors corresponding to the
eigenvalue Jy, its angular momentum will be L = Jyd.

d) If the body is homogeneous, then it exhibits rotational symmetry with re-
spect to an axis perpendicular to the plane determined by the eigenvectors
corresponding to the eigenvalue Jy.

e) It is not possible to decide whether the third eigenvalue of the operator J
is the same as or different from the value Jj.

f) The body has spherical symmetry of the mass distribution.

g) The axis (passing through the center of mass of the body) the direction
vector of which is perpendicular to the vector subspace generated by the
eigenvectors of the operator J is the principal axis of the inertia of the
body.
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h) If a body rotates around an axis passing through its center of mass and
having the direction of any eigenvector of the operator J corresponding
to the eigenvalue Jy, then it holds L= Jod, i.e. the axis of rotation is the
principal axis of the inertia of the body.

Comments: The assignment is somewhat longer to achieve the precise for-
mulations, e.g. to distinguish the concepts of "axis"as a straight line, versus
"direction vector of the axis", etc. The assignment suggests to the student
that physical conclusions result from the connection of physical laws with their
mathematical expression/representation, which is the problem of eigenvalues
a€«a€<and eigenvectors of a symmetric linear operator. Therefore, the student
should summarize the basic knowledge from the relevant area of 4€<a€<linear
algebra for the purpose to solve the problem. Let us present them again in suc-
cessive steps as in the previous problem of level 4F, which was very similar in
content, but required the reverse process of reasoning. While task 4F proceeds
from physics to mathematics (requiring "to analyze the mathematical aspects
of a physical case), task 5F proceeds in the opposite direction (requiring "to
formulate the physical consequences based on the mathematical properties of
the concepts). So, the task 5F is more difficult. Gradual considerations leading
to the solution:

1) A symmetric linear operator is represented in the basis of its eigenvectors
by the diagonal matrix with the eigenvalues 4€<a€<on the diagonal. Such
a basis (&1, &, &3) always exists. In it, the relationship between the compo-
nents of angular momentum and angular velocity has the form L; = J1&1,
Ly = Jows, L3 = J3ws. (For simplicity, we do not choose a different desig-
nation for the components than in the task specification, perhaps there is
no risk of collision.)

2) With each eigenvalue a€<a€<the vector subspace of eigenvectors is con-
nected (after the addition of the zero vector). The dimension of each such
subspace equals to the multiplicity of the corresponding eigenvalue as the
characteristic root of the operator. The value Jy, = J; = Js is at least
twofold, as specified in the assignment.

3) If the value of J; was equal to Jy, the vector space generated by the
eigenvectors of the threefold eigenvalue Jy would be three-dimensional,
i.e. it would be the entire space ToR3. However, this is in contradiction
to the information that in ToR? there are non-zero vectors that are not
eigenvectors of the operator. Thus, J3 # Jy.

4) The above considerations lead to the following mathematical conclusi-
ons: The operator J has one twofold eigenvalue Jy, corresponding to the
two-dimensional vector subspace of eigenvectors Ly (after adding the zero
vector), and a single eigenvalue J3 # Jo, to which belongs (again after ad-
ding the zero vector) the one-dimensional vector subspace of eigenvectors
L3 orthogonal to L.
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5)

Physical consequences of considerations 1) to 4): If the direction vector
of the rotation axis is the eigenvector corresponding to the eigenvalue Jy,
then it holds L = Jo@. So the axis is the principal axis of the inertia
(this follows from the physical definition of the principal axis). Similar
conclusion is valid for the case when the direction vector of the axis is the
eigenvector corresponding to the value Js.

Conclusion: In the given case, the body has infinitely many principal axes
(going through the center of mass) forming a plane (their orientation is de-
termined by the vector subspace L), and one principal axis perpendicular
to this plane. This distribution of principal axes must correspond to the
symmetry of the mass distribution of the body, which for a homogeneous
body is identical to its geometric symmetry.

Deciding on the truth of the offered statements is now easy:

a)

g)

h)

Wrong answer. It results from the fact that there are non-zero vectors
that are not eigenvectors of the operator J that the third eigenvalue J3
differs from Jy. This is sufficient for the answer, even though Js is not
given concretely.

Correct answer. The word "at least'"is important here. There are the axes
corresponding to the eigenvalue Jy.

Wrong answer. In the described case, L= J3d@, J3 # Jp.
Correct answer. (It would also be correct in the case J; = Jy.)

Wrong answer. The equality J; = Jy is excluded by the statement in the
assignment about the existence of non-zero vectors that are not eigenvec-
tors of the operator J.

Wrong answer. In the case of spherical symmetry of the mass distribu-
tion all lines going through the center of mass would represent equivalent
axes of rotation and their direction vectors would be eigenvectors of the
operator J.

Correct answer. The direction of the axis corresponds to the orientation
of vectors lying in the vector subspace L.

Correct answer. See arguments above.

6F Discover a new connection of physics with mathematics

The motion of a system of mass points (a body) is described in an inertial frame
of reference S, to which an orthonormal basis (€], €, €3 is connected. For the
rotational motion of a body, the second momentum theorem holds

-

dL -

dt = ext
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where L is the angular momentum of the body relative to a pre-selected reference
point O (e.g. the origin of the coordinate system) and Moy is the resulting
torque of external forces relative to this point. Let us assume that the body is
rigid (flywheel). Its rotational motion as a whole is then described by a single
kinematic quantity, common to all its particles, the (instantaneous) angular
velocity . The relationship between angular momentum and angular velocity
is linear, it is mediated by the linear operator J , which is represented in the
given orthonormal basis by the symmetric matrix J = (Jij), 3,7 = 1,2, 3.
For components in the matrix notation L~ (L) = (L1 Ly L3), d ~ (w) =
(w1 wa ws), it holds (L) = (w)J, ie L; = Zj’:l Jijwj for i, 5 = 1,2, 3.
Since the flywheel is rigid, the elements of the inertia operator with respect to
an orthonormal basis rigidly connected to the flywheel do not depend on time,
i.e., with respect to an observer connected to such a basis, the flywheel does
not move. The corresponding reference frame S’ is, of course, non-inertial. The
flywheel obtains the given angular velocity & with respect to the frame .S (around
a certain instantaneous axis going through the center of mass). Assume that in
this frame S the body does not perform the translational motion. Moreover,
suppose that the axes around which the flywheel can rotate pass through its
center of mass. Next, we consider the inertial frame S.

From a mathematical point of view, consider the eigenvalues a€<a€<and
eigenvectors of the operator J and look for the context with physics in following
situations.

a) Assume that the resulting torque of external forces acting on the flywheel
is zero. What holds for the angular momentum? Is the same valid for
angular velocity? If so, is it valid always or only under certain conditions?
Is the angular velocity & parallel to the angular momentum? Always? Or,
because of the relation (L) = (w).J, the relation L || & holds only under
specific conditions?

b) What is the connection between the motion of a flywheel governed by
the second momentum law and the concept of a fixed axis of rotation? (A
fixed axis is a straight line that is immobile with respect to a given inertial
frame.) Consider whether, and under what conditions, the axis of rotation
can be fixed at zero torque of external forces.

c) Discover the connection of the linear relationship between angular mo-
mentum and angular velocity with the problem of eigenvalues a€<a€<and
eigenvectors of the inertia operator J.

d) Discover the meaning of the eigenvectors of the operator J in terms of
the motion of the flywheel and its connection with the symmetry of the
flywheel’s mass distribution (in the case of a homogeneous body, this is
geometric symmetry.)

e) The principal axes of a flywheel are sometimes called free. Can you justify
this terminology?
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Comments: This is an open task, the solution of which is not easy for first-
year students. The task in the assignment is formulated in general terms, does
not draw attention to the main axes of the inertia. The note concerning the
symmetry of the flywheel may perhaps be helpful for a student with a certain
physical intuition. An important aid in the assignment is the explicit reference
to the connection of the linear relationship between the angular momentum
and the angular velocity through the symmetric operator J with the problem
of eigenvalues 4€<a€<and eigenvectors of J. (On the other hand, even without
this reference, the mentioned connection could/should be very logical for a more
advanced student: if an operator is suitable for describing a physical relation-
ship, one can certainly expect physical impacts of its mathematical properties.
Through this problem, the student can also realize that the constant tensor of
inertia, i.e. with respect to the basis associated with the body, is only a property
of the distribution of the body’s mass, independent of its motion.)

a) This task is both physical (the second momentum theorem) and geometric
(the relationship between vectors L and @). Solving this problem leads to
the understanding of the meaning of the term fized axis. The student will
realize that in the case of zero torque the second momentum theorem
implies the law of conservation of angular momentum (with respect to the
inertial reference frame). The student will be helped by pointing out the
fact that the components of the moment of inertia of a rigid body are
constant with respect to the basis fixed in the body, but not with respect
to the basis connected to the inertial reference frame in general. This leads
to the conclusion that even with constant angular momentum, the angular
velocity need not be constant. The general linear relationship then leads to
the result that the angular velocity is not generally parallel to the angular
momentum since (w) = (L)J~'. The vector & therefore has a generally
different direction at any instant than is the fixed direction determined by
the angular momentum. The angular velocity is therefore parallel to the
angular momentum only if there exists a value of Jy such that L = Jo@.
In such a case, & will also be constant. (This conclusion turns attention to
the connection of physical problem with the problem of eigenvalues and
eigenvectors vectors of the operator J )

b) The solution to problem a) is related to the concept of a fixed axis. The
instantaneous axis has the direction of the instantaneous angular velocity
of the flywheel. If it is to be fixed, the direction of the angular velocity must
be constant. With zero torque, when the angular momentum is conserved
and taking into account the relation (L) = (w).J, i.e. (w) = (L)J !, this is
possible only in situations where L = Jo@ for a certain value of Jy (see a)).
With zero resultant torque, only the axis in the direction of the conserved
angular momentum can be fixed. (If the axis of rotation is to be fixed even
in a general situation, the resultant torque cannot be zero.)

¢) The connection between the angular momentum and the angular velocity
of the flywheel with the problem of eigenvalues a€<a€«and eigenvectors
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of the linear operator .J is already obvious. If (L) = (w).J and (L) = Jy(w)
hold simultaneously, then by comparison we get

(W) = Jo(w) = (W)(J ~ JoE) = (0),

where E is the unit matrix and (0) is the zero matrix. The angular velocity
vector determining the direction of the principal axis is the eigenvector of
the inertia operator corresponding to the eigenvalue Jy. Thus, by solving
the problem of eigenvalues a€<a€<and eigenvectors of the operator, we
obtain the directions of all principal axes.

In the case of a certain symmetry of the flywheel’s mass distribution,
some directions of the principal axes may be equivalent. The basic types
of symmetries that make sense to consider in this context are 1) spherical
— all directions in ToR? are equivalent, 2) cylindrical (rotational) — all
directions lying in a plane perpendicular to the axis of symmetry are
equivalent, 3) none of the previous two.

Types 1), 2) and 3) in the item d) are related to the number of different
cigenvalues 4€<a€<of the operator J as follows: ad 1) a threefold eigen-
value Jy of the operator j, ad 2) one twofold eigenvalue, e.g. J; = J; and
one different single eigenvalue J3. In all orthonormal bases connected with
its eigenvectors the operator J is represented by the diagonal matrix BEsJ ,
with the eigenvalues in the diagonal, i.e. J = diag (J1, J2, J3).

In case 1) J; = Jo = J3 = Jy the matrix (J — JoE) is zero in bases of
eigenvectors of J and the eigenvectors generate the entire space ToR3. All
axes passing through the center of mass of the flywheel are principal ones.

In case 2) it holds J; = Jy # J3. Let Jy = J; = J3. The matrix (j, JoE)
has rank 1. Then, adding the zero vector, it corresponds to the two-
dimensional vector subspace Ly, and each axis lying in the plane, whose
orientation is determined by this vector subspace, is the principal axis.
The matrix (j — J3FE) has rank 2. Then, again adding the zero vector, it
corresponds to the one-dimensional vector subspace L3 orthogonal (per-
pendicular) to £y. The axis of rotation, parallel to this subspace, is the
principal axis. It is the axis of rotational symmetry of the flywheel.

In case 3), when the eigenvalues J;, i = 1, 2, 3, 4€<a€<of the operator J
are different, there are the corresponding one-dimensional vector subspaces
L; of eigenvectors (after adding the zero vector, of course). The flywheel
has three different mutually perpendicular principal axes.

Note: Since the physical meaning of the concept of principal axis is closely
related to the problem of eigenvalues 4€<a€<and eigenvectors of the iner-
tia operator, as was shown solving tasks a) and b), the flywheel cannot
have other principal axes than those corresponding to the symmetry of
the mass distribution in cases 1), 2) and 3). Of course, the mass distri-
bution can also have symmetries other than 1) and 2) (for example, the
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mirror symmetry with respect to a plane), but no principal axes will be
associated with them.

f) If the body rotates with an angular velocity directed along a principal axis
and the resulting torque is zero (idealization), then the angular momentum
is constant and it have the same direction as the angular velocity, L= Jd,
where J is the corresponding eigenvalue of the operator J. The direction
of the rotational axis will not change and the flywheel will rotate "fre-
ely"around it (in accordance with the "rotational part"of Newton’s first
law (see e.g. [16]).

5. Test results and their evaluation

The test was solved by 24 students who have successfully completed six semes-
ters of physics studies in the study year 2024/2025 and are prepared for the
bachelor’s state exam. The test solving time was 50 minutes. The test conta-
ins a total of six F tasks with difficulty graded according to revised Bloom’s
taxonomy, i.e. tasks 1F-6F. These were tasks of the following types (see Sec. 4.):

e one closed task with one correct answer (task 1F),
e three closed tasks with multiple correct answers (tasks 2F, 4F, 5F),
e two open tasks (tasks 3F, 6F).

Methods of evaluation

There are various methods of evaluating tests, differing especially in the case of
tasks with multiple correct answers.

e In our test, every task with just one correct answer contains 5 answers.
The student receives 1 point if he/she choose the correct answer.

e For evaluating tasks with multiple correct answers we used here the so-
called penalty method. Each task of this type in our test contains 8 an-
swers, the number of correct answers can range from zero to eight. The
student does not know this number in advance. The student receives one
point for each marked correct answer and one point for each unmarked
incorrect answer. In the case of marking an incorrect answer and not mar-
king the correct answer, the student always loses a quarter of a point
(penalty). The point scale therefore lies in the interval from minus 2 to 8
points. The result (normalized to the interval x € [0, 1] can be obtained

by the transformation 2 = ¥=%, where y € [a, b]. (For more details, see

e.g. [17].)

e One possible, but overly strict, method of evaluation is the all-or-nothing
method. When using it, a student receives one point (or the maximum of
the used point scale — 8 points in our case) if he marks all correct answers
and does not mark any incorrect answers. The student’s success in this
assessment indicates his/her deep understanding of the issue.
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Results and conclusions of their evaluation

e Open tasks (3F, 6F) could not be evaluated. In the case of task 3F, only
isolated attempts to include a solution were made, and no student at-
tempted to solve task 6F.

e The closed task 2F was solved by 21 out of 24 students (3 students did
not mark any answer). Ounly one student was successful using the all-or-
nothing method.

e The closed task 4F was solved by 18 out of 24 students (8 did not mark
any answer). No one of them succeeded using the all-or-nothing method.

e The closed task 5F was solved by 15 students out of 24 (9 did not mark
any answer). One student was successful using the evaluation method all-
or-nothing method.

The following graphs with comments show the distribution of responses and the
total score for each task with the use the penalty method..

Task 1F
20
15 4
10
5 4
O .
a b c d e no
Ma Wb mc md me WnO

Fig. 3. Task 1F, distribution of answers a)-e). The correct answer is marked
by the red colour. Comment on task 1F: Only two students marked the
correct answer d). The reason for the high frequency of marked incorrect answer
a) (76%) can be seen in the fact that students did not think about all the
assumptions of the definition. In the case a), they did not take into account that
the condition stated in it is also fulfilled by the zero vector, which, however, is
not an eigenvector by definition.
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Task 2F
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Ma Emb mc md me mf mg mh Wno Task 2F, number of students (out of 21)

FiG. 4. Task 2F, distribution of answers a)-h) and evaluation of results. The
correct answers are marked by the red colour.

Comment on task 2F: The weighted average is ® = 6.3. The highest frequency
corresponds to just two correct answers, b) (71%) and f) (81%). This result indi-
cates an understanding of the issue of eigenvectors of a linear operator: a simple
spectrum = independent one-dimensional vector subspaces (after adding the
zero vector) corresponding to different eigenvalues = eigenvectors generate the
entire space, and the connection with the principal axes of the inertia with the
subspaces of eigenvectors. The relatively significant frequency of marking the
incorrect statement c) as correct (71%) may not be caused by lack of under-
standing of the issue of operator eigenvectors and eigenvalues, but by a confusion
of the concepts of vector space and vector.

Task 4F

12

10

O B N W &M U1 O N 0 O

T

a b ¢ d e f g h no -2 -0,7505 1,75 3 4,25 55 6,75 8

HMa Hb mc md me Hf Hg Wh ®mno Task 4F, number of students (out of 18)

FiG. 5. Task 4F, distribution of answers a)-h) and evaluation of results. The
correct answers are marked by the red colour.

Comment on task 4F: The weighted average is & = 3.1. The frequency of
marking the correct answer a) (55%) indicates (only) an averagely good un-
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derstanding of the connection between the symmetry of the body mass distri-
bution and the spectrum of the inertia operator. Average understanding of the
connection between the eigenvectors of the operator and the principal axes of
the inertia is documented by the frequencies of marking the correct answers
b) (33%), d) (39%) and f) (44%). Only the answer h) has a somewhat higher
frequency (50%), possibly because the connection between the principal axes
and the eigenvectors of the inertia operator is explicitly stated in it. The fact
that no one considered the incorrect answer g) to be correct can be attributed
to physical experience. Students know that there are always principal axes of
inertia in a body and can relate their existence to the diagonal form of the
operator. We did not expect the relatively high frequency (33%) of answer c)
(33%), possibly due to the fact that students did not pay attention to the word
"just".

4,5
Task 5F .
12 3,5 —
10 3 —
8 2,5 —
2 -
6
1,5 —
4 b 1 m I TEER TR EE———
2 1 05 —HHHH - —
0 - 0 T T T T T T T T )
a b ¢c d e f g h no -2 -0,75 055 1,75 3 4,25 5,5 6,75 8
Ma Wb mc md me uf mg Wmh ®Wno Task 5F, number of students (out of 15)

FiG. 6. Task 5F, distribution of answers a)-h) and evaluation of results. The
correct answers are marked by the red colour.

Comment on task 5F: The weighted average is & = 4.1. Considering that 9
out of 24 students did not attempt to solve the problem at all, more general
conclusions can be drawn based on the evaluation of fifteen tests. The correct
answers d) (53%) and h) (67%) were generally successful, which demonstrated
a relatively good, but rather intuitive, understanding of the connection between
the eigenvectors of the inertia operator and the principal axes. The relatively
high frequency of marking the incorrect answer c¢) as correct (47%) may be due
to the fact that the students did not realize the significance of the eigenvalue Jy
of the inertia operator specified in the task assignment.

Comment on tasks 3F and 6F: The failure of students (of 6th semester of
their study) to solve these open tasks may seem somewhat alarming. It can be
seen mainly in two reasons: 1) insufficient practice of knowledge acquired during
studies and forgetting (linear algebra is taught in the first two semesters), and
2) especially insufficient linking of mathematics (in our case, linear algebra) and
physics (in our case, mechanics) teaching.

23



Conclusion resulting from the test evaluation: Even though the group
of students who solved the test tasks is not too large for detailed statistical
analysis, certain relevant conclusions can still be drawn. The students’ success
is quite satisfactory where they can apply essentially separate simple knowledge
and skills from linear algebra, or experience from teaching physics. However,
the desired connection of the two disciplines has not been proven to a sufficient
extent. This conclusion supports the view that the teaching of linear algebra
(and mathematics in general) and the teaching of physics subjects are not con-
sistently and purposefully connected. It would be considered satisfactory (of
course, in addition to the ability to solve open problems independently) if the
majority of students were successful in solving closed problems with multiple
correct answers when assessed using the "all or nothing"method. Only in this
way would the desired connection between mathematics and physics teaching
and a deeper understanding of physical laws based on a solid mathematical
foundation be demonstrated.
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