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Contents of the course

01. k-tensors on Vn, vector structure on sets of k-tensors.
02. Tensor and wedge product of tensors.
03. Vector and tensor fields on Rn, differential k-forms.
04. Exterior derivative and pull-back of differential forms.
05. Lie derivative of differential forms.
06. Parametrized pieces os surfaces, singular cubes in Rn.
07. Integral of forms on singular cubes and chains.
08. Stokes theorem and its classical versions.
09. Differential manifolds (maps, atlases, differential structure).
10. Differential manifolds with boundaries.
11. Differential forms on manifolds, decomposition of unity.
12. Integral of forms on differential manifolds, Stokes theorem.
13. Applications in geometry and physics.

Integral on Rn and differential manifolds Olga Rossi and Jana Musilová



k-tensors on Vn, vector structure on sets of k-tensors

DEFINITION: k-tensor (covariant k-order tensor)

Let Vn be an n-dimensional vector space over R. A mapping

u : Vn × · · · × Vn 3 (a1, · · · , ak) −→ R

is called k-tensor on Vn if it is linear in every of its vector
arguments,

u(a1, . . . , αaj + βbj , . . . , an) =

= αu(a1, . . . , aj , . . . , an) + βu(a1, . . . , bj , . . . , an)

for every j = 1, . . . , k , a1, . . . , aj , bj , . . . , an ∈ Vn, α, β ∈ R. Denote
as V ∗n the set of all 1-tensors on Vn and Tk(Vn) the set of all
k-tensors on Vn.
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We introduce a vector structure on sets of k-tensors by defining
operations the sum of two k-tensors and the product of a k-tensor
and a real number (scalar).

PROPOSITION: vector operations on sets of tensors

Let u, v ∈ Tk(Vn), α ∈ R. Then mappings

(i) w : Vn × · · · × Vn 3 (a1, . . . , ak) −→ w(a1, . . . , ak) ∈ R,

(ii) z : Vn × · · · × Vn 3 (a1, . . . , ak) −→ z(a1, . . . , ak) ∈ R,

w(a1, . . . , ak) = u(a1, . . . , ak) + v(a1, . . . , ak),

z(a1, . . . , ak) = αu(a1, . . . , ak), ∀a1, . . . , an,

are k-tensors. Denote w = u + v , z = αu.

(Proof of the proposition: exercise.)
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THEOREM:

The set of all k-tensors together with operations “+” and
multiplication by scalars is a vector space over R of dimension nk .

(Proof: exercise, except for the assertion concerning dimension.)

EXAMPLE: dual space, dual base

(e1, . . . , en) ... base in Vn. Define e1, . . . , en ∈ V ∗n : e i (ej) = δij ,

i , j = 1, . . . , n. The family (e1, . . . , en) is a base in V ∗n , so
dimV ∗n = n.

(Proof: exercise.)

TERMINOLOGY: (e1, . . . , en) ... dual base induced by
(e1, . . . , en), V ∗n ... dual space to Vn
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.EXERCISE:

1) Let T be the transition matrix from the base (e1, . . . , en) to the base
(ē1, . . . , ēn) in Vn. Derive the transformation relations for components of
1-tensors in corresponding induced bases.

2) Let (e1, . . . , en) be a base in Vn, (u1, . . . , un), (v1, . . . , vn) components of
1-tensors u, v in the induced dual base. Derive the relations for
components of 1-tensors w = u + v , z = αu.

3) Let T be the transition matrix from the base (e1, . . . , en) to the base
(ē1, . . . , ēn) in Vn. Derive the transformation relations between the
corresponding dual bases.

4) Prove all assertions denoted as exercises in the previous text.

NOTE: Proofs concerning bases in vector spaces have two steps: a) proof of

linear independence and b) proof of completeness.
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Tensor and wedge product of tensors

PROPOSITION: tensor product (Proof: exercise.)

Let u ∈ Tk(Vn), v ∈ Tl(Vn). The mapping

w : Vn × · · · × Vn 3 (a1, . . . , ak+l) −→ w(a1, . . . , ak+l) ∈ R,

w(a1, . . . , ak+l) = u(a1, . . . , ak)v(ak+1, . . . , ak+l), ∀ai ∈ Vn,

is the (k + l)-tensor, w = u ⊗ v ... tensor product of u and v .

PROPOSITION: properties of tensor product (Proof: exercise.)

u, u1, u2 ∈ Tk(Vn), v , u1, u2 ∈ Tl(Vn), w ∈ Tm(Vn), α, β ∈ R
1) u ⊗ (αv1 + βv2) = α(u ⊗ v1) + β(u ⊗ v2)

2) (αu1 + βu2)⊗ v = α(u1 ⊗ v) + β(u2 ⊗ v)

3) (u ⊗ v)⊗ w = u ⊗ (v ⊗ w)

WARNING: No commutativity.
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PROPOSITION: induced bases in Tk(Vn)

Let (e1, . . . , en) be a base in Vn. Then (e i1 ⊗ · · · ⊗ e ik ),
1 ≤ i1, . . . , ik ≤ n, is a base in Tk(Vn).

TERMINOLOGY: (e i1 ⊗ · · · ⊗ e ik ), 1 ≤ i1, . . . , ik ≤ n, ... induced
base by (e1, . . . , en)

EXAMPLES: induced bases for n = 2, k = 2, k = 3 (Einstein
summation)

(e1⊗ e1, e1⊗ e2, e2⊗ e1, e2⊗ e2), u = uije
i ⊗ e j , uij = u(ei , ej)

(e1 ⊗ e1 ⊗ e1, e1 ⊗ e1 ⊗ e2, e1 ⊗ e2 ⊗ e1, e1 ⊗ e2 ⊗ e2,

e2 ⊗ e1 ⊗ e1, e2 ⊗ e1 ⊗ e2, e2 ⊗ e2 ⊗ e1, e2 ⊗ e2 ⊗ e2),

u = uijle
i ⊗ e j ⊗ e l , uijl = u(ei , ej , el)
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DEFINITION: completely antisymmetric tensors

A tensor η ∈ Tk(Vn) is called completely antisymmetric
η(a1, . . . , ai , . . . , aj , . . . , ak) = η(a1, . . . , aj , . . . , ai , . . . , ak) for
arbitrary vector arguments and arbitrary argument positions.

THEOREM:

The set Λk(Vn), k ≥ 2, of all completely antisymmetric k-tensors
is a vector subspace of Tk(Vn), of dimension

(n
k

)
. (For k = 1

denote Λ1(Vn) = T1(Vn).)

PROPOSITION: (Proof: exercise.)

The mapping (alternation) Alt : Tk(Vn) 3 η −→ Alt η ∈ Λk(Vn),

Alt η(a1, . . . , ak) =
1

k!

∑
σ∈Pk

sgnσ · η(aσ(1), . . . , aσ(k))

for arbitrary a1, . . . , ak , is the completely antisymmetric k-tensor.
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PROPOSITION: properties of alternation

η ∈ Λk(Vn) =⇒ Alt η = η, u ∈ Tk(Vn) =⇒ Alt (Alt u = AltU)

DEFINITION: wedge product

The mapping

∧ : Λk(Vn)×Λl(Vn) 3 (ω, η) −→ ω∧η =
(k + l)!

k!l!
Altω⊗η ∈ Λk+l(Vn),

is called a wedge product.

EXERCISE:

Prove that ω ∧ η is completely antisymmetric.
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PROPOSITION: properties of the wedge product

Let ω1, ω2ω ∈ Λk(Vn), η1, η2η ∈ Λl(Vn), χ ∈ Λm(Vn), α, β ∈ R.
Then

1) (αω) ∧ η = ω ∧ (αη) = α(ω ∧ η)

2) ω ∧ (αη1 + βη2) = α(ω ∧ η1) + β(ω ∧ η2)

3) (αω1 + βω2) ∧ η = α(ω1 ∧ η) + β(ω ∧ η2)

4) (ω ∧ η) ∧ χ = ω ∧ (η ∧ χ)

5) ω ∧ η = (−1)klη ∧ ω

EXERCISE: Prove all properties of the wedge product. Use the definition.
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PROPOSITION: induced bases in Λk(Vn)

(e i1 ∧ . . . ∧ e ik ), 1 ≤ i1 < · · · < ik ≤ n

η =
∑

i1<···<ik

η̃i1...ik e
i1 ∧ . . . ∧ e ik =

= ηj1...jk e
j1 ∧ . . . ∧ e jk , js ∈ {1, . . . , n}

EXAMPLE: induced bases for k = 2 and n = 2

η = η̃12e
1 ∧ e2 = (η12e

1 ∧ e2 + η21e
2 ∧ e1)

η̃12 = η12 − η21, put η21 = −η12 (antisymmetrization)

DEFINITION: contraction of an antisymmetric tensor by a vector

iξ : Λk(Vn) 3 η −→ iξη ∈ Λk−1(Vn)

iξη(a1, . . . , ak−1) = η(ξ, a1, . . . , ak−1)
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DEFINITION: volume element

Vn . . . a vector space with a scalar product and orientation µ
volume element . . . a form ω0 ∈ Λn(Vn) such that
ω0(e1, . . . , en) = 1 for every orthonormal base (e1, . . . , en)
belonging to µ

PROPOSITION:

For a vector space with a given scalar product and orientation
there exists the unique volume element.

It holds ω0 = e1 ∧ . . . ∧ en. (Proof: exercise.)

EXAMPLE:

for ξ1, . . . , ξn, where ξi = ξji ej :

ω0(ξ1m . . . , ξn) = det (ξji ). (Proof: exercise.)
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.EXERCISE:

1) The operation of tensor product is not commutative. Explain.

2) Explain the relation for the dimension of Λk(Vn).

3) Prove all previously mentioned assertions concerning tensor and
wedge products.

4) Express components of u ⊗ v and ω ∧ η via components of u, v and
ω, η, respectively.

5) For a general completely antisymmetric k-tensor η find the relation
between components η̃i1...ik and ηj1...jk after the antisymmetrization
procedure.

6) Derive transformation relations for components of completely
antisymmetric k-tensors in various induced bases with help of the
transition matrix T between initial bases in Vn.
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Vector and tensor fields on Rn, differential k-forms

We the following definition we introduce bounded vectors and
tensors in Rn, and then vector and tensor fields.

DEFINITION: tangent space, vector fields, tensor fields
Tangent space TxRn at x ∈ Rn is n-dimensional real vector space
bounded at x . Elements of TxRn are pairs of n-tuples
ξ(x) = (x i , ξi ), i ∈ {1, . . . , n}.
Algebraic operations: only for vectors bounded at the same point.
Vector field (continuous, differentiable, smooth, . . .) . . . a mapping
(continuous, differentiable, smooth, . . .)

ξ : Rn −→ ξ(x) ∈ TxRn

Tensor field . . . analogously . . . a mapping

τ : Rn −→ τ(x) ∈ Tk(TxRn)
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.EXAMPLE: threedimensional situation

  

1 2 3

1, 2, 3,

( , , )

( , , ) ... base at x x x

x x x x

e e e x


 

( ) ( , )i ix x   

3R  

1  

2  

3  

1x  

2x  

3x  
( ) ( , )i ix x   3RxT  

3,xe  

2,xe  1,xe  x  

υ(x) = αξ(x) + βζ(x), υ(x) = (x i , υi ), υi = αξi + βζ i
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NOTATION:

TRn =
⋃
x∈Rn

TxRn, T ∗xRn = Λ1(TxRn), ΛkRn =
⋃
x∈Rn

Λk(TxRn)

DEFINITION: differential k-form

differential k-form, k ≥ 1 . . . completely antisymmetric
differentiable tensor field, i.e. differentiable (up to a given order)
mapping ω : Rn 3 x −→ ω(x) ∈ Λk(TxRn) ⊂ ΛkRn

differential 0-form . . . a function on Rn

EXAMPLE: standard bases in TxRn, T ∗xRn

ei ,x = (x j , δji ), e ix = (x j , δij ), ei ,x =
∂

∂x i
, ξ(x) = ξ(x)

∂

∂x i

EXERCISE: Explain the motivation for the notation ei,x = ∂/∂x i . (Use the
concept of the derivation of a function along a vector.)
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Exterior derivative and pullback of forms

EXAMPLE: motivation to exterior derivative . . . function

The derivative of a function f (x) at x ∈ Rn along a vector
ξ(x) ∈ TxRn: ∂ξ(x)f (x) = ∂iξ

i , ∂i = ∂/∂x i , can be interpreted as

the value of the 1-form e ix at x evaluated on the vector ξ(x).

DEFINITION: exterior derivative of a 0-form

exterior derivative of a 0-form . . . mapping

d : Λ0Rn 3 f −→ df ∈ Λ1Rn, df (x)(ξ(x)) = ∂i f (x)ξi (x)

EXAMPLE: exterior derivative of coordinate functions

x j : Rn 3 x −→ x j(x) = x j ∈ R, dx j(x)(ei ,x) = δji . . . e
j
x ≡ dx j

η =
∑

j1<···<jk

η̃j1...jkdx
j1 ∧ . . . ∧ dx jk = ηi1...ikdx

i1 ∧ . . . ∧ dx ik

components ηi1...ik are supposed to be antisymmetrized.
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DEFINITION: exterior derivative of a k-form, k ≥ 1

exterior derivative . . . a mapping

d : ΛkRn 3 η −→ dη ∈ Λk+1Rn, dη(x) = dηi1...ik∧dx
i1∧. . .∧dx ik

PROPOSITION: properties of exterior derivative (Proof: exercise)
α, β ∈ R, η1, η2 ∈ ΛkRn, ω ∈ ΛkRn, η ∈ ΛlRn . . . arbitrary,

1) d(αη1 + βη2) = α dη1 + β dη2,

2) d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

3) d2 ≡ d ◦ d = 0, i.e. d(dω) = 0

DEFINITION: closed and exact forms

closed form . . . a form ω such that dω = 0, exact form on U ⊂ Rn

. . . a form ω ∈ ΛkRn such that there exists η ∈ Λk−1Rn, ω = dη

NOTE: closedness =⇒ exactness, not vice versa in general (depends on the
set U) ... discuss
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DEFINITION: tangent mapping to f : Rn → Rm

Tf : TRn 3 ξ(x) −→ ζ(f (x)) = Tf ξ(x) ∈ TRm

ζ(f (x)) =

(
∂yαf (x)

∂x i

)
∂

∂yα

∣∣∣∣
y=f (x)

, i ∈ {1, . . . , n}, α ∈ {1, . . . ,m}

EXAMPLE: n = 2, m = 3

 

( ( )) ( )f x Tf x   

3R  

f C

 2  

3  

1x  

2x  

3y  

( )x  

3RxT  

( )f x  

1  

2y  

1y  

2  

1  C  x  

2R  
f  

Tf  
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.EXAMPLE: matrix expression of tangent mapping

ζ(f (x)) = (yαf (x), ζαf (x)), (ζ1 . . . ζm)|f (x) = Df (x)·(ξ1 . . . ξn)|x

Df (x) . . . Jacobi matrix of the mapping f (Tf is R-linear)

DEFINITION: pullback of forms

pullback of forms by f : Rn → Rm . . . for k ≥ 1 the mapping

f ∗ : ΛkRn 3 ω −→ η = f ∗ω ∈ ΛkRm, f ∗F = F ◦ f for k = 0

η(ξ1, . . . , ξk)|x = ω(ζ1, . . . , ζk)|f (x) , ζj(f (x)) = Tf ξj(x)

EXAMPLE: pullback of coordinate forms

f ∗ dyα(x)(ξ(x)) = dyα(f (x))(Tf ξ(x)) = ζα(f (x)) =

=
∂yαf

∂x i
ξi
∣∣∣∣
x

, ξ(x) = dx i (ξ(x)) =⇒ f ∗ dyα =
∂yα

∂x i
dx i
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PROPOSITION: properties of pullback (Proof: exercise.)

α, β ∈ R, ω1, ω2, ω ∈ ΛkRm, η ∈ ΛlRm . . . arbitrary

1) f ∗(αω1 + βω2) = αf ∗ω1 + βf ∗ω2

2) f ∗ dω = df ∗ω

3) f ∗(ω ∧ η) = f ∗ω ∧ f ∗η)

EXAMPLE: Property 2) for coordinate functions

f ∗yα(x) = yαf (x), d(f ∗yα) =
∂yαf

∂x i
dx i = f ∗ dyα

EXAMPLE: pullback – general expression in coordinates

ω = ωα1...αk
dyα1∧. . .∧dyαk , f ∗ω = (ωα1...αk

◦f )f ∗dyα1∧. . .∧f ∗dyαk =

= (ωα1...αk
◦ f )

∂yα1

∂x i1
· · · ∂y

αk

∂x ik
dx i1 ∧ . . . ∧ dx ik
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.EXERCISE:

1) Prove properties of the exterior derivative operator and properties od
pullback. For the proof of relation d2 = 0 use the antisymmetry of the
wedge product and symmetry of second order partial derivatives.

2) F . . . a vector field, f ,Φ . . . functions on R3. Denote

ω
(1)
F = F1 dx

1 + F2 dx
2 + F3 dx

3

ω
(2)
F = F1 dx

2 ∧ dx3 + F2 dx
3 ∧ dx1 + F3 dx

1 ∧ dx2

ω
(3)
Φ = Φ dx1 ∧ dx2 ∧ dx3

Prove relations: df = ω
(1)
grad f , dω

(1)
F = ω

(2)
rot F , dω

(2)
F = ω

(3)
div F

3) Using 2) prove that div rotF = 0, div grad f = ∆f , rot grad f = 0.

4) If ξ(x) is the vector tangent to the curve C at x , prove that
ζ(f (x)) = Tf ξ(x) is tangent to the curve f ◦ C at f (x).
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Lie derivative of forms

DEFINITION: one-parameter group of a vector field

one-parameter group of a vector field ξ(x) . . . the family of
mappings

1) αu : W 3 x −→ αu(x) ∈ αu(W ) ⊂ Rn, U ⊂
Rn . . . open set, u ∈ (−ε, ε)

2) αu+v = αv+u = αv ◦ αu, α0 = idW , i.e. α−1
u = α−u

3) α : (−ε, ε)×W 3 (u, x) −→ α(u, x) = αu(x) ∈ αu(W )
α . . . differentiable

4) ξi (x) = dx iαu(x)
du

∣∣∣
u=0

EXAMPLE: integral lines in a plane (n = 2, u ∈ R)

ξ(x) = (1, 3x1), x1αu(x) = u + x1, x2αu(x) = 3
2u

2 + 3ux1 + x2
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We know how to describe changes of a function f on Rn along a
given vector field ξ: by the derivative of f along ξ, ∂ξf = ∂f

∂x i
ξi . It

is in fact the Lie derivative of f with respect to ξ. Generalization of
this concept to differential forms:

DEFINITION: Lie derivative of a differential k-form

∂ξω =
dα∗uω

du

∣∣∣∣
u=0

= lim
u→0

α∗uω − ω
u

EXAMPLE: Lie derivative of a 1-form

ω = ωi dxi , ξ = ξj
∂

∂x j
, ∂ξω =

(
ωj
∂ξj

∂x i
+ ξj

∂ωj

∂x i

)
dx i
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PROPOSITION: some properties of Lie derivatives

ω1, ω2, ω ∈ ΛkRn, η ∈ ΛlRn, α, β ∈ R

1) ∂ξ(ω ∧ η) = ∂ξω ∧ η + ω ∧ ∂ξη
2) ∂ξ(αω1 + βω2) = α∂ξω1 + β∂ξω2

3) ∂ξω = iξ dω + diξω

4) ∂ + ξiξω = iξ∂ξω

5) ∂f ξ = f ∂ξω + df ∧ iξω

EXERCISE:

1) Derive the expression for components of the Lie derivative of a 1-form ω
with respect to a vector field ξ.

2) Derive the above properties of Lie derivatives from the definition in
general, or at least for 1-forms – use calculation in components.
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Parametrized pieces and singular cubes in Rn

Concept of integration: we need to define some subsets of Rm as
appropriate domains of integration, while differential forms will be
integrated objects (instead of functions)

DEFINITION: n-dimensional parametrized pieces and singular
cubes in Rm

n-dimensional parametrized piece of a surface in Rm, resp.
n-dimensional singular cube in Rm . . . a differentiable mapping

c : [0, 1]n 3 u = (u1, . . . , un) −→ c(u) = (x1c(u), . . . , xmc(u)) ∈ Rm, m ≥ n

such that c is one-to-one or obeys the condition rankDc(u) = n
on [0, 1]n for parametrized pieces or for singular cubes, respectively

EXERCISE: Specify the difference between definitions of an n-dimensional
parametrized piece of a surface and an n-dimensional singular cube in Rm.
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.EXAMPLE:

c : [0, 1]2 3 u = (u1, u2) −→ c(u) ∈ R3

 

1 1 2 1 2

2 1 2 1 2 3 1 2 1

( , ) sin(2 )cos(2 )

( , ) sin(2 )sin(2 ), ( , ) cos(2 )

x c u u u u

x c u u u u x c u u u

 

  



 

 

3x  

1x  

2u  

1u  1  

1  

2x  

c  

Is this the parametrized piece or the singular cube? What
dimension?
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A question is: how to describe the boundary of a parametrized
piece or a singular cube using the mapping c . Is it possible to find
a description including orientation?

EXAMPLE: standard n-dimensional cubes in Rn

 

1( , , ) , {1, , }i n n ix I u u u i n   

2x  

1x  1  

1  

2 2 2([0,1] ) RI   

3x  

1x  

2x  

3 3 3([0,1] ) RI   

2R  

3R  

I 2 : [0, 1]2 3 (u1, u2) −→ (x1I 2(u1, u2), x2I 2(u1, u2)) ∈ R2

I 3 : [0, 1]3 3 (u1, u2, u3) −→ (x i I 3(u1, u2, u3)) ∈ R3, i ∈ {1, 2, 3}
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.EXAMPLE: standard n-dimensional cubes in Rm, m > n

on (m − n)-coordinate positions are fixed values β = 0 or β = 1

 

1)  

2 2 3([0,1] ) RI   

3x  

1x  

2x  

3R  
2u  

1u  1  

1  

2[0,1]  

2)  

1) I 2 : [0, 1]2 3 (u1, u2) −→ (β, u1, u2) ∈ R3

2) I 3 : [0, 1]3 3 (u1, u2, u3) −→ (u1, u2, β) ∈ R3

3) I 3 : [0, 1]3 3 (u1, u2, u3) −→ (u1, β, u2) ∈ R3
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.EXAMPLE: walls of standard cubes

 

1u  1x  

2
(1,0)

2
(2,0)

2
(1,1)

2
(2,1)

I

I

I

I

 2 2([0,1] )I  

2u  

1  

1  

2[0,1]  

2x  

2I  

2 2
(1,1) (2,0)"correct" (rightwise) orientation: ,I I  

I 2
(1,0) : [0, 1] 3 t1 −→ (x1I 2

(1,0)(t1), x2I 2
(1,0)(t1)) = (0, t1) ∈ R2

I 2
(1,1) : [0, 1] 3 t1 −→ (x1I 2

(1,1)(t1), x2I 2
(1,1)(t1)) = (1, t1) ∈ R2

I 2
(2,0) : [0, 1] 3 t1 −→ (x1I 2

(2,0)(t1), x2I 2
(2,0)(t1)) = (t1, 0) ∈ R2

I 2
(2,1) : [0, 1] 3 t1 −→ (x1I 2

(2,1)(t1), x2I 2
(1,0)(t1)) = (t1, 1) ∈ R2
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.EXERCISE: walls of standard cubes

Arrows . . . ”correct”(ext normal) orientation of the cube boundary. Parametrize

walls and compare with the correct orientation.

 

3x  

1x  

2x  

3u  

1u  

2u  

3I  

DEFINITION: walls of standard n-dimensional cubes

(i , α)-wall of a standard n-dimensional cube in Rn, α = 0 or 1
I ni ,α : [0, 1]n−1 3 (t1, . . . , tn)→ (t1, . . . , t i−1, α, t i , . . . , tn−1) ∈ Rn

for I n in Rm, m > n, positions occupied in I n by β = 0 or β = 1
remain unchanged
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Following definitions look rather formally – their meaning will be
completely clear later, in relation to the concept of integral.

DEFINITION: boundary of an n-dimensional singular cube

boundary of a standard n-dimensional singular cube in Rm

∂I n =
n∑

i=1

∑
α=0, 1

(−1)i+αI n(i ,α)

boundary of an n-dimensional singular cube c in Rm

∂c =
n∑

i=1

∑
α=0, 1

(−1)i+αc(i ,α)

c(i ,α) = c ◦ I n(i ,α) . . . (i , α) wall of the cube c
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.EXAMPLE: boundary of a 2-dim parametrized piece in R3

 

1u  

3x  

2x  

1x  

2u  

(2,1)c  

(1,1)c  

(2,0)c  
2[0,1]  

2([0,1] )c  

c  

1 2

1 2

1

2 3

1

2 2

2

2 2

3

2

: [0,1] R  

sin cos

sin sin

cos

u u

u u

u

c

x

x

x

 

 











 

(1,0) zero measurec  

c(1,0)(t1) = (0, 0, 1), c(1,1)(t1) =
(

cos πt
1

2 , sin πt1

2 , 0
)

c(2,0)(t1) =
(

sin πt1

2 , 0, cos πt
1

2

)
, c(2,1)(t1) =

(
0, sin πt1

2 , cos πt
1

2

)
EXERCISE: Discuss orientation of walls with respect to i and α.
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Integral of differential forms

Now we introduce the concept of integral:

I integrated objects . . . differential n-forms

I integration domains . . . n-dimensional parametrized pieces or
singular cubes in Rm, m ≥ n

DEFINITION: integral of forms

c : [0, 1]n 3 u = (ui )i=1,...,n −→ c(u) = (xαc(ui ))α=1,...,m ∈ Rm

n-dimensional parametrized piece or singular cube in Rm, m ≥ n,
ω . . . an n-form defined on an open set A ⊂ Rm, c([0, 1]n) ⊂ A

integral of ω on c∫
c
ω =

∫
[0,1]n

c∗ω =
∫

[0,1]n
f (du1 . . . dun) (Riemann integral)

c∗ω = f (u1, . . . , un) du1 ∧ . . .∧ dun (f unique component of c∗ω)
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Explanation of the formal expression for the boundary ∂c of c

DEFINITION: integral on chains

cs , s ∈ {1, . . . , p}, . . . n-dimensional parametrized pieces od
singular cubes in Rm

ω . . . an n-form defined on an open set A ⊂ Rm, cs([0, 1]n) ⊂ A
a formal notation Γ = k1c1 + · · ·+ kpcp is understood in the sense
of the integral on an n-dimensional singular chain,∫

Γ

ω = k1

∫
c1

ω + · · ·+ kp

∫
cp

ω

The expressions for ∂c and ∂Γ are understood in this sense as well.

EXERCISE: Prove that ∂(∂c) = 0 and analogously ∂(∂Γ) = 0.

Integral on Rn and differential manifolds Olga Rossi and Jana Musilová



.EXAMPLE: integral of a 2-form on a 2-dimensional domain

 

1u  

3x  

2x  

1x  

2u  

2[0,1]  

2([0,1] )c  

c  

1 2

1 2

1

2 3

1

2 2

2

2 2

3

2

: [0,1] R  

sin cos

sin sin

cos

u u

u u

u

c

x

x

x

 

 











 

parametrized piece of a unit spherec  

ω = x3 dx1 ∧ dx2, c∗ω = (c ◦ x3) c∗ dx1 ∧ c∗ dx2
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.EXAMPLE: (continued)

c∗ dx1 =
∂x1

∂u1
du1 +

∂x1

∂u2
du2 =

=
π

2
cos

πu1

2
cos

πu2

2
du1 +

π

2
sin

πu1

2
sin

πu2

2
du2

c∗ dx2 =
∂x2

∂u1
du1 +

∂x2

∂u2
du2 =

=
π

2
cos

πu1

2
sin

πu2

2
du1 +

π

2
sin

πu1

2
cos

πu2

2
du2

c∗ dx1 ∧ c∗ dx2 =
π2

4
sin

πu1

2
cos

πu1

2
du1 ∧ du2

(c ◦ x3) c∗ dx1 ∧ c∗ dx2 =
π3

8
sin2 πu

1

2
cos2 πu

1

2
du1 ∧ du2∫

c

ω =

∫
[0,1]3

π2

4
sin2 πu

1

2
cos2 πu

1

2
(du1 du2) =

π

6
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Stokes theorem and its classical versions

THEOREM: Stokes theorem

Γ . . . n-dimensional singular chain in Rm, m ≥ n
ω . . . an (n − 1)-form on an open set in Rm containing Γ. It holds∫

∂Γ

ω =

∫
Γ

dω

Steps of the proof:

1) for Γ = I n in Rn . . .
ω = f (x1, . . . , xn)dx1 ∧ dx i−1 ∧ dx i+1 ∧ . . . ∧ dxn

2) for Γ = c ◦ I n, c : I n 3 (x j)j=1,...,n → (yαc(x j))α=1,...,m ∈ Rm
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.EXAMPLE: c . . . parametrized piece of unit sphere in R3

 

1u  

3x  

2x  

1x  

2u  

2 1
(2,1)( 1) c  

1 1
(1,1)( 1) c  

2[0,1]  

2([0,1] )c  
c  

1 2

1 2

1

2 3

1

2 2

2

2 2

3

2

: [0,1] R  

sin cos

sin sin

cos

u u

u u

u

c

x

x

x

 

 











 

(1,0) zero measure zero integralc   

1 0 1 1 2 0 2 1
(1,0) (1,1) (2,0) (2,1)( 1) ( 1) ( 1) ( 1)c c c c c           

 

2 0
(2,0)( 1) c  

ω = x1 dx1 + x2 dx2 + x3 dx3, dω = 0 ⇒
∫
c
dω = 0∫

∂c

=
∫

c(1,1)

ω +
∫

c(1,1)

ω −
∫

c(2,1)

ω = . . . (integral on c1,0 is zero)

EXERCISE: complete the calculation
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THEOREM: n = m = 2 Green theorem

ω = P(x , y) dx + Q(x , y) dy

P(x , y), Q(x , y) . . . (differentiable) functions∫
∂c

P(x , y) dx + Q(x , y) dy =
∫
c

(
∂Q(x , y)
∂x − ∂P(x , y)

∂y

)
dx ∧ dy

THEOREM: n = 2, m = 3 classical Stokes theorem

ω = ω
(1)
F = F1(x , y , z) dx + F2(x , y , z) dy + F3(x , y , z) dz∫

∂c

F1(x , y , z) dx + F2(x , y , z) dy + F3(x , y , z) dz =

=
∫
c
rotx ~F dy ∧ dz + roty ~F dz ∧ dx + rotz ~F dx ∧ dy
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THEOREM: n = 3, m = 3 Gauss-Ostrogradsky theorem

ω = ω
(2)
F =

F1(x , y , z)dy ∧ dz + F2(x , y , z) dz ∧ dx + F3(x , y , z)dx ∧ dy∫
∂c

F1(x , y , z) dy∧ dz+F2(x , y , z)dz∧ dx+F3(x , y , z) dx∧ dy =

=
∫
c
div ~F (x , y , z) dx ∧ dy ∧ dz

EXERCISE:
Discuss classical theorems (Green, classical Stokes and Gauss-Ostragradsky)
with respect to the general Stokes theorem.
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DEFINITION: volume element on c

Assumptions:

1) u ∈ [0, 1]n ⊂ Rn, (e1,u, . . . , en,u) . . . standard base in TuRn

2) c . . . n-dim parametrized piece or singular cube in Rm, m ≥ n

3) TxRm, x ∈ Rm, is supposed with the standard scalar product
(ξ, ζ) = ξ1ζ1 + · · ·+ ξmζm, standard orientation of TxRm is
given by a standard base (f1,x , . . . , fm,x)

4) Tc(u)c = [|ζ1, . . . , ζn|], ζi = Tc ei , . . . tangent space to c in
c(u), x ∈ [0, 1]n . . . generated by vectors ζ1 = Tuc

5) scalar product on Tc(u)c . . . restriction of (ξ, ζ) to Tc(u)c

6) orientation in Tc(u)c compatible with c . . . µ = [ζ, . . . , ζn]

volume element on c . . . the n-form ω such that ω(c(u)) is the
volume element in Tc(u)c
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.EXAMPLE structures for volume element for n = 2, m = 3

 

1u
 

2u  
3x  

1x  

2  

2x  

2, ( )c uf  

3, ( )c uf  

1, ( )c uf  

1  

u  

( )x c u  

( )c uT c  

2RuT  2,ue  

1,ue  

EXERCISE:
For c : [0, 1]2 3 u = (u1, u2)→ c(u) = (x1c(u), x2c(u), x3c(u)) ∈ R3

x1 = sin πu1

2
cos πu

2

2
, x2 = sin πu1

2
sin πu2

2
, x1 = cos πu

1

2
calculate vectors

ζ1 = Tc e1,u, ζ2 = Tc e2,u.
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PROPOSITION: calculation of the volume element on c

ω0 . . . volume element on an n-dimensional c in Rm,
ζ=ζi (c(u)) = Tc ei ,u, i ∈ {1, . . . , n}, then

ω0(c(u))(ζ1, . . . , ζn) =
√

det (ζi , ζj)

EXERCISE: Prove the above proposition using following notes:

I ω0(ζ1, . . . , ζ2) = detA, A = (ζ̄ ji )i,j=1,...,n, ζi = ζ̄ ii εj , (ε1, . . . , εn) . . .
orthonormal base in Tc(u)c belonging to the orientation µ

I det2A = detA · detAT = detG , G = (gij), gij = (ζi , ζj)

NOTE: Recall that the scalar product is invariant with respect to the choice

of a base, thus the calculation can be made with help of components of vectors

ζ1, . . . , ζn in the base (f1, . . . , fm), ζi = ζαi fα, α ∈ {1, . . . , m}.

Integral on Rn and differential manifolds Olga Rossi and Jana Musilová



With the volume element we can introduce a specific type of
integral on c , useful e.g. for practical calculations of geometric and
physical characteristics of real bodies

DEFINITION: first-type integral

first-type integral of a function f : A 3 x −→ R, A ⊂ Rm . . . an
open set containing c([0, 1]) is the integral of the form f ω0 on c

I =

∫
c

f ω0 =

∫
[0,1]n

(f ◦ c) c∗ω0

PROPOSITION:∫
c

f ω0 =

∫
[0, 1]n

(f ◦ c)
√
detG (du1 . . . dun)

NOTE: It is the direct consequence of the expression for ω0(ζ1, . . . , ζn).
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Differential manifolds

DEFINITION: topological manifold

n-dimensional topological manifold . . . topological space (X , τX )

1) Hausdorff

2) there exists a countable base of τX (2nd axiom of countability)

3) locally isomorphic with Rn

DEFINITION: maps on a topological manifold

1) U ⊂ X . . . open set, ϕ : U 3 x −→ ϕ(x) ∈ Rn, ϕ(U) ∈ τX
2) ϕ is a homeomorphism

(U, ϕ) . . . local map on X , (X , ϕ) . . . global map (if exists)

NOTE: n-dimensional topological manifold is ”locally”Rn
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DEFINITION: Rn-atlas on an n-dim topological manifold X

Rn atlas of class C r , or smooth (class C∞) on X . . . family of
maps A = {(Uι, ϕι) |Uι ∈ τX , ι ∈ I}, I . . . a set of indices:

1)
⋃
ι∈I Uι = X

2) every ϕι is a homeomorphism of Uι on the open set
ϕ(Uι) ⊂ Rn

3) for every pair ι, κ ∈ I the maps
ϕι ◦ ϕ−1

κ : ϕκ(Uι ∩ Uκ) −→ ϕι(Uι ∩ Uκ)

ϕκ ◦ ϕ−1
ι : ϕι(Uι ∩ Uκ) −→ ϕκ(Uι ∩ Uκ)

are one to one C r -differentiable, or diffeomorphisms (of class
C∞)

NOTE: Rn is understood as the n-dimensional Euclidean space, i.e. the set of
all real n-tuples (α1, . . . , αn) with the Euclidean (natural) topology.
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.EXAMPLE: R2-atlas on 2-dimensional X – overlapping maps

 

2R  X  

U  

U  
  

1
    

( )U U     

( )U   

( )U   

( )U U     
  

1
    

ϕι◦ϕ−1
κ : ϕκ(Uι∩Uκ) 3 (x iϕκ(x jϕι))i=1,2 −→ (x iϕκ(x jϕκ))i=1,2 ∈ ϕκ(Uι∩Uκ)

ϕκ◦ϕ−1
ι : ϕι(Uι∩Uκ) 3 (x iϕι(x

jϕκ))i=1,2 −→ (x iϕκ(x jϕι)i=1,2) ∈ ϕκ(Uι∩Uκ)
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.EXAMPLE: R1-atlas on a unit circle S1 ⊂ R2

 

1x  1x  

2x t  

x  

4( )x  

3( )x  

3U  

4U  

2x  

x  x  

2x  

1x t

 

x  

1( )x  

2( )x  

1U  

2U  

 1 1 2 2 3 3 1 4( , ) , ( , ) , ( , ) , ( , )A U U U U     

1 2RS   

1  

Mappings ϕi are cartesian projections, ti = ϕi (x), for example for
x = (x1, x2) ∈ U1 ∩ U3, i.e. x1, x2 > 0, it holds

ϕ3 ◦ ϕ−1
1 : U1 ∩ U2 3 x −→ t3 =

√
1− t2

1

EXERCISE: Express all ϕj ◦ ϕ−1
i . Show that A is an atlas on S1.

Integral on Rn and differential manifolds Olga Rossi and Jana Musilová



DEFINITION: maximal Rn-atlas on X , differential structure

1) (U, ϕ) . . . map compatible with A, if the family
Ā = {(Uι, ϕι), (U, ϕ)} is again an atlas

2) atlases A, Ā . . . equivalent, if every map of A is compatible
with Ā and vice versa

3) equivalence class [A] . . . differential structure on X

The following theorem is important for the concept of integration
on manifolds:

THEOREM:

On every differentiable manifold it exists a countable atlas.
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.EXAMPLE: stereographic projection ”SP”

 

1 1x t  

2 2x t  

3x  

S O  

(0, 0,1)N   

1( )x  

x  

2 3RS   

 
2 2

1 1 2 1 2

1 2

1 2 2 2 1 2 2 2

1 1 2 1 2

( , ) , ( , )

\{ }, \{ }

: ( , ) ( , )

,
( ) ( ) ( ) ( )

: ( , ) ( , )

exercise

A U U

U S N U S S

t t t t

t t

t t t t

t t t t

 

 

 







 

 

 
 

  



 

EXERCISE:

1) For SP of S2 ⊂ R3 derive relations ϕ : (t1, t2)→ (x1, x2, x3) and
ϕ : (t̄1, t̄2)→ (x1, x2, x3).

2) With SP construct the atlas on S1 ⊂ R2 and show that it is compatible
with that based on cartesian projections.
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The following proposition is important for practical description of
n-dimensional manifolds in Rm, m > n

PROPOSITION: Let X ⊂ Rm be an n-dimensional manifold.
Then for every point x ∈ X it exists a map (W , ψ),
ψ(x) = (y1ψ(x), . . . , ymψ(x)) such that (U, ϕ), U = W ∩ X ,
ϕ = ψ|U is a map on X and

yn+1ψ(x) = · · · = ymψ(x) = 0

EXAMPLES:

1) S1 ⊂ R2 (unit circle in R2) . . . 1-dimensional manifold in R2,
W = R2, ψ = (y1, y2), y1 = ϑ, y2 = r − 1, where ϑ, r are
polar coordinates; for x ∈ S1 is y2 = 0

2) S2 ⊂ R3 (unit sphere in R3) . . . 2-dimensional manifold in R3;
exercise: describe S2 with the use of the above proposition
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DEFINITION: differentiable mappings of manifolds

(X , τX ), (Y , τY ) . . . diff. manifolds dimX = n, dimY = m
f : W → Y . . . a mapping on an open set W ⊂ X
(U, ϕ), x ∈ U, (V , ψ), f (x) ∈ f (U) ⊂ V . . . maps on X and Y

 

1x  

2x  

f  
X  

( ( ))f U

 

2R  

2y  
1y  

Y  

( )f U  

V  
U  

  

( )U  

3y  

3R  

  

1f   

f . . . differentiable, if ψ ◦ f ◦ ϕ−1 is differentiable
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Differential manifolds with boundaries

EXAMPLES: manifolds without a boundary

differential manifolds S1 ⊂ R2, S2 ⊂ R3 . . . examples of manifolds
without boundary

EXERCISE: motivation: S1 ⊂ R2, S2 ⊂ R3 can be described also as singular

cubes; prove that ∂S1 = 0, ∂S2 = 0

What means manifold with a boundary?

DEFINITION: n-dimensional manifold with a boundary in Rm

Rn
+ = {x ∈ Rn | xn ≥ 0} with induced Euclidean topology

X ⊂ Rm, X 6= ∅, m > n X . . . a manifold with boundary if there
exists a maximal Rn

+ atlas on X

NOTE: axioms of maximal Rn
+ are formally the same as for a maximal

Rn-atlas, taking into account Rn
+ instead of Rn
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DEFINITION: boundary of a manifold X

interior point x ∈ X . . . there exists a map (U, ϕ) such that
x ∈ U, ϕ(U) ⊂ Rn

+ is open in Rn, i.e. xnϕ(x) > 0

boundary point . . . a point x ∈ X which is not interior, i.e. there
exists a map (U, ϕ) such that x ∈ U, xnϕ(x) = 0

boundary of X . . . the set ∂X of all boundary points

manifold without a boundary . . . ∂X = ∅

PROPOSITION:

the boundary of n-dimensional manifold with boundary is
(n − 1)-dimensional manifold (without boundary)

EXAMPLE: X = {(x1, x2) ∈ R2 | (x1)2 + (x2)2 < 1}, ∂X = ∅,
X = {(x1, x2) ∈ R2 | (x1)2 + (x2)2 ≤ 1}, ∂X = S1
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DEFINITION: tangent spaces to a manifold X

X . . . n-dimensional manifold with boundary in Rm, define

1) curve in X with the origin at x ∈
C : [0, ε)→ Rm, C([0, ε)) ⊂ X

2) tangent vector to X at x
ξ ∈ TxRm, if it is tangent to a curve in X with the origin at x

3) tangent space to X at x
the set TxX of all tangent vectors to X

PROPOSITION:

tangent space TxX ⊂ TxRm is a vector subspace of TxRm

NOTE: Above properties hold for all points of X , including boundary ones.
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C : [0, ε)→ C(t) ∈ Rm, C(0) = x , (C differentiable) . . . a curve in
Rm with origin at x ; tangent vectors to Rm at x = (y1, . . . , ym):

ξ(x) = const Ċ(0) = const

(
x ,

(
dy1C(t)

dt
, . . . ,

dymC(t)

dt

)∣∣∣∣
t=0+

)
PROPOSITION: coordinate expressions of tangent vectors to X

for x ∈ X , (U, ϕ), ϕ = (x1, . . . , xn) . . . a map on X , x ∈ U:

ξ(x) = const Ċ(0) = const

(
x ,

(
dx1ϕC(t)

dt
, . . . ,

dxnϕC(t)

dt

)∣∣∣∣
t=0+

)
EXERCISE: Prove that (e1,x , . . . , en,x), ei,x = ˙ϕi,x(0), ϕi,x . . . coordinate

curves [0, ε) 3 t → ϕi,x(t) = ϕ−1(x1, . . . , x i + t, . . . xn) ∈ U is a base in TxX .

Discuss if components of a vector depend on a concrete map (U, ϕ), x ∈ U.
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Differential forms on manifolds, decomposition of unity

Having defined tangent spaces to a manifold X we have
automatically defined dual spaces T ∗x X and spaces of tensors,
especially Λk(TxX ) by the analogous way as for k-forms on
Euclidean spaces.

NOTE: bases and dual bases

(e1,x , . . . , en,x) =
(
∂
∂x1 , . . . ,

∂
∂x1

)
x
, (e1

x , . . . , e
n
x ) = (dx1(x), . . . , dxn(x))

dx i (x)(ej,x) =
dx iϕj,x

dt

∣∣∣
t=0

= δij

DEFINITION: differential k-forms on X

mappings ω : X ⊃W ∈ x −→ ω(x) ∈ Λk(TxX ) ⊂ ΛkX

ω(x) = ωi1...ik dx
i1 ∧ . . . ∧ dx ik , i1, . . . , ik ∈ {1, . . . , n}
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DEFINITION: orientable manifolds

volume element on n-dimensional X . . . an (at least continuous)
n-form ω on X , ω(x) 6= 0 for every x ∈ X
orientable manifold X . . . there exists the volume element on X

(U, ϕ), ϕ = (x1, . . . , xn), x ∈ X . . . ω(x) = f (x)dx1 ∧ · · · ∧ dxn

PROPOSITION:

1) n-dimensional manifold X is orientable iff there exist a
countable atlas A = {(Uι, ϕ)ι | ι ∈ I} such that for every
ι, κ ∈ I it holds detD(ϕι ◦ ϕ−1

κ ) > 0 on ϕκ(Uι ∩ Uκ)

2) the boundary of an orientable manifold with boundary is
orientable

NOTE:The expression of a volume element ω for every (Uι, ϕι) is unique,

ω = fι dx
1
ι ∧ . . . ∧ dxn

ι , fι > 0 or fι < 0; (Uι, ϕι) . . . positive, if fι > 0.
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PROPOSITION: transformation of coordinates

(Uι, ϕι), (Uκ, ϕκ), Uι ∩ Uκ 6= ∅, on Uι ∩ Uκ it holds

ω = fι dx
1
ι ∧ . . . ∧ dxnι =

(
fκ · detD(ϕκ ◦ ϕ−1

ι )
)
dx1

κ ∧ . . . ∧ dxnκ

DEFINITION: oriented manifolds

X . . . n-dimensional orientable manifold
orientation of X . . . a mapping µ : X 3 x −→ µ(x), where µ(x) is
an orientation of TxX
induced orientation by the volume element ω . . . for every x ∈ X
and all bases (e1,x , . . . , en,x) ∈ µ(x) is ω(x)(e1,x , . . . , en,x) > 0
a manifold X with orientation . . . oriented manifold

EXAMPLE: S2 ⊂ R3 . . . orientable (e.g. with help of a
continuous external normal), Mobius strip . . . not orientable
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The concept of integration of forms on differentiable manifold is
analogous as that using parametrized pieces or singular cubes
c : [0, 1]n → Rm, m ≥ n and chains Γ = k1c1 + · · ·+ kpcp in Rm.
However, it is more general: while integrated forms can be defined
on the whole manifold (as e.g. volume element) there need not
exist a global map (coordinate system) on X . The coordinate
expression of differential forms (integrated object) are different in
various coordinates (transformable, of course, each to other on
intersections of various maps). We solve this problem with help of
so called decomposition of unity.
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PROPOSITION: decomposition of unity

X . . . an n-dimensional differential manifold with boundary
A = {(Uι, ϕι | ι ∈ I )} . . . an atlas on X

Then there exists a family (χι), χι : X → R, ι ∈ I , of
C∞-differentiable functions (decomposition of unity on X
associated with A) with properties:

1) for every ι ∈ I and every x ∈ X it holds 0 ≤ χι ≤ 1

2) for every x ∈ X there exist an open set W ⊂ X such that only
a finite number of functions belonging to {χι | ι ∈ I =} is
nonzero on W

3) for very x ∈ X only a finite number of numbers χι(x), ι ∈ I ,
is nonzero; moreover it holds

∑
ι∈I χι(x) = 1

4) for every ι in holds suppχι ⊂ Uι (support of the function χι)
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.EXAMPLE: an example of decomposition of unity on R

X = R, A = {(Uj , ϕj), (Vj , ψj) | j ∈ N ∪ {0}}

Uj =
(
−(2j + 1)π2 , −(2j − 1)π2

)
∪
(
(2j − 1)π2 , (2j + 1)π2

)
Vj = (−(j + 1)π, −jπ) ∪ (jπ, (j + 1)π)

αj(x) = cos2 x , x ∈ Uj , α = 0, x ∈ R \ Uj

βj(x) = sin2 x , x ∈ Vj , βj(x) = 0, x ∈ R \ Vj
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.EXAMPLE: decomposition of unity on R (continued)

                                   

                                 

x  

x  

x  

x  

0 ( )x  

1( )x  

0 ( )x  

1( )x  
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Integral of forms on manifolds, Stokes theorem

DEFINITION: integral

Assumptions

1) X . . . n-dimensional oriented manifold with boundary

2) A = {(Ui , ϕi ) | i ∈ N} . . . a countable atlas on X with
positive maps, such that all sets Ūj are compact

3) Ā = {(Vj , ψj) | j ∈ N} . . . another atlas with the same
properties as A

4) (χi ), (υj) . . . decompositions of unity associated with A, Ā
5) ω . . . an arbitrary n-form on X ,

ω = fi dx
1
i ∧ . . . ∧ dxni = gj dy

1
j ∧ . . . ∧ dynj
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DEFINITION: integral – continued

Denote integrals (explain why they exist)

Ii =

∫
ϕi (Ui )

(χi fi ) ◦ ϕ−1
i (dx1

i . . . dx
n
i )

Jj =

∫
ψj (Vj )

(υjgj) ◦ ψ−1
j (dy1

j . . . dy
n
j )

PROPOSITION: important for introducing integral

absolute convergence of
∑

i Ii =⇒ absolute convergence of
∑

j Jj
and

∑
i Ii =

∑
j Jj
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DEFINITION: integral – continued

for absolutely convergent
∑

i Ii . . . form ω is integrable on X∫
X
ω =

∑
i

∫
ϕi (Ui )

(χi fi ) ◦ ϕ−1
i (dx1

i . . . dx
n
i ) integral of ω on X

PROPOSITION: properties of integral

1) linearity:
∫
X

(αω1 + βω2) = α
∫
X

ω1 + β
∫
X

ω2

2) for X = X1 ∪ X2, X1 ∩ X2 = ∅ . . .
∫
X

ω =
∫
X1

ω +
∫
X2

ω

3) for ϕi (Ui ∩ (X \ Y )) ⊂ Rn
+ zero measure set

IX =
∫
X

ω exists iff IY =
∫
Y

ω exists, and then IX = IY
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THEOREM: Stokes theorem

Assumptions

I X . . . n-dimensional compact oriented manifold with boundary

I ω . . . differential (n − 1) form on X

Then ∫
X

dω =

∫
∂X

ω, for ∂X = ∅ . . .
∫
X

dω = 0

NOTE: The compactness of the manifold X cannot be weakened in general.

On the other hand, Stokes theorem is valid even for non-compact manifolds if

ω has compact support.
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Applications in geometry and physics

DEFINITION: volume of a manifold and integral of f : X → R

Assumptions

1) X . . . n-dimensional oriented manifold in Rm with boundary,
m ≥ n, orientation µ

2) for every x ∈ X . . . (U, ϕ), ϕ = (x i ), x ∈ U,
ξ(x), ζ(x) ∈ TxX , gx(ξ, ζ) = (ξ(x), ζ(x)), i.e. gx ∈ T2(TxX )
mapping g : (x → gx), g = gij dx

i ⊗ dx j , gij = (ei ,x , ei ,x), . . .
Riemann metric on X ,

3) ω(x) =
√

det (gij)dx
1 ∧ . . . ∧ dxn . . . volume element defined

by Riemann metric

v(X ) =

∫
X

ω volume of X (if it exists) I (f ) =

∫
X

f ω

NOTE: The volume of a manifold exists for every compact manifold.
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.EXERCISE

1) Volume (length) of a 1-dimensional manifold: for X . . . a singular cube
c : [0, 1] 3 t → c(t) ∈ Rm prove that

v(X ) =

1∫
0

√(
dx1c(t)

d

)2

+ · · ·+
(
dxnc(t)

d

)2

and verify for S1 ⊂ R2.

2) Volume of a 2-dimensional manifold: for X . . . a singular cube
c : [0, 1]2 3 (u1, u2)→ c(u1, u2) ∈ R3 prove that

v(X ) =

∫
[0,1]1

√
g11g22 − g 2

12 (du1 du2) where

gij =
∂x1c

dui

∂x1c

duj
+
∂x2c

dui

∂x2c

duj
+
∂x3c

dui

∂x3c

duj

and verify for S2 ⊂ R3.
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.EXERCISE: continued

3) Calculate the inertia J3 of the 3-dimensional unit sphere in R3,
S3 = {(x1, x2, x3) ∈ R3 | (x1)2 + (x2)2 + (x3)2 = 1} with respect to
x3-axis, where

J3 =

∫
S3

f3(x1, x2, x3)ω f3(x1, x2, x3) = (x1)2 + (x2)2

4) Calculate the position (x0
1 , x

0
2 , x

0
3 ) of center of mass of the cone

X : {(x1, x2, x3) ∈ R3 | (x3)2 − (x2)3 − (x1)2 = 0, 0 ≤ x3 ≤ 1}

x i
0 =

1

v(X )

∫
x i ω

NOTE:In all exercises ω is the volume element defined by Riemann metric.
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