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(8) The conclusion has boen arvived ab that the slectricity issuing
from an ignited platinum wire does not give a static charge to the
air itself, but that the charges observed as atmospheric electricity
have their seat in the particles already vepelled info the air.

(4) It is accordingly highly probable that atmospherie air, and
no doubt other gases also, cannot be statically clectvified.

(6) A frosh exporiment is given which shows thab, b ordinnry
temperatures, negative eclectricity of high potential issues more
readily into the aur than positive.— Wiedemann's dnnalen, No. 7,
1887.

ON AN EXPERIMENTAL DETERMINATION OF THE WORK OF MAG-
NETIZATION. BY A, WASSMUTIT AND G A. SCHILLING.

If soft iron is brought from a very great distance near a magnet,
and thereupon so rapidly removed that the maguetism doss not
diminish, more work (W) is consumed in the removal than was
gained in the approach; for in the removal the attraction is
stronger. * The dilference, A=W —1,, is the work of magnetizn-
tion. It is assumed that the magnetizing foree @ acts on all parts
of the body used, an olongated cllipsoid of rolation, with cqual
force in the direction of tho axis of rotation.  Tho work of mag-
netization is calculated for 1 cubic millim., if the moment of the
cubic millimetre is . W is then =ap, and L:S/udar, as is shown
by calculation and by the experiments. Ilence

A=apu —‘S pd= Y.’(‘J,u.

In the experiments the iron ellipsoid, with its axis of rotation,
was in the same vertical plane as the limbs of a large eleetromagnet
provided with large pole-picces, so that the field was as uniform as
possible ; it was suspended to a balance, so that tho attraction
p at various vertical distances z I'rom the tips of the magnet-ends
could be determined. The surface of the curve whose absecisswo
correspond to z, and tho ondinates to p, dofines the varintion of
work, which according to theory must bo oqual {o "/u/.t'. Tho
forces @ and g were mensured by the currents induced in a fixed
coil, on changing the polarity, in one case with, and in another easo
without, the freely-suspended iron core: and the currents woro
reduced to absolute measure by a terrestrial inductor introduced
into the ecircuit. Ixperiment conlirmed the theoretical antici-
pations. They prove that the work for the change of position of
the iron is equal to the corresponding increase and decrease of
‘s‘ pda ; the work of magnetization is thus equal to the change of

X ja, dpu.Only in case; when u is proportional to x, dojx du and 5 pde

give the same value, jou. The work is in that case proportional to
a° on which may be based a method of determining a.— Wiener
' Berichte, xciv. (1888); Beibldtter der Plysik, No. 4 (1887).
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XVIIL. On the Maintenance of Vibrations by Forces of Double
Frequency, and on the Propagation of Waves through a
Medivm endowed with a  Periodic Structwre. By Lord
Ravuriarn, See. K. 8., Professor of Natural Philosophy in
the Royal Institution™.

Vl‘HE nature of the question to be first considered may be

best explained by a paragraph from a former paper f,
in which the subject was briefly treated. ¢ There is also
another kind of maintained vibration which, from one point of
view, may bo regarded as forced, inasmuch as the period is
imposed from without, but which differs from the kind just
referred lo (ordinary forced vibrations) in - that the imposed
periodic variations do not tend directly to displace the body
from its configuration of cquilibrinm.  Probably tho host-
known examplo of this kind of action is that form of Melde’s
experiment in which a fino string is maintained in transverse
vibration by connecting one of its extremities with the vibra-
ting prong of a massive tuning-fork, the direction of motion of
the point of attachment being parallel to the length of the st'ringi‘. .
The effect of the motion is to render the tension of the string
periodically variable; and at first sight there is nothing to
cause the string to depart from its equilibrium condition of
straightness. It is known, however, that under these circum-
stances the equilibrium position may become unstable, and
that the string may settle down into a state of permanent and

* Communicated by the Author,

t “ On Maintained Vibrations.,” Thil. Mag. April 18883, p. 229.

1 “ When the direction of motion is transverse, the case falls under the
head of ordinary forced vibrations.” ;

Plil. Mag. S. 5. Vol. 24. No. 147, August 1887. L
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vigorous vibration whose period is the double of that of the
point of attachment”*.  Other examples of acoustical intorest
are mentioned in the paper.

My attention was recalled to tho subject by Mr. Glaisher’s
Address to tho Astronomical Society T, in which ho gives an
interesting account of the treatmoent of mathomatically similar
questions in the Lunar Theory by Mr. Hill { and by Prof.
Adams§. The analysis of Mr. Hill is in many respects in-
comparably more completo than that which I had attempted ;
but his devotion to the Lunar Theory leads the author to pass
by many points of great interest which arise when his results
are applied to other physical questions.

By a suitable choice of tho unit of time, the equation of

motion of the vibrating body may bo put into tho form

d*w dw

—og + 2k 5 2€ =0;. . . (1

Ji2 +2k 5, + (@) + 20, cos 20)w=0; (1)
where % is a positive quantity, which may usually bo treated as
small, representing the dissipative forces. (@, 20 cos 2p1)
represents the coefficient of restitution, which is here regarded
as subject to a small imposed periodic variation of period .
Thus ®, is positive, and @, is to be treated as relatively
small.

The equation to which Mr. Hill’s researches relate is in
one respect less general than (1), and in another more general.
It omits the dissipative term proportional to &; but, on the
other hand, as the Lunar Theory demands, it includes terms
proportional to cos 4¢, cos 6t, &e.  Thus

d?w

Tﬁau+(®0+ 90, cos 2t + 2@y cos 4t +.. Jw=0; . (2)
or Q

%g-i—@)w:(),. N £:)
where

O=3,0,t . . . . . .. . oo ()
n being any integer, and @ representing »/ (—1). In the
present investigation ®_p, =0,

* «Zee Tyndall’s ¢ Sound,’ 8xd. ed. ch. iii. § 7, where will also be found
2 general explanation of the mode of action.”

ly Notices, Feb. 1887.

I yoo?ltl;h); Part of the Motion of the Lunar Perigee which is a Tunc-
tion of the Mean Motions of the Sun and Moon,” Acta Mathematica, 8:1,
1886. Mr. Hill's work was first published in 1877. )

§ “On the Motion of the Moon’s Node, in the case when the orbits
of the Sun and Moon are supposed to have no Kccentricities, and when
their Mutual Inclination is supposed to be indefinitely small.” Monthly

Notices, Nov. 1877,
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1t will he convenient to give here a sketch of Mr. Hill’s
method and results.  Remarking that when ©y, ®,, &c. vanish,

the solution of (3) is
w=Ke 4+ K'e-t, N ©))

whare K, K/ are arbitrary constants, and ¢= v/ (®,), he shows
that in the general ease wo may assume as a particular solution

w=3 byttt (6)

tho value of ¢ being modified by the operation of @y, &c., and
tho original® term by being accompanied by subordinate
terms corresponding to the positive and negative integral
values of n.

The multiplication by @, as given in (4), does not alter the
form of (6); and the result of the substitution in the differ-
ential equation (8) may bo written

(¢4 2m)2, =208 p_pby=0, . . . . (7)

which holds for all integral values of m, positive and negative.
These conditions determine the ratios of all the coefficients
by to one of them, e. g., by, which may then be regarded as
the arbitrary constant. They also determine ¢, the main sub-
ject of quest. Mur. Hill writes

[n]=(c+2n)*—0By; . . . . . (8)
so that the equations take the form :

ot [=2]beg— ©) b, —O, by— By b—B, by—...=0,
o O g+ [—1]0,—0; by— Oy b —Oy by—...=0,

“ e (’f‘)ﬂ [)__2-—' ("Dl Z)-,—l—[()]bo-—- @1 b1—®2 1)2—"...=0, ?- (9)

ce e @3 b-g— 6)2 [)-1-"®1 ()0+[—1]Z)x—®1 1)2'—‘..-=O’
i O by— Oy b1 —O, by— ©, by+[2]by—...=0,

The determinant formed by eliminating the d’s from these
oquations is denoted by ®(¢); so that the equation from which

¢ 1s to be found is
De)=0. . . . . . . (10)

The infinite series of values of ¢ determined by (10) cannot
give independent solutions of (3),—a differential equation
of the second order only. It i1s evident, in fact, that the
system of equations by which ¢ is determined is not altered if
we replace ¢ by ¢+ 2v, where v is any positive or negative
integer. Neither is any change incurred by the substitution
of —¢ for ¢. “It follows that if (10) is satisfied by a root
¢=c,, it will also have, as roots, all the quantities contained
in the expression ' +ey+2n,

L2
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where n is any positive or negative integer or zero. And
these are all the roots the equation admits of 5 for each of tho
expressions denoted by [#] is of two dimensions in ¢, and may
be regarded as introducing into thoe equation the two roots
9n4cy and 2n—c, Consequently the roots are cither all
- real or all imaginary; and it is impossible that the equation
should have any equal root unless all the roots are integral.”
On these grounds Mr. Hill concludes that D(c) must be
such that
‘ ®(c) =A [cos (me) —cos (me)] - . . (11)
identically, where A is some constant independent of ¢ 3 whenee
on putting ¢=0,
D(0)=A[1—cos (me)], -+ - - - (12)
in which, if wo please, ¢, may be roplaced by e. — The valuo
of A may now be determined by comparigon with the parti-
cular case ® =0, ®;=0, &ec., for which of course ¢= VAT
Thus if (0) denote the special form then assumed, <. e. the
simple product of the diagonal constituents,

X (0)=A[l—cos (mv/ O], . - . . . . (13)

an
sin? ($7rc) D(0) . (14)

1—cos (e) _
T—cos (¥ ©p)  sin? (3mv/0,) — D'(0)
The fraction ®(0)-+=3/(0) is denoted by D(0). It is the
determinant formed from the original one by dividing each
row by the constituent in the diagonal, so as to reduce all
the diagonal constituents to unity, and by making ¢ vanish.

Thus

1—cos(m) _q),. . . . . (15)

T—cos (mv/Oy)
where
+ 1 __.&_____.@_L___Qa __®4_
o -0, 4-0, #-0, 4—0,
0, 0, 0, g
7_@, 1 T9-0, 22—0, 22—0,"
_ 8, 6 I B, 6
t0P—-0, 0°—06, 0'—0, 0*—6,"
_ 6 6, 6, + 1 6,
To@, 20—0, 2°—0, 22—0, "
_ 6, 6 8, 0, + 1
T 4:2'—@0 42—@)0 42—‘®0 42"‘6)0

Vibrations by Forces of Double Frequency. 149

:l:he value of O (0) is calculated for the purposes of the Lunar
Theory to a high order of approximation. It will here suffice

to give t ar i ‘
rl(‘)hi,lxsvo he part which depends upon the squares of ®,, ®,, &e.

TV O O 0,
0)=1 7rcoth(27r o 1 |
DO)=1+"4"%, ¥ :
Another determinant, V(0), is employed by M il
relation of which to O (6) is e;(presseg b)_;r y M. Hll, the
V(0)=2sin® 374/ 0p). O0); . . . (18)
so that the general solution for ¢ may be written
_ . cos (me)=1—-v(0). . . . . . . . (19)
Mr. Iill observes that th® reality of ¢ requires that 1—7(0)
should lio between —1 and +1." In the Lunar Theory this
condition is satisfied; but in the application to Acoustics the
case of an imaginary ¢ is the one of greater interest, for the
vibrations then tend to increase indefinitely. ’

coﬁg?egos)obt(}a]l:tg itself always real, let us suppose that ¢ is
c=a+1i8,
where @ and 3 are real. Thus
. €08 e =08 Ta ¢o8 tmB—sin 7re gin 17w B;
and the reality of cos 7¢ requires ei =
that a=n, n geing an integgr. eSIne}cil};elf‘ir(slt) (fz}:saetcg; r(;;l(.)r' (1213
the second :
. cosme=tcosimB=1—-V(0), . . . (20)
which gives but one (real) value of 8.  If 1—(0) be positive,
c=+18+2n; . . (21)
but if 1—7(0) be negative,
cos e = —cos imf3,
whence _
e=+1B8+2n+1. . . . . . (22

The latter is the case with which we have to do when ®,, and
therefore ¢, is nearly equal to unity ; and the conclusion that
when ¢ is complex, the real part is independent of ®;, ®;, &e.
is of importance. The complete value of w may 'then be
writton

W= P 2,10 L gmBE S gt (93)

the ratios of b, and also of b,’ being determined by (9). Af

n . . n ° t
the lapse of a sufficient time, the second set of t%rgng in e-?;
become insignificant.

2
—e, Ti—e, to—a, " ]

(17)
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In the application of greatest acoustical interest ®, (and c)
are nearly equal to unity; so that the free vibrations arve per-
formed with a frequency about the half of that introduced
by ®,. In this caso tho loading equalions in (9 aro thoso
which involve the small quantities [0] and [—1]: bul for
the sake of symmetry, it is advisable to retain also the equa-
tion containing [1].  If we now neglect @y, as well as the 0’s
whose suffix is numeorically greater than unity, wo find

b—] — [)0 =._.[),1,,,,< . . (24)
0,[1] ~ [11[-1] &, [—1]

[0J[1I[—1]=® {[1]+[—1]}=0. . (2h)
N Tor the sake of distinctness it will be well to repeat here
that

[0]=2—@, [—1]=(c—2)'—0,, [1]=(c+2)*—6".
Substituting these values in (25), Mr. Hill obtains
(=0 { (¢ +4—0,)?—16c"} —20,*{¢*+ 4 — O} =0,

zmczi neglecting the cuboe of (¢ —@,), as well as its product with
67

and

(02—(':')0)2 +2(0,— 1) (02_@)0) +0,*=0;
and from this again
A=14+/{(0—1)—07. . . . . . (R0)
Tt appears, therefore, that ¢ is real or imaginary according
as (®,—1)? is greater or less than ®;% In the problem of
the Moon’s apse, treated by Mr. Hill,

®,=1-1588439, 0,=—0'0570440;
and in the corresponding problem of the node, investigated by
Prof. Adams,
0,=1'17804,44973,149,
®,=001261,68354,6.
Tn both these cases tho value of ¢ is real, though of course
not to be accurately determined by (26).

Mr. Hill’s results are not immediately applicablo to tho
acoustical problem embodied in (1), in consequence of the
omission of %, representing the dissipation to which all actual
vibrations are subject. The inclusion of this term leads,
however, merely to the substitution for (¢+2n)*—®, in (8) of

(c+ 2n)?—2tk(c+2n)—6;

so that the whole operation of % is represented if we write
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(¢—ik) in place of ¢, and (®,—%?) in place of @,. Accordingly
cosm(c—ik)=1—v'(0), . . . . (27)
v/ (0) differing from ¥ (0) only by the substitution of ®,—&*
for Q.
16 1 —v/(0) lios botween +1, (c—tk) is real, so that
c=tk+a+2n. . . . . . (28
In this caso both solutions are affected with the factor e—*,
indicating that whatever the initial circumstances may be, the
motion dies away.
It may be otherwise when 1—V’(0) lies beyond the limits
4+ 1. Intho caso of most importance, when 0, is nearly equal
to unity, 1—v’(0) is algebraically less than —1. If

cosimB=—1+V/(0), . . . . . (29)
e=1+i(k+B)+2n. . . . . . . (30)

Here again both motions die down unless 8 is numerically
greater than &, in which case one motion dies down, while the
other increases without limit. The critical relation may be
written

we may write

cos (imk)=—1+vV'(0). . . . . . (31)

I'rom (30) we see that, whatever may be the value of £, the
vibrations (considered apart from the rise or subsidence indi-
cated by the exponential factors) have the same frequency as
if &, as well as ©,, ®,, &c. vanished.

Bofore leaving the general theory it may be worth while to
point out that Mr. Hill’s method may be applied when the

cooflicionts of d*w/dt* and dw/dt, as well as of w, are subject .

to given periodic variations. We may write

dw dw
D +\I’Et—+®w=0, N ¢ )]

" de

whoro

D=3D M, V=ST,, @=30,0. (33)

Assuming, as before,

w=3,byefcttaint . (84)
we obtain, on substitution, as the coefficient of ¢fc*+2m?,
—3bu (¢4 20)*Prmen + 1 Znbs (¢ + 20) Wi+ 2 52 Oy
which is to be equated to zero. The equation for ¢ may still

be written
D=0, « .+ . . . . (3))

T

,«7
4
4
4
1

|
|
i
i
i
"
o




152 Lord Rayleigh on the Maintenance of

where

2: O]’ [—']) "‘1]: [0; —2]7 [1’ —3]7 [27 ‘“4]J ten
2; 1]: ["1)0]’ [O’ _'1]7 [1’ "2]: [2> '“3]7- ..
2; 2]> [—‘1) ]:I’ [01 0]7 [l) —l,l’ [:2: ”‘“:”'--'
2) 3]? ["—1: 2}’ [O; 1]: [1) ():]) [:27 _l:Jy te
29 4]3 ["‘17 3]; [03 2]’ [L’ l,], IZ) “.]7 e

-
-
o=
-
-

.
.
.
.

and
[n, r]=(c+2n)2®,—i(c+ m)¥,—0,.. . . (37)
By similar reasoning to that employed by Mr. 1Ll we may
show that
D(c) =A (cos mc— cos me,)
+ B (sinre— sinmey) . . .

where A and B are constants independent of ¢ ; and, further,
that
D(0)=A(1— cosmc)—DBsinme. . . . (38)
If all the quantities ®,, ¥, O, vanish except b, ¥, 6,
®(0) reduces to the diagonal row simply, say ®'(0). Lot
¢y, ¢y be the roots of

d*w dw .
D, e + Y, T +0Ouw=0, . . . . (39)
then
' (0) =A(1— cos me;) — B sin ey,
=A (1— cos me;) —Bsin ey 3
so that the equation for ¢ may be written

D (0), 1— cosmre,

(0), 1—cosme, sinme, | =0. . . (40)

D(0),

In this equation ®(0)=+2(0) is tho determinant derived

from ®(0) by dividing each row so as to make the diagonal
constituent unity.

If...W_;, ¥, ¥;...vanish (oven though... &_,, g, ,...
remain finite), ®(¢) is an even function of ¢, and tho co-
efficient B vanishes in (88). In this case we have simply

1—cosme __ D(0)

T=eos mv/6; = D (0)

oxactly as when @, ®_,, &y, P_,... vanish.

sin 7re,

1— cosarey, sin ey,

;
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Reverting to (24), we have as the approximate particular

solution, when there is no dissipation,
ele=)it ecit
=G—2y=0, " & T rey—e, - - "D
]f‘c bo real, the solution may be completed by the addition
ol a second, found from (41) by changing the sign of ¢. Hach
of these sr(zlulwns‘is affocted with an arbitrary constant mul-
tiplier.  The realized general solution may be written
_ Reos(e=2)¢+Bsin (o —2)t
(c—2)"—6,
R cos et '*T,Sfjl} ct , Rcos(c+2)t+Ssin(c+2)t 49
0, (c+2)'—0, ;- (42)

from which the last term may usually be omitted, in conse-
quence of the relative magnitude of its denominator. In this
solution ¢ is determined by (26).

When ¢? is imaginary, we take

42=0,L—(O,—1)?; . . . . . (43)

(c+2)it
w ¢

w

+

go that
A=1+42is, c=1+1s, ¢—2=—1+41s.

The particular solution may be written

w=e=t{@ e+ (1—0,—2s)e’} 5 . . . (44)
or, in virtue of (43),

. w=e"*{(1—=0,+0)) cost+2ssint} ; . . (45)
or, again,
w=e"{ v/ (0;+1—0).cost+ v/ (0;—1+0,) .sint}. . (46)
The general solution is
w=Re~*{(1—0Oy+ ;) cost+2ssin ¢}
+ 8¢t {(1—0,+0,) cost—2ssint} }’ - (40

R, S being arbitrary multipliers.
One or two particular cases may be noticed. If @y=1,
2s=0,, and

w=Re s {cost+ sint}
. . (48)

+ 8¢ {cost—sint}

Again, suppose that e
O =(0,—-17% . . . . . . (49)

so thal s vanishes, giving the transition between the real and
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imaginary values of ¢. Of the two terms in (46), one or
other preponderates indefinitely in the two altornafives.
Thus, if @, =1—0,, the solution reduces to cost; but if
@, = —140,, it reduces to sint. Thoapparent loss of geno-
rality by the merging of tho two solutions may bo repaired in
the usual way by supposing s infinitoly small.

‘When there are dissipative forces, wo aro to replace ¢ by
(¢—ik), and ® by (®y—£*); but when £ is small tho lattor
substifution may be neglected. Thus, from (26),

e=1+ik+3v{@—=12=07}. . . . (50)
Interest here attaches principally to the case where the radical

is imaginary ; otherwise the motion necessarily dies down.

If, as before,
47=0"—(0,—1)%, . . . . . (O1)

e=1+ik+is, o—2=—1+ik+is, . . (52)

and
ple—2)it et it
U= k= 2y —0, T 9,
or A
w=e— @ 0—it 4 (1 —O)—2is)e”},
or

w=e— It (1 —@y+O) cost+2ssintf. . . (53)

This solution corresponds to a motion which dies away.
The second solution (found by changing the sign of ) is

w=e""Pt(1—=@y+0;) cost—2ssint}. . . (H4)

The motion dies away or increases without limit according as

s is loss or greater than k.
The only case in which tho motion is periodic is whon s=#%,

or
AR=0—(0,—1)*; . . . . . (b))
and then
: w=(1—0,—0,) cost—2ksint. . . . (56)
These results, under a different notation, were given in my
former paper™.

If ®,=1, we have by (51), 2s=0; and from (53), (54),
w=Re~*+9* {cos t+ sin t} 4+ Se—¢=9t{cos t—sin¢}.. . (57)

# In consoquonce of an orror of sign, the result for a second approxima-
tion thore stated is incorrect.

{

T
e
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In the former paper some examples were given drawn from
ordinary mechanies and acoustics. To these may be added
the case of a strotched wire, whosoe tension is rendered periodi-
eally variablo by the passago through it of an intermittent
olectric current. It is probable that an illustration might be
arranged in which the vibrations are themselves electrical.
®, would thon reprosent tho stiffness of a condenser, ¥, re-
sistanco, and @, solf-induction.  The most practicable way of
introducing the periodic term would be by rendering the self-
induction variable with the time (®;). This could be effected
by the rotation of a coil forming part of the circuit.

The discrimination of the real and imaginary values of ¢ is
of so much importance, that it is desirable to pursue the ap-
proximation beyond the point attained in (26). From (11)
wo find .

D) _ 1+ cos(me) | (58)’

— P —— . . ‘o

D(1) ~ 1+ cos (7« By)’

from which, or diroctly, we sco that if ¢=1, corresponding to
the transition case between real and imaginary values,

DUW=0. . . .« . . . . (59

If, as we shall now suppose, ©,, ®;. .. vanish, (59) may be
written in the form

1 0, 0
0, 1, a, 1, 0, O... =0, . (60)

0

1

whero

a1:""®i y (= 0, ’ asf |, ' - (61)

The first approximation, equivalent to (26), is found by
considering merely the central determinant of the second
order involving only ¢, ; thus,

a’=1=0. . . . . . . (62

Tho socond approximation is

2
w{(w=1)y=1}=0. . . . . (63

g
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The third is el The general equation of vibration for a stretched string of
“ "’{a 1 }2{<a 1 >‘3 1} 0 (64) i periodic density is
—_= _) - =0, ... (64 : :
SUT T g ! gL ’ ) Qra . 2ww dora
a . Po+p, oS e +p, sin T -+ pg cos 7
and so on.  Tho equation (60) is thus oquivalent to i s sin A7 + )(/_’w _mdhw (68)
) ) det T T de?? "
1 1 1 "
—_—— s = . 35 . . . . N -
& ag— ag— ay— " =xl; . . (6) { boing the distanco in which the density is periodic. We.
and tho successive approsimations aro it shall suppose thz}f‘ Pt qgl', - vnulish, S0 tlhat the sines dis-
§ X1ms { | appear, a supposition which involves no loss of generality
_ : - ( when wo restrict ourselves to a simple harmonie variation of
‘where Ni=+Dy, No=Dp . . . . (66) T density. If we now assumo that w oc €, or ox cos pt, we
btain
N, N ?
D’ T)‘zy so ? d*w .
L 3 . (i§7+(®0+z®1 cos 28+ 20, c08464-.. . )w=0, . . (69)

are the corresponding convergents to the infinite continued

fraction®.
In terms of @, ®,, the second approximation to the equa-

where £=ma/l, and
272 272
@=L000 9@,= L0 o (70)

-

tion discriminating the real and imaginary values of ¢ is {\ L L
_ 0.2 — . L and this is of the form of Mr. Hill’s equation (2).
(@ —1)(B—9)—0=+£6,(8—9). . . (67) When ¢ is real, we may employ the approximate solutions s

(41), (44). The latter (with £ written for ¢) gives, when
multiplied by cos p¢ or sin pt, the stationary vibrations of the
system. From (41) we get

we 08 [pt+(c—2)E] 4 o8 [pt +c&]

T (c—2)’=6, 0, o
in which, if ¢=1 nearly, the two terms represent waves pro-
gressing with nearly equal velocities in the two directions.
Neither term gains permanently in relative importance as « is
increased or diminished indefinitely.

It is otherwise when the relation of ®, to ®, is such that ¢
is imaginary. By (44) the solution for w, assumed to be
proportional to €7, now takes the form

w=Re~# @678 4 (1— Oy —2is) P +5]
+ Sest ,{@)lei(pt—f) +@1 _®o + 2is)ei(pt+f)} .

Whatever may be the relative values of R and 8, the first
solution prepondorates when @ is large and negative, and the
second preponderates when # is large and positive. In either
extreme case the motion is composed of two progressive waves
noving in opposite directions, whose amplitudes are equal in
virtue of (43). ‘

The meaning of this is that a wave travelling in either

One of the most interesting applications of the foregoing
analysis is to the case of a laminated medium in which the
mechanical properties are periodic functions of one of the
coordinates. I was led to f}le consideration of this problem
in connexion with the theory of tho colours of thin plates.
1t is known that old supoerficially decomposed glass presents
reflected tints much brighter, and transmitted tints much
purer, than any of which a single transparent film is capablo.
The laminated structure was proved by Browstor ; and it is
easy to see how the cffect may be produced by the occurrence
of nearly similar lamine at nearly equal intervals. Perhaps
the simplest case of the kind that can be suggested is that of
a stretched string, periodically loaded, and propagating irans-
verse vibrations. We may imagine similar small loads to be
disposed at equal intervals. If, then, the wave-length of a
train of progressive waves be approximately equal to the
double intorval between tho loads, the partial refloxions from
the various loads will all concur 1n phase, and the rosult must
be a powerful aggregate reflexion, even though the effect of
an individual load may bo insignificant.

mg—:;ww -

(71)

o

——EEL_

. ‘ "

% The.relations of detorminants of this kind to continued fractions has
been studied by Muir (Edinb. Proc. vol. viii.).
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direction is ultimatoly totally reflectad.  1For example, we may
so choose the values of R and S that at the origin of @ thero
is a wave (of given strength) in the positive direction only,
and we may imagine that it here passes into a uniform medium,
and so is propagated on indefinitely without change. But,
in order to maintain this state of things, we have to suppose
on the negative side the coexistence of positive and negative
waves, which at sufficient distances from the origin are of
nearly equal and over-increasing amplitudes.  Inorder there-
fore that a small wave may emergo at @=0, wo have fo cause
intense waves to be incident upon a face of tho medium cor-
responding to a large negative @, of which nearly tho whole
are reflocted.

1t is important to obsorve that the ultimalo folality of ro-
floxion does not require a special adjustment between the
frequency of the waves and the linear period of the lamination.
The condition that ¢ should be imagmary is merely that ©,
should numerically exceed (1—®,).  If X bo the wave-length
of the vibration corresponding to ¢ and to density py,

2
Ppa_ 4 (73)

71_.11,——-7\‘2, e e e e e .

and thus the limits between real and imaginary values of ¢
are given by .

—1=+

M oL
44 = 2p,

C LT

If p, exceeds these limits a train of waves is ultimately totally
reflocted, in spite of the finito difference botween §a and £*.

* A detailed experimental examination of various cases in which a
laminated structuro leads to a powerful but highly sclected roflexion
would bo of value. Tho most frequent oxamples are mes with in the
organic world. It has occurred to mo that Beequerel’s reproduction of
the spectrum in natural colours upon silver plates may perhaps be expli-
cable in this manner. The various parts of the film of subchloride of
silver with which the metal is coated may be conceived to be subjected,
during exposure, to stationary luminous waves of nearly definite wave-
length, the eflect of which might bo to impress upon the substanco a
periodic structure recurring at intervals equal to kalf the wave-length of
the light; just as a sensitive flame exposed to stationary sonorous waves
is influenced at the loops but not at the nodes (P’hil. Mag. March 1879,
S. 1568). In this way the operation of any kind of li%rht would be to pro-

uce just such a modification of the film as would cause it to reflect
copiously that particular kind of light. I abstain at present from deve-
loping this' suggestion, in the hope of soon finding an opportunity of
making mysol? oxperimentally acquainted with tho subject.

,-45,‘\

-
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In conclusion, it may be worth while to point out the ap-
plication to such a problem as the stationary vibrations of a
string of variable density fixed at two points. A distribution
of density,

2ma 4,
p0+plcos~%rl+pgcos-}r—v+... . .

. (75)
is symmetrical with respect to the points #=0 and 2=1%l,
and between those limits is arbitrary. It is therefore possible
for a string of this density to vibrate with the points in ques-
tion undisturbed, and the law of displacement will be

w= cos pt {Al sin 271 + A, sin4—7lr£ +A; s;inﬁﬁ,li{f +.. } . (76)

When, thereforo, the problom is attacked by the mothod of
Mer. Hill, the value of ¢ obtained by the solution of (69) must
bo equal to 2. By (15) this requires

o0=0. . . . . . . (77

This equation gives a relation between the quantities 8, @,
®,,...; and this again, by (70), determines p, or the fre-
quency ( p/2m) of vibration.

Since ®;=4 nearly, the most important term in (17) is
that involving ®,%. The first approximation to (77) gives

0y=4+0,;

whence, by (70),
(?ZT P C(po—1ps)
v/ T
To this order of approximation the solution may be obtained
with far greater readiness by the method given in 'my work
on Sound*; but it is probable that, if the solution were
required in a case where the variation of density is very con-
siderable, advantage might be taken of Mr. Hill’s determinant
0 (0). There are doubtless other physical problems to which
a similar remark would be applicable. ‘

Terling Place, Witham,
June 19, 1887.

L. (9

* ¢Theory of Sound,’ vol. i. § 140. In comparing the results, it must
be borne in mind that the length of the string in (78) is denoted by 7




