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The analogy between electromagnetic wave propagation in multidimensionally periodic structures and electron-
wave propagation in real crystals has proven to be a fruitful one. Initial efforts were motivated by the prospect
of a photonic band gap, a frequency band in three-dimensional dielectric structures in which electromagnetic
waves are forbidden irrespective of the propagation direction in space. Today many new ideas and applications
are being pursued in two and three dimensions and in metallic, dielectric, and acoustic structures. We review
the early motivations for this research, which were derived from the need for a photonic band gap in quantum
optics. This need led to a series of experimental and theoretical searches for the elusive photonic band-gap
structures, those three-dimensionally periodic dielectric structures that are to photon waves as semiconductor
crystals are to electron waves. We describe how the photonic semiconductor can be doped, producing tiny elec-
tromagnetic cavities. Finally, we summarize some of the anticipated implications of photonic band structure
for quantum electronics and for other areas of physics and electrical engineering.

1. INTRODUCTION

In this paper we pursue the rather appealing analogy?
between the behavior of electromagnetic waves in artifi-
cial, three-dimensionally periodic, dielectric structures
and the rather more familiar behavior of electron waves in
natural crystals.

These artificial two- and three-dimensionally periodic
structures we call photonic crystals. The familiar nomen-
clature of real crystals is carried over to the electromag-
netic case. This means that the concepts of reciprocal
space, Brillouin zones (BZ’s), dispersion relations, Bloch
wave functions, Van Hove singularities, etc. must be ap-
plied to photon waves. It then makes sense to speak of
photonic band structure (PBS) and of a photonic recipro-
cal space that has a BZ approximately 1000 times smaller
than the BZ of electrons. Because of the periodicity,
photons can develop an effective mass, but this implica-
tion is in no way unusual, since it occurs even in one-
dimensionally periodic, optically layered structures. We
frequently leap back and forth between the conventional
meaning of a familiar concept such as conduction band
and its new meaning in the context of PBS’s.

Under favorable circumstances a photonic band gap can
open up, a frequency band in which electromagnetic waves
are forbidden irrespective of propagation direction in
space. Inside a photonic band gap optical modes, sponta-
neous emission, and zero-point fluctuations are all absent.
Because of its promised utility in controlling the sponta-
neous emission of light in quantum optics, the pursuit of a
photonic band gap has been a major motivation for study-
ing PBS.

2. MOTIVATION

Spontaneous emission of light is a major natural phenome-
non that is of great practical and commercial importance.
For example, in semiconductor lasers spontaneous emis-
sion is the major sink for threshold current and must be
surmounted in order to initiate lasing. In heterojunction
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bipolar transistors, which are all-electrical devices, spon-
taneous emission nevertheless rears its head. In certain
regions of the transistor current-voltage characteristic,
spontaneous optical recombination of electrons and holes
determines the heterojunction-bipolar-transistor current
gain. In solar cells, surprisingly, spontaneous emission
fundamentally determines the maximum available output
voltage. We shall also see that spontaneous emission de-
termines the degree of photon-number-state squeezing, an
important new phenomenon® in the quantum optics of
semiconductor lasers. Thus the ability to control sponta-
neous emission of light is expected to have a major effect
on technology.

The easiest way to understand the effect of a photonic
band gap on spontaneous emission is to take note of Fermi’s
golden rule. Consider the spontaneous-emission event il-
lustrated in Fig. 1. The downward transition rate w be-
tween the filled and the empty atomic levels is given by

2
w= 7” IV|2(E), @

where |V| is sometimes called the zero-point Rabi matrix
element and p(E) is the density of final states per unit
energy. In spontaneous emission the density of final
states is the density of optical modes available to the pho-
ton emitted in Fig. 1. If there is no optical mode avail-
able, there will be no spontaneous emission.

Before the 1980’s spontaneous emission was often re-
garded as a natural and inescapable phenomenon, one
over which no control was possible. In spectroscopy it
gave rise to the term natural linewidth. However, in
1946, an overlooked note by Purcell* on nuclear spin-levels
already indicated that spontaneous emissidn could be con-
trolled. In the early 1970’s interest in this phenomenon
was reawakened by the surface-adsorbed dye molecule
fluorescence studies of Drexhage.® Indeed, during the
mid-1970’s Bykov® proposed that one-dimensional perio-
dicity inside a coaxial line could influence spontaneous
emission. The modern era of inhibited spontaneous
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Fig. 1. Spontaneous-emission event from a filled ﬁi)ber level to
an empty lower level. The density of final states is the available
mode density for photons.
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Fig. 2. Electromagnetic wave dispersion between a pair of metal
plates. The waveguide dispersion for one of the two polariza-
tions has a cutoff frequency below which no electromagnetic
modes and no spontaneous emission are allowed.

emission dates from the Rydberg-atom experiments of
Kleppner. A pair of metal plates acts as a waveguide with
a cutoff frequency for one of the two polarizations, as
shown in Fig. 2. Rydberg atoms are atoms in high-lying
principal quantum-number states, which can sponta-
neously emit in the microwave region of wavelengths.
Hulet et al.” shows that Rydberg atoms in a metallic
waveguide could be prevented from undergoing sponta-
neous decay. There were no electromagnetic modes avail-
able below the waveguide cutoff.

There is a problem with metallic waveguides, however.
They do not scale well into optical frequencies. At high
frequencies metals become more and more lossy. These
dissipative losses allow for virtual modes, even at frequen-
cies that would normally be forbidden. Therefore it
makes sense to consider structures made of positive-
dielectric-constant materials, such as glasses and insula-
tors, rather than metals. These materials can have low
dissipation, even all the way up to optical frequencies.
This property is ultimately exemplified by optical fibers,
which permit light propagation over many kilometers with
negligible losses. Such positive-dielectric-constant mate-
rials can have an almost purely real dielectric response
with low resistive losses. If these materials are arrayed
into a three-dimensionally periodic dielectric structure, a
photonic band gap should be possible, employing a purely
real, reactive, dielectric response.

The benefits of such a photonic band gap for direct-gap
semiconductors are illustrated in Fig. 8. On the right-
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hand side of Fig. 3 is a plot of the photonic dispersion,
(frequency versus wave vector). On the left-hand side of
Fig. 3, sharing the same frequency axis, is a plot of the
electronic dispersion, showing conduction and valence
bands appropriate to a direct-gap semiconductor. Since
atomic spacings are 1000 times shorter than optical wave-
lengths, the electron wave vector must be divided by 1000
to fit on the same graph with the photon wave vectors.
The dots in the electron conduction and valence bands are
meant to represent electrons and holes, respectively. If
an electron were to recombine with a hole, they would pro-
duce a photon at the electronic-band-edge energy. As is
illustrated in Fig. 3, if a photonic band gap were to
straddle the electronic band edge, then the photon pro-
duced by electron-hole recombination would have no place
to go. The spontaneous radiative recombination of elec-
trons and holes would be inhibited. As can be imagined,
this has far-reaching implications for semiconductor pho-
tonic devices.

One of the most important applications of spontaneous-
emission inhibition is likely to be the enhancement of
photon-number-state squeezing, which has been playing
an increasing role in quantum optics lately. The form of
squeezing introduced by Yamamoto® is particularly ap-
pealing in that the active element that produces the
squeezing effect is none other than the common resistor,
as is shown in Fig. 4. When an electrical current flows, it
generally carries the noise associated wih the graininess
of the electron charge, called shot noise. The correspond-
ing mean-square current fluctuations are

(A% = 2eiAf, (2)

where i is the average current flow, e is the electronic
charge, and Af is the noise bandwidth. While Eq. (2) ap-
plies to many types of random physical process, it is far
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Fig. 3. Right-hand side, the electromagnetic dispersion, with a
forbidden gap at the wave vector of the periodicity. Left-hand
side, the electron wave dispersion typical of a direct-gap semicon-
ductor; the dots represent electrons and holes. Since the pho-
tonic band gap straddles the electronic band edge, electron-hole
recombination into photons is inhibited. The photons have no
place to go.
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Fig. 4. In a good-quality metallic resistor the current flow is
quite regular, producing negligible amounts of shot noise.

from universal. Equation (2) requires that the passage of
electrons in the current flow be a random Poissonian pro-
cess. As early as 1954 Van der Ziel,® in an authoritative
book called Noise, pointed out that good-quality metal-
film resistors, when they carry a current, generally exhibit
much less noise than predicted by Eq. (2). Apparently the
flow of electrons in the Fermi sea of a metallic resistor
represents a highly correlated process. This is far from
being a random process: the electrons apparently sense
one another, producing a level of shot noise far below
Eq. (2) (so low as to be difficult to measure and to distin-
guish from thermal or Johnson noise). Sub-Poissonian
shot noise entails the following: Suppose that the aver-
age flow consists of 10 electrons per nanosecond. For
random flow, the count in successive nanoseconds could be
anywhere from 8 to 12 electrons. With good-quality
metal-film resistors, the electron count would be 10 for
each and every nanosecond.

Yamamoto put this property to good use by driving a
high-quantum-efficiency laser diode with such a resistor,
as shown in Fig. 5. Suppose that the laser diode quantum
efficiency for emission into the cavity mode were 100%.
Then for each electron that passes through the resistor
there would be one photon emitted into the laser cavity
mode. A correlated stream of photons is produced with
properties that are unprecedented since the initial exposi-
tion of Einstein’s photoelectric effect. If the photons are
used for optical communication, then a receiver would
detect exactly 10 photoelectrons each nanosecond. If 11
photons were detected, then the deviation would be no
mere random fluctuation but would represent an inten-
tional signal. Thus information in an optical communi-
cations signal could be encoded at the level of individual
photons. The name photon-number-state squeezing is as-
sociated with the fixed photon number per time interval.
Expressed differently, the bit-error rate in optical commu-
nication can be diminished by squeezing.

There is a limitation to the squeezing, however. The
quantum efficiency for propagation into the lasing mode is
not 100%. The 4m-sr outside the cavity mode can capture
a significant amount of random spontaneous emission. If
unwanted electromagnetic modes were to capture 50% of
the excitation, then the maximum noise reduction in
squeezing would be only 3 dB. Therefore it is necessary
to minimize the spontaneous recombination of electrons
and holes into modes other than the laser mode. If such
random spontaneous events were reduced to 1%, permit-
ting 99% quantum efficiency into the lasing mode, the cor-
responding noise reduction would be 20 dB, which is well
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worth fighting for. Thus we see that control of sponta-
neous emission is essential for deriving the full benefit
from photon-number-state squeezing.

We have advocated the study of photonic band structure
for its applications in quantum optics and optical commu-
nications. Positive dielectric constants and fully three-
dimensional forbidden gaps were emphasized. It is now
clear that the generality of the concept of the artificial,
multidimensional band structure allows for other types of
waves, other materials, and various lower dimensional ge-
ometries, limited only by imagination and need. Some of
these ideas are being presented in other papers in this
Journal of the Optical Society of America B feature on
photonic band gaps.

3. SEARCH FOR THE PHOTONIC BAND GAP

Having decided to create a photonic band gap in three
dimensions, we need to settle on a three-dimensionally pe-
riodic geometry. For electrons the three-dimensional
crystal structures come from nature. Several hundred
years of mineralogy and crystallography have classified
the naturally occurring three-dimensionally periodic lat-
tices. For photonic band gaps we must create an artifi-
cial structure by using our imagination.

The face-centered-cubic (fcc) lattice appears to be fa-
vored for photonic band gaps and was suggested indepen-
dently by John? and by me’ in our initial proposals. Let
us consider the fcc BZ as illustrated in Fig. 6. Various
special points on the surface of the BZ are marked. Clos-
est to the center is the L point, oriented toward the body
diagonal of the cube. Farthest away is the W point, a ver-
tex where four plane waves are degenerate (which will
cause problems below). In the cubic directions are the
familiar X points.

electron | good-quality resistors
flow is I have little or no
correlated shot noise
hv
stimulated

Fig. 5. High-quantum-efficiency laser diode, which converts the
correlated flow of electrons from a low-shot-noise resistor into
photon-number-state squeezed light. Random spontaneous emis-
sion outside the desired cavity mode limits the attainable noise
reduction.



286 J. Opt. Soc. Am. B/Vol. 10, No. 2/February 1993

Fig. 6. Fcc BZ in reciprocal space.
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Fig. 7. Forbidden gap (shaded) at the L point, which is centered
at a frequency ~14% lower than the X-point forbidden gap.
Therefore it is difficult to create a forbidden frequency band that
overlaps all points along the surface of the BZ.

Consider a plane wave in the X direction. It will sense
the periodicity in the cubic direction, forming a standing
wave and opening a forbidden gap as indicated by the
shading in Fig. 7. Suppose, on the other hand, that the
plane wave is going in the L direction. It will sense
the periodicity along the cubic-body diagonal, and a gap
will form in that direction as well. But the wave vector to
the L point is ~14% smaller than the wave vector to the X
point. Therefore the gap at L is likely to be centered at a
14% smaller frequency than the gap at X. If the two gaps
are not wide enough, they will not overlap in frequency.
In Fig. 7, as shown, the two gaps barely overlap. This is
the main problem in achieving a photonic band gap. It is
difficult to ensure that a frequency overlap is ensured for
all possible directions in reciprocal space.

The lesson from Fig. 7 is that the BZ should most closely
resemble a sphere in order to increase the likelihood of a
frequency overlap in all directions of space. Therefore let
us look at the two common BZ’s in Fig. 8, the fcc BZ and
the body-centered-cubic (bec) BZ. The bee BZ has pointy
vertices, which make it difficult for us to achieve a fre-
quency overlap in all directions. Likewise, most other
common BZ’s deviate even further from a spherical shape.
Among all the common BZ’s the fcc has the least percent-
age deviation from a sphere. Therefore, until now all
photonic band gaps in three dimensions have been based®
on the fec lattice.
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The photonic band gap is different from the idea of a
one-dimensional stop band as understood in electrical en-
gineering. Rather, the photonic band gap should be re-
garded as a stop band with a frequency overlap in all
4ar-sr of space. The earliest antecedent to photonic band
structure, dating to 1914 and Sir Lawrence Bragg,' is the
dynamic theory of x-ray diffraction. Nature gives us fcc
crystals, and x-rays are bona fide electromagnetic waves.
As early as 1914 narrow stop bands were known to open
up. Therefore, what was missing?

The refractive-index contrast for x rays is tiny, gener-
ally 1 part in 10*. The forbidden x-ray stop bands form
extremely narrow rings on the facets of the BZ. As the
index contrast is increased, the narrow forbidden rings
open up, eventually covering an entire facet of a BZ and
ultimately all directions in reciprocal space. We shall see
that this requires an index contrast =2. The high index
contrast is the main new feature of PBS’s beyond dynamic
x ray diffraction. In addition, we shall see that electro-
magnetic wave polarization, which is frequently over-
looked for x rays, will play a major role in PBS.

In approaching this subject we adopted an empirical
view-point. We decided to make photonic crystals on the
scale of microwaves, and then we tested them by using
sophisticated coherent microwave instruments. The test
setup, shown in Fig. 9, is what we call in optics a Mach~

BCC FCC

Fig. 8. Two common BZ’s for bee and fee.  The fec case deviates
least from a sphere, favoring a common overlapping band in all
directions of space.
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Fig. 9. Homodyne detection system for measuring phase and am-
plitude in transmission through the photonic crystal under test.
A sweep oscillator feeds a 10-dB splitter, Part of the signal is
modulated (MOD) and then propagated as a plane wave through
the test crystal. The other part of the signal is used as local
oscillator for the mixer (MXR) to measure the amplitude change
and phase shift in the crystal. Between the mixer and the X-Y
recorder is a lock-in amplifier (not shown).
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Fig. 10. WS real-space unit cell of the fcc lattice, a rhombic do-
decahedron. (a) Slightly oversized spherical voids are inscribed
into the unit cell, breaking through the faces as illustrated. This
is the WS cell, corresponding to the photograph in Plate II. (b)
WS cell structure with a photonic band gap. Cylindrical holes
are drilled through the top three facets of the rhombic dodecahe-
dron and pass through the bottom three facets. The resulting
atoms are roughly cylindrical and have a preferred axis in the
vertical direction. This WS cell corresponds to the photograph
in Plate III.

Zehnder interferometer. It is capable of measuring phase
and amplitude in transmission through the microwave-
scale photonic crystal. In principle one can determine the
frequency versus the wave-vector dispersion relations
from such coherent measurements. We used a powerful
commercial instrument for this purpose, the HP8510 net-
work analyzer. Our approach in the experiments was to
measure the forbidden gap in all possible internal direc-
tions of reciprocal space. Accordingly the photonic crys-
tal was rotated and the transmission measurements
repeated. Because of wave-vector matching along the
surface of the photonic crystal, some internal angles could
not be reached. To overcome this problem, large micro-
wave prisms, made of polymethyl methacrylate, were
placed on either side of the test crystal in Fig. 9.

Early the question arose: Of what material should the
photonic crystal be made? The larger the refractive-index
contrast, the easier it would be to find a photonic band
gap. In optics, however, the largest practical index con-
trast is that of the common semiconductors Si and GaAs,
with a refractive index n = 3.6. If that index were inade-
quate, then photonic crystals would probably never fulfill
the goal of being useful in optics. Therefore we decided
to restrict the microwave refractive index to 3.6 and the
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microwave dielectric constant to n? = 12. A commercial
microwave material, Emerson & Cumming Sycast 12, was
particularly suited to the task, since it was machinable
with carbide tool bits. Any photonic band structure that
was found in this material could simply be scaled down in
size and would have identical dispersion relations at opti-
cal frequencies and optical wavelengths.

With regard to the geometry of the photonic crystal,
there is a universe of possibilities. So far the only re-
striction that we have made is the choice of fcc lattices. It
turns out that a crystal with an fec BZ in reciprocal space,
as shown in Fig. 6, is composed of fcc Wigner—Seitz (WS)
unit cells in real space, as shown in Fig. 10. The problem
of creating an arbitrary fcc dielectric structure reduces to
the problem of filling the fcc WS real-space unit cell with
an arbitrary spatial distribution of dielectric material.
Real space is then filled by repeated translation and close
packing of the WS unit cells. The decision before us is
what to put inside the fcc WS cells. There are an infinite
number of possible fee lattices, since anything can be put
inside the fundamental repeating unit. The problem:
What do we put inside the fcc WS unit cell in Fig. 10?7

The question provoked strenuous difficulties and false
starts over a period of several years before finally being
solved. In the first years of this research we were un-
aware of how difficult the search for a photonic band gap
would be. A number of fcc crystal structures were pro-
posed, each representing a different choice for filling the
rhombic dodecahedron fece WS cells in real space. For
example, the first suggestion' was to make a three-
dimensional checkerboard as in Fig. 11, in which cubes
were inscribed inside the fcc WS real-space cells in Fig. 10.
Later the experiments' adopted spherical “atoms” cen-
tered inside the fcc WS cell. Plate I is a photograph of
such a structure in which the atoms are precision Al,O3
spheres, n ~ 3.06, each ~6 mm in diameter. The spheres
are supported by a thermal-compression-molded blue
foam material of dielectric constant near unity. There
are roughly 8000 atoms in Plate I. This structure was
tested at a number of filling ratios, from close packing to
highly dilute. Nevertheless, it always failed to produce a
photonic band gap.

Then we tested the inverse structure, in which spherical
voids were inscribed inside the fcc WS real space cell.

Fig. 11. Fecc crystal, in which the individual WS cells are in-
scribed with cubes stacked in a three-dimensional checkerboard.
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Fig. 12. Construction of fcc crystals, consisting of spherical
voids. Hemispherical holes are drilled on both faces of a dielec-
tric sheet. When the sheets are stacked up, the hemispheres
meet, producing a fce crystal.

These could be easily fabricated by drilling hemispheres
onto the opposite faces of a dielectric sheet with a spheri-
cal drill bit, as shown in Fig. 12. When the sheets were
stacked so that the hemispheres faced one another, the
result was an fcc array of spherical voids inside a dielec-
tric block. These blocks were also tested over a wide
range of filling ratios by progressively increasing the di-
ameter of the hemispheres. These also failed to produce
a photonic band gap.

The typical failure mode is illustrated in Fig. 13. As
expected, the conduction band at the L point falls at a low
frequency, while the valence band at the W point falls at a
high frequency. The overlap of the bands at L and W
results in a band structure that is best described as
semimetallic.

The empirical search for a photonic band gap led no-
where until we tested the structure shown in Plate II.
This is the spherical-void structure, with oversized voids
breaking through the walls of the WS unit cell as shown in
Fig. 10(a). For the first time the measurements seemed
to indicate a photonic band gap, and we published the
band structure shown in Fig. 14. There appeared to be a
narrow gap, centered at 15 GHz and forbidden for both
possible polarizations. Unbeknownst to us, however,
Fig. 14 harbored a serious error. Instead of a gap at the
W point, the conduction and the valence bands crossed at
that point, allowing the bands to touch. This produced a
pseudogap with zero density of states but no frequency
width. The error arose because of the limited size of the
crystal. The construction of crystals with ~10* atoms
required tens of thousands of holes to be drilled. Such
a three-dimensional crystal was still only 12 cubic
units wide, limiting the wave-vector resolution and re-
stricting the dynamic range in transmission. Under
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these conditions it was experimentally difficult to notice a
conduction-valence band degeneracy that occurred at an
isolated point in % space, such as the W point.

While we were busy with the empirical search, theorists
began serious efforts to calculate the PBS. The most
rapid progress was made not by specialists in electromag-
netic theory but by electronic-band-structure (EBS)
theorists, who were accustomed to solving Schrodinger’s
equation in three-dimensionally periodic potentials. The
early calculations*™® were unsuccessful, however. As
a short cut the theorists treated the electromagetic field
as a scalar, much as is done for electron waves in
Schrodinger’s equation. The scalar wave theory of pho-
tonic band structure did not agree well with experiment.
For example, it predicted photonic band gaps in the
dielectric-sphere structure of Plate I, whereas none were
observed experimentally. The approximation of Maxwell’s
equations as a scalar wave equation was not working.
Finally, when the full vector Maxwell equations were
incorporated, theory began to agree with experiment.
Leung'® was probably the first to publish a successful vec-
tor wave calculation in PBS, followed by others!™® with
substantially similar results. The theorists agreed well
with one another, and they agreed well with experiment!
except at the high-degeneracy points U and particularly
W. What the experiment failed to reveal was the degener-
ate crossing of valence and conduction bands at those
points.

The unexpected pseudogap in the crystal of Plate II
triggered concern and a search for a way to overcome the
problem. A worried editorial® was published in Nature.
But even before the editorial appeared, the problem had
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Fig. 13. Typical semimetallic band structure for a photonic crys-
tal with no photonic band gap. An overlap exists between the
conduction band at L and the valence band at W.
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Plate I. Photograph of a three-dimensional fce crystal consisting
of Al;Q; spheres of refractive index 3.06. The dielectric spheres
are supported in place by the blue foam material of refractive in-
dex 1.01. These spherical-dielectric-atom structures failed to
show a photonic band gap at any volume fraction.
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Plate II. Photograph of the photonic crystal corresponding to
Fig. 10(a), which had only a pseudogap rather than a full photonic
band gap. The spherical voids were closer than close-packed,
overlapping and allowing holes to pass through as shown.

Plate ITI. Top-view photograph of the nonspherical-atom structure of WS unit cells as shown in Fig. 10(a), constructed by the method of

Fig. 15.
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Fig. 14. Purported PBS of the spherical-void structure shown in
Figs. 10(a) and Plate II. The rightward-sloping lines represent
polarization parallel to the X plane, while the leftward-sloping
lines represent the orthogonal polarization, which has a partial
component out of the X plane. The cross-hatched region is the
reported photonic band gap. This figure fails to show the cross-
ing of the valence and conduction bands at the W point, which
was first discovered by theory.'

already been solved by the Iowa State group of Ho
et al.’® The degenerate crossing at the W point was
highly susceptible to changes in symmetry of the struc-
ture. If one lowered the symmetry by filling the WS unit
cell, not by a single spherical atom but by two atoms posi-
tioned along the (111) direction, as in the diamond struc-
ture, then a full photonic band gap opened up. Their
discovery of a photonic band gap in the diamond structure
is particularly significant, since the diamond geometry
seems to be favored by Maxwell’s equations. A form of
the diamond structure? gives the widest photonic band
gaps, requiring the least index contrast, n ~ 1.87.

More generally, one can lower the spherical-void symme-
try in Fig. 10(a) by distorting the spheres along the (111)
direction, lifting the degeneracy at the W point. The WS
unit cell in Fig. 10(b) has great merit for this purpose.
Holes are drilled through the top three facets of the rhom-
bic dodecahedron and exit through the bottom three
facets. The beauty of the structure in Fig. 10(b) is that a
stacking of WS unit cells results in straight holes that
pass through the entire crystal. The atoms are odd-
shaped, roughly cylindrical voids centered in the WS unit
cell with a preferred axis pointing to the top vertex, (111).
An operational illustration of the construction that pro-
duces an fcc crystal of such WS unit cells is shown in
Fig. 15.

A slab of material is covered by a mask that contains a
triangular array of holes. Three drilling operations are
conducted through each hole, 35.26° off normal incidence
and spread out 120° on the azimuth. The resulting criss-
cross of holes below the surface of the slab produces a fully
three-dimensionally periodic fcc structure with the WS
unit cells given by Fig. 10(b). The drilling can be done by
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a real drill bit for microwave work or by reactive ion etch-
ing to create an fec structure at optical wavelengths. A
top-view photograph of the microwave structure is shown
in Plate III.

In spite of the nonspherical atoms in Fig. 10(b), the BZ
is identical to the standard fcc BZ shown in textbooks.
Nevertheless, we have chosen an unusual perspective from
which to view the BZ in Fig. 16. Instead of having the fcc
BZ resting on one of its diamond-shaped facets, as is usu-
ally done, we have chosen in Fig. 16 to present it resting
on a hexagonal face. Since there is a preferred axis for
the atoms, the distinctive L points centered in the top and
bottom hexagons are threefold symmetry axes and are
labeled Ls. The L points centered in the other six
hexagons are symmetric only under a 360° rotation
and are labeled L,. It is helpful to know that the U; and
K; points are equivalent, since they are a reciprocal lat-
tice vector apart. Likewise, the U; and K, points are
equivalent.

Figure 17 shows the dispersion relations along different
meridians for our primary experimental sample of nor-
malized hole diameter d/a = 0.469 and 78% volume frac-
tion removed (where ¢ is the unit cube length). The ovals
represent experimental data with s polarization (perpen-
dicular to the plane of incidence, parallel to the slab sur-
face), while the triangles represent p-polarization data
(parallel to the plane of incidence, partially perpendicular
to the slab surface). The horizontal abscissa in the lower
graph of Fig. 17, L;-K3-L;~-U3-X-U;-Lj3, represents a full
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Fig. 15. Method for constructing a fcc lattice of the WS cells
shown in Fig. 10(b). A slab of material is covered by a mask that
consists of a triangular array of holes. Each hole is drilled
through three times at an angle 35.26° away from normal and
spread 120° on the azimuth. The resulting crisscross of holes
below the surface of the slab, suggested by the cross-hatching
shown here, produces a fully three-dimensionally periodic fcc
structure with unit cells as given by Fig. 10(b). The drilling can
be done by a real drill bit for microwave work or by reactive ion
etching to create fce structure at optical wavelengths.
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Fig. 16. BZ of a fce structure, incorporating nonspherical atoms
as in Fig. 10(b). Since the space lattice is not distorted, this is
simply the standard fcec BZ lying on a hexagonal face rather than
the usual cubic face. Only the L points on the top and bottom
hexagons are threefold symmetry axes. Therefore they are
labeled Ls. The L points on the other six hexagons are labeled
L;. The U; and Kj; points are equivalent, since they are a recip-
rocal lattice vector apart. Likewise, the U; and K, points are
equivalent.

FREQUENCY (in units of c/a)

0.2} i

FREQUENCY (in units of c/a )

0.1} J

0
L3 Ks Ly Us X Us Ls

Fig. 17. Frequency versus wave vector (w versus k) dispersion
along the surface of the BZ shown in Fig. 16, where c/a is the
speed of light divided by the fcc cube length. The ovals and the
triangles are the experimental points for s and p polarization,
respectively. The solid and dashed curves are the calculations
for s and p polarization, respectively. The dark shaded band is
the totally forbidden band gap. The lighter shaded stripes above
and below the dark band are forbidden only for s and p polariza-
tion, respectively.

meridian from the north pole to the south pole of the BZ.
Along this meridian the Bloch wave functions separate
nearly into s and p polarizations. The s- and p-polarized
theory curves are the solid and dashed curves, respec-
tively. The dark shaded band is the totally forbidden pho-
tonic band gap. The lighter shaded stripes above and
below the dark band are forbidden only for s and p polar-
ization, respectively.
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At a typical semiconductor refractive index, n = 3.6, the
three-dimensional forbidden gap width is 19% of its center
frequency. Calculations® indicate that the gap remains
open for refractive indices as low as n = 2.1 for circular
holes as in Fig. 15. We have also measured the imaginary
wave-vector dispersion within the forbidden gap. At
midgap we find an attenuation of 10 dB per unit cube
length a. Therefore the photonic crystal need not be
many layers thick to expel the zero-point electromagnetic
field effectively. The construction of Fig. 15 can be im-
plemented by reactive ion etching, as shown in Fig. 18.
In reactive ion etching, the projection of circular mask
openings at 35° leaves oval holes in the material, which
might not perform as well. Fortunately it was found,? in
defiance of Murphy’s law, that the forbidden gap width for
oval holes is actually improved by fully 21.7% of its center
frequency.

4. DOPING THE PHOTONIC CRYSTAL

The perfect semiconductor crystal is quite elegant and
beautiful, but it becomes ever more useful when it is
doped. Likewise the perfect photonic crystal can become
of even greater value when a defect?? is introduced.

Lasers, for example, require that the perfect three-
dimensional translational symmetry be broken. Even
though spontaneous emission from all 47 sr should be in-
hibited, a local electromagnetic mode, linked to
a defect, to accept the stimulated emission is still neces-
sary. In one-dimensional distributed-feedback lasers? a
quarter-wavelength defect is introduced, effectively form-
ing a Fabry-Perot cavity as shown in Fig. 19. In three-
dimensional PBS a local defect-induced structure
resembles a Fabry-Perot cavity, except that it reflects ra-
diation back upon itself in all 47 spatial directions.

The perfect three-dimensional translational symmetry
of a dielectric structure can be altered in one of two ways.
(1) Extra dielectric material may be added to one of the
unit cells. We find that such a defect behaves much like a
donor atom in a semiconductor. It gives rise to donor
modes, which have their origin at the bottom of the con-
duction band. (2) Conversely, translational symmetry

microfabrication by
reactive ions

rotating
stage

A

Fig. 18. Construction of the nonspherical-void photonic crystal
of Figs. 10(b) and 15-17 and of Plate III by reactive ion etching.
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Low Index % layer

}MI>

High Index % layer

\'%
Left Mirror A Right Mirror

Phase

slip
Fig. 19. One-dimensional Fabry-Perot resonator, made of multi-
layer dielectric mirrors with a space of one half-wavelength be-
tween the left- and right-hand mirrors. The net effect is to
introduce a quarter-wavelength phase slip defect into the overall
periodic structure. A defect mode is introduced at midgap.

<1,1,1>

Fig. 20. (1,1,0) Cross-sectional view of our fce photonic crystal,
consisting of nonspherical air atoms centered on the large dots.
Dielectric material is represented by the shaded areas. The
dashed rectangle is a face-diagonal cross section of the unit cube.
Donor defects consisted of a dielectric sphere centered on an
atom. We selected an acceptor defect as shown centered in the
unit cube. It consists of a missing horizontal slice in a single
vertical rib.

can be broken by removal of some dielectric material from
one of the unit cells. Such defects resemble acceptor
atoms in semiconductors. The associated acceptor modes
have their origin at the top of the valence band. We shall
find that acceptor modes are particularly well suited to
act as laser microresonator cavities. Indeed, it appears
that photonic crystals made of sapphire or other low-loss
dielectrics will make the highest-@ single-mode cavities
(of modal volume ~1A%), covering electromagnetic fre-
quencies above the useful working range of superconduct-
ing metallic cavities. The short-wavelength limit in the
ultraviolet is set by the availability of optical materials
with refractive index =2, the threshold index'®* for the
existence of a photonic band gap.

Figure 20 is a (1, 1, 0) cross section of our photonic crys-
tal of Fig. 10(b) of Figs. 15-17, and of Plate III, shown as a
cut through the center of a unit cube. Shading represents
dielectric material. The large dots are centered on the air
atoms, and the rectangular dashed line is a face-diagonal
cross section of the unit cube. Since we could design the
structure at will, donor defects were chosen to consist of a
single dielectric sphere centered in an air atom. Like-
wise, by breaking one of the interconnecting ribs, it is
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easy to create acceptor modes. We selected an acceptor
defect, as shown in Fig. 20, centered in the unit cube. It
consists of a vertical rib that has a missing horizontal
slice.

The heart of our experimental apparatus is a photonic
crystal embedded in microwave absorbing pads as shown
in Fig. 21. The photonic crystals were 8-10 atomic layers
thick in the (1,1,1) direction. Monopole antennas, con-
sisting of 6-mm pins, coupled radiation to the defect
mode. The HP 8510 network analyzer was set up to mea-
sure transmission between the antennas. Figure 22(a)
shows the transmission amplitude in the absence of a de-
fect. There is very strong attenuation (~107°) between
13 and 16 GHz, marking the valence- and conduction-
band edges of the forbidden gap. This is a tribute to both
the dynamic range of the network analyzer and the sizable
imaginary wave vector in the forbidden gap.

A transmission spectrum in the presence of an acceptor
defect is shown in Fig. 22(b). Most of the spectrum is
unaffected, except at the electromagnetic frequency
marked deep acceptor within the forbidden gap. At that
precise frequency, radiation hops from the transmitting
antenna to the acceptor mode and then to the receiving
antenna. The acceptor-level frequency, within the forbid-
den gap, is dependent on the volume of material removed.
Figure 23 shows the acceptor-level frequency as a func-
tion of the defect volume removed from one unit cell.
When a relatively large volume of material is removed, the
acceptor level is deep, as is shown in Fig. 22(b). A
smaller amount of material removed results in a shallow
acceptor level nearer the valence band. If the removed
material volume falls below a threshold volume, the accep-

HP 8510 NETWORK ANALYZER

[

MONOPOLE ANTENNAS

CO-AX /A y/ \ CO-AX
o,
N
ABSORBING PADS —F%% N
DEFECT
CRYSTAL

Fig. 21. Experimental configuration for the detection of local
electromagnetic modes in the vicinity of a lattice defect. Trans-
mission amplitude attenuation from one antenna to the other is
measured. At the local mode frequency the signal hops by means
of the local mode in the center of the photonic crystal, producing a
local transmission peak. The signal propagates in the (1,1,1) di-
rection through 8-10 atomic layers. Co-Ax, coaxial line.
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Fig. 22. (a) Transmission attenuation through a defect-free pho-
tonic crystal as a function of microwave frequency. The forbid-
den gap falls between 13 and 16 GHz. (b) Attenuation through a
photonic crystal with a single acceptor in the center. The rela-
tively large acceptor defect volume shifted its frequency to near
midgap. The electromagnetic resonator @ was ~1000, limited
only by the loss tangent of the dielectric material. (c) Attenu-
ation through a photonic crystal with a single donor defect, an
off-center dielectric sphere, leading to two shallow donor modes.

tor level falls within the continuum of levels below the top
of the valence band, becoming metastable.

On an expanded frequency scale we can measure the
resonator @ of the deep acceptor mode, which is @ ~ 1000,
as limited by the loss tangent of the Emerson & Cumming
Stycast material of which the photonic crystal was made.

The behavior of an off-center donor defect is shown in
Fig. 22(c). In this case the donor volume was only slightly
above the required threshold for forming bound donor
modes. Already two shallow donor modes can be seen in
Fig. 22(c). When the donor is centered in the WS unit
cell, the two modes merge to form a doubly degenerate
donor level as in Fig. 23. Single donor defects seem to
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produce multiple donor levels. Figure 23 gives the donor-
level frequency as a function of donor volume. As in the
case of acceptors, there is a threshold defect volume
required for the creation of bound modes below the
conduction-band edge. However, the threshold volume
for donor defects is almost 10 times larger than the accep-
tor threshold volume. Apparently this difference is due to
the electric-field concentration in the dielectric ribs at the
top of the valence band. Bloch wave functions at the top
of the valence band are rather easily disrupted by the
missing rib segment.

We have chosen in Fig. 23 to normalize the defect vol-
ume to a natural volume of the physical system, (A/2n)3,
which is basically a cubic half-wavelength in the dielectric
medium. More specifically, A is the vacuum wavelength
at the midgap frequency and n is the refractive index
of the dielectric medium. Since we are measuring a di-
electric volume, it makes sense to normalize to a half-
wavelength cube as measured at the dielectric refractive
index. Based on the reasonable scaling of Fig. 23, our
choice of volume normalization would seem justified.

The vertical rib with a missing horizontal slice, shown
in Fig. 20, can be readily microfabricated. It should be
possible to create it in III-V materials by growing an Al-
rich epitaxial layer and lithographically patterning it
down to a single dot that is the size of one of the vertical
ribs. After regrowth of the original III-V composition
and reactive ion etching of the photonic crystal, HF acid
etching® with a selectivity =10° will be used to remove
the Al-rich horizontal slice from the one rib that contains
such a layer. The resonant frequency of the microcavity
can be controlled by the thickness of the Al-rich sacrificial
layer.

Therefore, by doping the photonic crystal, it is possible
to create high-Q electromagnetic cavities whose modal
volume is less than a half-wavelength cubed. These
doped photonic crystals would be similar to metallic mi-
crowave cavities, except that they would be usable at
higher frequencies, where metal cavity walls would be-
come lossy. With sapphire as a dielectric, for example, it
should be possible to make a millimeter-wave cavity with
@ = 10°. The idea is not to compete directly with super-
conducting cavities but rather to operate a higher frequen-
cies, where the superconductors become lossy. Given the
requirement for a refractive index >2, doped photonic
crystals should work well up to ultraviolet wavelengths at
which diamond crystals and TiO, are still transparent.

5. APPLICATIONS

The forthcoming availability of single-mode microcavities
at optical frequencies will lead to a new situation in quan-
tum electronics. Of course microwave cavities that con-
tain a single electromagnetic mode have been known for a
long time. At microwave frequencies, however, sponta-
neous emission of electromagnetic radiation is a weak and
unimportant process. At optical frequencies spontaneous
emission comes into its own. Now we can combine the
physies and technology of spontaneous emission with the
capability for single-mode microcavities at optical fre-
quencies, where spontaneous emission is important. This
combination is fundamentally a new regime in quantum
electronics.
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Fig. 238. Donor and acceptor mode frequencies as a function of normalized donor and acceptor defect volume. The points are experimen-
tal, and the corresponding curves are calculated. Defect volume is normalized to (A/2n), where A is the midgap vacuum wavelength and
n is the refractive index. A finite defect volume is necessary to bind a mode in the forbldden gap.

The major example of this new type of device is the
single-mode light-emitting diode (SM-LED), which can
have many of the favorable coherence properties of lasers
while being a more reliable and thresholdless device.
Progress in electromagnetic microcavities permits all the
spontaneous emission of an LED to be funneled into a
single electromagnetic mode.

As the interest in the low-threshold semiconductor laser
diode has grown, e.g., for optical interconnects, its sponta-
neously luminescent half-brother, the LED, has begun to
reemerge in a new form. In this new form the LED is
surrounded by an optical cavity. The idea is for the opti-
cal cavity to make available only a single electromagnetic
mode for the output spontaneous emission from the semi-
conductor diode. In fact the figure of merit for such a
cavity is B, the fraction of spontaneous emission that is
funneled into the desired mode. What is new for this ap-
plication is the prospective ability to make high-8 cavities
at optical frequencies that employ photonic crystals. The
three-dimensional character of the cavities ensures that
spontaneous emission will not seek out those neglected
modes that are found propagating in a direction where
this is no optical confinement.

With all the spontaneous emission funneled into a single
optical mode, the SM-LED can begin to have many of the
coherence and statistical properties normally associated
with above-threshold lasing. The essential point is that
the spontaneous-emission factor 8 should approach unity.
(A closely related concept is that of the zero-threshold
laser, in which the high-spontaneous-emission factor pro-
duces a soft and indistinct threshold characteristic in the
curve of the light output versus the current input for laser
diodes.) The idea is to combine the advantages of the
LED, which is thresholdless and highly reliable, with

those of the semiconductor laser, which is coherent and
efficient.

The coherence properties of the SM-LED are illustrated
in Fig. 24. In alaser single-mode emission is the result of
gain saturation and mode competition. In the SM-LED
there is no gain and therefore no gain saturation, but the

Single-Mode Light-Emitting Diode

modulation

Monochromatic speed > 10 GHz

-00) L

Directional

photon
number-state
squeezed

Light

lin Current

Fig. 24. Properties of the SM-LED, whose cavity is represented
by the small circle inside the rectangular photonic crystal at left.
The words Monochromatic and Directional represent the tempo-
ral and spatial coherence of the SM-LED output, as is explained
in the text. The modulation speed can be >10 GHz, and the
differential quantum efficiency can be >50%, which is competi-
tive with that of laser diodes. But there is no threshold current
for the SM-LED, as indicated by the curves for light output
versus the input current at the bottom. The regular stream
of photoelectrons, e’s, is meant to represent photon-number-
state squeezing, which can be produced by the SM-LED if the
spontaneous-emission factor g of the cavity is high enough.
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Table 1. Summary of Differences and Similarities
between Photonic and Electronic Band Structures

Characteristic EBS ., PBS
Underlying Parabolic Linear
dispersion
relation
Angular Spin 1/2 Spin 1
Momentum scalar wave vector wave
approximation character
Accuracy Approximate Essentially
of band owing to exact
theory electron—electron
interactions

output is still single mode because only one mode is avail-
able for emission. Since a single spatial mode can always
be mode converted into a plane wave, the SM-LED can be
regarded as having spatial coherence.

What about temporal coherence? The spectral line-
width of the SM-LED is narrower than the luminescence
band of the semiconductor. All the radiation is funneled
into the narrow spectral band determined by the micro-
cavity @. Thus SM-LED’s have both spatial and temporal
coherence, as represented by the words Directional and
Monochromatic in Fig. 24.

What about the modulation speed of SM-LED’s in com-
parison with that of laser diodes under direct-current
modulation? Generally, the modulation speed depends on
the carrier lifetime. Since electron-hole pairs in laser
diodes experience both spontaneous and stimulated recom-
bination, they have an advantage. However, single-mode
cavities concentrate zero-point electric-field fluctuations
into a smaller volume, creating a stronger matrix element
for spontaneous emission. Detailed calculations indicate
that spontaneous emission can be sped up by a factor of
~10 owing to this cavity quantum-electrodynamic (QED)
effect. In Fig. 24 we indicate that a modulation speed
>10 GHz should be possible for SM-LED’s.

The same cavity QED effects can enhance the sponta-
neous-emission efficiency of SM-LED’s, since the radiative
rate can then compete more successfully with nonradia-
tive rates. External efficiency should exceed 50%, but
this can come most easily from intelligent LED design®
rather than from cavity QED effects.

Plotted at the bottom of Fig. 24 is the light output
versus the input current of SM-LED’s and laser diodes.
SM-LED’s can compete with laser diodes in terms of dif-
ferential external efficiency, but the SM-LED’s can have
the advantage of not demanding any threshold current.
Lack of threshold behavior makes the output power and
the operating wavelength of an SM-LED relatively insen-
sitive to ambient temperature. Combined with the inher-
ent reliability of an LED, this should produce many
system advantages for the SM-LED concept.

The final SM-LED property illustrated in Fig. 24 is
photon-number-state squeezing, as suggested by the regu-
lar sequence of photoelectrons on the horizontal line.
Stimulated emission is not required for those exotic
squeezing effects. The critical variable is absolute quan-
tum efficiency. If the quantum efficiency of the SM-LED
is high, then these squeezing correlations will exist in the
spontaneous output of the single-mode LED. This re-
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quires, most of all, a high spontaneous-emission factor g,
our overall figure of merit for microcavities.

In the feature on photonic band gaps in this journal
issue there are many other applications given for photonic
crystals, particularly in the microwave and millimeter-
wave regimes. The applications are highly imaginative,
and they have gone far beyond our initial goals for using
photonic crystals in quantum optics.

6. CONCLUSIONS

It is worthwhile to summarize the similarities and the dif-
ferences between photonic and electronic band structure.
This is best done by reference to Table 1.

Electrons are massive, and so the underlying dispersion
relation for electrons in crystals is parabolic. Photons
have no mass, so the underlying dispersion relation is lin-
ear. But as a result of the periodicity the photons develop
an effective mass in PBS, and this should come as little
surprise.

Electrons have spin 1/2, but frequently this spin is ig-
nored, and Schridinger’s equation is treated in a scalar
wave approximation. In electronic band theory the spin
1/2 is occasionally important, however. In contrast, pho-
tons have spin 1, but it is generally never a good approxi-
mation to neglect polarization in PBS calculations.

Finally, we come to the accuracy of band theory. It is
sometimes believed that band theory is always a good ap-
proximation in electronic structure. This is not really
true. When there are strong correlations, as in the high-
T. superconductors, band theory is not even a good zeroth-
order approximation. Photons are highly noninteracting,
so, if anything, band theory makes more sense for photons
than for electrons.

The final point to make about photonic crystals is that
they are nearly empty structures, consisting of ~78%
empty space. But in a sense they are much emptier than
that. They are emptier and quieter than even the vac-
uum, since they contain not even zero-point fluctuations
within the forbidden frequency band.
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