
Representation Theory1

• Representation of a group: A set of square,
non-singular matrices {D(g)} associated with
the elements of a group g ∈ G such that if
g1g2 = g3 then D(g1)D(g2) = D(g3). That is,
D is a homomorphism. The (m,n) entry of the
matrix D(g) is denoted Dmn(g).

• Identity representation matrix: If e is the
identity element of the group, then D(e) = 1
(the identiy matrix).

• Identity (trivial) representation: D(g) = 1
for all g ∈ G.

• Faithful representation: All D(g) are distinct
(D is an isomorphism).

• Dimension of a representation: The order d
of the matrices (d × d matrices have dimension
d).

• Characters of a representation: Set of traces
χ(g) = trD(g). Note that χ(e) = d, where d is
the dimension of the representation and e is the
identity element.

• Equivalent representations: Two representa-
tions D and D′ are equivalent if they are re-
lated by a similarity transformation (invert-
ible matrix) S: i.e., D′(g) = SD(g)S−1 for all
g ∈ G. Note that D′ is a representation of
the group for every such S, and that the traces
χ′(g) = trD′(g) = χ(g) are una�ected (trace =
sum of eigenvalues, which are invariant under S).

• Inequivalent representations: Representa-
tions D and D′ for which it is impossible to �nd
a similarity transform S relating them.

• Unitary representation: A representation
such that D(g) is unitary for all g; i.e.,
D(g)† = D(g)−1, where † denotes the conjugate-
transpose (adjoint).

1For proofs and more information, see e.g.: T. Inui, Y. Tan-
abe, and Y. Onodera, Group Theory and Its Applications in

Physics (Springer: New York, 1996).

� For a �nite group, every representation is
equivalent to a unitary representation by
some similarity transformation, so we can

restrict ourselves to unitary representations

without loss of generality.

• Reducible representation: A representation
that is equivalent to a representation having a
block-diagonal form:{(

D(1)(g) 0
0 D(2)(g)

)}
,

for all g ∈ G, where both D(1) and D(2) are
representations.

• Irreducible representation: A representation
that is not reducible; i.e. it is impossible to �nd
a similarity transformation that reduces all of its
matrices simultaneously to block form.

� A reducible representation can be reduced
(decomposed) into a number of irreducible
representations.

� We only care about inequivalent, irre-
ducible representations. The set of irre-
ducible representations is well-known for
any group we will encounter.

• Class of elements: A non-empty subset of ele-
ments C ⊆ G forms a class (or conjugacy class)
if it consists of elements that are all conjugate
to one another, and which are not conjugate to
anything not in C. Two elements g1 and g2 of G
are conjugate if there exists a g ∈ G such that
g1 = g−1g2g.

� D has the same trace for all elements
of C, since D(g1) and D(g2) are related
by a similarity transformation D(g1) =
D(g)−1D(g2)D(g).

� If an element g0 in the group commutes
with all of the elements of G then it forms a
class by itself, since g−1g0g = g−1gg0 = g0.
Thus, the identity e is always in its own
class.
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• The Great Orthogonality Theorem: Denote
the inequivalent irreducible representations of G
by D(α), where α = 1, · · · , nr. Then:∑

g∈G

D(α)
mn(g)∗D(α′)

m′n′(g) =
|G|
dα

δαα′δmm′δnn′ ,

where |G| is the number of elements in G, dα

is the dimension of the representation D(α), and
δij is the Kronecker delta (= 1 if i = j, = 0
otherwise).

• Character table: The table of characters
(traces) associated with each class (columns of
the table) and each irreducible representation
(rows of the table). The entries of the table
obey the following rules, and in fact can often
be constructed directly from these rules without

knowing the representations:

� Number of irreducible representations nr =
number of classes nc.

�
∑

α d
2
α = |G|. (This severely restricts the

dimensions of the representations.)

� From the trace (
∑

m=m′
∑

n=n′) of the or-
thogonality theorem we �nd that the rows

of the character table are orthogonal to one
another, when scaled by the number of ele-
ments in each class:

|G|δαα′ =
∑
g∈G

χ(α)(g)∗χ(α′)(g)

=
∑
Ci

χ(α)(Ci)∗χ(α′)(Ci)|Ci|,

where the Ci are the classes (with |Ci| el-
ements), using the fact that every element
of a class has the same trace.

� It also turns out that the columns of the
character table are orthogonal:∑

α

χ(α)(Ci)∗χ(α)(Cj) = δij
|G|
|Ci|

.

� Finally, we can de�ne the product of two
classes CiCj = (

∑
gi∈Ci

gi) · (
∑

gj∈Cj
gj).

It turns out that this product always con-
sists of classes Ck whose elements all appear

m
(k)
ij times for some integer m

(k)
ij : CiCj =∑

k m
(k)
ij Ck. Then, it turns out that the

following relation holds:

|Ci|χ(α)(Ci) · |Cj |χ(α)(Cj)

= dα

∑
k

m
(k)
ij |Ck|χ(α)(Ck).

This relation is sometimes needed, in addi-
tion to the previous rules, to determine the
character table uniquely.

• Partner function: A set {φ(α)
i (x)}of func-

tions that transform according to D(α), with
i = 1, · · · , dα. That is, if Ôg is the operator that
transforms φ according to g ∈ G, then

Ôgφ
(α)
j =

∑
i

φ
(α)
i D

(α)
ij (g)

for all g ∈ G.

� Di�erent partner functions are orthogonal :

If φ
(α)
i and ψ

(α′)
i′ are partner functions in a

Hilbert space, then 〈φ(α)
i |ψ(α′)

i′ 〉 = 0 if i 6= i′

or α 6= α′.

• Projection operator: Any function ψ(x) can

be decomposed ψ =
∑

α

∑
i c

(α)
i φ

(α)
i as a sum

of components φ
(α)
i that are partner functions

of D(α), with some expansion coe�cients c
(α)
i .

These components can be found via c
(α)
i φ

(α)
i =

P̂
(α)
i ψ, where P̂

(α)
i is the projection operator

P̂
(α)
i =

dα

|G|
∑
g∈G

D
(α)
ii (g)∗Ôg.

The operator P̂ (α) =
∑

i P̂
(α)
i =

dα

|G|
∑

g χ
(α)(g)∗Ôg projects ψ onto its com-

ponents that transform according to the
representation D(α).
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