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Chapter 1

Introduction

1.1 About this document

This document presents some application examples for the AnT package.



Chapter 2

Rossler system

2.1 Definition of the system

The Rossler system is a dynamical system continuous in time, defined by the
following ordinary differential equation:

© = —(y+2z)
] = x+ay (2.1)
2 = b+z(r—c)

For the investigation within the AnT package the system function 2.1 has to
be implemented according to the interface for ordinary differential equations?
and connected to the simulator using the ODE_Proxy, as follows:

1See Reference Manual, Part 11



#include "AnT.hpp"

#define a parameters [0]
#define b parameters[1]
#define c parameters[2]
#define X currentState[0]
#define Y currentState[1]
#define Z currentState[2]

bool roessler (const Array<real_t>& currentState,
const Array<real_t>& parameters,
Array<real_t>& rhs)

rhs[0] -(Y + 2);
rhs[1] = X + a * Y;
ths[2] = b +Z * (X - ¢);

return true;

}

#undef
#undef
#undef
#undef
#undef
#undef

N =< o op

extern "C" {

void connectSystem ()
{
ODE_Proxy: :systemFunction = roessler;

}
}

#endif
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The part of the initialization file, needed for the simulation of the Rossler
system, concerning the dynamical system itself and its simulation, can look
like the following:

dynamical_system =

{ type = "ode",
name = "roessler",
state_space_dimension = 3,
initial_state = (1.0, 1.1, 1.2 ),

parameter_space_dimension = 3,
parameters = { parameter[0] = {value = 0.2,
name = "a"},
parameter[1] = {value = 0.15,
name = "b"},
parameter[2] = {value = 6.2,
name = "c"}

1,

number_of_iterations = 250000,

integration = { method = "rk44",
step = 0.001,
}

These settings specify, that the system is an ordinary differential equation
with three variables and three parameters. The initial values for the state
variables and the values of the parameters are given. Additionally the number
of the integration steps, integration method (Runge-Kutta method of the
order 4 without step size adaption) and the integration step size (1073 time
units) are set.
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2.2 A chaotic attractor

Firstly we investigated the Rossler system at fixed parameter settings, a =
0.2, b =0.15, ¢ = 6.2. It can be shown, that the system possesses a chaotic
attractor at these parameter values.

In this case we perform a single run of the simulator. It means, that all
settings are fixed. For specification of this, the following entry in the initial-
ization file is needed:

scan = {
scan_mode = 0

}

2.2.1 Time series

Firstly we produce simple time series of the Rossler system. The appropriate
settings in the initialization file can be the following:

investigation_methods =
{
general _trajectory_evaluations =
{ is_active = "yes",
transient = 100000,
saving =
{
is_active = "yes",
type = "time_oriented",

trajectory = "yes",
velocity = "no",

phase_portrait
initial_states

"no",
"no",

points_step = 25,
save_only_specific_area = "no"

}
}

The number of the transient steps 100000 combined with the integration
step size 1073, which is specified in the description of the dynamical system,
implies, that the orbit will be saved for time ¢ > 100 time units. The end
time of the saving is 250 time units, because the complete number of iteration
steps, diven in the description of the dynamical system, is 250000. The saving
in equidistant with the step 0.25 time units. Figures 2.1, 2.1 and 2.1 show
the corresponding time series for the state variables z, y and z.
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Roessler system, a=0.15, b=0.2, c=6.2
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Roessler system, a=0.15, b=0.2, c=6.2
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2.2.2 Phase portraits (I)

There are two different types of plots, which are usually denoted as phase
portraits. The first and the simplest possibility is to plot the state variables
against each other. Figure 2.4 presents the Rossler attractor in the state space
[z X y x z] at the parameter setting a = 0.2, b = 0.15, ¢ = 6.2. Figures 2.5,
2.6 and 2.7 show the projections of the attractor on the [z x yl, [ X 2] and
[y x z] planes. For producing these plots either the file orbit.gra or the file
phase portrait.gra can be used. Note, that it is more suitable to use the
space oriented saving type, because the produced files are less in this case.
Doing this, one has to specify the minimal distances between two subsequent
points which are saved. The appropriate settings in the initialization file can
be the following:

investigation_methods =
{
general _trajectory_evaluations =
{ is_active = "yes",
transient = 100000,
saving =
{
is_active = "yes",
type = "space_oriented",

trajectory = "no",
velocity = "no",
phase_portrait "yes",

initial_states = "no",

state_space_distance = 0.5,
velocity_space_distance = 1.0,

save_only_specific_area = "no"

}
};

The Figures 2.4, 2.5, 2.6 and 2.7 are produced using 2500000 iteration steps.
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Roessler system, a=0.15, b=0.2, c=6.2
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Roessler system, a=0.15, b=0.2, ¢=6.2
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Roessler system, a=0.15, b=0.2, ¢=6.2
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Roessler system, a=0.15, b=0.2, ¢=6.2
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2.2.3 Phase portraits (II)

Another kind of plots usually denoted as phase portraits are plots showing the
state variables against their first derivatives (velocities). Using the settings
described above and the file phase portrait.gra one is able to produce
these plots also. Figures 2.8, 2.9 and 2.10 show the Rossler attractor in the
planes [z x Z], [y X 9] and [z x Z]. Additionally the space [ X § x Z] is shown
in Figures 2.11.
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Roessler system, a=0.15, b=0.2, ¢=6.2
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Roessler system, a=0.15, b=0.2, ¢=6.2
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dz/dt

Figure 2.10:
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Roessler system, a=0.15, b=0.2, c=6.2

dz/dt

OOOOOOOO
T T T T T 11

AR NW

Figure 2.11:

date: April 8, 2003
file: Examples.tex

20



2.2.4 Power spectra

investigation_methods =
{
frequency_analysis =
{ is_active = "yes",
points_step = 1,
transient = 10000,
using_variables = (0,1,2),
frequency_output_range = (0.0, 5.0),
frequency_step_is_given = "yes",

frequency_step = 0.0005,
subtract_mean_value = "on",

neighborhood_width = 5,
frequency_weighting = (1.0, 2.0, 3.0, 2.0, 1.0),

real_part = "off",

imaginary_part = "off",
real_and_imaginary_parts = "off",
autocorrelation = "off",
total_power = "off",

power_spectrum = "on",
spectrum_max_points = "off",

total_power = "off",

period = "off",
spectrum_waving = "off",
spectrum_oscillation = "off",

fourier_coefficients = "off"
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Roessler system, a=0.15, b=0.2, c=6.2
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Roessler system, a=0.15, b=0.2, c=6.2
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Roessler system, a=0.15, b=0.2, c=6.2
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2.2.5 Invariant measure

investigation_methods

{

dimensions_analysis

{
is_active = "yes",
transient = 10000,

ranges = ((-10,-12,0),(12,10,14)),

max_layer = 10,
partition_factor = 2,

invariant_measure = "on",
measure_deviation = "off",
metric_entropy = "off",
capacity_dimension = "off",
information_dimension = "off",
correlation_dimension = "off"
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Roessler system, a=0.15, b=0.2, c=6.2
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Roessler system, a=0.15, b=0.2, c=6.2
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Roessler system, a=0.15, b=0.2, c=6.2
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2.3 Lyapunov exponents
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Chapter 3

Phase locked loop

3.1 Definition of the system

The phase locked loop is a dynamical system continuous in time with time
delay, defined by:

#(t) = —Rsin(z(t—171)) (3.1)

For the investigation within the AnT package the system function 3.1 has to
be implemented according to the interface for delay differential equations?
and connected to the simulator using the DDE_Proxy, as follows:

1See Reference Manual, Part 11
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#include "AnT.hpp"

#define R parameters [0]
#define Xt delayState[0]

bool delayed_pll (const Array<real_t>& currentState,
const Array<real_t>& delayState,
const Array<real_t>& parameters,
Array<real_t>& rhs)
{
rhs[0] = -R * sin (Xt);
return true;

+
#undef R
#undef Xt
extern "C" {
void connectSystem ()
{
DDE_Proxy::systemFunction = delayed_pll;

}
}
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The part of the initialization file, needed for the simulation of the phase
locked loop, concerning the dynamical system itself and its simulation, can
look like the following:

dynamical_system =

{
type = "dde",
name = "pll",
delay =1

state_space_dimension = 1,
temporal_initial_function[0] = { type = "const",
const_value = 1.0

1,

parameter_space_dimension = 1,

parameters = { parameter[0] = { value = 4.157,
name = "R" }

1,
integration = { step_size = 0.001,
method = "rk44"
1,

number_of_iterations = 10000,

These settings specify, that the system is a delay differential equation with
one state variable and one parameter. The delay time (7 = 1), the temporal
initial function for the single state variable and the value of the parameter are
given. Additionally the number of the integration steps, integration method
(Runge-Kutta method of the order 4 without step size adaption) and the
integration step size (1072 time units) are set.
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3.2 Initial functions

In the examples presented in this section several temporal initial functions
will be tested.

date: April 8, 2003 33
file: Examples.tex



3.2.1 Constant initial function

temporal_initial_function[0] = { type = "const",
const_value = 1.0

}

pll, R=4.157
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Figure 3.1:
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3.2.2 Fermi initial function

{:é!;lporal_initial_function[O] = {type = "fermi",
edge = -0.5,
offset = -1.0,
mu = 2.0,
sigma = 0.025
}
pll, R=4.157
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time t

Figure 3.2:
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3.2.3 Gauss initial function

temporal_initial_function[0] = {type = "gauss",
amplitude = 2.0,
offset = 0.5,
mu = -0.5,
sigma = 0.15

pll, R=4.157
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Figure 3.3:
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3.2.4 Linear initial function

temporal_initial_function[0] = {type = "linear",

slope = 0.5,
offset = 1.0
}
pll, R=4.157
3 T T T T
2 - o
1 / .
x 0 r .
-1 F ]
2L -
_3 1 1 1 1
-1 0 1 2 3
time t

Figure 3.4:
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3.2.5 Sinus initial function

temporal_initial_function[0] = {type = "sin",

amplitude = 1.0,
frequency = 2,
offset = 0.5,
phase = 0.0
}
pll, R=4.157
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Figure 3.5:
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3.2.6 Sinc initial function

temporal_initial_function[0] = {type = "sinc",

amplitude = 2.0,
frequency = 4,
offset = 0.5,
mu = -0.

phase =

>

5
0.0

pll, R=4.157

Figure 3.6:
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3.2.7 Singular initial function

temporal_initial_function[0] = {type = "singular",
singular_value = 1.5,

residual_value -0.5,
singular_time = -0.5
}
pll, R=4.157
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Figure 3.7:
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3.2.8 Step initial function

temporal_initial_function[0] = {type = "step",
step_value = 1.0,
residual_value = 0.0,
first_time = -0.9,
second_time = -0.7

}

pll, R=4.157
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Figure 3.8:
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