

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

AnT 4.669 – a tool for simulating and investigating dynamical systems

Dr. Michael Schanz

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

1. Introduction

AnT 4.669 – a simulation and Analysis Tool for dynamical systems

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

1. Introduction

AnT 4.669 – a simulation and Analysis Tool for dynamical systems

AnT 4.669 application areas:

▶ science and education

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

1. Introduction

AnT 4.669 – a simulation and Analysis Tool for dynamical systems

AnT 4.669 application areas:

science and education

AnT 4.669 capabilities:

- several classes of dynamical systems
- several investigation methods
- ▶ one-, two-, and higher dimensional scans
- distributed computation (grid computing)

AnT 4.669 properties:

- ▶ open software architecture
- ► GNU public license
- ► supported platforms Solaris, Linux, FreeBSD, Windows (98, NT, 2000, XP)

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

History Introduction

AnT 4.669 was designed, is maintained and will be further developed by the Non–Linear Dynamics Group of the department Image Understanding (Head: Prof. Dr. P. Levi) at the Institute of Parallel and Distributed Systems (IPVS) of the University of Stuttgart.

Members of the group:

▶ Dr. Michael Schanz

▶ Dr. Viktor Avrutin

▶ Robert Lammert

Georg Wackenhut

and about 25 students

History of the project:

1998: first prototypes

(FORTRAN, C)

2000: **AnT 4.66**

(C)

2001: **AnT 4.669**

(C++)

Current state:

 \approx 120 000 lines of source code

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

medicine

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

. . . .

modeling

simulation

analysis

interpretation

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

. . . .

modeling

simulation

analysis

interpretation

investigation of the dynamic behavior

University of Stuttgart Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

...

modeling

simulation

analysis

interpretation

investigation of the dynamic behavior

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Motivation Introduction

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

...

modeling

simulation

analysis

interpretation

investigation of the dynamic behavior

analytic semi-analytic

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Introduction Motivation

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

modeling

simulation

analysis

interpretation

investigation of the dynamic behavior analytic semi-analytic numeric

Page 4

Motivation

Introduction

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Application areas for dynamical systems:

mathematics

physics

engineering

chemistry

biology

electronics

computer science

medicine

...

modeling

simulation

analysis

interpretation

investigation of the dynamic behavior

analytic

semi-analytic

numeric

numerical simulation and Analysis Tools

are required

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

nonlinear dynamics

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

- nonlinear dynamics
- numerics
- scientific computing
- . .

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

- nonlinear dynamics
- numerics
- scientific computing
- . . .

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

2. Dynamical systems

Attractors of the map-class

Generalized Hénon-Lozi map

$$x_{n+1} = 1 - a|x_n|^{\gamma} + y_n$$

$$y_{n+1} = bx_n$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Attractors of the ODE-class

Lorenz 63 system

$$\dot{x} = \sigma(y - x)$$

$$\dot{y} = rx - y - xz$$

$$\dot{z} = -bz + xy$$

$$\sigma = 16.0, r = 305.0, b = 4.0$$

$$\sigma = 16.0, r = 370.0, b = 4.0$$

$$\sigma = 10, r = 146.7981, b = \frac{8}{3}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Coexisting periodic attractors of the DDE-class

Phase Locked Loop (PLL) with time delay

$$\dot{x}(t) = -R\sin(x(t-\tau))$$

$$\tau = 1.0$$

four different constant initial functions on the interval $[-\tau,0]$:

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Dynamics of a stochastic system

Ornstein-Uhlenbeck process:

$$d\,\underline{x}_{\,t} \ = \ -\underline{\underline{M}}\,\underline{x}\,dt + \sigma\,d\,\underline{W}_{\,t}$$

$$\sigma = 1 \quad , \quad \underline{\underline{M}} = \begin{pmatrix} -10^{-4} & 0.1 & -0.2 \\ -0.1 & -10^{-4} & 0.2 \\ 0.5 & -0.5 & -10^{-4} \end{pmatrix}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Transient and asymptotic dynamics of a coupled map lattice (CML)

Coupled piecewise-linear maps:

$$x_{n+1}^i = f(\varkappa_n^i) \qquad f(x) = \left\{ \begin{array}{ccc} x+a & \text{if} & x<1 \\ 0 & \text{if} & x \geq 1 \end{array} \right. \qquad i = 1..N$$

$$\varkappa_n^i \ = \ \frac{\gamma_1 \, x_n^{(i-1) \bmod N} + \gamma_2 \, x_n^i + \gamma_3 \, x_n^{(i+1) \bmod N}}{\gamma_1 + \gamma_2 + \gamma_3}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Transient dynamics of a partial differential equation (PDE)

Heat conduction equation:

$$\frac{\partial T(x,t)}{\partial t} = \kappa \frac{\partial^2 T(x,t)}{\partial x^2}$$
 with $\kappa = 0.01$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Classes of dynamical systems supported by AnT 4.669

- ▶ basic
 - map
 - ODE
 - DDE
 - FDE
- composite
 - CML
 - CODEL
 - 1D-PDE

- ▶ hybrid
 - hybrid map
 - hybrid ODE
 - hybrid DDE
- ▶ stochastic
 - stochastic map
 - stochastic ODE
 - stochastic DDE
- ▶ etc.
 - recurrent map
 - external data

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Classes of dynamical systems supported by AnT 4.669

- basic
 - map
 - ODE
 - DDE
 - FDE
- composite
 - CML
 - CODEL
 - 1D-PDE

- ▶ hybrid
 - hybrid map

Dynamical systems

- hybrid ODE
- hybrid DDE
- stochastic
 - stochastic map
 - stochastic ODE
 - stochastic DDE
- ▶ etc.
 - recurrent map
 - external data
- ⇒ Support of 15 different classes of dynamical systems

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Support of different types of dynamical systems is possible due to the general concept of an abstract iterator, which is a special kind of an abstract transition:

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Support of different types of dynamical systems is possible due to the general concept of an abstract iterator, which is a special kind of an abstract transition:

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Support of different types of dynamical systems is possible due to the general concept of an abstract iterator, which is a special kind of an abstract transition:

Dependent on the current type of the dynamical system the abstract iterator can be instantiated as:

- simple iterator (for maps, CMLs, Poincaré maps, external data input, etc.)
- ► ODE integrator (for ODEs, CODELs, 1D-PDEs)
- ▶ DDE integrator (for DDEs, CDDELs)
- ► FDE integrator (for FDEs)
- ▶ ..

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Integration methods for ODEs, DDEs and FDEs, supported by AnT 4.669

one-step steppers

- ► Euler (expl., impl.)
- ► Heun (expl., impl.)
- ▶ Midpoint
- ► Radau
- Ralston
- Runge–Kutta
- ▶ Gill
- ► Runge-Kutta-Merson
- ▶ Runge-Kutta-Fehlberg
- ▶ Butcher
 - pre-defined arrays
 - user–defined arrays

multi-step steppers

- ► Adams-Bashforth (6)
- ► Adams-Moulton (6)
- ▶ BDF (6)
- ▶ PECE–AB–AM (6×6)
- ▶ PECE–AB–BDF (6×6)

wrappers

- ▶ basic, backward
- step size adaption
 - · gradient based
 - halfstep
 - two steppers

$$\Rightarrow \approx 2000$$
 different integration methods

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Remarks on numerical integration I

Two time series of the Lorenz 63 system for identical initial conditions calculated with two different integration methods:

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Remarks on numerical integration I

Two time series of the Lorenz 63 system for identical initial conditions calculated with two different integration methods:

Two time series of the Lorenz 63 system for identical initial conditions calculated with the same integration method:

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Remarks on numerical integration II

Numerical solution of the circular co-planar restricted three body problem:

$$\ddot{x} = x + 2\dot{y} - (1 - \mu)\frac{x + \mu}{r_1^3} - \mu\frac{x + \mu - 1}{r_2^3}$$

$$\ddot{y} = y + 2\dot{x} - (1 - \mu)\frac{y}{r_1^3} - \mu\frac{y}{r_2^3}$$

$$r_1 = \left[(x + \mu)^2 + y^2 \right]^{\frac{1}{2}}$$

$$r_2 = \left[(x + \mu - 1)^2 + y^2 \right]^{\frac{1}{2}}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Remarks on numerical integration II

Numerical solution of the circular co-planar restricted three body problem:

$$\ddot{x} = x + 2\dot{y} - (1 - \mu)\frac{x + \mu}{r_1^3} - \mu\frac{x + \mu - 1}{r_2^3}$$

$$\ddot{y} = y + 2\dot{x} - (1 - \mu)\frac{y}{r_1^3} - \mu\frac{y}{r_2^3}$$

$$r_1 = \left[(x + \mu)^2 + y^2 \right]^{\frac{1}{2}}$$

$$r_2 = \left[(x + \mu - 1)^2 + y^2 \right]^{\frac{1}{2}}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Remarks on numerical integration II

Numerical solution of the circular co-planar restricted three body problem:

$$\ddot{x} = x + 2\dot{y} - (1 - \mu)\frac{x + \mu}{r_1^3} - \mu\frac{x + \mu - 1}{r_2^3}$$

$$\ddot{y} = y + 2\dot{x} - (1 - \mu)\frac{y}{r_1^3} - \mu\frac{y}{r_2^3}$$

$$r_1 = \left[(x + \mu)^2 + y^2 \right]^{\frac{1}{2}}$$

$$r_2 = \left[(x + \mu - 1)^2 + y^2 \right]^{\frac{1}{2}}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

3. Investigation methods

Investigation methods supported by AnT 4.669

- General trajectory evaluations
 - orbits, velocities, extreme values, cobweb diagrams
- ▶ Basic statistics
 - mean values, standard deviations, cross-correlations
- ▶ Box counting methods
 - invariant measures, fractal dimensions
- ▶ Lyapunov exponents analysis
 - for maps, CMLs, ODEs, DDEs, FDEs, hybrid systems
- Extended Poincaré sections and Poincaré return maps
- Period analysis (systems discrete in time)
- Region analysis (based on period analysis)
- Spectral analysis
- Condition checker
- Principal component analysis
- ► Symbolic sequence analysis
 - symbolic entropies for an arbitrary description level
- Symbolic image analysis
 - detection of invariant sets, basins of attraction,
 - calculation of stable and unstable manifolds

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples Investigation

Examples for several investigation methods

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples Investigation

Examples for several investigation methods

Natural measure of a chaotic attractor

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples Investigation

Examples for several investigation methods

Natural measure of a chaotic attractor

Cobweb diagram

Examples Investigation

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples for several investigation methods

Natural measure of a chaotic attractor

0.2 0.4 0.6

8.0

Poincaré section of a chaotic attractor

Investigation

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples for several investigation methods

Natural measure of a chaotic attractor

Examples

Poincaré section of a chaotic attractor

Power spectrum of a limit cycle

Examples Investigation

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Duffing oscillator:

$$\dot{x} = y
\dot{y} = x - x^3 - \varepsilon y$$

$$\varepsilon = 0.15$$

stable and unstable manifolds of the fixed point at the origin

In cooperation with D. Fundinger and G.Osipenko State Polytechnic University, St. Petersburg, Russia

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Basic concept: Iteration Machine

Structure: pre-sequence, cyclic sequence, post-sequence

Contents: iterator, iteration method plug-ins

Setup: dynamically during initialization phase

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

4. Scans

Scans supported by AnT 4.669

Scannable objects:

bifurcation scenarios, system parameters

regions with different behavior

initial values coexisting objects,

basins of attraction

method parameters method tuning

Scan types:

- ▶ real, integer
- ▶ linear, logarithmic
- using external data
- parametric (linear, elliptic)

Scan item sequences N-dimensional scans.

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Parameter scan (1D)

logistic map:
$$x_{n+1} = \alpha x_n (1 - x_n)$$

bifurcation points

$$\ln\left(\left|\alpha-\alpha_{\infty}\right|\right)$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Scan types Scans

Initial value scan (2D)

Gingerbreadman map:

$$x_{n+1} = 1 - y_n + |x_n|$$
$$y_{n+1} = x_n$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Initial value scan (2D)

Gingerbreadman map:

$$x_{n+1} = 1 - y_n + |x_n|$$

$$y_{n+1} = x_n$$

period analysis

Scans

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Initial value scan (2D)

Gingerbreadman map:

$$x_{n+1} = 1 - y_n + |x_n|$$

$$y_{n+1} = x_n$$

period analysis

region analysis

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Scans of investigation method parameters

Parameter tuning for an investigation method: Lyapunov Exponents.

 number N_{GSO} of steps between two Gram Schmidt orthonormalizations

ε

 N_{GSO}

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples Scans

The three Lyapunov exponents of the Lorenz 63 system:

r

Examples Scans

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

The three Lyapunov exponents of the Lorenz 63 system:

The three Lyapunov exponents of the Aizawa system:

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples Scans

Example for a 2D parameter scan

Period Adding Big Bang Bifurcation in a piecewise-linear map

$$x_{n+1} = \begin{cases} f_l(x_n) = bx_n + c & \text{if } x_n < \frac{1}{2} \\ f_r(x_n) = x_n - a & \text{if } x_n \ge \frac{1}{2} \end{cases}$$

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Example for a 2D parameter scan

Period Adding Big Bang Bifurcation in a piecewise-linear map

$$x_{n+1} = \begin{cases} f_l(x_n) = bx_n + c & \text{if } x_n < \frac{1}{2} \\ f_r(x_n) = x_n - a & \text{if } x_n \ge \frac{1}{2} \end{cases}$$

 $b=\frac{1}{2}$, 2D parameter space [a imes c]

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Example for a 2D parameter scan

Period Adding Big Bang Bifurcation in a piecewise-linear map

$$x_{n+1} = \begin{cases} f_l(x_n) = bx_n + c & \text{if } x_n < \frac{1}{2} \\ f_r(x_n) = x_n - a & \text{if } x_n \ge \frac{1}{2} \end{cases}$$

 $b=\frac{1}{2}$, 2D parameter space $[a\times c]$

Bifurcation diagram

Period diagram

Scans

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Example for a 2D parameter scan

2D bifurcation scenarios, induced by Big Bang Bifurcations

2D period adding scenario

2D period increment scenario

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples Scans

Example of a 2D parameter scan

Largest Lyapunov exponent of the Lorenz 63 system:

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Basic concept: Scan Machine

Structure: pre-sequence, cyclic sequence, post-sequence

Contents: Iteration Machine, scan method plug-ins

Setup: dynamically during initialization phase

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

The system function of a Poincaré map is given by a complete iteration machine containing a dynamical system inside.

The generalized Poincaré condition defines the stop criterion of the iteration machine inside.

Poincaré maps Scans

University of Stuttgart

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples of scans of a Poincaré map (ODE)

Rössler system:

$$\dot{x} = -(x+z)
\dot{y} = x + ay
\dot{z} = b + z(x-c)$$

$$a = 0.15, b = 0.2$$

Poincaré section using the fixed half– plane $\{(x, y, z)^T | y = 0, x > 0\}$

c

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Examples of scans of a Poincaré map (DDE)

PLL system with delay: $\dot{x}(t) = -R \sin(x(t-\tau))$ Poincaré section using the condition defined by:

$$\dot{x} = 0$$
 and $x \in [1, 2]$

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems
Investigation methods

AnT 4.669 features

Summary Outlook

Scans

5. AnT **4.669** features

Grid computing

Distribution of a scan among several nodes

- ► Client/Server architecture
- ► The server distributes tasks and manages calculation results
- ► An arbitrary number of clients perform the calculations
- Adding and removing of clients on-the-fly
- Data are sent/received via TCP/IP socket connections
- ▶ platform independence ⇒ running of server and clients in a heterogeneous environment

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

AnT 4.669 features

Summary Outlook

User Interface

- simplification of the complex initialization phase
- specification induced, automatic widget creation
- extendable for multi-lingual support

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Visualization

- time series, space-time plots, phase portraits
- translation, scaling, rotation
- multiple views
- based on OpenGL standard

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems
Investigation methods

Scans

nT 4.669 features

Summary Outlook

Web interface

Challenge: AnT 4.669 is designed as a desktop—application

Architecture:

Separation between the computation engine and the graphical user interface

Target solution:

- The computation engine is on the server side
- Configuration input and visualization are on the client side

Three new applications:

- Server
- · Configuration editor
- Visualization client

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

6. Summary

Transition concept

Reasons for building transition subclasses:

- creating new transition structures
- implementing specific functionality

The transition concept is used in **AnT 4.669** extensively.

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

6. Summary

Transition concept

Reasons for building transition subclasses:

- 1. creating new transition structures
- 2. implementing specific functionality

The transition concept is used in **AnT 4.669** extensively.

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

- nonlinear dynamics
- numerics
- scientific computing

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

Required knowledge and experience? Involved areas of computer science?

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)
- theoretical computer science
 - algorithms and data structures

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)
- theoretical computer science
 - algorithms and data structures
- standards
 - C++, TCP/IP, POSIX, OpenGL, GTK+, Web-programming

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)
- theoretical computer science
 - algorithms and data structures
- standards
 - C++, TCP/IP, POSIX, OpenGL, GTK+, Web-programming
- portability (Linux, Solaris, FreeBSD, Windows)

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)
- theoretical computer science
 - algorithms and data structures
- standards
 - C++, TCP/IP, POSIX, OpenGL, GTK+, Web-programming
- portability (Linux, Solaris, FreeBSD, Windows)
- software engineering (project support: CVS, Doxygen)

Institute of Paralell and Distributed Systems

Department of Image Understanding

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)
- theoretical computer science
 - algorithms and data structures
- standards
 - C++, TCP/IP, POSIX, OpenGL, GTK+, Web-programming
- portability (Linux, Solaris, FreeBSD, Windows)
- software engineering (project support: CVS, Doxygen)
- enhanced build mechanism (GNU autotools)

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- nonlinear dynamics
- numerics
- scientific computing
- software architecture
 - transitions, machines, proxies, plug-ins
- definition of user function interfaces (system functions)
- graphical user interface design
- design of description languages (initialization)
- theoretical computer science
 - algorithms and data structures
- standards
 - C++, TCP/IP, POSIX, OpenGL, GTK+, Web-programming
- portability (Linux, Solaris, FreeBSD, Windows)
- software engineering (project support: CVS, Doxygen)
- enhanced build mechanism (GNU autotools)

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- Extension of integration methods:
 - usage of third party ODE and DDE integrators
 - implementation of symplectic integrators

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- ► Extension of integration methods:
 - usage of third party ODE and DDE integrators
 - implementation of symplectic integrators
- Extension of PDE solvers
 - Implementation of 2D–PDEs
 - Implementation of adaptive grid methods for PDEs

Department of Image Understanding

www.An14669.0

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- ► Extension of integration methods:
 - usage of third party ODE and DDE integrators
 - implementation of symplectic integrators
- Extension of PDE solvers
 - Implementation of 2D–PDEs
 - Implementation of adaptive grid methods for PDEs
- Extension of investigation methods:
 - continuation method
 - local divergence rates
 - ...

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- Extension of integration methods:
 - usage of third party ODE and DDE integrators
 - implementation of symplectic integrators
- Extension of PDE solvers
 - Implementation of 2D–PDEs
 - Implementation of adaptive grid methods for PDEs
- Extension of investigation methods:
 - continuation method
 - local divergence rates
 - ...
- Improvement of the visualization
 - 'attractor flight'
 - more sophisticated coloring schemes

Department of Image Understanding

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

- Extension of integration methods:
 - usage of third party ODE and DDE integrators
 - implementation of symplectic integrators
- Extension of PDE solvers
 - Implementation of 2D–PDEs
 - Implementation of adaptive grid methods for PDEs
- Extension of investigation methods:
 - continuation method
 - local divergence rates
 - ...
- Improvement of the visualization
 - 'attractor flight'
 - more sophisticated coloring schemes
- ▶ Implementation of new system classes
 - DAEs, ImDEs, IDEs, PIDEs and PDDEs

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

For more information see

www.AnT4669.de

Institute of Paralell and Distributed Systems

Department of Image Understanding

www.AnT4669.de

Introduction

Dynamical systems

Investigation methods

Scans

AnT 4.669 features

Summary

Outlook

System function implementation

Example of a system function for an ODE

```
#define sigma parameters[0]
                                 #define X currentState[0]
#define r
              parameters[1]
                                 #define Y currentState[1]
#define b
              parameters[2]
                                 #define Z currentState[2]
bool lorenz63
 (const Array<real t>& currentState,
                                                 f(\underline{x}, p)
  const Array<real t>& parameters,
        Array<real t>& rhs)
  rhs[0] = sigma * (Y - X);
  rhs[1] = X * (r - Z) - Y;
  rhs[2] = -b * Z + X * Y;
  return true;
extern "C"
{ void connectSystem ()
     ODE_Proxy::systemFunction = lorenz63; }
```