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Abstract

A software package for the simulation and investigation of the behavior of dynamical systems called AnT

will be presented in this paper. Due to its flexible architecture, AnT is able to simulate various classes of

dynamical systems, e.g. maps, ordinary and delay differential equations, etc., as well as many sub–classes

derived from these. A main feature aimed at during the development of AnT is the support of the inves-

tigation of the dynamics of the simulated systems with several provided investigation methods, like e.g.

period analysis, Lyapunov exponents calculation, generalized Poincaré section analysis, symbolic image

analysis and much more. Another important feature of AnT are so–called scan runs, i.e. the ability to

investigate a dynamical system by varying some relevant influence quantities, such as the control param-

eters, initial values, or even some parameters of the investigation methods.
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1 Introduction

Efficient simulation of dynamical systems is an important field in research, industrial applications and

education as well. The project presented here is focused on the development and implementation of a

software package AnT for the simulation and investigation of a broad spectrum of dynamical systems. The

AnT package comes along with a set of investigation methods, thus enabling the user to analyze various

aspects of different classes of dynamical systems. Hereby, the user must only provide an equation of motion

corresponding to one of the supported classes of dynamical systems and do the appropriate initialization of

the simulator, e.g. by means of a configuration file or, more comfortably, by using a corresponding graphical

user interface. The ability to turn several investigation methods either on or off leads to an increase in

flexibility and also efficiency, since one only has to pay for resources that are really needed.

The AnT simulation package is a powerful tool which provides the user with data resulting from the performed

computations. The user of the software may further process and interpret the produced data in order to get

valuable insights concerning the dynamics of the investigated system. Compared to other known tools for

the simulation and investigation of dynamical systems, like for instance AUTO, XPP, DsTool, Dynamics,



DDE-BIFTOOL, etc., AnT has some advantages. Firstly, the spectrum of dynamical system classes and

investigation methods supported by AnT is broader than that of any other tool which we know of. Secondly,

AnT allows the investigation of dynamical systems while varying some settings. Although other tools are also

able to perform similar tasks, AnT is by now the only tool running in client-server mode. Hence, computation

intensive tasks may be distributed among many clients automatically.

2 Classes of dynamical systems supported by AnT

According to the aims of the AnT project, the term of a dynamical system was kept very general. In this

section we present a brief overview of several classes of dynamical systems which can be simulated and

investigated using AnT. Currently, the simulator is able to deal with the following basic classes of dynamical

systems:

• standard discrete maps: ~xn+1 = ~f(~xn, {σ})

• ordinary differential equations (ODE): ~̇x(t) = ~f(~x(t), {σ})

• delay differential equations (DDE): ~̇x(t) = ~f(~x(t), ~x(t− τ), {σ})

• functional differential equations (FDE): ~̇x(t) = ~F [~xt, {σ}]

with ~xt(θ) = ~x(t+ θ), θ ∈ [−τ, 0]

• partial differential equations (PDE) with one spatial component:
∂
∂t
~x(q, t) = ~f

(

~x(q, t), ∂
∂q
~x(q, t), . . . , ~σ

)

with a scalar spatial component q defined on the domain

[qmin, qmax].

Here ~xn and ~x(t) denote the real–valued state vector of the system, σ a set of parameters, and τ the time

delay. The vector ~xt(θ) is an element of the extended state space given by the space of vector–valued

functions on the interval [−τ, 0] and ~F is a non–linear functional defined on this space. Dealing with partial

differential equations, one can use several types of von Neumann boundary conditions (fluxless, cyclic,

interpolated, constant), as well as Dirichlet boundary conditions.

In addition to standard discrete maps it is also possible to use

• recurrent maps ~xn+1 = ~f(~xn, ~xn−1, ..., ~xn−nτ , {σ})

with nτ ∈ N, nτ > 1. Of course, the recurrent maps can be transformed into standard discrete maps by

extending the state space accordingly. Hence, one is in principle always able to do the work with standard

maps only, but using the more natural form of recurrent maps simplifies the modeling of time discrete

systems with delay and is therefore supported by AnT. As a side note, we have to remark that this kind of

elimination of the delay by state space extension is not possible for delay differential equations ([8], [6]).

Non–autonomous systems are not supported by AnT directly, but this is not a restriction, since they can be

transformed into autonomous ones by a standard extension of the state space, i.e. by introducing a new

state variable representing the time.

Additionally, AnT can be used with two more classes of dynamical systems, denoted as composite or cellular

dynamical systems. These are known as coupled map lattices (CML) and coupled ordinary differential



equations lattices (CODEL) respectively. Given local couplings and closed ring topology, these systems can

be defined by

• CML: ~x
(i)
n+1 = ~f

(

~x
(i−l)mod N
n , . . . , ~x

(i)
n , ~x

(i+r)mod N
n , {σ}

)

• CODEL: ~̇x(i)(t) = ~f
(

~x(i−l)mod N (t), . . . , ~x(i)(t), . . . , ~x(i+r)mod N (t), {σ}
)

Hereby, N denotes the number of cells in the lattice, i is the cell index (i = 1 . . . N) and l and r the ranges

of the coupling interval. AnT provides also more general types of lattices with global coupling, where a cell

is coupled arbitrarily with other existing cells. Hence, arbitrary lattice topology is also possible, as well as

lattices with more than one space direction.

Furthermore, AnT has support for hybrid dynamical systems, which became more and more important during

the past few years. A basic property of these systems is that their state space consists of two parts, a

continuous–valued vector ~xn ∈ Rnc and a vector ~m ∈Mnd where M is a set of discrete values and nc, nd ∈ N+.

AnT provides three types of hybrid systems, i.e.

• hybrid maps: ~xn+1 = ~f(~xn, ~mn, {σ}), ~mn+1 = ~φ(~xn, ~mn, {σ})

• hybrid ODEs: ~̇x(t) = ~f(~x(t), ~m(t), {σ}), ~m(t+) = ~φ(~x(t), ~m(t), {σ})

• hybrid DDEs ~̇x(t) = ~f(~x(t), ~x(t− τ), ~m(t), {σ}), ~m(t+) = ~φ(~x(t), ~m(t), {σ})

The notation ~m(t+) means that the vector ~m is assumed to be left-side continuous with respect to time.

AnT is also able to deal with some classes of stochastic systems with additive noise η, although it should be

remarked, that currently only a limited set of integration and investigation methods is available for these

systems. The stochastic system classes supported by AnT are:

• maps with additive noise: ~xn+1 = ~f(~xn, {σ}) + ~ηn

• ODEs with additive noise: ~̇x(t) = ~f(~x(t), {σ}) + ~η(t)

• DDEs with additive noise: ~̇x(t) = ~f(~x(t), ~x(t− τ), {σ}) + ~η(t)

Here ~η means the additive white noise vector, which can be distributed differently, e.g., uniform or Gaussian.

A remarkable feature of AnT is the very general implemented concept of Poincaré sections. According to

this concept, the orbit of a discrete map is resulting from the orbit of some other dynamical system, whereby

only those points are selected which satisfy a specific condition. In the case of classical Poincaré sections,

this condition is given by the cross–section of the orbit with a plane. AnT supports two variants of classical

Poincaré sections, which behave differently in the context of scan runs. On the one hand, the plane can

be fixed, i.e. the plane remains the same even if the parameters of the investigated dynamical system are

varied. For instance, the behavior of the Rössler system ([11]) can be investigated by varying the parameter

a using Poincaré sections with the fixed plane y = 0 (see Fig. 1). On the other hand, in some cases it can be

interesting to define the plane depending on the system parameters, and hence the coefficients of the plane

have to be varied together with the system parameters. A typical example of such a case is the well–known

Lorenz–63 system ([9]). For instance, it is known that this system possesses three fixed points, which can be

determined analytically. ([12]). Two of these fixed points depend on the system parameters r and b. Hence,

for Poincaré sections of the Lorenz–63 system it is suitable to use planes containing these two fixed points.



In addition to the classical Poincaré section approach, AnT can use any other condition in order to calculate

generalized Poincaré sections. Especially, in the case of hybrid systems, there is a specific condition generat-

ing the Poincaré section, which is fulfilled whenever a change in the discrete state part occurs. Additionally,

any user defined condition may be used as well. It has to be mentioned that, due to the architecture of AnT,

Poincaré sections are represented as discrete maps with a special kind of system function, which iterates

the given dynamical system until the Poincaré condition gets fulfilled. Hence, all investigation methods

applicable for maps are also applicable for numerical calculated Poincaré maps.

At last, we ought to remark that AnT can also proceed external input data. Although this topic was not

intended to be the main application area of the AnT package, we were able to achieve this functionality by

implementing our system function as an external data reader. Hence, this dynamical system belongs to the

class of standard discrete maps and may be described informally by

• ~xn+1 = next input vector

Summarizing, it has to be remarked that the support of such a broad spectrum of dynamical systems was not

a primary aim in the early phases of the AnT project. However, it turned out that the software architecture

concepts designed and used in the project allow this support generically. As a consequence hereof, we

were able to implement many of our investigation methods at a high level of abstraction, thus reusing this

functionality for many classes of dynamical systems and avoiding source code duplication.

3 Integration methods

In order to investigate dynamical systems continuous in time, i.e. ODEs, DDEs, etc., AnT integrates them

numerically. Hereby, the continuous trajectory has to be approximated by a sequence of discrete states

resulting from the applied integration method. To cope with typical problems arising by the numerical

integration, like for instance by the integration of the so–called stiff differential equations or the integration

of stochastic systems, AnT provides several classes of integration methods. Currently implemented methods

with fixed step size include the well–known one–step methods of Runge–Kutta type defined by their corre-

sponding pre–implemented Butcher arrays. Additionally, the Butcher arrays can be supplied by the user.

Hence, AnT supports user defined integration methods of this type. Furthermore a large collection of different

integration methods is implemented, containing among others some implicit methods like Heun–backward,

some multi–step methods with memory like the backward differentiation approach (Gear method) and some

predictor–corrector methods like the Adams–Moulton approach. Additionally, AnT supports several methods

with adjustable step size.

4 Scans

An important issue within the theory of non-linear dynamical systems is the investigation of the system

dynamics depending on various settings. AnT can handle this kind of investigation by allowing so–called

scan–runs, which incorporate the analysis of the system dynamics for varying settings. During such a scan–

run, not only one or more parameters of the investigated dynamical system can be varied, but also the

initial values as well as specific parameters of the applied investigation methods. One possible application
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Figure 1: Investigation of the Rössler system.

The Rössler system, given by ẋ(t) = −(x(t) + z(t)), ẏ(t) = x(t) + ay(t), ż(t) = b+ z(t)(x(t)− c),

is here investigated using the parameter settings a = 0.15, b = 0.2 and varying c.

(a),(b) Bifurcation diagrams for the Poincaré map, defined by the cross–sections of the tra-

jectory with the half–plane
{

(x, y, z)T | y = 0, x > 0
}

.

(c) The figure shows the largest two Lyapunov exponents of this three–dimensional system

continuous in time.

(d) A periodic and a chaotic (two–band) attractor and the corresponding Poincaré sec-

tions. The parameter values used here (c = 5.7 and c = 6.2) are marked with arrows

in the bifurcation diagrams shown in (a) and (b).



of the scan–run is the investigation of bifurcation scenarios showing the dependency of the system dynamics

on some control parameters. AnT supports one–dimensional scan–runs, where only one control parameter

is varied (see Fig. 1, and Fig. 3), as well as higher–dimensional scans (see Fig. 4). Another domain of

application for scan–runs is the investigation of basins of attraction in the case of coexisting attractors.

Furthermore, one can empirically determine the parameter settings of certain investigation methods for

which these methods operate optimally. A sample application of this case is presented below, but we have

to remark that such scans are rather unusual, since scan–runs normally concern the parameters or initial

values of the system.

One of the approaches for the calculation of the Lyapunov exponents, implemented by AnT (some modifica-

tion of the approach of Wolf et al. [13]), possesses as parameters the length of a small deviation vector |~ε|

and the number NGSO of iteration steps between two subsequent applications of the Gram–Schmidt ortho–

normalization procedure. These parameters must be provided by the user. In order to determine the suitable

settings for the parameters, one can investigate their influence on the calculated values of Lyapunov expo-

nents by using them as scan parameters in a scan–run. In the example presented in Fig. 2, the correct

value of the Lyapunov exponent can be determined analytically, which yields λ∗ = ln(2). In Fig 2.a, the

accuracy of the numerical calculation is shown depending on the length of the deviation vectors |~ε|. The

Gram–Schmidt ortho–normalization procedure is applied in each step. As one can see, the appropriate

setting for |~ε| lies between εmin ∝ 10−9 and εmax ∝ 10−7. If one sets |~ε| À εmax, the results are not precise

enough due to approach specific requirements, by |~ε| ¿ εmin the accumulated numerical errors made by the

computer become perceptible. By increasing the number of iterations, one achieves more precise results,

but the suitable ranges for ε will be smaller. In Fig. 2.b, the accuracy of the numerical calculation is shown

depending on the number of iteration steps between two subsequent applications of the Gram–Schmidt

ortho–normalization procedure. As one can see, the best results are achieved if the procedure is applied in

each step. We remark that for other dynamical systems, especially continuous in time, the optimal setting

for the parameter NGSO may be larger, depending on the used step size.

Another important feature of AnT concerning scan-runs is the possibility of distributing them automatically

among several nodes (processors, machines), thus executing the simulations in parallel.

5 Investigation methods

As already mentioned, AnT provides a lot of investigation methods, considering various aspects of the behav-

ior of a dynamical system. In order to acquire a rough idea of the investigated dynamical system, one can

use the basic trajectory evaluations. For instance, one can calculate one or more trajectories of the system,

the orbital and average velocities as well as other values like e.g. the wave numbers ([3], Fig. 3.d). The

period analysis makes it possible to calculate bifurcation and period diagrams. This is particularly useful

in combination with one– or higher–dimensional scan runs (compare Fig. 3.a, Fig. 3.b and Fig. 4). The

stability properties of a dynamical system can be investigated by calculating the Lyapunov exponents of

its attractors (Fig. 2, Fig. 3.c). This investigation method is implemented not only for maps and ordinary

differential equations, but also for dynamical systems with memory, such as delay differential equations.

Due to its generality, this method can also be applied to the more general class of functional differential

equations.



ln
(|
λ
−
λ
∗
|)

ln
(|
λ
−
λ
∗
|)

ln (|~ε|) NGSO
(a) (b)

1.0e-09

1.0e-08

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

1.
0e

-1
4

1.
0e

-1
2

1.
0e

-1
0

1.
0e

-0
8

1.
0e

-0
6

1.
0e

-0
4

1.
0e

-0
2

1.0e-07

1.0e-06

1.0e-05

1.0e-04

1.0e-03

1.0e-02

0 2 4 6 8 10 12 14 16 18 20

Figure 2: Accuracy of the numerical calculation of the Lyapunov exponents for the logistic map xn+1 =

αxn(1 − xn) for α = 4.0. The number of iterations is 25 000 steps (solid line), 250 000 steps (dashed line)

and 2 500 000 steps (dotted line). The transient part is 1000 steps in all three cases. The initial value

is x0 = 0.1.

We have included some standard techniques from the field of frequency analysis, like e.g. the calculation of

power spectra. Singular value decomposition is another useful method provided by AnT.

Methods based on symbolic dynamics provide a collection of generic techniques for the generation of sym-

bolic sequences corresponding to the underlying trajectory. AnT supports n–dimensional extensions of the

techniques, which are known for 1–dimensional systems, like for instance (LR)– and (+−)– symbolic dynam-

ics. From the symbolic sequence, AnT is able to calculate some quantitative measures like e.g. its entropy

([7]).

A powerful part of AnT is the module for determination and evaluation of symbolic images ([4, 5, 10]).

Using this analysis method one is able to find invariant sets of a vector field, especially including unstable

orbits. Note, that the method is applicable for both dynamical systems discrete and continuous in time.

Furthermore, it is possible to determine the basins of attraction at least for simple attractors, that is, for

fixed points and for limit cycles.

The results of each investigation method are written to corresponding data files. After a simulation run,

these results can be visualized and evaluated by the user. Additionally, 2D and 3D online-visualization

modules are implemented, which can be used during single-run simulations.

6 Conclusion

The AnT package is free software and is distributed under the GNU public license. It is available at the URL

http://www.AnT4669.de. There, one can also find a more detailed description of the package.
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Figure 3: Some investigation results.

Presented are some aspects of the dynamical behavior of the following one–dimensional dynamical system

discrete in time, with the piecewise defined system function

xn+1 =

{

αxn(1− xn) if xn ≤
1
2

βxn(xn − 1) + 1 if xn >
1
2

(1)

at β = 2.8 and various values of α.

(a) Bifurcation diagram. Shown are the periodic and aperiodic dynamics of the system.

(b) From the period diagram one can see that the bifurcation scenario presented in Fig. (a) resembles a

period adding scenario [1].

(c) As one can see from the diagram of the Lyapunov exponent, the bifurcations presented in Fig. (a) take

mostly place on super–stable parameter values.

(d) In the wave number diagram one can recognize the typical ”devil’s staircase” structure [2].
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Figure 4: Bifurcation structures of the system (1) in the 2-dimensional parameter space [α× β].

The white spaces denote regions with the same periodical behavior, calculated by the method denoted as

region analysis. Some of the periods are written within the corresponding regions. The dashed line shows

the section corresponding to a 1-dimensional parameter scan for α with β = 2.8, as presented in Fig. 3.

The software is yet available for UNIX-based operating systems like Linux, Solaris or FreeBSD and uses free

libraries only. For instance, in some numerical investigation methods the libraries fftwlib ( http://www.fftw.org)

and CLAPACK (http://www.netlib.org/clapack) are used. If these libraries are not installed on the current

system, then the corresponding numerical methods (Fourier analysis, principal values decomposition) can

not be loaded. However, the simulator works even without them, since the other investigation methods are

not affected anyway.

For future releases, it is planned to extend the AnT package with new system classes. Especially, partial

differential equations (PDE) with more then one spatial direction and coupled delay and functional dif-

ferential equations (CDDEL and CFDEL) will be considered. Another important goal is the extension of

the list of supported investigation methods. Currently, we are working on more precise methods for the

numerical calculation of entropies and several fractal dimensions, on including some new ideas from the field

of symbolic dynamics, etc.
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